4 research outputs found

    DELINEATION OF ECG FEATURE EXTRACTION USING MULTIRESOLUTION ANALYSIS FRAMEWORK

    Get PDF
    ECG signals have very features time-varying morphology, distinguished as P wave, QRS complex, and T wave. Delineation in ECG signal processing is an important step used to identify critical points that mark the interval and amplitude locations in the features of each wave morphology. The results of ECG signal delineation can be used by clinicians to associate the pattern of delineation point results with morphological classes, besides delineation also produces temporal parameter values of ECG signals. The delineation process includes detecting the onset and offset of QRS complex, P and T waves that represented as pulse width, and also the detection of the peak from each wave feature. The previous study had applied bandpass filters to reduce amplitude of P and T waves, then the signal was passed through non-linear transformations such as derivatives or square to enhance QRS complex. However, the spectrum bandwidth of QRS complex from different patients or same patient may be different, so the previous method was less effective for the morphological variations in ECG signals. This study developed delineation from the ECG feature extraction based on multiresolution analysis with discrete wavelet transform. The mother wavelet used was a quadratic spline function with compact support. Finally, determination of R, T, and P wave peaks were shown by zero crossing of the wavelet transform signals, while the onset and offset were generated from modulus maxima and modulus minima. Results show the proposed method was able to detect QRS complex with sensitivity of 97.05% and precision of 95.92%, T wave detection with sensitivity of 99.79% and precision of 96.46%, P wave detection with sensitivity of 56.69% and precision of 57.78%. The implementation in real time analysis of time-varying ECG morphology will be addressed in the future research

    P Wave Detection in Pathological ECG Signals

    Get PDF
    Důležitou součástí hodnocení elektrokardiogramu (EKG) a následné detekce srdečních patologií, zejména v dlouhodobém monitorování, je detekce vln P. Výsledky detekce vln P umožňují získat ze záznamu EKG více informací o srdeční činnosti. Podle správně detekovaných pozic vln P je možné detekovat a odlišit patologie, které současné programy používané v medicínské praxi identifikovat neumožňují (např. atrioventrikulární blok 1., 2. a 3. stupně, cestující pacemaker, Wolffův-Parkinsonův-Whiteův syndrom). Tato dizertační práce představuje novou metodu detekce vln P v záznamech EKG během fyziologické a zejména patologické srdeční činnosti. Metoda je založena na fázorové transformaci, inovativních pravidlech detekce a identifikaci možných patologií zpřesňující detekci vln P. Dalším důležitým výsledkem práce je vytvoření dvou veřejně dostupných databází záznamů EKG s obsahem patologií a anotovanými vlnami P. Dizertační práce je rozdělena na teoretickou část a soubor publikací představující příspěvek autora v oblasti detekce vlny P.Accurate software for the P wave detection, mainly in long-term monitoring, is an important part of electrocardiogram (ECG) evaluation and subsequent cardiac pathological events detection. The results of P wave detection allow us to obtain more information from the ECG records. According to the correct P wave detection, it is possible to detect and distinguish cardiac pathologies which are nowadays automatically undetectable by commonly used software in medical practice (events e.g. atrioventricular block 1st, 2nd and 3rd degree, WPW syndrome, wandering pacemaker, etc.). This thesis introduces a new method for P wave detection in ECG signals during both physiological and pathological heart function. This novel method is based on a phasor transform, innovative rules, and identification of possible pathologies that improve P wave detection. An equally important part of the work is the creation of two publicly available databases of physiological and pathological ECG records with annotated P waves. The dissertation is divided into theoretical analysis and a set of publications representing the contribution of the author in the area of P wave detection.

    P- and T-wave delineation in ECG signals using parametric mixture Gaussian and dynamic programming

    No full text
    Detection and tracking of the P- and T-waves are important issues in the analysis and interpretation of the ECG signals. This paper addresses the problem by using two mixture Gaussian function and the Dynamic programming. A key feature of the proposed algorithm is that it allows to incorporate the prior knowledge about the P/T wave location variations and robustness to errors in QRS detection. The proposed algorithm is evaluated on the annotated QT-database and compared against the algorithms based on differential evolution optimization strategy (DEOS) and generating blocks of interest (GBI). The experiments show that the proposed method determines the P- and T-peak locations with a root mean square error of 0.085 s and 0.091 s respectively. Both these values are better than the corresponding values from DEOS and GBI. Similarly, the proposed algorithm achieves a sensitivity of 96.13 and predictivity of 97.70. While the predictivity is higher than both DEOS and GBI, the sensitivity is on par with GBOI and higher than that of DEOS
    corecore