97 research outputs found

    A study and some experimental work of digital image and video watermarking

    Get PDF
    The rapid growth of digitized media and the emergence of digital networks have created a pressing need for copyright protection and anonymous communications schemes. Digital watermarking (or data hiding in a more general term) is a kind of steganography technique by adding information into a digital data stream. Several most important watermarking schemes applied to multilevel and binary still images and digital videos were studied. They include schemes based on DCT (Discrete Cosine Transform), DWT (Discrete Wavelet Transform), and fractal transforms. The question whether these invisible watermarking techniques can resolve the issue of rightful ownership of intellectual properties was discussed. The watermarking schemes were further studied from malicious attack point of view, which is considered an effective way to advance the watermarking techniques. In particular, the StirMark robustness tests based on geometrical distortion were carried out. A binary watermarking scheme applied in the DCT domain is presented in this research project. The effect of the binarization procedure necessarily encountered in dealing with binary document images is found so strong that most of conventional embedding schemes fail in dealing with watermarking of binary document images. Some particular measures have to be taken. The initial simulation results indicate that the proposed technique is promising though further efforts need to be made

    Spread spectrum-based video watermarking algorithms for copyright protection

    Get PDF
    Merged with duplicate record 10026.1/2263 on 14.03.2017 by CS (TIS)Digital technologies know an unprecedented expansion in the last years. The consumer can now benefit from hardware and software which was considered state-of-the-art several years ago. The advantages offered by the digital technologies are major but the same digital technology opens the door for unlimited piracy. Copying an analogue VCR tape was certainly possible and relatively easy, in spite of various forms of protection, but due to the analogue environment, the subsequent copies had an inherent loss in quality. This was a natural way of limiting the multiple copying of a video material. With digital technology, this barrier disappears, being possible to make as many copies as desired, without any loss in quality whatsoever. Digital watermarking is one of the best available tools for fighting this threat. The aim of the present work was to develop a digital watermarking system compliant with the recommendations drawn by the EBU, for video broadcast monitoring. Since the watermark can be inserted in either spatial domain or transform domain, this aspect was investigated and led to the conclusion that wavelet transform is one of the best solutions available. Since watermarking is not an easy task, especially considering the robustness under various attacks several techniques were employed in order to increase the capacity/robustness of the system: spread-spectrum and modulation techniques to cast the watermark, powerful error correction to protect the mark, human visual models to insert a robust mark and to ensure its invisibility. The combination of these methods led to a major improvement, but yet the system wasn't robust to several important geometrical attacks. In order to achieve this last milestone, the system uses two distinct watermarks: a spatial domain reference watermark and the main watermark embedded in the wavelet domain. By using this reference watermark and techniques specific to image registration, the system is able to determine the parameters of the attack and revert it. Once the attack was reverted, the main watermark is recovered. The final result is a high capacity, blind DWr-based video watermarking system, robust to a wide range of attacks.BBC Research & Developmen

    Information embedding and retrieval in 3D printed objects

    Get PDF
    Deep learning and convolutional neural networks have become the main tools of computer vision. These techniques are good at using supervised learning to learn complex representations from data. In particular, under limited settings, the image recognition model now performs better than the human baseline. However, computer vision science aims to build machines that can see. It requires the model to be able to extract more valuable information from images and videos than recognition. Generally, it is much more challenging to apply these deep learning models from recognition to other problems in computer vision. This thesis presents end-to-end deep learning architectures for a new computer vision field: watermark retrieval from 3D printed objects. As it is a new area, there is no state-of-the-art on many challenging benchmarks. Hence, we first define the problems and introduce the traditional approach, Local Binary Pattern method, to set our baseline for further study. Our neural networks seem useful but straightfor- ward, which outperform traditional approaches. What is more, these networks have good generalization. However, because our research field is new, the problems we face are not only various unpredictable parameters but also limited and low-quality training data. To address this, we make two observations: (i) we do not need to learn everything from scratch, we know a lot about the image segmentation area, and (ii) we cannot know everything from data, our models should be aware what key features they should learn. This thesis explores these ideas and even explore more. We show how to use end-to-end deep learning models to learn to retrieve watermark bumps and tackle covariates from a few training images data. Secondly, we introduce ideas from synthetic image data and domain randomization to augment training data and understand various covariates that may affect retrieve real-world 3D watermark bumps. We also show how the illumination in synthetic images data to effect and even improve retrieval accuracy for real-world recognization applications

    A Somewhat Robust Image Watermark against Diffusion-based Editing Models

    Full text link
    Recently, diffusion models (DMs) have become the state-of-the-art method for image synthesis. Editing models based on DMs, known for their high fidelity and precision, have inadvertently introduced new challenges related to image copyright infringement and malicious editing. Our work is the first to formalize and address this issue. After assessing and attempting to enhance traditional image watermarking techniques, we recognize their limitations in this emerging context. In response, we develop a novel technique, RIW (Robust Invisible Watermarking), to embed invisible watermarks leveraging adversarial example techniques. Our technique ensures a high extraction accuracy of 96%96\% for the invisible watermark after editing, compared to the 0%0\% offered by conventional methods. We provide access to our code at https://github.com/BennyTMT/RIW

    A visible wavelet watermarking technique based on exploiting the contrast sensitivity function and noise reduction of human vision system

    Get PDF
    Dengan meluasnya penggunaan Internet dan pesatnya perkembangan teknologi digital, perlindungan hak cipta atas konten multimedia telah menjadi isu penting. Di antara teknologi yang tersedia, teknik watermarking digital dianggap sebagai solusi perlindungan hak milik atas sumber daya multimedia. Untuk mengevaluasi kinerja teknik watermarking yang terlihat, ketangguhan dan tembus persepsi adalah dua kriteria penting untuk aplikasi watermark. Untuk mendapatkan pertukaran terbaik antara energi penyisipan tanda air dan penembusan perseptual, penelitian ini menghadirkan teknik bernama ICOCOA (konten inovatif dan sadar kontras) dengan mengeksploitasi fungsi sensitivitas kontras (CSF) dan pengurangan kebisingan dari sistem penglihatan manusia. dalam domain wavelet. Ide baru lainnya dari karya ini adalah untuk mengusulkan kurva inovasi CSF masking (I-CSF) yang memberikan persepsi bobot yang lebih baik di mana arsitektur teori permainan dapat dimanfaatkan untuk menentukan masking I-CSF terbaik untuk gambar yang diberi watermark. Hasil percobaan menunjukkan bahwa pendekatan yang diusulkan tidak hanya memberikan kualitas watermark yang tembus cahaya tetapi juga mencapai ketahanan terhadap operasi pemrosesan gambar umum

    Security and Digital Libraries

    Get PDF

    Classifiers and machine learning techniques for image processing and computer vision

    Get PDF
    Orientador: Siome Klein GoldensteinTese (doutorado) - Universidade Estadual de Campinas, Instituto da ComputaçãoResumo: Neste trabalho de doutorado, propomos a utilizaçãoo de classificadores e técnicas de aprendizado de maquina para extrair informações relevantes de um conjunto de dados (e.g., imagens) para solução de alguns problemas em Processamento de Imagens e Visão Computacional. Os problemas de nosso interesse são: categorização de imagens em duas ou mais classes, detecçãao de mensagens escondidas, distinção entre imagens digitalmente adulteradas e imagens naturais, autenticação, multi-classificação, entre outros. Inicialmente, apresentamos uma revisão comparativa e crítica do estado da arte em análise forense de imagens e detecção de mensagens escondidas em imagens. Nosso objetivo é mostrar as potencialidades das técnicas existentes e, mais importante, apontar suas limitações. Com esse estudo, mostramos que boa parte dos problemas nessa área apontam para dois pontos em comum: a seleção de características e as técnicas de aprendizado a serem utilizadas. Nesse estudo, também discutimos questões legais associadas a análise forense de imagens como, por exemplo, o uso de fotografias digitais por criminosos. Em seguida, introduzimos uma técnica para análise forense de imagens testada no contexto de detecção de mensagens escondidas e de classificação geral de imagens em categorias como indoors, outdoors, geradas em computador e obras de arte. Ao estudarmos esse problema de multi-classificação, surgem algumas questões: como resolver um problema multi-classe de modo a poder combinar, por exemplo, caracteríisticas de classificação de imagens baseadas em cor, textura, forma e silhueta, sem nos preocuparmos demasiadamente em como normalizar o vetor-comum de caracteristicas gerado? Como utilizar diversos classificadores diferentes, cada um, especializado e melhor configurado para um conjunto de caracteristicas ou classes em confusão? Nesse sentido, apresentamos, uma tecnica para fusão de classificadores e caracteristicas no cenário multi-classe através da combinação de classificadores binários. Nós validamos nossa abordagem numa aplicação real para classificação automática de frutas e legumes. Finalmente, nos deparamos com mais um problema interessante: como tornar a utilização de poderosos classificadores binarios no contexto multi-classe mais eficiente e eficaz? Assim, introduzimos uma tecnica para combinação de classificadores binarios (chamados classificadores base) para a resolução de problemas no contexto geral de multi-classificação.Abstract: In this work, we propose the use of classifiers and machine learning techniques to extract useful information from data sets (e.g., images) to solve important problems in Image Processing and Computer Vision. We are particularly interested in: two and multi-class image categorization, hidden messages detection, discrimination among natural and forged images, authentication, and multiclassification. To start with, we present a comparative survey of the state-of-the-art in digital image forensics as well as hidden messages detection. Our objective is to show the importance of the existing solutions and discuss their limitations. In this study, we show that most of these techniques strive to solve two common problems in Machine Learning: the feature selection and the classification techniques to be used. Furthermore, we discuss the legal and ethical aspects of image forensics analysis, such as, the use of digital images by criminals. We introduce a technique for image forensics analysis in the context of hidden messages detection and image classification in categories such as indoors, outdoors, computer generated, and art works. From this multi-class classification, we found some important questions: how to solve a multi-class problem in order to combine, for instance, several different features such as color, texture, shape, and silhouette without worrying about the pre-processing and normalization of the combined feature vector? How to take advantage of different classifiers, each one custom tailored to a specific set of classes in confusion? To cope with most of these problems, we present a feature and classifier fusion technique based on combinations of binary classifiers. We validate our solution with a real application for automatic produce classification. Finally, we address another interesting problem: how to combine powerful binary classifiers in the multi-class scenario more effectively? How to boost their efficiency? In this context, we present a solution that boosts the efficiency and effectiveness of multi-class from binary techniques.DoutoradoEngenharia de ComputaçãoDoutor em Ciência da Computaçã
    corecore