736 research outputs found

    Real-time public group collaboration using IP multicast label filters

    Get PDF
    Internet based enterprise level collaboration tools enable organizations to make decisions faster and more accurately with less effort. However, these tools provide limited real-time group collaboration within and across organizations. Multicast protocols were developed to provide efficient group communication. This paper proposes a novel IP multicast network layer filter architecture that provides efficient and scalable real-time group collaboration between the required entities within an organization. This proposed network architecture uses a label filter mechanism to improve scalability and bandwidth for one-to-many and many-to-many real-time collaboration

    Ethernet - a survey on its fields of application

    Get PDF
    During the last decades, Ethernet progressively became the most widely used local area networking (LAN) technology. Apart from LAN installations, Ethernet became also attractive for many other fields of application, ranging from industry to avionics, telecommunication, and multimedia. The expanded application of this technology is mainly due to its significant assets like reduced cost, backward-compatibility, flexibility, and expandability. However, this new trend raises some problems concerning the services of the protocol and the requirements for each application. Therefore, specific adaptations prove essential to integrate this communication technology in each field of application. Our primary objective is to show how Ethernet has been enhanced to comply with the specific requirements of several application fields, particularly in transport, embedded and multimedia contexts. The paper first describes the common Ethernet LAN technology and highlights its main features. It reviews the most important specific Ethernet versions with respect to each application field’s requirements. Finally, we compare these different fields of application and we particularly focus on the fundamental concepts and the quality of service capabilities of each proposal

    The internet: A global telecommunications solution?

    Full text link
    The provision and support of new distributed multimedia services are of prime concern for telecommunications operators and suppliers. Clearly, the potential of the latest Internet protocols to contribute communications components is of considerable interest to them. In this article we first review some of the new types of application and their requirements, and identify the need to support applications that have strict QoS requirements, the so-called critical applications. We review two proposals for enhancing the Internet service architecture. In addition to the integrated services work of the IETF, we look at the more recent proposals for differentiated services in the Internet. We then individually review recent protocol developments proposed to improve the Internet, and to support real-time and multimedia communications. These are IPv6 (the new version of the Internet Protocol), Resource reSerVation Protocol, and Multiprotocol Label Switching, respectively. In each case, we attempt to provide critical reviews in order to assess their suitability for this purpose. Finally, we indicate what the basis of the future infrastructure might be in order to support the full variety of application requirements

    Performance of a shared tree multicast label filter architecture

    Get PDF
    This paper defines a new multicast filter algorithm. This algorithm is used to filter packets on a mobile multicast architecture using a multicast shared tree. In a mobile multicast architecture, communications between a corresponding node (source) and the mobile node (receiver) should be private and not be sent to every node (receivers) on the multicast tree. We propose using an algorithm that sets up a label sub-tree on an existing mobile multicast shared tree to filter packets based on these labels. Our proposed label filter architecture is implemented differently to the current MPLS architecture. In this paper, we validate the effectiveness of the label filter in mobile communication compared to the traditional method of creating a new multicast tree by analysing the message and time complexity of the algorithm against the setting up time of a new multicast shared tree

    Deliverable JRA1.1: Evaluation of current network control and management planes for multi-domain network infrastructure

    Get PDF
    This deliverable includes a compilation and evaluation of available control and management architectures and protocols applicable to a multilayer infrastructure in a multi-domain Virtual Network environment.The scope of this deliverable is mainly focused on the virtualisation of the resources within a network and at processing nodes. The virtualization of the FEDERICA infrastructure allows the provisioning of its available resources to users by means of FEDERICA slices. A slice is seen by the user as a real physical network under his/her domain, however it maps to a logical partition (a virtual instance) of the physical FEDERICA resources. A slice is built to exhibit to the highest degree all the principles applicable to a physical network (isolation, reproducibility, manageability, ...). Currently, there are no standard definitions available for network virtualization or its associated architectures. Therefore, this deliverable proposes the Virtual Network layer architecture and evaluates a set of Management- and Control Planes that can be used for the partitioning and virtualization of the FEDERICA network resources. This evaluation has been performed taking into account an initial set of FEDERICA requirements; a possible extension of the selected tools will be evaluated in future deliverables. The studies described in this deliverable define the virtual architecture of the FEDERICA infrastructure. During this activity, the need has been recognised to establish a new set of basic definitions (taxonomy) for the building blocks that compose the so-called slice, i.e. the virtual network instantiation (which is virtual with regard to the abstracted view made of the building blocks of the FEDERICA infrastructure) and its architectural plane representation. These definitions will be established as a common nomenclature for the FEDERICA project. Other important aspects when defining a new architecture are the user requirements. It is crucial that the resulting architecture fits the demands that users may have. Since this deliverable has been produced at the same time as the contact process with users, made by the project activities related to the Use Case definitions, JRA1 has proposed a set of basic Use Cases to be considered as starting point for its internal studies. When researchers want to experiment with their developments, they need not only network resources on their slices, but also a slice of the processing resources. These processing slice resources are understood as virtual machine instances that users can use to make them behave as software routers or end nodes, on which to download the software protocols or applications they have produced and want to assess in a realistic environment. Hence, this deliverable also studies the APIs of several virtual machine management software products in order to identify which best suits FEDERICA’s needs.Postprint (published version

    Mobile-IP ad-hoc network MPLS-based with QoS support.

    Get PDF
    The support for Quality of Service (QoS) is the main focus of this thesis. Major issues and challenges for Mobile-IP Ad-Hoc Networks (MANETs) to support QoS in a multi-layer manner are considered discussed and investigated through simulation setups. Different parameters contributing to the subjective measures of QoS have been considered and consequently, appropriate testbeds were formed to measure these parameters and compare them to other schemes to check for superiority. These parameters are: Maximum Round-Trip Delay (MRTD), Minimum Bandwidth Guaranteed (MBG), Bit Error Rate (BER), Packet Loss Ratio (PER), End-To-End Delay (ETED), and Packet Drop Ratio (PDR) to name a few. For network simulations, NS-II (Network Simulator Version II) and OPNET simulation software systems were used.Dept. of Electrical and Computer Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2005 .A355. Source: Masters Abstracts International, Volume: 44-03, page: 1444. Thesis (M.Sc.)--University of Windsor (Canada), 2005

    Segment Routing: a Comprehensive Survey of Research Activities, Standardization Efforts and Implementation Results

    Full text link
    Fixed and mobile telecom operators, enterprise network operators and cloud providers strive to face the challenging demands coming from the evolution of IP networks (e.g. huge bandwidth requirements, integration of billions of devices and millions of services in the cloud). Proposed in the early 2010s, Segment Routing (SR) architecture helps face these challenging demands, and it is currently being adopted and deployed. SR architecture is based on the concept of source routing and has interesting scalability properties, as it dramatically reduces the amount of state information to be configured in the core nodes to support complex services. SR architecture was first implemented with the MPLS dataplane and then, quite recently, with the IPv6 dataplane (SRv6). IPv6 SR architecture (SRv6) has been extended from the simple steering of packets across nodes to a general network programming approach, making it very suitable for use cases such as Service Function Chaining and Network Function Virtualization. In this paper we present a tutorial and a comprehensive survey on SR technology, analyzing standardization efforts, patents, research activities and implementation results. We start with an introduction on the motivations for Segment Routing and an overview of its evolution and standardization. Then, we provide a tutorial on Segment Routing technology, with a focus on the novel SRv6 solution. We discuss the standardization efforts and the patents providing details on the most important documents and mentioning other ongoing activities. We then thoroughly analyze research activities according to a taxonomy. We have identified 8 main categories during our analysis of the current state of play: Monitoring, Traffic Engineering, Failure Recovery, Centrally Controlled Architectures, Path Encoding, Network Programming, Performance Evaluation and Miscellaneous...Comment: SUBMITTED TO IEEE COMMUNICATIONS SURVEYS & TUTORIAL

    Agent-based self-management of MPLS DiffServ-TE domain

    Get PDF
    MPLS DiffServ-TE presents the solution awaited so much by the network service providers by allowing a differentiation of services and a traffic engineering based on a fast packet switching technology. However, the management of such a network is not a simple function and could not be done manually. In this paper, we propose a novel architecture based on the Multi-Agent Systems (MAS) capable of managing automatically MPLS DiffServ-TE domains. Based on the network states, our intelligent agents take the appropriate decisions. They, for example, reconfigure the network accordingly5th IFIP International Conference on Network Control & Engineering for QoS, Security and MobilityRed de Universidades con Carreras en Informática (RedUNCI

    Overlay networks for smart grids

    Get PDF
    corecore