2,856 research outputs found

    New Design Techniques for Dynamic Reconfigurable Architectures

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    A High Performance Fuzzy Logic Architecture for UAV Decision Making

    Get PDF
    The majority of Unmanned Aerial Vehicles (UAVs) in operation today are not truly autonomous, but are instead reliant on a remote human pilot. A high degree of autonomy can provide many advantages in terms of cost, operational resources and safety. However, one of the challenges involved in achieving autonomy is that of replicating the reasoning and decision making capabilities of a human pilot. One candidate method for providing this decision making capability is fuzzy logic. In this role, the fuzzy system must satisfy real-time constraints, process large quantities of data and relate to large knowledge bases. Consequently, there is a need for a generic, high performance fuzzy computation platform for UAV applications. Based on Lees’ [1] original work, a high performance fuzzy processing architecture, implemented in Field Programmable Gate Arrays (FPGAs), has been developed and is shown to outclass the performance of existing fuzzy processors

    Implementation of Genetic Algorithms in FPGA-based Reconfigurable Computing Systems

    Get PDF
    Genetic Algorithms (GAs) are used to solve many optimization problems in science and engineering. GA is a heuristics approach which relies largely on random numbers to determine the approximate solution of an optimization problem. We use the Mersenne Twister Algorithm (MTA) to generate a non-overlapping sequence of random numbers with a period of 219937-1. The random numbers are generated from a state vector that consists of 624 elements. Our work on state vector generation and the GA implementation targets the solution of a flow-line scheduling problem where the flow-lines have jobs to process and the goal is to find a suitable completion time for all jobs using a GA. The state vector generation algorithm (MTA) performs poorly in traditional von Neumann architectures due to its poor temporal and spatial locality. Therefore its performance is limited by the speed at which we can access memory. With an approximate increase of processor performance by 60% per year and a drop of memory latency only 7% per year, a new approach is needed for performance improvement. On the other hand, the GA implementation in a general-purpose microprocessor, though performs reasonably well, has scope for performance gain in a parallel implementation. The parallel implementation of the GA can work as a kernel for applications that uses a GA to reach a solution. Our approach is to implement the state vector generation process and the GA in an FPGA-based Reconfigurable Computing (RC) system with the goal of improving the overall performance. Application design for FPGA-based RC systems is not trivial and the performance improvement is not guaranteed. Designing for RC systems requires algorithmic parallelism in order to exploit the inherent parallelism of the FPGA. We are using a high-level language that provides a level of abstraction from the lower-level hardware in the RC system making it difficult to fully exploit some of the architectural benefits of the FPGA. Considering these factors, we improve the state vector generation process algorithmically. Our implementation generates state vectors 5X faster than the previous implementation in an Intel Xeon microprocessor of 2GHz. The modified algorithm is also implemented in a Xilinx Virtex-4 FPGA that results in a 2.4X speedup. Improvement in this preprocessing step accelerates GA application performance as random numbers are generated from these state vectors for the genetic operators. We simulate the basic operations of a GA in an FPGA to study its behavior in a parallel environment and analyze the results. The initial FPGA implementation of the GA runs about 7X slower than its microprocessor counterpart. The reasons are explained along with suggestions for improvement and future work

    Design exploration and performance strategies towards power-efficient FPGA-based achitectures for sound source localization

    Get PDF
    Many applications rely on MEMS microphone arrays for locating sound sources prior to their execution. Those applications not only are executed under real-time constraints but also are often embedded on low-power devices. These environments become challenging when increasing the number of microphones or requiring dynamic responses. Field-Programmable Gate Arrays (FPGAs) are usually chosen due to their flexibility and computational power. This work intends to guide the design of reconfigurable acoustic beamforming architectures, which are not only able to accurately determine the sound Direction-Of-Arrival (DoA) but also capable to satisfy the most demanding applications in terms of power efficiency. Design considerations of the required operations performing the sound location are discussed and analysed in order to facilitate the elaboration of reconfigurable acoustic beamforming architectures. Performance strategies are proposed and evaluated based on the characteristics of the presented architecture. This power-efficient architecture is compared to a different architecture prioritizing performance in order to reveal the unavoidable design trade-offs

    Lessons learned from the design of a mobile multimedia system in the Moby Dick project

    Get PDF
    Recent advances in wireless networking technology and the exponential development of semiconductor technology have engendered a new paradigm of computing, called personal mobile computing or ubiquitous computing. This offers a vision of the future with a much richer and more exciting set of architecture research challenges than extrapolations of the current desktop architectures. In particular, these devices will have limited battery resources, will handle diverse data types, and will operate in environments that are insecure, dynamic and which vary significantly in time and location. The research performed in the MOBY DICK project is about designing such a mobile multimedia system. This paper discusses the approach made in the MOBY DICK project to solve some of these problems, discusses its contributions, and accesses what was learned from the project

    A writable programmable logic array

    Get PDF
    This thesis contains the analysis, design, and implementation of a writable programmable logic array integrated circuit. The WPLA is able to be reprogrammed any number of times as needed. A content addressable scheme is proposed to conduct READ, WRITE, and SEARCH operations in the WPLA. The WPLA is programmed by writing binary data into storage cells associated with each node in the AND/OR planes of the array; the binary data then form the personalities of the PLA. The layout of the WPLA will be implemented using Mentor Graphic\u27s CHIPGRAPH layout editor with 2 µm NMOS technology and MOSIS design rules. The event-driven logic level simulator QUICKSIM, and a MOS circuit level simulator MSIMON, are used to verify the functional and timing behavior of the WPLA
    • …
    corecore