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ABSTRACT 
 
 

Genetic Algorithms (GAs) are used to solve many optimization problems in 

science and engineering. GA is a heuristics approach which relies largely on random 

numbers to determine the approximate solution of an optimization problem. We use the 

Mersenne Twister Algorithm (MTA) to generate a non-overlapping sequence of random 

numbers with a period of 219937-1. The random numbers are generated from a state vector 

that consists of 624 elements. Our work on state vector generation and the GA 

implementation targets the solution of a flow-line scheduling problem where the flow-

lines have jobs to process and the goal is to find a suitable completion time for all jobs 

using a GA. The state vector generation algorithm (MTA) performs poorly in traditional 

von Neumann architectures due to its poor temporal and spatial locality. Therefore its 

performance is limited by the speed at which we can access memory. With an 

approximate increase of processor performance by 60% per year and a drop of memory 

latency only 7% per year, a new approach is needed for performance improvement. On 

the other hand, the GA implementation in a general-purpose microprocessor, though 

performs reasonably well, has scope for performance gain in a parallel implementation. 

The parallel implementation of the GA can work as a kernel for applications that uses a 

GA to reach a solution. Our approach is to implement the state vector generation process 

and the GA in an FPGA-based Reconfigurable Computing (RC) system with the goal of 

improving the overall performance.  

Application design for FPGA-based RC systems is not trivial and the performance 

improvement is not guaranteed. Designing for RC systems requires algorithmic 
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parallelism in order to exploit the inherent parallelism of the FPGA. We are using a high-

level language that provides a level of abstraction from the lower-level hardware in the 

RC system making it difficult to fully exploit some of the architectural benefits of the 

FPGA. Considering these factors, we improve the state vector generation process 

algorithmically.  Our implementation generates state vectors 5X faster than the previous 

implementation in an Intel Xeon microprocessor of 2GHz. The modified algorithm is also 

implemented in a Xilinx Virtex-4 FPGA that results in a 2.4X speedup. Improvement in 

this preprocessing step accelerates GA application performance as random numbers are 

generated from these state vectors for the genetic operators. We simulate the basic 

operations of a GA in an FPGA to study its behavior in a parallel environment and 

analyze the results. The initial FPGA implementation of the GA runs about 7X slower 

than its microprocessor counterpart. The reasons are explained along with suggestions for 

improvement and future work.  
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CHAPTER 1 

INTRODUCTION 

Genetic Algorithms have important applications in problems related to 

optimization, machine learning, game theory, design automation, evolvable hardware, 

distributed systems, network security, bioinformatics and many more.  Genetic 

algorithms are iterative procedures that work on groups of solution representations called 

chromosomes.  Each chromosome is composed of smaller segments of data called genes. 

A set of chromosomes together form a population. We generally initialize each gene in 

each chromosome randomly.  The basic iterative work of the genetic algorithm is 

evolution from one population say t, to the next population, t+1.  This evolution is done 

through the application of genetic operators – Selection, Crossover and Mutation, which 

introduce many random elements from one population to the next.  Through this iterative 

procedure, the solution of the optimization problem evolves toward a better one.   

This research is based on the work of Kurz [1] on scheduling industrial flow-lines. 

These flow-lines have sequence-dependent setup time, i.e. setup times depend on the 

order jobs are scheduled to the machines. The flow-line has several stages in series. Each 

stage contains a different number of machines and each machine has different jobs. 

Machines in parallel are identical in capability and processing rate. The flow-line is 

flexible in the sense that jobs may skip stages.  Given the above conditions, the problem 

is to find a schedule that will result in an acceptable completion time of all jobs. The 

sequence dependent setup time makes this a general case of the Travelling Salesman 

Problem (TSP), and thereby an NP-Hard optimization problem. The solution 
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representation of this flow-line scheduling problem is analogous to the chromosomes in 

the GA representation. 

For the purpose of this research, chromosomes of a GA represent the order in 

which jobs are processed in one stage. There are other versions of the algorithm where 

chromosomes represent jobs in more than one stage. But for this algorithm, the order of 

jobs in the remaining stages depends on the order of jobs at the first stage only. That is, 

randomness comes into play only at the first stage and all other stages are deterministic. 

Each gene of a chromosome has a value that is generated randomly. Based on these 

values, jobs are sorted and assigned to machines. The goal is to find a combination of 

jobs in stages that will result in a satisfactory makespan for the flow-line, where 

makespan is the max completion time of all jobs. Through various genetic operations like 

Crossover and Mutation, the GA tries to reach this goal. These genetic operations 

introduce randomness in the GA process.  

After each iteration of the GA, a specific set of genetic operators and parameters 

known as a configuration is obtained. To arrive at a better solution for the optimization 

problem, we must determine which configuration is better. That is, which configuration 

results in the lowest makespan for the flow-line scheduling. To obtain different 

configurations, we need an independent set of random numbers. If one iteration of a GA 

uses upto 600 million random numbers, 600 million random numbers are needed to 

produce one configuration. In order to facilitate appropriate statistical analysis, the sets of 

random numbers should be non-overlapping, so that the assumption of independent sets 

of random numbers can be made.  The Mersenne Twister Algorithm [2] facilitates this, as 
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it has a period of 219937-1, meaning it can provide sufficient random numbers before 

repeating.  This period is in contrast to the basic rand function in the standard C library, 

which has a period of just over 32,600.  

For solving the flow-line scheduling problem, researchers generally consider three 

different versions of the GA. We call each of them an algorithm. In order to determine 

reasonable performance measures, most GA research requires each algorithm to be 

executed many times [3,4], such as 50 times, per input data set. The input data set for the 

flow-line scheduling problem consists of number of stages, number of machines per 

stage, number of jobs and setup, and ready and processing time for each job. The flow-

line scheduling may have different problem types, i.e. scheduling may be for different 

industries leading to different requirements. The input values of the data set may vary, 

resulting in different input files. For our optimization problem, there are 180 different 

problem types, 10 different input files for each with 3 different algorithms, totaling 5,400 

files. If we consider only the simplest algorithm, then one replication (180x10=1,800 files 

per algorithm) requires 45 hours in a single core Pentium IV 3GHz HT machine which 

would scale to 80 days of run time to complete the necessary 50 replications of a single 

data set. Kurz abandoned this research approach due to the immense computational time 

until discovering the task parallelism potential of Condor Grid computing.   

However, while the introduction of the grid environment of Condor removed the 

barriers of excessive computational time, managing the random number usage became 

problematic.  Though the use of MTA solves the problem of generating a non-

overlapping sequence of random numbers, ensuring that each run uses a non-overlapping 
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stream of random numbers generated from the same seed for replicability must be 

considered.  For example, we could use the first set of 600 million numbers for iteration 

1, then the second set for iteration 2.  In a traditional computing environment, we could 

just allow the 2nd iteration to start when the 1st iteration left off.  But in grid computing, 

iteration 1 and 2 may be running simultaneously.  In that case, iteration 2 must first 

generate and throw away 600 million random numbers and then begin its work.  This 

approach, while functionally correct, requires over 4,000 days to burn through the 600 

million numbers before reaching the second set on the 250,000th iteration. Each iteration 

requires approximately 45 hours of computation time making the overhead unacceptable.  

In contrast, we could generate the random numbers offline and store them as an 

additional input file for each run.  However, storage becomes an issue as the file size for 

600 million numbers requires over 3 GB. The 50 replications required for just one data 

set equates to 150 GB of storage.  Again, while the idea is nominally feasible for a small 

experiment, the storage requirements render this approach infeasible for the general case. 

Fortunately, the MTA has an internal state, which is exposed in a structure 

composed of one integer and 624 values of unsigned integer or unsigned long.  So, while 

we echo the sentiment of generating many random numbers offline, we only need to store 

the algorithm state, in a state file, at set intervals.  Then, we can read in the state 

information and begin the new generation from that point, reducing the storage space 

requirement.  In previous work, Kurz has generated and saved 360,000 state files that are 

1 billion random numbers apart. This generation took about 22 days to complete on a 

dual core AMD Opteron 885 @ 2.6 GHz.    
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Due to their inherent parallelism, FPGAs are well suited for applications that have 

some form of parallelism in their characteristics. If an application can be designed in a 

way so that it can exploit the parallelism of an FPGA, we can have a significant 

performance gain over its general-purpose microprocessor counterpart. As FPGAs run at 

a much lower clock frequency, any performance gain is achieved at much lower power. 

But these gains are not free of cost. The price is paid in terms of resource utilization. 

FPGAs are equipped with on chip resources like Block RAM, DSP units and on-board 

memories like SRAM, SDRAM etc. An application must maximize the utilization of 

these resources to maximally exploit the inherent parallelism of an FPGA.  

In this thesis, we present an improved state file generation algorithm which is 5X 

faster than its previous implementation on an Intel Xeon 5130@2GHz. Porting this code 

to an FPGA gives a modest 2.4X speedup due to several conditional statements that limit 

the performance. For our purpose, we must save state vectors at one billion number 

intervals, meaning we need to iterate through the original MTA algorithm one billion 

times before saving one state vector. We modify the algorithm such that it does not need 

to iterate one billion times. Also we eliminate the random number tempering portion of 

the original MTA algorithm as those are not required when generating state files. These 

two factors provide the speedup while generating state vectors. The previous GA 

implementation of this flow-line scheduling problem was designed for a traditional von 

Neumann architecture. After profiling the original code, hardware suitable functions were 

implemented on the FPGA. We implement the basic computations of the GA in an FPGA 

and study its performance while generating and feeding the random numbers to the GA 
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process inside the FPGA. The performance is compared to its original implementation in 

a general-purpose microprocessor. A comprehensive analysis of result is given along with 

directions for future improvements.  

We summarize the results as follows: 

• Speedup in state vector generation using the Mersenne Twister Algorithm:  

5X in general-purpose microprocessor and 2.4X in an FPGA.   

• A comprehensive study of the simulation results and measured data of basic 

GA operations implemented in an FPGA. 

The remainder of this thesis is organized as follows. Chapter II provides background 

information, which includes a general description of Genetic Algorithms, how it is used 

to solve the optimization problem of flow-line scheduling, justification for using MTA, 

and the systems and tools used to conduct the experiments. Chapter III discusses how 

different components of these experiments were modeled to fit within the constraints of 

the FPGA–based systems used and also discusses the limitations of our design. Chapter 

IV analyzes the performance and results of the random number generation and Genetic 

Algorithm simulation process. And finally Chapter V offers conclusions and directions 

for potential solutions of the limitations of our design. 
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CHAPTER 2 

BACKGROUND 

This chapter discusses how the solution of the flow-line scheduling problem is 

analogous to Genetic Algorithms, some previous work on MTA and GA implementations 

on FPGAs, and how our solution differs from them.  

2.1  Genetic Algorithms and Flow Line Scheduling 
 

In this research, the solution of a flow line scheduling problem is represented in 

terms of chromosomes and genes of a Genetic Algorithm. In this section, we will discuss 

GA details, how a flow-line scheduling is mapped to a GA, and why the Mersenne 

Twister Algorithm is used in this research.  

2.1.1  Anatomy of a Genetic Algorithm 
 

Genetic Algorithm, a heuristic based approach for solving optimization problems, 

was introduced by Holland [9]. A typical GA has two steps [5]: a representation of the 

solution domain that reflects the genetic representation in a genome and a fitness function 

to evaluate the fitness of the current representation. The solution representations are 

generally in bits but may vary based on the application. For example, for our flow-line 

scheduling problem, we have a double-precision floating-point representation. GAs 

employ the following general steps: Initialization, Selection, Crossover, and Mutation. 

The algorithm starts with the random initialization of the initial population. Each 

population has a number of chromosomes and each chromosome has a number of genes. 

Each gene is also initialized by a random number. In this research, we generate the 

random numbers using the Mersenne Twister Algorithm [2], which is further explained in 
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section 2.1.3. After initialization, two parents are selected to generate their successor 

during the Selection stage. This selection is based on a fitness function [5] as parents of 

higher fitness values are expected to produce a better next generation. To generate the 

successor, the GA uses the Crossover operation where a crossover point is selected 

randomly. In the successor, solutions from the first parent are selected before the 

crossover point. Solutions after the crossover point are taken from the second parent. After 

Crossover, the Mutation operation is applied to increase the probability of the fitness of 

the solution. In Mutation, a random gene of the successor chromosome is changed with 

some probability. This process continues until the stopping criteria are satisfied. The 

probability of Mutation is a constant that is dependent on the application. Theoretically, 

the best set of chromosomes is expected to survive eventually. The overall GA process is 

shown in Figure 2.1. The Crossover and Mutation operations are shown in detail in Figure 

2.2 and 2.3.  

 

Figure 2.1: Anatomy of a Genetic Algorithm 
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Figure 2.2: The Crossover Operation in a GA 

 
 
 

 
Figure 2.3: The Mutation Operation in a GA 
 

In this research, the Mutation operation of the GA is replaced by the Immigration 

operation. In Mutation, one specific gene of a chromosome is changed with some 

probability. But in Immigration, a fresh new set of chromosomes are immigrated into the 

next generation of the population. That is, all genes of those chromosomes are replaced 

with a random value. How many chromosomes will be immigrated depends on a 

predefined constant and is generally determined by the given optimization problem.   

 
 
 
2.1.2  Modeling Optimization Problems into Genetic Algorithms 
 

Our target optimization problem is a flow-line scheduling problem that is very 

common in industrial manufacturing. These manufacturing systems have taken many 

forms with the added complexity of limited resources, time constraints, complicated 

process plans etc. For example, flow-lines of the semiconductor industry have multiple 
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machines in each stage and jobs revisit previous stages multiple times [1]. Another 

example is in the printed circuit board industry where jobs may skip stages depending on 

the circuit board specification. Each of these industries has different scheduling 

objectives but minimizing the overall completion time of all jobs, i.e. makespan can be 

considered a generic goal. These common goals are why operation researchers have 

focused on the makespan criterion for optimization.  

 

        Figure 2.4: Flow-Line Scheduling Problem.  

 

Figure 2.4 shows a simple representation of our target flow-line scheduling problem. 

The flow-line has a number of stages. Each stage has machines and each machine has 

some number of jobs. This flow-line is also “hybrid” since multiple identical machines 

can run in parallel at some stages. Jobs are processed at exactly one machine per stage 

if they do not skip that stage. Also we call this flow-line “flexible” since jobs may skip 

stages. A job may not revisit a stage that it has already visited. We make the following 

assumptions [1] for the purpose of this research: 

• All input data are known deterministically. 

• Machines are available continuously with no breakdowns and no scheduled or 
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unscheduled maintenance. 

• Jobs are non-preemptive, processed without error, and have no associated priority.  

• Jobs are available for processing at a stage as soon as they have finished 

processing at the previous stage.  

• The ready time for a job is the maximum time it takes to complete processing in 

the previous stages.  

• Non-anticipatory sequence dependent setup times exist between jobs at a stage.  

• Machines cannot be blocked because the current job has nowhere to go, i.e. 

infinite buffer exists before, after, and between stages.  

• Machines in parallel are identical in capabilities and processing rate.  

  

We are given the number of stages, number of machines in each stage, number of 

jobs, setup and ready time of each job, etc. as input data for the problem. The goal is to 

find a schedule that is suitable as a solution. The solution representation for this flow-

line scheduling problem is analogous to a GA where the genes inside a chromosome 

represent the order in which jobs are processed in a stage. One important point to 

consider is that there is no direct mapping of input data for the problem to the GA 

representation; the GA is only for the solution representation. The only thing we can 

directly map from a given problem to the solution are jobs: a job represents a gene in 

the solution space. A closer mapping of the problem data to solution space is shown in 

Figure 2.5.  
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Fig 2.5: Mapping Problem Data to Solution Space. 

 

To express the problem and the stopping criteria addressed in this research, we 

use the following definitions [1]: 

n number of jobs to be scheduled 

g number of serial stages 

mt number of machines at stage t 

pt
i processing time for job i at stage t (assumed to be integral) 

st
ij setup time from job i to job j at stage t 

St set of jobs that visit stage t = { i : pt
i >0} 

z makespan 

For this flow-line scheduling problem, we apply the restriction that each stage 

must be visited by at least as many jobs as there are machines in that stage. If this is not 
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true then there is no problem for job scheduling. The goal is to find a feasible solution 

subject to many constraints. We can formulate the problem [1] as: 

 P: min z         (1) 

That is, we want to minimize makespan. So eq. (1) is our objective function.  

For this flow-line scheduling problem, we also make the following assumptions [1]:   

• Stages are independent except that stage t’s completion time is stage t+1’s 

ready time. 

• Setup times are such that an optimal solution will always exist.  

Each chromosome is evaluated to check whether it satisfies some stopping criteria, 

i.e. whether the current schedule results in an optimal solution. The optimal solution for a 

specific problem needs to meet the lower bound requirement defined by eq. (2) and (3). 

              (2)     

              (3)           

LB(1) is a job based bound and LB(2) is machine based [1]. For the job based bound, 

every job must be setup and processed at every stage. Setup requires minimal amount of 

time for setting up job i. For the machine based bound, every stage t needs time for 

processing job 0. It also needs time for preemptive processing and a minimal setup time 

for the rest of the jobs. We can also consider minimal time to get to the stage and 

minimal time after finishing that stage. In our implementation, we consider the larger of 
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these two lower bounds as our stopping criteria. Once the best chromosome’s makespan 

hits that lower bound, we stop our iterations of the GA. Otherwise we continue evaluating 

all the chromosomes with basic GA operations until we exhaust all of them or hit a lower 

bound, whichever comes first.  

 
2.1.3  Mersenne Twister Algorithm 
 

As evident from the GA process, its operation largely depends on random 

numbers. For this implementation, the random numbers are generated using the 

Mersenne Twister Algorithm [2]. MTA is a uniform pseudo random number generator. 

It has a period of 219937-1 and 623-dimensional equidistribution up to 32 bit accuracy 

[2]. Such a long period implies that it generates 219937-1 random numbers before 

repeating. This non-overlapping sequence is large enough for our problems of intent. 

Also the very high order of dimensional equidistribution implies that there is very 

negligible correlation between successive values of output sequence [10]. MTA passes 

diehard tests [22] and numerous other tests of randomness [23]. This algorithm is 

designed specifically for Monte Carlo and other statistical simulations, but it is not 

suitable for Cryptography as observing a sufficient number of iterations (624 in this 

case) will lead one to predict the rest of the iterations. In this research, MTA is chosen 

because of its long non-overlapping period.  

MTA is a twisted feedback generalized shift register [11], the algorithm is based 

on the recurrence relation eq. (4): 

            (4) 

 

Axxxx l
k

u
kmknk )|(: 1+++ ⊕=



 15

Here, 

n degree of recurrence 

w word width (in number of bits) 

m middle word or the number of parallel sequences, nm ≤≤1  

u,l Mersenne Twister tempering bit shift 

x a word of width w 

xl,xu x with lower and upper mask applied 

A matrix that contains twist information 

k constant with values 0,1,… 

Figure 2.7 shows the MTA algorithm that generates 32-bit random numbers. As 

mentioned earlier, we require a maximum of 600 million random numbers.  

One interesting advantage of MTA is that random numbers can be generated from 

a state vector that was saved before actually generating the numbers. These state vectors 

work as an entry point for a specific sequence of random numbers. State vectors are the 

specific states of the MTA after a sequence of random numbers and can be later used to 

regenerate the same sequence of random numbers. Though for this project, we need a 

maximum of 600 million random numbers, vectors are saved after one billion for more 

general-purpose use. Although saving state vectors at one billion number intervals adds 

to the poor performance of state vector generation process, this has the benefit of lower 

storage requirement (fewer state vectors). Figure 2.6 shows a snap shot of this process. 
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Figure 2.6: Saving State Vectors of MTA 

 

 

1. int[0..623] MT 

2. function initializeGenerator(int seed) { 

3. MT[0] := seed 

4. for i from 1 to 623 {  

5. MT[i] := last 32 bits of(1812433253 * (MT[i-1] xor (right shift by 30 

bits(MT[i-1]))) + i) }}  

11. function extractNumber() { 

12.  if index == 0 {generateNumbers()}    

13.  int y := MT[index] 

14.  y := y xor (right shift by 11 bits(y)) 

15.  y := y xor (left shift by 7 bits(y) and (2636928640))  

16.  y := y xor (left shift by 15 bits(y) and (4022730752))  

17.  y := y xor (right shift by 18 bits(y))    

18.  index := (index + 1) mod 624 

19.  return y} 

21. function generateNumbers() { 

22. for i from 0 to 623 { 

23. int y := 32nd bit of(MT[i]) + last 31 bits of(MT[(i+1) mod 624]) 

24. MT[i] := MT[(i + 397) mod 624] xor (right shift by 1 bit(y)) 

25. if (y mod 2) == 1 {  

26. MT[i] := MT[i] xor (2567483615) }}} 

Figure 2.7: Mersenne Twister Algorithm - MT19937 
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2.2  Related Research 
 

There are a number of publications that discuss implementing the Mersenne 

Twister Algorithm and Genetic Algorithms in FPGAs. Ishaan et al. [6] did parallel 

implementations of 32, 64, 128–bit SIMD MTA on Xilinx Virtex–II Pro FPGAs. They 

used interleaved and chunked parallelism and showed how the ‘jump ahead’ technique 

can produce multiple independent sequences to yield higher throughput. Shrutisagar et al. 

[12] worked on partial pipelining and sub-expression elimination to increase the 

throughput per clock cycle on the RC1000 FPGA Development platform that is equipped 

with Xilinx XCV2000E FPGAs. Both FPGA implementations of MTA used VHDL 

whereas ours is implemented in High-Level Language DIME-C [18]. Hossam et al. [7] 

implemented the basic GA modules along with the random number generator module in 

three different types of Xilinx FPGAs: XC4005, SPARTAN2 XC2S100-5-tq144, and 

Virtex XCV800 using VHDL and Mentor Graphics tools. They tested their design in 

applications ranging from thermistor data processing, linear function interpolation, and 

computation of vehicle lateral interpolation to test how the design performs with respect 

to producing the optimal solutions. Tatsuhiro et al. [8] designed two tools to facilitate the 

hardware design of GAs to predict the synthesis results based on input parameters, 

number of parallel pipelines, etc. Edson et al. [13] implemented a parallel and 

reconfigurable architecture for synthesizing combinational circuits using GAs. Paul and 

Brent [14] implemented a parallel GA for optimizing symmetric Traveling Salesman 

Problem (TSPs) using Splash 2. Emam et al. [15] introduced an FPGA- based GA for 

blind signal separation.  
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2.3  Our Approach 

In all the previous research, the MTA or GA is a customized implementation 

specifically targeting the architecture, in this case FPGAs. Our approach significantly 

differs as we try to accelerate an existing application originally designed for von 

Neumann architectures. Both approaches have their own advantages and disadvantages. 

In the previous research, though they have achieved a performance gain in GA process, 

they do not consider how it performs when the GA works as a part of a larger application. 

In our approach, the probability of overall application acceleration is low as the original 

application design never considered exploiting parallelism. But this approach 

demonstrates what can happen when the GA is a small part of an application which was 

not originally designed for a parallel architecture. Also it shows us the necessity of 

designing and implementing an application specifically to take advantage of the parallel 

architecture. Our approach uses the high-level language DIME-C, but to the best of our 

knowledge, all the previous work used hardware description languages such as VHDL or 

Verilog.   
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CHAPTER 3 

DESIGN AND IMPLEMENTATION 

Our design and implementations are divided into two main parts. The first step is 

to design and implement state vector generation process in the FPGA. These state vectors 

are an integral part of the GA as they are used to generate the required random numbers. 

The second step is to design and implement the basic GA operations in an FPGA along 

with the generation of random numbers from the previously stored state vectors. Before 

designing the system for FPGA implementation, we conducted function profiling of the 

existing GA implementation that was written for a general-purpose microprocessor. From 

the profile data, we identified critical code segments for possible implementation in the 

FPGA and analyzed the issues related to hardware/software partitioning. We designed an 

improved algorithm for generating state vectors using the MTA which is 5X faster than 

its previous implementation in a general-purpose microprocessor and 2.4X faster than the 

previous FPGA implementation. We also implemented the basic GA operations in an 

FPGA. This chapter discusses and justifies our hardware/software partitioning approach, 

systems and tools used, implementation model, and design and implementation 

techniques for the state vector generation and GA operations. Finally we discuss the 

limitations of our approach.  

 

3.1  Hardware/Software Partitioning 

For a given application, a hardware/software partition maps each region of the 

application onto hardware (ASIC or Reconfigurable Logic) or software (microprocessor). 
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That is, a partition is a complete mapping of an application to either hardware or 

software. The goal of the partition is to maximize performance within the constraint of 

limited resources, in this case one Xilinx Virtex-4 LX100 FPGA.  

There are several issues to consider for hardware/software partitioning. Some of them 

are listed below: 

• Granularity: types of regions to consider. 

• Partition evaluation: determining the goodness of the partition. 

• Alternative region implementation: alternatives of hardware implementation. 

• Implementation model: interfacing between microprocessor and FPGA. 

• Exploration: finding good solution quickly.  

 

Granularity is of two types: coarse and fine. If we partition based on tasks, functions 

and loops, that is called coarse-grained partitioning. On the other hand, fine-grained 

partitioning partitions regions based on code blocks, statements and operations. Both 

approaches have their own advantages and disadvantages. Therefore a heterogeneous 

granularity may be considered to take advantage of both extremes. The most intuitive 

approach to partitioning an application is based on its functions, i.e. coarse-grained 

partitioning.   Also, coarse-grained partitioning may result in more accurate estimations 

during partition evaluation as it does not require the combination of several small regions 

and their communication overhead. An important disadvantage of coarse-grained 

partitioning is that it often has less inter-partition communication. That means, more data 

communication occurs between the host processor and FPGA than among different 
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Processing Elements (PEs) inside the FPGA. This situation may outweigh the benefit of 

implementing regions in hardware as the hardware/software communication is generally 

expensive. On the other hand, fine-grained partitioning gives more control over the 

exploitation of parallelism and less communication overhead between host processor and 

FPGA. But it is not intuitive and so generally takes longer to find a good partition. Also, 

estimation during partition evaluation is more difficult in this case due to their inter-

partition communication.  

We use gprof for function profiling of the original GA implementation that was 

targeted for a general-purpose microprocessor. After profiling, we have two types of 

profile data: flat profile and call graph.  

 

3.1.1  MTA Partitioning Analysis 

The hardware/software partitioning for state vector generation using MTA is 

straightforward. We did not profile the MTA implementation as the main computation 

occurs in a single function called genrand_32. Therefore it is obvious that we have to 

implement that function in the FPGA. The partitioning of the MTA is a coarse-grained 

partitioning. We did not explore any other alternative regions for the FPGA 

implementation, as there were no other compute intensive functions. Therefore we had no 

options for partition evaluation. The implementation model of this partition interfaces 

between the microprocessor and FPGA using the PCI-X communication bus.  
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3.1.2  GA Partitioning Analysis 

Unlike the MTA implementation, the GA implementation has about 2000 lines of 

code. Therefore we performed function profiling before deciding on hardware/software 

partitioning. The flat profile data for the GA application is shown in the pie-chart in 

Figure 3.1. The profile data looks challenging for hardware acceleration as it is not 

concentrated in a single (or few) function(s) that largely dominate the execution time, 

making the hardware/software partitioning decision difficult. The most time consuming 

function in the GA is InStage (23.46%), which checks if a specific job has entered any of 

the stages of the flow-line. Based on Amdahl’s law [16], we can state that the speedup of 

an application is limited by the portion of the program not being parallelized. So if we go 

by the rule of thumb, that is implementing the regions that contribute to the highest 

execution time, the maximum theoretical speedup we can achieve is: 

 

Speedup= 1/(1-p) ................(5)       

              = 1/(1-0.2346) 

   = 1/0.7654 

   = 1.3X 

Here, p is the portion of the code that is implemented in hardware and therefore 

parallelized. To find the maximum speedup, we assume infinite parallelism by 

implementing a code snippet in hardware. We see that even with these assumptions, the 

speedup is insignificant. Also there are other significant constraints when functions are 

implemented in hardware. For example, topology of the call graph to the function, 
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communication overhead between host and FPGA, amount of data passed, actual 

bandwidth of the communication interface, etc. Examining the InStage function, it is not 

ideally suitable for implementation in an FPGA as it has mainly conditional statements 

and no significant computation. Also it is called from many calling functions. So we must 

consider a different approach to the hardware/software partitioning.  

 

 

Figure 3.1: Flat Profile of GA Process. 

 

One approach is to implement more functions such that the cumulative execution 
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time of all the functions implemented in FPGA is closer to 80%. In that case, we can 

expect a theoretical speedup of 5X according to eq. (5). But this partition exposes some 

practical limitations mainly due to the topology of the call graph. Figure 3.2 shows a snap 

shot of the overall call graph of the GA process. Figures 3.3 and 3.4 are the two 

alternative partitions we evaluated.  

 

Figure 3.2: Snap Shot of the Overall Call Graph
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Figure 3.3: Call Graph for 1st Partition Evaluation 

 

 

Figure 3.4: Call Graph for 2nd Partition Evaluation 
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InSatge, SiftUp, GenerateDiscUnif, BestCompleteReadyOrder, GetStartComplete, 

and CreateSchedFromChrom is a set of functions that have a cumulative execution time 

of 83.35%. As evident from Figure 3.3, the biggest disadvantage of the GA code for 

hardware implementation is that functions are called from many different places and 

many times. So if we want to implement a function in an FPGA by minimizing the host–

to–FPGA communication overhead, we need to implement at least some of its 

predecessors. A call graph of this nature exposes additional problems. For example, even 

if a function is suitable for implementation in an FPGA, its predecessor may not be. The 

predecessors may have many conditional and branch statements.  These statements are 

very ill suited for FPGAs as FPGAs do not have branch prediction units whereas general 

purpose microprocessors are equipped with efficient branch prediction units. Also if we 

continue to implement the predecessors in the FPGA, at some point we will run out of 

resources. These characteristics of the existing GA implementation make the 

hardware/software partitioning more difficult. Especially the coarse-grained partitioning 

is very hard in this case. As mentioned before, the fine-grained partitioning is not 

intuitive. Considering these issues, we have implemented the basic GA operations 

(Initchrom, ParaUnifCross and Immigrate as shown in Figure 3.4) in the FPGA. In 

Figure 3.2, 3.3 and 3.4, the numbers above each function indicate the number of times it 

is called by its calling function. Our implementation follows a coarse-grained partitioning 

as we partition based on the functions.  

The partition evaluation approach we have followed is based on an estimation of 

the overall application performance with the constraint of using one user FPGA. We 
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consider the cumulative execution time of the functions implemented in the FPGA, the 

amount of data passed to and from the FPGA, and the resources they consume as our 

estimation criteria. We have only explored the two possibilities shown in the two call 

graphs of Figure 3.3 and 3.4 and decided to go on with Figure 3.4. As Figure 3.4 

incorporates the basic GA functions, it supports our claim of an implementation of the 

GA in an FPGA. Also the call graph associated with these GA operations is more 

contained than the call graph of Figure 3.3, minimizing the host-to-FPGA communication 

overhead.    

Our implementation uses only one FPGA for two reasons. First, as we are using 

coarse-grained partitioning, there is less opportunity for inter-partition communication, so 

it is very unlikely that the computation result of one PE will be used by another. 

Therefore even if we chose to use more than one FPGA, it is highly probable that the 

results of one FPGA are not needed by the second one. In that case, the second FPGA 

depends on the data passed to it by the host which has higher communication cost than 

data passed from the first FPGA. Secondly, the more functions we implement in FPGA, 

the more complicated the overall application call tree becomes. Because of these factors, 

we have only implemented those functions in the FPGA that account for a cumulative 

execution time of 2.46%. Therefore the maximum theoretical speedup we can expect 

according to eq. (5) is 1.025X.   
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3.2 Systems and Tools Used 

Our implementation was developed in a 2GHz Intel Xeon CPU populated with 2 

Nallatech H101 PCI-XM FPGA accelerator boards. The specification [17] of this board is 

as follows: 

• 1 user FPGA – Virtex 4 LX100 (XC4VLX100-10FF1148C) 

• 4 banks of DDR2 SSRAM 

o Each has 4MB of memory, totaling 16 MB 

o Total bandwidth: 6.4GB/s 

• 1 bank of DDR2 SDRAM 

o 512MB of memory 

o Bandwidth: 3.2GB/s 

• 4 channel serial communication (board-to-board) 

o Bandwidth: 2.5 Gb/s 

o Latency: 340 ns 

• PCI-X connectivity with host 

o 64-bit, 133MHz 

Figure 3.5 shows the functional diagram of H101-PCIXM [17]. 
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Figure 3.5: Functional Diagram of H101 PCI-XM 

During the development process, we used DIME-C [18] which is a high-level 

language, rather than a hardware description language such as VHDL or Verilog. DIME-

C [18] is a subset of ANSI-C and provides the programmer with the flexibility of writing 

code for the FPGA without having to focus on the hardware in detail. DIME-C compiles 

code to VHDL automatically. This VHDL module is then used as a Processing Element 

(PE) that works inside an FPGA. Then we use DIMETalk [19], a tool for designing the 

network that interfaces with the host. DIMETalk defines how the PEs are connected to 
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other on-chip or on-board resources. Using DIMETalk, we generate the bitstream and the 

sample host code to be used in the host application. The host code is then modified 

according to the application and the data that must be transferred. The host code is 

responsible for reading from and writing to the FPGA, switching on and off the FPGA, 

and other housekeeping operations.  

 
3.3 Implementation Models 
 

We will discuss four methods that comprise our implementation model. The methods 

are: 

• Communication Methods 

• Execution Methods 

• Implementation Methods 

• Configuration Methods 

 

 The Reconfigurable Processing Fabric (RPF), or FPGA, is used as a coprocessor in 

our system. Figure 3.6 shows the location of FPGA in the memory hierarchy.  
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Figure 3.6: Location of the FPGA in the Memory Hierarchy 

Using the FPGA as a coprocessor has advantages and disadvantages [20]. 

Integration of the FPGA as a coprocessor to an existing computing system is simplified 

compared to the tightly coupled or loosely coupled RPF architectures. But the primary 

limitations are the restricted communication bandwidth and increased latency. Therefore 

this type of coupling is well suited for applications where the coprocessor can compute 

despite limited communication to and from the host. For example data streaming 

applications like digital signal processing and image processing are suitable for this type 

of coupling. This topology is one of the most important limiting factors in accelerating 

our GA application since it is not a streaming application.  

There are two types of execution methods [20]: mutually exclusive and parallel. 

In the former, the FPGA and microprocessor never execute simultaneously whereas in 

the later, they can execute simultaneously to improve parallelism and performance. Our 
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implementation model is mutually exclusive, which also limits the achievable 

performance of the overall GA application. One advantage of the mutually exclusive 

execution method is that it makes the partition evaluation estimation easier. But in this 

case we are only exploring a few hardware/software partitions.  

Implementation methods are of two types: separate datapath and fused datapath. 

In separate datapath, the flow of data is independent whereas in fused, the paths are fused 

to reduce the area overhead. Although in the fused datapath approach, the performance 

may suffer due to a longer circuit path. As we are using a high-level language to program 

the FPGA, we do not have control over these methods. Whether our implementation will 

use separate or fused datapaths depends on the FPGA platforms and tools we are using.  

Dynamic reconfiguration and partial runtime reconfiguration are two 

configuration methods that increase the effective size of the FPGAs. Dynamic 

reconfiguration allows tasks to be time shared [21]. We do not use this feature as the 

logic resources are not the main limiting factor in our approach. Partial runtime 

reconfiguration allows configuration of a portion of the FPGA while other portions 

continue to operate. This approach can improve performance as it can execute code in a 

portion of the FPGA without interrupting the other segments of the FPGA that are 

running. But this feature is generally not supported in currently available high-

performance RC systems.  

 

3.4  Accelerating State Vector Generation 

The original MTA algorithm is shown in Figure 3.7. For generating state vectors, 
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this algorithm iterates one billion times since we are saving state vectors at intervals of 

one billion numbers. That is why there is an outer loop (line 3 of Figure 3.7) that iterates 

one billion times. This outer loop limits the performance in the FPGA implementation 

since DIME-C can only unroll the innermost loop. Even with the two innermost loops 

(lines 6 and 9 shown in Figure 3.7), there are challenges in finding and exploiting 

parallelism. The primary limitation is the memory access pattern of the MTA algorithm. 

Inside the for-loop, the same location of mt array is read and written back. This array is 

an input to the FPGA passed from the host. In our implementation, we use BRAM to 

store that array. Therefore according to the DIME-C specification [18], an array stored in 

a BRAM is passed to the PE module. For this reason, even if the BRAMs are dual ported, 

the consecutive read/write inside the for-loop cannot occur in the same cycle. So even if 

the two for loops in Figure 3.7 are the innermost loops, they cannot be fully unrolled as 

they would violate this condition. As a result, these two innermost loops cannot be 

pipelined.  Since we loop through the code body one billion times, this overhead is 

multiplied and causes poor performance of the MTA algorithm in the FPGA.  

To avoid the problems associated with the memory access pattern, there are a 

couple of options to consider. Instead of using BRAM to store the data, one option is to 

use SRAM. We have four banks of SRAM available in the system. Data can be 

duplicated in those banks allowing read and write to the same location in different 

memory banks. This option, while it enables the loop unrolling, has the associated 

overhead of copying the modified mt back to the SRAM before the next iteration of the 

outermost loop. Performing this copy operation one billion times outweighs the benefits 
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of unrolling the innermost loops. Another option is to stripe the data across the SRAMs. 

For example, array location from 0 to N-M-1 can be stored in one SRAM and the 

remainder of the array in another. But if we use any language of sequential nature like 

DIME-C, we need to be careful in read/write operations so that appropriate order is 

maintained. The whole process becomes easier if we use a language which is inherently 

parallel. Therefore, rather than trying to improve the performance of the state vector 

generation process using the techniques mentioned above, our approach seeks to improve 

it algorithmically.  

1. unsigned int y; 

2. static unsigned int mag01[2]={0x0U, 0x9908b0dfU}; 

3. for (i=1000000000-1;i>0;i--){ 

4. if (mti >= N) {  

5.        int kk; 

6.        for (kk=0;kk<N-M;kk++) { 

7.            y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK); 

8.            mt[kk] = mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1U];  } 

9.        for (;kk<N-1;kk++) { 

10.            y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK); 

11.        mt[kk] = mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1U];  } 

12.      y = (mt[N-1]&UPPER_MASK)|(mt[0]&LOWER_MASK); 

13.      mt[N-1] = mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1U]; 

14.      mti = 0; 

15.    }  

16.    y = mt[mti++]; 

17.    y ^= (y >> 11); 

18.    y ^= (y << 7) & 0x9d2c5680U; 

19.    y ^= (y << 15) & 0xefc60000U; 

20.    y ^= (y >> 18); 

21.    return y; 

22.} 

Figure 3.7: Original MTA Algorithm 

1. unsigned int mag01[2]={0x0U, MATRIX_A}; 

2. unsigned int y;  
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3. int kk, I, if1=0, if2=0, else1=0, flag=0; 

4. for(i=1000000000-1; i>0;i--){ 

5. if (mti>=N){ 

6.  flag=1; 

7.         for (kk=0;kk<N-M;kk++) { 

8.           y= (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK); 

9.           mt[kk] = mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1U];} 

10.  for (kk=N-M;kk<N-1;kk++) { 

11.   y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK); 

12.   mt[kk] = mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1U];} 

13.        y= (mt[N-1]&UPPER_MASK)|(mt[0]&LOWER_MASK); 

14. mt[N-1] = mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1U]; 

15.  if(i-624>=0){ 

16.   mti=624; 

17.  i=i-623; } 

18. else{ 

19.  mti=i; 

20.  i=1;} 

21. } 

22. else if( mti<624 && flag==0) { 

23.  flag=1; 

24.  i=i-(624-mti)+1; 

25.  mti=624;} 

26.}  

Figure 3.8: Improved MTA for State Vector Generation 

Examining Figure 3.7 more closely, we find that there are many unnecessary 

computations if we are only generating state vectors. First, outside the if statement, 

generation and tempering of random numbers (the shaded box in Figure 3.7, lines 16-21) 

are not necessary since we do not retain the random numbers while generating the state 

vectors. Another important issue is the if loop of line 4 is executed only when mti is 

greater than or equal to N, therefore we do not need to loop through it one billion times. 

Considering these observations, the state vector generation algorithm is modified as 

shown in Figure 3.8. The modification occurs between lines 15-25 to reflect the 
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observations mentioned above. 

 

 

Figure 3.9: MTA Implementation in an FPGA 

Implementation of this algorithm in an FPGA is straightforward. The host sends 

the required input data to the BRAMs and collects the output data from BRAMs using the 

PCI-X communication bus. The MTA block in Figure 3.9 is the Processing Element (PE) 

in this case. The PE does the computations required to generate the state vectors using the 

MTA algorithm. The three BRAMs indicate the three parameters passed to the PE 

module as arrays, one for input mt and the other two for output mt and mti. The initial mti 

is passed to the FPGA as a standalone integer. After the host receives one set of the 

output (state vector) from the FPGA, it writes the results in a file called the state file. One 

state file is used in one iteration of GA process. For our purposes, we need a maximum of 

six-hundred million random numbers. According to our algorithm, one state vector can 

generate one billion non-overlapping random numbers. Therefore we can generate 

sufficient random numbers for one GA iteration form one state vector. We generate 32-
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bit unsigned integers as the state vectors though the flow-line scheduling research used 

64-bit unsigned long numbers. This smaller data type is used because DIME-C does not 

support long integers.  A workaround for generating 64-bit state vectors will be discussed 

in section 3.6. 

 

3.5  Implementing Genetic Algorithm in FPGA 

The design of the basic GA functions for FPGA implementation is similar to the 

MTA implementation in the sense that the current implementation of the GA only uses 

BRAMs, no external memory.  First, the amount of data is small enough to fit in the 

BRAMs and second the GA is not a streaming application. The basic block diagram of 

the design used to implement the core GA functions is shown in Figure 3.10. Three PEs 

are implemented in the FPGA that correspond to the four main operations of GA. Each of 

the PEs requires random numbers that are generated using the previously saved state 

vectors. In our implementation, we generate the random numbers inside each of the PEs 

as they are required. In our implementation, different PEs are called from the host at 

different times. As each of the PEs generate random numbers from the state vector inside 

the FPGA, the mti value is updated inside them. The mti value along with the mt array is 

always passed back to the host from the PEs so that in the next call to PEs, the updated 

ones are used. 

The PE labeled InitChrom initializes the population. In our implementation, the 

size of the population is 100, i.e. the population consists of 100 chromosomes. Each of 

the chromosomes is initialized with random gene values. These gene values are double-
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precision floating-point numbers. The PE labeled ParaUnifCross works on selection and 

crossover steps of the GA. Therefore this PE needs data for all of the chromosomes. 

Random parents are selected for the crossover operation along with the random crossover 

point. After the crossover, the successors are generated, i.e. gene values of the 

chromosomes are updated. These updated values are passed back to the host to be used in 

other required computations of the flow-line scheduling problem. The PE labeled 

Immigrate performs the immigration operation discussed in section 2.1.1. The starting 

point of the immigration along with the gene values are the inputs to the PE. The gene 

values of the chromosomes are updated during immigration and passed back to the host 

via the PCI-X bus. The FPGA implementation of the basic GA operations is shown in 

Figure 3.10. As indicated by the dashed box outside the PEs, we have one single bitfile 

for the overall GA application, although each of the PEs are called at different times from 

the host to find a solution for our problem.   

 

 

Figure 3.10: Design of Basic GA Functions in the FPGA 

The overall GA implementation flow diagram is shown in Figure 3.11. Chromosomes 
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are initialized randomly. These chromosomes are then evaluated in host to see if it 

satisfies the optimization criteria. If not then the next three steps of the GA starts 

executing in the FPGA - selection of qualified parents for generating a better successor, 

crossover to produce the successor, and mutation (replaced by immigration in this 

implementation) to increase the fitness of the successor.  

 

Figure 3.11: Flow-Chart of the Overall GA Implementation 

3.6  Limitations of Our Design 

Since the GA is not a streaming application, it is not ideally suited for our system 

(where FPGA is a coprocessor) as discussed in section 3.3. There are a couple of options 

that can potentially improve the performance within the constraints of the system and 

tools. Our current design does not consider those options, but they are discussed below 

with justifications for not supporting them.  

The original GA implementation for solving the flow-line scheduling problem 

was targeted for a general-purpose microprocessor. We take pieces of that code to 

implement in a FPGA based on profile data. This approach limits the overall performance 
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of the FPGA implementation as the original implementation never considered a 

specialized architecture. The topology of the call graph indicates a significant amount of 

communication overhead between the basic GA processes and other modules of the flow-

line scheduling implementation. This communication overhead, though insignificant for a 

general-purpose microprocessor, is a limiting factor in an FPGA implementation. This 

bottleneck in performance results from the hardware/software partition, which separates 

the basic GA operations in the FPGA implementation from the overall application 

running in the host.  That means, if we do not consider redesigning the application 

targeting the FPGA, we have to pay the price for communication overhead between the 

host and the FPGA. Therefore while targeting this application for the FPGA 

implementation, better performance is possible if the entire application were redesigned 

specifically for an FPGA-based platform.  

We improved the state vector generation process algorithmically, but we have not 

incorporated the suggested memory access pattern discussed in section 3.4, which could 

further improve performance.  

An important design strategy of most FPGA implementations is passing data to 

and from FPGA only when it is absolutely necessary. It is crucial to move data judicially 

as the corresponding overheads are significant. In our design, we pass data back to host 

whenever we have enough results for creating one state file. Though it does not have a 

significant impact for generating one state file, it has a cumulative impact on how quickly 

we can generate multiple state files.  

Using a C-like programming language (such as DIME-C), though has the 
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advantage of higher productivity from the programmer’s point of view, makes it harder to 

take full advantage of the FPGA. Since DIME-C is still sequential in nature, the 

programmer needs to code explicitly to take advantage of the inherent parallelism of an 

FPGA. Conversely, as VHDL is inherently parallel, it is easier to exploit the parallelism 

of an FPGA.  

The biggest disadvantage of this design comes when we consider the design of the 

GA algorithm in the FPGA. The random number generation is independent of the basic 

GA operations since they are produced from the previously generated state files, using 

variables that are independent of the basic GA operations.  But we are not fully taking 

advantage of this available parallelism. Using the MTA algorithm and the previously 

generated state vectors, random numbers can be generated and stored in a FIFO from 

where these GA operators can access them as needed. This concept is shown in Figure 

3.12. Our current implementation does not incorporate this approach and is considered 

for future work.  

 

                  Figure 3.12: Random Number Generation in Parallel Using a FIFO 
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3.7  Summary 

 Our design and implementation techniques achieve a performance gain in the 

state vector generation but performance decreases in the overall GA process. Chapter 4 

discusses the results and analyzes them within the constraints of the RC systems and tools 

used.  
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CHAPTER 4 

 

PERFORMANCE AND RESULT ANALYSIS 

 
This chapter presents and analyzes the performance results from the system’s 

perspective: the underlying hardware architecture, memory hierarchy, and 

communication interface. We also discuss how the algorithm interacts with the system 

and impacts the final results and performance.  

4.1 Performance Improvement of State Vector Generation 

Compared to the original implementation, the improved MTA algorithm for state 

vector generation, introduced in Chapter 3, performs 5X faster in the general-purpose 

microprocessor and 2.4 times faster than its original in the FPGA implementation. The 

original FPGA implementation executes at a clock frequency of 139MHz while the 

improved one runs at 157MHz. The clock frequency increase is due to the improvement 

in the algorithm. As shown in Figure 3.8, the improved algorithm does not iterate one 

billion times through the code body. Therefore it does not access the state vector array 

and the random numbers that many times. As a result, outputs are generated with fewer 

memory accesses resulting in a higher clock frequency. Table 4.1 shows a summary of 

the performance data of state vector generation algorithm. 
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Table 4.1: Performance Data of State Vector Generation Using MTA Algorithm 

Property Original 

Algorithm 

Improved 

Algorithm 

Improvement 

S/W time for one state file  

( microprocessor) 

45.3 sec 9 sec 5.03X 

S/W time for one state file 

(FPGA implementation) 

350 sec 146.44 sec 2.4X 

H/W Cycles 12,724,078 9,892,294 1.488X 

 

An important point to note from Table 4.1 is that the improved algorithm has about 

5X speedup over its original general-purpose microprocessor implementation while only 

about 2.4X speedup in the FPGA implementation. The improved algorithm of Figure 3.8 

has more conditional statements than the original, which is suitable for the von Neumann 

architecture but not ideal for an FPGA. As general-purpose microprocessors are equipped 

with efficient branch prediction units, efficient execution of the improved algorithm is 

not a problem. Since FPGAs do not have similar branch prediction units, a significant 

performance bottleneck results while executing conditional and branch statements. 

Without these branch prediction units, FPGAs may implement all the cases of conditional 

statements in the data path to improve performance. Whenever a conditional statement 

occurs, assessing that condition requires extra cycles that are not necessary in a general-

purpose microprocessor. For most modern microprocessors, the branch prediction 

accuracy is more than 95%; meaning, in 95% cases, they do not execute the conditional 



 45

statements. They can safely assume the prediction result from Prediction History Table 

(PHT), a table where the previous conditional statement check results are stored. Based 

on the results of PHT, they move to the later stages of instruction execution. Only in less 

than 5% of the cases, the miss-prediction occurs and requires extra cycles to bring the 

proper set of instructions in the pipeline stages. As general-purpose microprocessors 

typically run 10X to 20X faster than FPGAs, the miss-prediction penalty of extra cycles 

is insignificant. In our design, the FPGA runs at around 15X slower clock frequency than 

the microprocessor. The cumulative effect of these issues results in the poor performance 

of an FPGA while executing conditional and branch statements.  

Another important issue is the potential increase in area overhead when conditional 

statements are implemented in FPGAs. In lieu of branch prediction units, FPGAs can 

implement both data path conditions increasing the area requirement.  

The number of hardware cycles required in the improved algorithm implementation is 

9,892,294 whereas the original implementation requires 14,724,078 cycles, a 1.488X 

improvement. The hardware cycle count only considers the cycles required for an 

algorithm to execute in the FPGA. Whereas the runtimes discussed before also include 

the data transfers and other communication. 19.5KB of data is passed between the host 

and the FPGA and the communication overhead is 16 microseconds.  

We use the following terms to define speedup of an algorithm in an FPGA compared 

to its general-purpose microprocessor implementation: 

S CPU clock cycles 

H Hardware (FPGA in this case) cycles 
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F FPGA clock frequency 

M Microprocessor clock frequency 

M

F

H

S
Speedup ×=                (6)      

For our system, M is 2 GHz. 

For the original algorithm, F = 139 MHz, H= 12,724,078 cycles and for the improved 

algorithm, F=157 MHz, H=9,892,294 cycles. To calculate S, we will use eq. (7). 

CPU clock cycles = CPU execution time x Clock frequency          (7) 

CPU execution time is 45.3 sec for the original and 9 sec for the improved algorithm. 

Clock frequency is 2GHz. Therefore using eq. (7), S for original and improved algorithm 

are 45,300,000,000 cycles and 9,000,000,000 cycles respectively. Now using eq. (6), the 

speedup for the original algorithm in the FPGA implementation is 494.87X. The FPGA 

implementation of the original algorithm runs 494.87X faster than the general-purpose 

microprocessor if we consider the fact that the clock frequency of the FPGA is about 20X 

(in our design 14.388X) slower than the microprocessor. Conversely, the normalized 

speedup for the improved algorithm is 142.84X in the FPGA implementation. Even 

though the improved design runs at a higher clock frequency (157MHz), the performance 

is lower than the speedup of the original algorithm. As previously mentioned, the 

improved algorithm (improved for the microprocessor implementation) is not well suited 

for an FPGA as it has several conditional statements. Therefore the number of hardware 

cycles is not low enough to raise the speedup value based on eq. (6).  

The resource utilization for both the original and improved algorithms are shown in 

Table 4.2. As compared to the other resources, the LUT requirement is significantly 
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reduced (30.44%) for the improved algorithm. Referring to the algorithm shown in Figure 

3.8, the reduction in resource utilization results from not performing the random number 

tempering on the variable y. In other words, we are using the variable y fewer times than 

in the original algorithm of Figure 3.7 contributing to this reduction in the resource 

requirements. 

 

Table 4.2: Resource Utilization of State Vector Generation Algorithm 

Resource 

name 

Original 

algorithm 

Improved 

algorithm 

% resource reduction  

BRAMs 51/240 (21%) 37/240 (15%) 27.45% 

Slices 5451/49152 

(11%) 

4124/49152 

(8%) 

24.34% 

4-input LUTs 8351/98304 

(8%) 

5809/98304 

(5%) 

30.44% 

 

Both implementations pass 19.5KB of data between host and FPGAs through the 

PCI-X bus. This PCI-X bus is capable of passing 64-bit data with a maximum of 

133MHz theoretical speed [24]. Therefore the maximum data transfer rate is 8.3125Gb/s. 

This data transfer rate is the theoretical rate and the effective rate is actually lower due to 

the overhead and other system design tradeoffs. The overheads include data transfer 

overhead, transaction layer packet overhead, flow control overhead, etc. [25]. 

Considering these factors, the sustainable host bandwidth is 400 MB/s [24]. As the data 
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passed between the host and FPGA is only about 19.5KB for one state file, the 

communication overhead is insignificant, i.e. 16 microseconds to be specific.  But 

considering that we must generate many state files, this overhead can be significant. For 

example, the flow line scheduling requires generating 360K state files. With 16 

microsecond communication overhead per file, the cumulative overhead is 5.76 seconds 

for all 360K files. One possible improvement of this design would be to store state 

vectors in on-board memory (like SRAM) and send them at set intervals or at the 

conclusion of the file generation taking maximum advantage of the PCI-X bus 

bandwidth. This approach will require analysis of the tradeoff between SRAM size and 

PCI-X bus bandwidth and when it is most efficient to send data back to the host. As the 

size of each SRAM is 4MB and the size of one state file is 20KB (625 unsigned integers), 

we can store a maximum of 200K state files in a SRAM. But the time to generate 4MB 

data is too long. With our improved algorithm, the generation of 4MB data will require 

about 339 days (200K files, each with 146.44 seconds). That means, if results are 

returned to the host once the SRAM is filled up, the user will have to wait for 339 days 

before she can see the first state file. Therefore there should be a tradeoff between the 

maximal use of PCI-X bandwidth and throughput rate based on the application 

requirement.  
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4.2 GA Performance Analysis 

In this section we discuss the implementation results and performance of basic GA 

operations. Table 4.3 shows the performance results of each of the PEs of the GA 

process.  

 

Table 4.3: Performance Data of Basic GA Operations. 

Property InitChrom ParaUnifCross Immigrate 

S/W time  

(general-purpose microprocessor) 

50 micro sec. 0.17 sec. 50 micro sec. 

Total time (FPGA) 100 micro sec 1.21 sec. 100 micro sec. 

H/W Cycles 1612 3123 1116 

FPGA design frequency 101.871MHz 130.162MHz 101.871MHz 

 

As seen in the table, the InitChrom and Immigrate modules run 2X slower in the FPGA 

than the general-purpose microprocessor whereas ParaUnifCross runs 7.12X slower. The 

values of S for these three modules are 50, 170 and 50 cycles respectively. Therefore, the 

speedup for InitChrom, ParaUnifCross and Immigrate based on eq. (6) are 1.58x10-3, 

2.28x10-3 and 3.54x10-3 respectively.  

Even with the function by function comparison, the FPGA implementation is much less 

efficient as shown in the execution time comparison. This inefficiency occurs because the 

implementation of basic GA operations is not well suited for a FPGA. The reasons can be 

explained by analyzing the pseudocode in Figure 4.1.  
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1. void InitChrom(struct chrom *Chrom, struct data *PD) { 

2. int  j; 

3. for (j=1; j<Chrom->numjobs; j++) { 

4. if (InStage(PD, j, 0)) { 

5. Chrom->StageChroms.keys[j]=GenerateDiscUnif(0,Chrom-

>StageChroms.nummcs - 1); 

6. Chrom->StageChroms.keys[j]=Chrom-

>StageChroms.keys[j]*(int)pow(10,Chrom->places); 

7. Chrom->StageChroms.keys[j]=Chrom-

>StageChroms.keys[j]+GenerateDiscUnif(1, (int)pow(10,Chrom-

>places)-1); 

8. } 

9. else Chrom->StageChroms.keys[j]=0; 

10. } 

11. Chrom->changed=TRUE;  

12.} 

Figure 4.1: Initchrom Function in General-Purpose Microprocessor 

As shown in lines 4, 5 and 7 of Figure 4.1, different functions are called from this 

function with different parameters to initialize the chromosome. The InStage function is 

called with different parameters for each iteration. The GenerateDiscUnif function calls 

the random number generation process. Even with the in-lining of those functions, code 

of this nature is not ideally suited for an FPGA implementation. Also the if-else 

conditions of lines 4 and 9 add to the inefficiencies as discussed earlier. One possible 

improvement is to execute the InStage function independent of this code segment and 

store the results in a FIFO. In that case, this code segment can simply read the values 

from the FIFO and proceed.   

If we want performance improvement of an application implemented in an FPGA 

verses its microprocessor counterpart, the algorithm should have some characteristics that 

will facilitate exploiting the architectural benefits of an FPGA. They are discussed below.   



 51

The algorithm should have some options for exploiting the inherent parallelism of an 

FPGA. This feature includes independent memory access, options for loop unrolling and 

loop flattening, independent tasks, etc. Even if the algorithm does not have these inherent 

characteristics, there should be options available to modify the application to fit to those 

features. This application is limited in this regard mainly because of the topology of the 

call graph. The topology led us to a coarse-grained partitioning whereas in most of the 

cases it would be better if we could do fine-grained partitioning. But fine-grained 

partitioning would make the partition combination tougher since the functions are called 

from many different places, and likely their combination overhead would not perform 

better.  

Related to the previous point, an important question is whether the implementation 

suits the target architecture or not. As discussed in section 4.1, the existence of 

conditional and branch statements here in the GA process is a bottleneck for performance 

improvement. The call graph of this algorithm readily reveals the fact that there is 

significant jumping from one function to another adding to the probability of a 

performance bottleneck for an FPGA implementation.  

Another point is whether the application is streaming or not. As we are using the FPGA 

as an independent coprocessor, having a streaming application would improve the 

chances of application acceleration. The GA fails here as it is not a streaming application.  

For hardware/software partitioning, we chose coarse-grained partitioning. An important 

question is whether the fine-grained partitioning would help us in any way for the 

functions we chose to implement in the FPGA. Examining Figure 4.2, we conclude that 
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the function ParaUnifCross might have shown an improved performance if it were 

implemented to reflect a finer granularity.  

 1. void ParaUnifCross(struct data *PD, struct population *NewPop,  

struct population *Pop){  

2. int k, j, numcross, start, par1, par2, done; 

3. double val; 

4. static struct chrom temp1, temp2; 

5. numcross = (int) (Pop->popsize * CROSS_PERCENT); 

6. start = (int) (Pop->popsize * ELITE_PERCENT); 

7. CreateChrom(PD, &temp1); 

8. for (k=0; k<numcross; k++) { 

9. par1=GenerateDiscUnif(0, Pop->popsize-1); 

10. par2=GenerateDiscUnif(0, Pop->popsize-1); 

11. done=(par1!=par2); 

12. while (!done) { 

13. par2=GenerateDiscUnif(0, Pop->popsize-1); 

14. done=(par1!=par2);} 

15. for (j=1; j<temp1.numjobs; j++) { 

16.  val=genrand_res53(); 

17.  if (val < PROBPAR1)  

  18.  temp1.StageChroms.keys[j]=Pop->  

Chroms[par1].StageChroms.keys[j]; 

19.  else  

  20.  temp1.StageChroms.keys[j]=Pop->  

Chroms[par2].StageChroms.keys[j];}  

21. CopyChrom(&NewPop->Chroms[k+start], &temp1); } 

22.} 

Figure 4.2: ParaUnifCross Function in General-Purpose Microprocessor 

 

There are calls to different functions at lines 7, 9, 10, 13, 16 and 21 of Figure 4.2. A 

fine-grained partitioning (statement level) is expected to perform better in this case. The 

reason is the statements of lines 7, 9, 10, 13 and 16 do not depend on their previous 

statements. They depend only on the random numbers generated by the MTA algorithm 

using the state vectors. But then again it becomes complicated, as we need to consider 
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integrating it with the overall GA process and eventually with the flow-line scheduling 

application.   

These reasons add to the inefficient runtime of the GA operators compared to its von 

Neumann counterpart. But an improved design as shown in Figure 3.12 is expected to 

improve the performance compared to the current FPGA implementation as in Figure 

3.10.  

Resource utilization for GA operators (individual resource consumption of PEs) is 

shown in Table 4.4. It is evident that the ParaUnifCross PE is consuming most of the 

FPGA resources. ParaUnifCross is actually a combination of selection and crossover 

operations of the GA so it has much more computation compared to the other PEs 

currently implemented. The overall resource utilization is almost equal to 100%. An 

important point to note is that in our current implementation, all the GA operations 

generate random numbers inside their own module. This approach actually increases the 

resource requirement. If the implementation reflects the design of Figure 3.12, we can 

eliminate the need for a random number generator per PE and thereby reduce the resource 

utilization. 

 

Table 4.4: Resource Utilization of GA Operations. 

Resource Name Initchrom ParaUnifCross Immigrate 

BRAMs 54/240 (22%) 109/240 (45%) 54/240 (22%) 

Slices 13,397/49152 (27%) 17890/49152 (36%) 13,428/49152 (27%) 

4-input LUTS 18,592/98304 (18%) 27341/98304 (27%) 18,689/98304 (19%) 



 54

 

When the three modules are combined to generate a single bitfile, the device utilization 

summary is: 

Number of Slices:                    42634/49152  (86%)  

Number of 4 input LUTs:              62169/98304  (63%) 

Number of BRAMs              200/240     (83%)   

Number of DSP48s:                       45/96     (46%) 

The combination of the three modules consumes 86% resources when all three modules 

have a random number generation process inside them. If we consider the three modules 

Initchrom, ParaUnifCross and Immigrate as one single module of the GA, then an 

important question is how many GA modules can we implement in an FPGA. Clearly, in 

our current implementation, we can only implement one GA module in a Virtex4-LX100. 

Our estimation shows that if we implement the design shown in Figure 3.12, we cannot 

implement more than two GA modules in the same target FPGA. One single GA module 

takes about 35% of the resource excluding the random number generation portion, so if 

we implement two GA modules along with one random number generator PE that stores 

numbers in a FIFO, we will exhaust the resources we have but likely improve the overall 

performance.  

The maximum amount of data passed to the FPGA is for the ParaUnifCross PE, which 

is about 110 KB. Initchrom, and Immigrate require about 30KB and 16KB of data 

respectively. Unlike section 4.1, we do not have an option to pass data back to the host in 

a combined packet as these PEs are activated only when needed by the host application.  
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As discussed in section 3.1.2, the overall GA application speedup should ideally be 

1.025X. But it is readily understandable that with the communication overhead and the 

design problems discussed in section 4.2 and 3. 6, practically it would not be possible to 

achieve any speedup.  

For our research, we have two separate bitfiles for state vector generation and the GA. 

Though the state vector generation is an initial step necessary for the operation of the GA, 

we consider the GA our overall application. Therefore the resource utilization in the state 

vector generation does not count towards the total resource utilization of the application. 

If we consider the resource utilization from Table 4.2 and Table 4.4, we find that the total 

percentage of BRAM usage is more than 100%. Since the bitfiles are separate and we do 

not run them simultaneously, this is not a problem.  

The results for our current implementation, though not impressive, open the door for 

some interesting and seminal work in the future. We have exposed the issues and 

understand the requirements necessary to design and implement a high-performance 

computing application for a specialized architecture to gain maximum throughput within 

the given constraints. We will discuss these in chapter 5.  
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

The focus of our work has been the acceleration of the GA in an FPGA. We have 

shown that though there are challenges with the use of RC in scientific computing 

applications like GAs, these challenges can be overcome when certain conditions are met. 

Our contribution in this field is summarized in section 5.1. Later in section 5.2, we 

discuss in detail the ideas for future work that will make RC a better fit for GAs.  

5.1 Conclusion 

 We have presented an improved algorithm for state vector generation using MTA. 

The algorithm eliminates some steps from MTA that are unnecessary for state vector 

generation. Though there are potential approaches to improve performance by using the 

FPGA resources more efficiently, the one billion iterations required before generating 

one state vector limits the achievable performance of an FPGA implementation. 

Therefore we chose to improve the performance by improving the algorithm. The 

improved algorithm runs 5X faster in a general-purpose microprocessor than its previous 

implementation and 2.4X faster in the FPGA than its previous FPGA implementation.  

 We have designed and implemented the basic GA operations in an FPGA. There 

are four basic operations of the GA [5] and they are represented in three different PEs in 

the FPGA. These three PE’s are combined to form a single GA module, meaning our 

implementation has a single bitstream that represents the GA operations although the 

three PE’s are called from the host at different times; there is only one active PE at any 

given time during the FPGA execution. Each of the basic GA operation requires random 
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numbers for its operation. These random numbers are generated from the state vectors 

inside each of the PEs. Our FPGA implementation of the GA runs about 7X slower than 

its microprocessor counterpart for several reasons. The original GA implementation was 

targeted for a general-purpose microprocessor and does not consider any specialized 

architectures like FPGAs. Therefore the implementation is not ideal for an FPGA. We do 

not design the application from scratch targeting our systems, rather we chose some 

portion of the original implementation based on the profiling results and perform coarse-

grained partitioning to implement that in the FPGA. In some cases fine-grain partitioning 

may perform better, but due to the topology of the call graph, it will not give us an overall 

performance gain. Also we have not separated the random number generation process 

from the basic GA operation, which is expected to improve performance in general and 

allow for implementation of multiple GAs in a single FPGA. Overall, we have 

inefficiencies in the FPGA implementation of the GA. The reasons are discussed in detail 

in section 3.6, 4.1, and 4.2 along with suggestions for improvement.  
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5.2 Future Work 

 Possible future work involves both the state vector generation and the GA 

implementations. First, we can implement the application in hardware description 

languages (HDL) like VHDL or Verilog rather than using a high-level language (HLL) 

like DIME-C. As HDLs are inherently parallel, we will need less attention to explicitly 

specifying the parallelism in our implementation. As discussed in section 2.2, all previous 

work on MTA and GA are in HDLs. One reason is that HDLs allow the designer to 

exploit the parallelism of the FPGA in a more direct manner (not relying on the compiler 

to infer the parallelism). Another interesting future direction would be a comparison 

between the two implementation techniques: HDL and HLL. This comparison will show 

us how the programming languages and their compilation techniques impact the 

performance of an application targeted to a FPGA.   

 As discussed in section 3.6, the original implementation of the GA was targeted 

for a von Neumann architecture with no consideration of an accelerator or specialized 

hardware such as an FPGA-based RC platform. Most of the design constraints for our 

approach relate to the inability to expose parallelism or compute density in the original 

application. To exploit the parallelism of the RC system, we can design the application 

from the scratch targeting the FPGA-based systems. The key consideration of that design 

will be to reduce the communication overhead between the basic GA operations and 

other portions of the application. Therefore the design should support calling the basic 

GA module as few times as possible. In that case we will implement only the basic GA 

operations in the FPGA and the host will use the outputs for other computations. To 



 59

reduce the host-to-FPGA communication overhead, we can perform GA operations on 

the input data multiple times. This number will depend on the application and the host 

can pass an upper limit of that number to the FPGA. When the output for the first GA 

operation is available, the host can begin reading those results from the FPGA and 

proceed with its computation while the FPGA is computing and storing the GA outputs in 

an on-chip or on-board memory. This design would effectively support parallel execution 

of the host and the FPGA. As soon as the stopping criterion is satisfied, i.e. the solution is 

acceptable; the host will halt the execution of the FPGA. The reduced communication 

overhead along with the parallel execution of the host and the FPGA will account for a 

performance increase compared to our current implementation and most likely verses the 

von Neumann counterpart as well. Once we have a GA module like the one described 

above, we can use it to solve other optimization problems like placement and routing of 

an FPGA and others that use a GA to find their solutions.  

 Our current implementation does not take advantage of overlapping 

communication with computation. This limitation is a significant bottleneck for our 

current implementation of the state vector generation. Also we need to incorporate this 

overlapping if we want to implement the design techniques of Figure 3.12 or the 

technique described in the paragraph above. To hide these data transfer overheads, we 

could use on-board memories like SRAM or SDRAM or on-chip interfaces like FIFOs to 

store data temporarily before the host reads them.  
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 Another technique of parallelizing the state vector generation process is to stripe 

data across memory banks so that at least some of the memory accesses, shown in Figure 

3.8 (line 8, 9, 11 and 12) can happen simultaneously.  

 As discussed in section 3.6, allowing the random number generation to occur in 

parallel with the GA process by incorporating a FIFO will improve the performance of 

the application and is considered an important future direction.  

Implementing the GA in other architectures like the Cell Broadband Engine (Cell 

BE) or a Graphics Processing Unit (GPU) may be an interesting area to explore. Each of 

these systems has its own advantages and disadvantages that may or may not suit an 

application. GPUs are suitable for streaming applications. As GA is not a streaming 

application, most likely we will not be able to achieve any significant performance gain 

by implementing the GA in a GPU. On the other hand, the 6 different Synergistic 

Processing Elements (SPE) of the Cell BE can be used to run 6 GA modules 

independently, thereby extracting parallelism out of the multicore architecture of the Cell 

BE.  

Our future work also includes studying the behavior of a GA in a large-scale 

cluster. The primary focus is to work on a large-scale cluster of FPGAs but a cluster of 

Cell BE may also be considered once we have the implementation in one Cell BE. With 

the growing number of computing resources, performance and scalability of the GA 

implementation in these clusters are important metrics of analysis.  

A relatively newer concept related to the GA is Evolvable Hardware (EH). The 

concept of EH arises from the analogy between a living being and a circuit. The DNA 
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(deoxyribonucleic acid) of a living being is a string of symbols from a quaternary 

alphabet (A, C, G, T). Similarly reconfigurable logic devices are configured by a 

bitstream that constitutes of binary symbols (0,1). This analogy suggests the possibility of 

applying the concepts of GA into circuit design. The traditional circuit design task is 

vulnerable to human error and the optimality of a solution cannot be guaranteed for larger 

circuits. Design automation is challenging for tool designers and with the increasing 

complexity of circuits, higher abstraction levels are needed [20]. EH arises as a promising 

solution of this problem since from a behavioral specification of a circuit, the GA will 

search for a bitstream to describe the circuit. Therefore the designer’s job is reduced to 

constructing the GA setup (specifying the circuit requirements, the basic elements of GA 

operations like cross and mutation percentage, etc.) and testing schemes for the fitness 

function [20].  

Thus far, the implementations of the GA using reconfigurable hardware, including 

the one presented in this thesis, are focused on accelerating existing applications with 

existing systems and techniques. Accelerating an application in an RC system requires 

analysis and optimizations by the designers and these are not always easy to do due to the 

complexity and the size of the problem. The complexity of the design arises from the 

characteristics of the application that will suit it to a specific architecture and how the 

tools are going to facilitate the design methods. The fact that we did not achieve 

performance gain in the GA process is related to this complex interaction among various 

architectures, application characteristics, and the tools and techniques used to solve the 

problems. An open problem in this field is the creation of new tools and techniques for 
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reconfigurable hardware that will make these problems more tractable. Creating these 

new tools and techniques will however require multidisciplinary efforts between 

mathematicians, computational scientists, computer scientists, and computer engineers.  

 

 

 

 

 

 

 

 

 

 

 



 63

REFERENCES 

[1] M. E. Kurz and R. G. Askin, “Scheduling flexible flow lines with sequence-dependent 

setup times”, European Journal of Operational Research, 159, 66-82, 2004. 

 
[2] M. Matsumoto and T. Nishimura, “Mersenne twister: a 623-dimentionally 

equidistributed uniform pseudo-random number generator”, ACM Trans. on Modeling 

and Computer Simulation, 8(1):3-30, Jan. 1998.  

[3] Nebro, A.J., F. Luna, Enrique Alba, B. Dorronsoro, J.J. Durillo, A Beham., “AbYSS: 

Adapting Scatter Search to Multiobjective Optimization”, IEEE Transactions on 

Evolutionary Computation, 12, 439-457, 2008.  

[4] Minella G., R. Ruiz, M. Ciavotta., “A Review and Evaluation of Multiobjective 

Algorithms”, INFORMS Journal on Computing, 20, 451–471, 2008.  

[5] Wikipedia Genetic Algorithm, http://en.wikipedia.org/wiki/Genetic_algorithm, last 

accessed on April 28, 2009.  

[6] Ishaan D. and Deian S., “A Hardware Framework for the Fast Generation of Multiple 

Long-Period Random Number Streams”, FPGA 2008.  

[7]Hossam E. M., Ahmed I. K., Yasser Y. H., “Hardware Implementation of Genetic 

Algorithm on FPGA”, 21st National Radio Science Conference 2004.  

[8]Tatsuhiro, et al., “Proposal for Flexible Implementation of Genetic Algorithms on 

FPGAs”, Systems and Computers in Japan, Vol.38, No 13, 2007.  



 64

[9]John, H. H., “Adaptation in Natural and Artificial Systems”, The University of 

Michigan Press, Ann Arbor, 1975. 

[10] Wikipedia Mersenne Twister, http://en.wikipedia.org/wiki/Mersenne_twister, last 

accessed on May 4, 2009.   

[11] Matsumoto, et al., "Twisted GFSR generators". ACM Transactions on Modeling and 

Computer Simulation, 2: 179, 1992.  

[12] Shrutisagar C. and Abbes A., “High Performance FPGA Implementation of 

Mersenne Twister”, 4th IEEE International Symposium on Electronic Design, Test and 

Application, 2008.  

[13] Edson, et al., “Reconfigurable Parallel Architecture for Genetic Algorithms: 

Application to the Synthesis of Digital Circuits”, International Workshop on Applied 

Reconfigurable Computing, 2007.  

[14] Paul G. and Brent N., “A Hardware Genetic Algorithm for Travelling Salesman 

Problem on Splash2”, 5th International Workshop on Field-Programmable Logic and 

Application, 1995.  

[15] H. Emam, et al., “Introducing an FPGA based genetic algorithms in the application 

of blind signal separation”, 3rd IEEE International Workshop on System-on-Chip for 

Real-Time Applications, 2003.  



 65

[16] G. M. Amdahl, “Validity of the single processor approach to achieving large scale 

computing capabilities”, AFIPS spring joint computer conference, 1967.   

[17] Nallatech Inc., H101 PCI-X Reference Guide, NT107-0313 – Issue 3.1. 

[18] Nallatech Inc., DIME-C User Guide, NT102-0305 – Issue 2.3.  

[19] Nallatech Inc., DIMETalk User Guide.  

[20] Scott Hauck and Andre DeHon, ed. Reconfigurable Computing: The Theory and 

Practice of FPGA-Based Computation, Morgan Kaufmann, Nov. 2007.  

[21] J. P. Cardoso, et. al., “Architectures and Compilers to Support Reconfigurable 

Computing”, ACM Crossroads, 1999.  

[22] Wikipedia Diehard tests, http://en.wikipedia.org/wiki/Diehard_tests, last accessed on 

May 15, 2009.  

[23] Wikipedia Randomness tests, http://en.wikipedia.org/wiki/Randomness_tests, last 

accessed on May 15, 2009.  

[24] Nallatech Inc., H101 PCI-XM product details 

http://www.nallatech.com/?node_id=1.2.2&id=41&tab=4&request=2008update 

[25] Xilinx Inc., Understanding performance of PCI Express, WP350 (v1.1), 

http://www.xilinx.com/support/documentation/white_papers/wp350.pdf, Sept. 2008.  


	Clemson University
	TigerPrints
	8-2009

	Implementation of Genetic Algorithms in FPGA-based Reconfigurable Computing Systems
	Nahid Alam
	Recommended Citation


	

