View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Clemson University: TigerPrints

Clemson University

TigerPrints

All Theses Theses

8-2009
Implementation of Genetic Algorithms in FPGA-
based Reconfigurable Computing Systems

Nahid Alam

Clemson University, shapla@gmail.com

Follow this and additional works at: https://tigerprints.clemson.edu/all theses
b Part of the Electrical and Computer Engineering Commons

Recommended Citation

Alam, Nahid, "Implementation of Genetic Algorithms in FPGA-based Reconfigurable Computing Systems” (2009). All Theses. 618.
https://tigerprints.clemson.edu/all_theses/618

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized

administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

https://core.ac.uk/display/268637412?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F618&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F618&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F618&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F618&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=tigerprints.clemson.edu%2Fall_theses%2F618&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/618?utm_source=tigerprints.clemson.edu%2Fall_theses%2F618&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

IMPLEMENTATION OF GENETIC ALGORITHMS IN FPGA-BASED
RECONFIGURABLE COMPUTING SYSTEMS

A Thesis
Presented to
the Graduate School of
Clemson University

In Partial Fulfillment
of the Requirements for the Degree
Master of Science
Computer Engineering

by
Nahid Mahfuza Alam
August 2009

Accepted by:
Dr. Melissa C. Smith, Committee Chair
Dr. Walter B. Ligon Il
Dr. Mary E. Kurz

ABSTRACT

Genetic Algorithms (GAs) are used to solve manyinogation problems in
science and engineering. GA is a heuristics appragltich relies largely on random
numbers to determine the approximate solution ob@timization problem. We use the
Mersenne Twister Algorithm (MTA) to generate a rawerlapping sequence of random
numbers with a period of ¥3~1. The random numbers are generated from a staterv
that consists of 624 elements. Our work on statetovegeneration and the GA
implementation targets the solution of a flow-liseheduling problem where the flow-
lines have jobs to process and the goal is to dirsmiitable completion time for all jobs
using a GA. The state vector generation algoritMiA) performs poorly in traditional
von Neumann architectures due to its poor tempamdl spatial locality. Therefore its
performance is limited by the speed at which we emcess memory. With an
approximate increase of processor performance By pér year and a drop of memory
latency only 7% per year, a new approach is neéolegderformance improvement. On
the other hand, the GA implementation in a genpuapose microprocessor, though
performs reasonably well, has scope for performayae in a parallel implementation.
The parallel implementation of the GA can work dseenel for applications that uses a
GA to reach a solution. Our approach is to implentlea state vector generation process
and the GA in an FPGA-based Reconfigurable ComgufC) system with the goal of
improving the overall performance.

Application design for FPGA-based RC systems igmtl and the performance

improvement is not guaranteed. Designing for RCtesys requires algorithmic

parallelism in order to exploit the inherent paetidim of the FPGA. We are using a high-
level language that provides a level of abstractrom the lower-level hardware in the
RC system making it difficult to fully exploit som& the architectural benefits of the
FPGA. Considering these factors, we improve thdestaector generation process
algorithmically. Our implementation generatesestatctors 5Xaster than the previous
implementation in an Intel Xeon microprocessor @Hz. The modified algorithm is also
implemented in a Xilinx Virtex-4 FPGA that resultsa 2.4X speedup. Improvement in
this preprocessing step accelerates GA applicgg@formance as random numbers are
generated from these state vectors for the gergt@rators. We simulate the basic
operations of a GA in an FPGA to study its behawiora parallel environment and
analyze the results. The initial FPGA implementatad the GA runs about 7X slower
than its microprocessor counterpart. The reasansxglained along with suggestions for

improvement and future work.

DEDICATION

| dedicate this work to all of them who continuatiycourage me strive for the best.

ACKNOWLEDGMENTS

First 1 would like to express my gratefulness te #imighty for providing me the
light and enabling me to finish this work.

My deepest gratitude goes to my advisor, Dr. MaliSsith for her guidance and
support that made this work possible. Her approastards solving a problem and
continual support for growth has shown me the patbxcel. | would like to thank Dr.
Mary Kurz for her warmth approach that introduced m the field of Operational
Research. | would also like to thank my committeenthers for their review and
valuable comments on this thesis.

| thank my parents, younger brother and other famiémbers for always being
with me and supporting me in time of my need.

My sincere gratitude goes to the members of Fulomputing Technology lab
of Clemson University for their support and coopiera | would like to thank Andrew
Woods of University of Cape Town for all his coogéwn in understanding Nallatech
tools and hardware. My thanks to Ayub of Bangladdstiversity of Engineering and
Technology for his prompt solution with problemisad in UNIX. Thanks to Yujie Dong
of Clemson University for his help with LATEX tengté. | express my appreciation to
Nallatech support for their cooperation in techhidatails and prompt responses that
helped in accelerating the work.

Finally, I would like to thank Clemson Universitgrfthe financial support and

excellent academic environment throughout the @iogr

TABLE OF CONTENTS

Page
TITLE PAGE ..ottt sttt ettt e e e e e e e e e e e e e e s s sannnn e e e aaaeeaaaeaeeens [
F Y = 1S Y ¥ AN O TSRS i
DEDICATION ...ttt ettt e e eeeet ettt e e e et e e e e e e e e e eeeeeaaasnnnssbbbanaaeeeeaeassenannnns iV
ACKNOWLEDGMENTS ...ttt eeeeeeeeseaenanes v
LIST OF TABLES ...t sttt e e e e e e e e e e e e e s seensse e e e eeeees viii
LIST OF FIGURES ...ttt ceeeessss ettt e e e e e e e e e e e e e e e e e s s s s s s smnnnnaeaaeaaeaeens iX
CHAPTER
1. INTRODUCTION ...ootiiiiiiiiiiiiieieees st cmmmmre et e e e e e e e e e e e e e e e e e s e sssnnnnssessees 1
2.1 Genetic Algorithms and Flow-Line Scheduling............ccccuvvviiiinnnn. 7
2.1.1 Anatomy of a Genetic Algorithm ... ooooeeiviiiieiieen 7
2.1.2 Modeling Optimization Problems into
Genetic AlgONtNMSviiiiiiie e e e e e e e e e 9
2.1.3 Mersenne Twister Algorithmcoeeeeeiiiiiiiiiiiiiiiis 14
2.2 Related ReSEArC.........oooii it 17
ARG I O 10| Y o] o] o= Tox o FO PSP 18
3. DESIGN AND IMPLEMENTATIONccooiiiiiiiieeee e 19
3.1 Hardware/Software Partitioningcccceeeeeeeeiiiiiiiiieiiiiiiiiceeee e 19
3.1.1 MTA Partitioning ANAIYSIS...........cummeeeunniieaaeeeeeeeerseeeeeeenninnnnn. 21
3.1.2 GA Partitioning ANalYSISccoooeeiiiiiiiiiiieeeeii e 22
3.2 Systems and TOOIS USEAcummmmmmeeeeerreeeieeinniiiiinnnnnaeeeeens 28.
3.3 Implementation Modelscoouiiiiieiiiiiiii 30.
3.4 Accelerating State Vector Generationccovvvvvevveviviviiinnneenn. 32
3.5 Implementing Genetic Algorithms in FPGAS...........coooovviiiiiiiiiiinnnee 37
3.6 Limitations Of the DeSIgN.......ccoii it 39.
3.7 SUMMATY ..ottt e ettt e e e e e e et e e e e e e enaa e e e aaeennees 42

Vi

Table of Contents (Continued) Page

4. PERFORMANCE AND RESULT ANALYSIS ...ttt 43
4.1 Performance Improvement of State Vector Gaioa................... 43
4.2 GA Performance ANAlYSISooooiieeeeeeiiiiiieee e 49
5. CONCLUSION AND FUTURE WORKccoviiiiiiie e 56
5.1 CONCIUSION . 56
5.2 FULUIE WOTK ..coooiiiiiiiiiiii it ettt e e e e e 58
REFERENGCESoooiiiiiiiiiie ettt ee e e e e e s s e s nnnnes 63

Vii

LIST OF TABLES

Table Page
4.1 Performance Data of State Vector GeneratiangJs
MTA AIGOITAM e aeeeee 44
4.2 Resource Utilization of State Vector Generafddgorithm....................... 47
4.3 Performance Data of Basic GA Operations..........cccoeeeeeeeeieviieeeeiinnnns 9.4
4.4 Resource Utilization of GA OperationsS............ooeeeeeeeveeeeeiiivnnenninnnns 53

viii

Figure
21
2.2
2.3
24
2.5
2.6
2.7
3.1
3.2
3.3
3.4
35
3.6
3.7
3.8
3.9

3.10

3.11

LIST OF FIGURES

Page
Anatomy of a Genetic AlgOrithmoceeemeiiiiiinii 8.
The Crossover Operation iN @ GA ..o eeeeeeiees 9..
The Mutation Operation iN @ GA ..o 9
The Flow-Line Scheduling Problem ..., 10

Mapping Problem Data to Solution SPacCe..evvveriiiiiieeeeeeeiiiieiiiiiinnn 12

Saving State Vectors of MTA ... e 16
Mersenne Twister Algorithm — MT19937 ... 16
Flat Profile of GA ProCeSsScooo i 23
Snap Shot of the Overall Call Graphccccoooviiiiiiiii 4.2
Call Graph for 3 Partition EVAlUALIONccoeveriveeeeeeeeeee e 25
Call Graph for® Partition EVAIUALONc.cooveveeereeeeeeereeeeeeeeeeeeeens 25
Functional Diagram of H101 PCI-XM ... 29
Location of the FPGA in the Memory Hierarchy............ccccvvviiiiiiennnn. 31
Original MTA AlIGOrtRMuuiiiiiii sttt 34
Improved MTA for State Vector Generation...............ooovvvveevevivnnnnnnnnn. 35
MTA Implementation in an FPGA ... 36
Design of Basic GA Functions in the FPGA ..o, 38
Flow-Chart of the Overall GA Implementation..............ccccceevviiniinneeeennn. 39

List of Figures (Continued)

Figure Page
3.12 Random Number Generation in Parallel USIR$FOccoeevvvirnnnnns 41
4.1 InitchromFunction in General-Purpose MiCroprocessoruu............. 50
4.2 ParaUnifCrossFunction in General-Purpose Microprocessor............. 52

CHAPTER 1
INTRODUCTION

Genetic Algorithms have important applications imolgems related to
optimization, machine learning, game theory, desigtomation, evolvable hardware,
distributed systems, network security, bioinforrostiand many more. Genetic
algorithms are iterative procedures that work asugs of solution representations called
chromosomes. Each chromosome is composed of smalienents of data called genes.
A set of chromosomes together form a population. g&feerally initialize each gene in
each chromosome randomly. The basic iterative wafrkhe genetic algorithm is
evolution from one population sayto the next populatiort+1. This evolution is done
through the application of genetic operators — Gele, Crossover and Mutation, which
introduce many random elements from one populdbahe next. Through this iterative
procedure, the solution of the optimization problevolves toward a better one.

This research is based on the work of Kurz [1] dmesluling industrial flow-lines.
These flow-lines have sequence-dependent setup timesetup times depend on the
order jobs are scheduled to the machines. The lileavhas several stages in series. Each
stage contains a different number of machines awh enachine has different jobs.
Machines in parallel are identical in capabilitydaprocessing rate. The flow-line is
flexible in the sense that jobs may skip stages. Givemloge conditions, the problem
is to find a schedule that will result in an acedyi¢ completion time of all jobs. The
sequence dependent setup time makes this a geram@lof the Travelling Salesman

Problem (TSP), and thereby an NP-Hard optimizatiproblem. The solution

representation of this flow-line scheduling probleranalogous to the chromosomes in
the GA representation.

For the purpose of this research, chromosomes GAaepresent the order in
which jobs are processed in one stage. There &px wersions of the algorithm where
chromosomes represent jobs in more than one dBagdor this algorithm, the order of
jobs in the remaining stages depends on the oifdebs at the first stage only. That is,
randomness comes into play only at the first stagkall other stages are deterministic.
Each gene of a chromosome has a value that is ajederandomly. Based on these
values, jobs are sorted and assigned to machirmes gdal is to find a combination of
jobs in stages that will result in a satisfactorgkespan for the flow-line, where
makespan is the max completion time of all jobgotigh various genetic operations like
Crossover and Mutation, the GA tries to reach thsl. These genetic operations
introduce randomness in the GA process.

After each iteration of the GA, a specific set ehgtic operators and parameters
known as a configuration is obtained. To arrive dtetter solution for the optimization
problem, we must determine which configuration éstér. That is, which configuration
results in the lowest makespan for the flow-linehestuling. To obtain different
configurations, we need an independent set of ranglembers. If one iteration of a GA
uses upto 600 million random numbers, 600 milli@mdom numbers are needed to
produce one configuration. In order to facilitappeopriate statistical analysis, the sets of
random numbers should be non-overlapping, so beassumption of independent sets

of random numbers can be made. The Mersenne Tuhikjerithm [2] facilitates this, as

it has a period of ¥%*Z1, meaning it can provide sufficient random nursbkefore
repeating. This period is in contrast to the basid function in the standard C library,
which has a period of just over 32,600.

For solving the flow-line scheduling problem, resbars generally consider three
different versions of the GA. We call each of thamalgorithm. In order to determine
reasonable performance measures, most GA reseaqthreas each algorithm to be
executed many times [3,4], such as 50 times, grrtidata set. The input data set for the
flow-line scheduling problem consists of numberstdges, number of machines per
stage, number of jobs and setup, and ready anegsimg time for each job. The flow-
line scheduling may have different problem types, scheduling may be for different
industries leading to different requirements. Thput values of the data set may vary,
resulting in different input files. For our optinaizon problem, there are 180 different
problem types, 10 different input files for eachthw8 different algorithms, totaling 5,400
files. If we consider only the simplest algorithtimen one replication (180x10=1,800 files
per algorithm) requires 45 hours in a single coegatidm IV 3GHz HT machine which
would scale to 80 days of run time to completertbeessary 50 replications of a single
data set. Kurz abandoned this research approactodbhe immense computational time
until discovering the task parallelism potentialGdndor Grid computing.

However, while the introduction of the grid enviroent of Condor removed the
barriers of excessive computational time, manadgimgrandom number usage became
problematic. Though the use of MTA solves the fob of generating a non-

overlapping sequence of random numbers, ensuratgetich run uses a non-overlapping

stream of random numbers generated from the sam@ ®e replicability must be
considered. For example, we could use the fitsos600 million numbers for iteration
1, then the second set for iteration 2. In a tiaalal computing environment, we could
just allow the 2 iteration to start when the*dteration left off. But in grid computing,
iteration 1 and 2 may be running simultaneousiy. tHat case, iteration 2 must first
generate and throw away 600 million random numla@ig then begin its work. This
approach, while functionally correct, requires o4ed00 days to burn through the 600
million numbers before reaching the second seher260,008) iteration. Each iteration
requires approximately 45 hours of computation tmaking the overhead unacceptable.
In contrast, we could generate the random numbiirseoand store them as an
additional input file for each run. However, siggabecomes an issue as the file size for
600 million numbers requires over 3 GB. The 50iogplons required for just one data
set equates to 150 GB of storage. Again, whiledka is nominally feasible for a small
experiment, the storage requirements render tipsoaph infeasible for the general case.
Fortunately, the MTA has an internal state, whishekposed in a structure
composed of one integer and 624 values of unsigrieder or unsigned long. So, while
we echo the sentiment of generating many randonbeusoffline, we only need to store
the algorithm state, in a state file, at set iniésv Then, we can read in the state
information and begin the new generation from thaint, reducing the storage space
requirement. In previous work, Kurz has generated saved 360,000 state files that are
1 billion random numbers apart. This generatiorktabout 22 days to complete on a

dual core AMD Opteron 885 @ 2.6 GHz.

Due to their inherent parallelism, FPGAs are weited for applications that have
some form of parallelism in their characteristifsan application can be designed in a
way so that it can exploit the parallelism of anGA? we can have a significant
performance gain over its general-purpose micraggs®ar counterpart. As FPGASs run at
a much lower clock frequency, any performance gaiachieved at much lower power.
But these gains are not free of cost. The pricpaisl in terms of resource utilization.
FPGAs are equipped with on chip resources like BIRAM, DSP units and on-board
memories like SRAM, SDRAM etc. An application musaximize the utilization of
these resources to maximally exploit the inheramnaltelism of an FPGA.

In this thesis, we present an improved state #eegation algorithm which is 5X
faster than its previous implementation on an IXebn 5130@2GHz. Porting this code
to an FPGA gives a modest 2.4X speedup due toaes@nditional statements that limit
the performance. For our purpose, we must save s&ttors at one billion number
intervals, meaning we need to iterate through thgiral MTA algorithm one billion
times before saving one state vector. We modifyalgerithm such that it does not need
to iterate one billion times. Also we eliminate tteeddom number tempering portion of
the original MTA algorithm as those are not reqdiivehen generating state files. These
two factors provide the speedup while generatirgjestvectors. The previous GA
implementation of this flow-line scheduling problemas designed for a traditional von
Neumann architecture. After profiling the origimalde, hardware suitable functions were
implemented on the FPGA. We implement the basicprdations of the GA in an FPGA

and study its performance while generating andifgethe random numbers to the GA

process inside the FPGA. The performance is cordgdarés original implementation in
a general-purpose microprocessor. A comprehens@iysis of result is given along with
directions for future improvements.
We summarize the results as follows:
* Speedup in state vector generation using the Mees@éwister Algorithm:
5X in general-purpose microprocessor and 2.4X iRrRGA.
* A comprehensive study of the simulation results meésured data of basic

GA operations implemented in an FPGA.

The remainder of this thesis is organized as falo@hapter Il provides background
information, which includes a general descriptidrGenetic Algorithms, how it is used
to solve the optimization problem of flow-line sclding, justification for using MTA,
and the systems and tools used to conduct the iexgres. Chapter Ill discusses how
different components of these experiments were tedde fit within the constraints of
the FPGA-based systems used and also discussksitaéions of our design. Chapter
IV analyzes the performance and results of theaandumber generation and Genetic
Algorithm simulation process. And finally Chapterdifers conclusions and directions

for potential solutions of the limitations of ouesign.

CHAPTER 2
BACKGROUND

This chapter discusses how the solution of the dio@ scheduling problem is
analogous to Genetic Algorithms, some previous vaoriMTA and GA implementations
on FPGAs, and how our solution differs from them.
21 Genetic Algorithmsand Flow Line Scheduling

In this research, the solution of a flow line salled) problem is represented in
terms of chromosomes and genes of a Genetic Atgoritn this section, we will discuss
GA details, how a flow-line scheduling is mappedatdGA, and why the Mersenne
Twister Algorithm is used in this research.
2.1.1 Anatomy of a Genetic Algorithm

Genetic Algorithm, a heuristic based approach @ivisg optimization problems,
was introduced by Holland [9]. A typical GA has twteps [5]: a representation of the
solution domain that reflects the genetic represdent in a genome and a fitness function
to evaluate the fitness of the current represemtatihe solution representations are
generally in bits but may vary based on the apptoa For example, for our flow-line
scheduling problem, we have a double-precisiontifiggpoint representation. GAs
employ the following general steps: InitializatioBelection, Crossover, and Mutation.
The algorithm starts with the random initializatia@f the initial population. Each
population has a number of chromosomes and eadmadsome has a number of genes.
Each gene is also initialized by a random numberthis research, we generate the

random numbers using the Mersenne Twister Algorifjnwhich is further explained in

section 2.1.3. After initialization, two parentseaselected to generate their successor
during the Selection stage. This selection is based fithess function [5] as parents of
higher fitness values are expected to produce @rbeéxt generation. To generate the
successor, the GA uses the Crossover operationewdiecrossover point is selected
randomly. In the successor, solutions from thet fiparent are selected before the
crossover point. Solutions after the crossover tpara taken from the second parent. After
Crossover, the Mutation operation is applied taaase the probability of the fitness of
the solution. In Mutation, a random gene of thecessor chromosome is changed with
some probability. This process continues until gtepping criteria are satisfied. The
probability of Mutation is a constant that is degemt on the application. Theoretically,
the best set of chromosomes is expected to suevigatually. The overall GA process is
shown in Figure 2.1. The Crossover and Mutatiorratpens are shown in detail in Figure

2.2 and 2.3.

Population(t)

Population(t+1)

Figure 2.1: Anatomy of a Genetic Algorithm

D
Figure 2.2: The Crossover Operation in a GA

Selected gene for mutation After mutation
| !

(rrr1rrrfrrfr) = [(1rTIrmMiirtiliil
Figure 2.3: The Mutation Operation in a GA

In this research, the Mutation operation of the &Aeplaced by the Immigration
operation. In Mutation, one specific gene of a amsome is changed with some
probability. But in Immigration, a fresh new setatfromosomes are immigrated into the
next generation of the population. That is, allgeonf those chromosomes are replaced
with a random value. How many chromosomes will benigrated depends on a

predefined constant and is generally determinetth&ygiven optimization problem.

2.1.2 Modeling Optimization Problemsinto Genetic Algorithms

Our target optimization problem is a flow-line sdbkng problem that is very
common in industrial manufacturing. These manufaogusystems have taken many
forms with the added complexity of limited resowcéime constraints, complicated

process plans etc. For example, flow-lines of tamisonductor industry have multiple

machines in each stage and jobs revisit previoagest multiple times [1]. Another
example is in the printed circuit board industryandjobs may skip stages depending on
the circuit board specification. Each of these stdas has different scheduling
objectives but minimizing the overall completiomé of all jobs, i.e. makespan can be
considered a generic goal. These common goals hke operation researchers have

focused on the makespan criterion for optimization.

jobs processedin machines

| Stagei2 | each stage has machines

| Stagefin I

Figure 2.4: Flow-Line Scheduling Problem.

Figure 2.4 shows a simple representation of ogretditow-line scheduling problem.
The flow-line has a number of stages. Each stagartechines and each machine has
some number of jobs. This flow-line is also “hyBrgince multiple identical machines
can run in parallel at some stages. Jobs are medes exactly one machine per stage
if they do not skip that stage. Also we call th@af-line “flexible” since jobs may skip
stages. A job may not revisit a stage that it Heesady visited. We make the following
assumptions [1] for the purpose of this research:

* All input data are known deterministically.

» Machines are available continuously with no breaka® and no scheduled or

10

unscheduled maintenance.

« Jobs are non-preemptive, processed without enndrhave no associated priority.

» Jobs are available for processing at a stage as asothey have finished
processing at the previous stage.

» The ready time for a job is the maximum time itedsko complete processing in
the previous stages.

* Non-anticipatory sequence dependent setup times legiween jobs at a stage.

» Machines cannot be blocked because the currenh@sbnowhere to go, i.e.
infinite buffer exists before, after, and betwetagss.

» Machines in parallel are identical in capabilittesl processing rate.

We are given the number of stages, number of mashim each stage, number of
jobs, setup and ready time of each job, etc. astidata for the problem. The goal is to
find a schedule that is suitable as a solution. Saiation representation for this flow-
line scheduling problem is analogous to a GA whheegenes inside a chromosome
represent the order in which jobs are processed stage. One important point to
consider is that there is no direct mapping of tngata for the problem to the GA
representation; the GA is only for the solutionresgntation. The only thing we can
directly map from a given problem to the solutior pbs: a job represents a gene in
the solution space. A closer mapping of the probliata to solution space is shown in

Figure 2.5.

11

Jobs—genes
!—Hiq’tiiiiit’b
I B Stagettl
E— E— i Stage#2
|
!
= — = Stagelin

Fig 2.5: Mapping Problem Data to Solution Space.

To express the problem and the stopping criterdressed in this research, we

use the following definitions [1]:

n number of jobs to be scheduled

g number of serial stages

mt number of machines at staige

P’ processing time for jobat stage (assumed to be integral)
sti,- setup time from jolbto jobj at stage

S set of jobs that visit stade= {i : p\; >0}
z makespan
For this flow-line scheduling problem, we apply ttestriction that each stage

must be visited by at least as many jobs as therenachines in that stage. If this is not

12

true then there is no problem for job schedulinige Hoal is to find a feasible solution
subject to many constraints. We can formulate toblpm [1] as:
P: minz (1)
That is, we want to minimize makespan. So eq.gbur objective function.
For this flow-line scheduling problem, we also méke following assumptions [1]:
» Stages are independent except that stageompletion time is stagel’s
ready time.
» Setup times are such that an optimal solutionalillays exist.
Each chromosome is evaluated to check whethettigfisda some stopping criteria,
i.e. whether the current schedule results in am@btsolution. The optimal solution for a

specific problem needs to meet the lower boundireauent defined by eq. (2) and (3).

ywseof
1ES;

LBV = max {Z (pl + min .s':,l]}
(2

LB = ma\(

mm E (pf + mm s§) + L +mm E (Pf + mm s5,)

m! j=0,....

1
d SJM rp’+m1nI 0.0
t=1+1

3)
LB® is a job based bound and £8s machine based [1]. For the job based bound,
every job must be setup and processed at everg.stajup requires minimal amount of
time for setting up joh. For the machine based bound, every stageeds time for
processing job 0. It also needs time for preempbnaeessing and a minimal setup time
for the rest of the jobs. We can also consider mmthitime to get to the stage and

minimal time after finishing that stage. In our il@mentation, we consider the larger of

13

these two lower bounds as our stopping criteriace&&the best chromosome’s makespan
hits that lower bound, we stop our iterations & @A. Otherwise we continue evaluating
all the chromosomes with basic GA operations wntilexhaust all of them or hit a lower

bound, whichever comes first.

2.1.3 Mersenne Twister Algorithm

As evident from the GA process, its operation Iprggepends on random
numbers. For this implementation, the random nusleme generated using the
Mersenne Twister Algorithm [2]. MTA is a uniform gasdo random number generator.
It has a period of 9%3”1 and 623-dimensional equidistribution up to 32 asicuracy
[2]. Such a long period implies that it generatég®21 random numbers before
repeating. This non-overlapping sequence is largrigh for our problems of intent.
Also the very high order of dimensional equidisitibn implies that there is very
negligible correlation between successive valuesupput sequence [10]. MTA passes
diehard tests [22] and numerous other tests ofaranéss [23]. This algorithm is
designed specifically for Monte Carlo and othettist@al simulations, but it is not
suitable for Cryptography as observing a sufficieatnber of iterations (624 in this
case) will lead one to predict the rest of theatie@ns. In this research, MTA is chosen
because of its long non-overlapping period.

MTA is a twisted feedback generalized shift regi$id], the algorithm is based

on the recurrence relation eq. (4):

Xk+n = Xk+m D (XIL<l IXL+1)A (4)

14

Here,
n degree of recurrence
w word width (in number of bits)
m middle word or the number of parallel sequengéesm<n
u,l Mersenne Twister tempering bit shift
X a word of widthw
X x! xwith lower and upper mask applied
A matrix that contains twist information
k constant with values 0,1,...

Figure 2.7 shows the MTA algorithm that generat2$i8 random numbers. As
mentioned earlier, we require a maximum of 600ionlrandom numbers.

One interesting advantage of MTA is that random Ipeirs can be generated from
a state vector that was saved before actually géngrthe numbers. These state vectors
work as an entry point for a specific sequenceaaflom numbers. State vectors are the
specific states of the MTA after a sequence of samdiumbers and can be later used to
regenerate the same sequence of random numbensgfA fior this project, we need a
maximum of 600 million random numbers, vectors saeed after one billion for more
general-purpose use. Although saving state veetoosie billion number intervals adds
to the poor performance of state vector genergirogess, this has the benefit of lower

storage requirement (fewer state vectors). FiguesBows a snap shot of this process.

15

generate 1B random

|

Figure 2.6: Saving State Vectors of MTA

1. int[0..623] M

2. function initializeGenerator(int seed) {

3. MI[0O] := seed

4. for i froml to 623 {

5. MI[i] := last 32 bits of (1812433253 * (MI[i-1] xor (right shift by 30

bits(MI[i-1]))) + i) }}
11. function extractNunber () {

12. if index == 0 {generateNunbers()}

13. i nt := MITi ndex]

14. y := vy xor (right shift by 11 bits(y))

15. y :=vy xor (left shift by 7 bits(y) and (2636928640))
16. y := vy xor (left shift by 15 bits(y) and (4022730752))
17. y :=y xor (right shift by 18 bits(y))

18. i ndex := (index + 1) nod 624
19. return y}
21. function generateNunbers() {
22. for i fromO to 623 {
23. int y :=32nd bit of (MI[i]) + last 31 bits of (MI[(i+1) nod 624])
24, MI[i] := MI[(i + 397) nmod 624] xor (right shift by 1 bit(y))
25. if (y nod 2) == 1 {
26. MI[i] := MI[i] xor (2567483615) }}}
Figure 2.7: Mersenne Twister Algorithm - MT19937

16

2.2 Related Research

There are a number of publications that discusslementing the Mersenne
Twister Algorithm and Genetic Algorithms in FPGAlshaan et al. [6] did parallel
implementations of 32, 64, 128-bit SIMD MTA on Xik Virtex—Il Pro FPGAs. They
used interleaved and chunked parallelism and shdwedthe ‘jump ahead’ technique
can produce multiple independent sequences to liglter throughput. Shrutisagar et al.
[12] worked on partial pipelining and sub-expressielimination to increase the
throughput per clock cycle on the RC1000 FPGA Dewelent platform that is equipped
with Xilinx XCV2000E FPGAs. Both FPGA implementat® of MTA used VHDL
whereas ours is implemented in High-Level LanguB¢/dE-C [18]. Hossam et al. [7]
implemented the basic GA modules along with theloam number generator module in
three different types of Xilinx FPGAs: XC4005, SPAMN2 XC2S100-5-tq144, and
Virtex XCV800 using VHDL and Mentor Graphics toolBhey tested their design in
applications ranging from thermistor data procegslmear function interpolation, and
computation of vehicle lateral interpolation totthew the design performs with respect
to producing the optimal solutions. Tatsuhiro e{@] designed two tools to facilitate the
hardware design of GAs to predict the synthesisilt®dased on input parameters,
number of parallel pipelines, etc. Edson et al.][1@plemented a parallel and
reconfigurable architecture for synthesizing combional circuits using GAs. Paul and
Brent [14] implemented a parallel GA for optimizimymmetric Traveling Salesman
Problem (TSPs) using Splash 2. Emam et al. [15bdhiced an FPGA- based GA for

blind signal separation.

17

2.3 Our Approach

In all the previous research, the MTA or GA is sstomized implementation
specifically targeting the architecture, in thisseaFPGAs. Our approach significantly
differs as we try to accelerate an existing appbeca originally designed for von
Neumann architectures. Both approaches have theiraglvantages and disadvantages.
In the previous research, though they have achiavedrformance gain in GA process,
they do not consider how it performs when the GAksa@s a part of a larger application.
In our approach, the probability of overall applioca acceleration is low as the original
application design never considered exploiting fism. But this approach
demonstrates what can happen when the GA is a padlbf an application which was
not originally designed for a parallel architectufdso it shows us the necessity of
designing and implementing an application spedific® take advantage of the parallel
architecture. Our approach uses the high-leveldagg DIME-C, but to the best of our
knowledge, all the previous work used hardware mjgson languages such as VHDL or

Verilog.

18

CHAPTER3

DESIGN AND IMPLEMENTATION

Our design and implementations are divided into tman parts. The first step is
to design and implement state vector generationga®in the FPGA. These state vectors
are an integral part of the GA as they are usegkteerate the required random numbers.
The second step is to design and implement the l6&&i operations in an FPGA along
with the generation of random numbers from the ipresty stored state vectors. Before
designing the system for FPGA implementation, wedcmted function profiling of the
existing GA implementation that was written forengral-purpose microprocessor. From
the profile data, we identified critical code segmsefor possible implementation in the
FPGA and analyzed the issues related to hardwdéinesse partitioning. We designed an
improved algorithm for generating state vectorsxggshe MTA which is 5X faster than
its previous implementation in a general-purposeropirocessor and 2.4X faster than the
previous FPGA implementation. We also implementsel basic GA operations in an
FPGA. This chapter discusses and justifies ourvaare/software partitioning approach,
systems and tools used, implementation model, aesigd and implementation
techniques for the state vector generation and @éraiions. Finally we discuss the

limitations of our approach.

3.1 Hardware/Software Partitioning

For a given application, a hardware/software partitmaps each region of the

application onto hardware (ASIC or Reconfigurabbgic) or software (microprocessor).

19

That is, a partition is a complete mapping of amligpation to either hardware or
software. The goal of the partition is to maximperformance within the constraint of
limited resources, in this case one Xilinx Virtex-4¥100 FPGA.

There are several issues to consider for hardwadtesse partitioning. Some of them
are listed below:

e Granularity: types of regions to consider.

» Partition evaluation: determining the goodnessefgartition.

» Alternative region implementation: alternativeshafdware implementation.

* Implementation model: interfacing between micropssor and FPGA.

* Exploration: finding good solution quickly.

Granularity is of two types: coarse and fine. If patition based on tasks, functions
and loops, that is called coarse-grained partiigniOn the other hand, fine-grained
partitioning partitions regions based on code Wdpcktatements and operations. Both
approaches have their own advantages and disadesntdherefore a heterogeneous
granularity may be considered to take advantagbotli extremes. The most intuitive
approach to partitioning an application is baseditsnfunctions, i.e. coarse-grained
partitioning. Also, coarse-grained partitioningwyresult in more accurate estimations
during partition evaluation as it does not reqtime combination of several small regions
and their communication overhead. An important dirsaatage of coarse-grained
partitioning is that it often has less inter-pawtitcommunication. That means, more data

communication occurs between the host processor F@A than among different

20

Processing Elements (PEs) inside the FPGA. Thistsiin may outweigh the benefit of
implementing regions in hardware as the hardwalitg&/ace communication is generally
expensive. On the other hand, fine-grained paniitip gives more control over the
exploitation of parallelism and less communicatomerhead between host processor and
FPGA. But it is not intuitive and so generally takenger to find a good patrtition. Also,
estimation during partition evaluation is more igdifit in this case due to their inter-
partition communication.
We usegprof for function profiling of the original GA impleméation that was

targeted for a general-purpose microprocessor.r Aftefiling, we have two types of

profile data: flat profile and call graph.

3.1.1 MTA Partitioning Analysis

The hardware/software partitioning for state veajeneration using MTA is
straightforward. We did not profile the MTA implentation as the main computation
occurs in a single function callegenrand_32 Therefore it is obvious that we have to
implement that function in the FPGA. The partitiogniof the MTA is a coarse-grained
partitioning. We did not explore any other alteivat regions for the FPGA
implementation, as there were no other comput@&site functions. Therefore we had no
options for partition evaluation. The implementatimodel of this partition interfaces

between the microprocessor and FPGA using the P&Xmunication bus.

21

3.1.2 GA Partitioning Analysis

Unlike the MTA implementation, the GA implementatibas about 2000 lines of
code. Therefore we performed function profiling dref deciding on hardware/software
partitioning. The flat profile data for the GA apgation is shown in the pie-chart in
Figure 3.1. The profile data looks challenging fardware acceleration as it is not
concentrated in a single (or few) function(s) tlkagely dominate the execution time,
making the hardware/software partitioning decisiiificult. The most time consuming
function in the GA idnStage (23.46%)which checks if a specific job has entered any of
the stages of the flow-line. Based on Amdahl’s [&®], we can state that the speedup of
an application is limited by the portion of the gram not being parallelized. So if we go
by the rule of thumb, that is implementing the oegi that contribute to the highest

execution time, the maximum theoretical speedugaveachieve is:

Speedup 1/(1P) ..oevvvvernnnnn (5)

= 1/(1-0.2346)

=1/0.7654

=1.3X
Here, p is the portion of the code that is implementedherdware and therefore
parallelized. To find the maximum speedup, we assuimfinite parallelism by
implementing a code snippet in hardware. We seeethen with these assumptions, the
speedup is insignificant. Also there are other ifigant constraints when functions are

implemented in hardware. For example, topology had tall graph to the function,

22

communication overhead between host and FPGA, amotirdata passed, actual
bandwidth of the communication interface, etc. Exang thelnStagefunction, it is not

ideally suitable for implementation in an FPGA a&as mainly conditional statements
and no significant computation. Also it is calledrh many calling functions. So we must

consider a different approach to the hardware/sotvpartitioning.

M [nstage

W GetStartComplete

m Siftup

B BestCompleteReadyQrder
H CreateSchedFromChrom
M GenerateDiscUnif

M genrand_init32

M CrderlncHeap

W genrand_resb3

m UpdateReacy

M Eval

I InitSchedule

Makespan
InitChrom
ParaUnifCross

frame_dummy

Figure 3.1: Flat Profile of GA Process.

One approach is to implement more functions suahttie cumulative execution

23

time of all the functions implemented in FPGA ies#r to 80%. In that case, we can
expect a theoretical speedup of 5X according ta(®q.But this partition exposes some
practical limitations mainly due to the topologytbé call graph. Figure 3.2 shows a snap
shot of the overall call graph of the GA procesgjufes 3.3 and 3.4 are the two

alternative partitions we evaluated.

- ~

P £ =

3000K --<l o

,,,,,, o - i

I Instage I ;™

>
A

1

1

1

Figure 3.2: Snap Shot of the Overall Call Graph

24

,,,,,,,,,,,, inM%W, SDK

I Initpop II ParaUnifCross I Immigrate l Eval
. - AN

makespan

100K

. : GetstartComplete ~

y///’
300KInstage \
/ \

Figure 3.4: Call Graph for"2 Partition Evaluation

25

InSatge SiftUp, GenerateDiscUnif, BestCompleteReadyOr@etStartComplete
and CreateSchedFromChroim a set of functions that have a cumulative etienttime
of 83.35%. As evident from Figure 3.3, the biggestadvantage of the GA code for
hardware implementation is that functions are dafi®m many different places and
many times. So if we want to implement a functioran FPGA by minimizing the host—
to—FPGA communication overhead, we need to implémenleast some of its
predecessors. A call graph of this nature expoddsianal problems. For example, even
if a function is suitable for implementation in BRGA, its predecessor may not be. The
predecessors may have many conditional and bramatbngents. These statements are
very ill suited for FPGAs as FPGAs do not have bhaprediction units whereas general
purpose microprocessors are equipped with effidieahch prediction units. Also if we
continue to implement the predecessors in the FR&BApme point we will run out of
resources. These characteristics of the existing G&#plementation make the
hardware/software partitioning more difficult. Esfly the coarse-grained partitioning
is very hard in this case. As mentioned before, fihe-grained partitioning is not
intuitive. Considering these issues, we have impletied the basic GA operations
(Initchrom, ParaUnifCrossand Immigrate as shown in Figure 3.4) in the FPGA. In
Figure 3.2, 3.3 and 3.4, the numbers above eadttifumindicate the number of times it
is called by its calling function. Our implementatifollows a coarse-grained partitioning
as we partition based on the functions.

The partition evaluation approach we have followsedased on an estimation of

the overall application performance with the coastr of using one user FPGA. We

26

consider the cumulative execution time of the fiord implemented in the FPGA, the
amount of data passed to and from the FPGA, ande$®urces they consume as our
estimation criteria. We have only explored the tpassibilities shown in the two call
graphs of Figure 3.3 and 3.4 and decided to go @h figure 3.4. As Figure 3.4
incorporates the basic GA functions, it supports daim of an implementation of the
GA in an FPGA. Also the call graph associated wvilitese GA operations is more
contained than the call graph of Figure 3.3, miging the host-to-FPGA communication
overhead.

Our implementation uses only one FPGA for two reaséirst, as we are using
coarse-grained partitioning, there is less oppatuar inter-partition communication, so
it is very unlikely that the computation result ohe PE will be used by another.
Therefore even if we chose to use more than oneAF#Gs highly probable that the
results of one FPGA are not needed by the secoadlonthat case, the second FPGA
depends on the data passed to it by the host widshhigher communication cost than
data passed from the first FPGA. Secondly, the raretions we implement in FPGA,
the more complicated the overall application aaketbecomes. Because of these factors,
we have only implemented those functions in the ARRat account for a cumulative
execution time of 2.46%. Therefore the maximum thegcal speedup we can expect

according to eq. (5) is 1.025X.

27

3.2 Systems and Tools Used

Our implementation was developed in a 2GHz IntebrX&€PU populated with 2
Nallatech H101 PCI-XM FPGA accelerator boards. 3pecification [17] of this board is

as follows:

* 1 user FPGA — Virtex 4 LX100 (XC4VLX100-10FF1148C)
* 4 banks of DDR2 SSRAM
o Each has 4MB of memory, totaling 16 MB
0 Total bandwidth: 6.4GB/s
* 1 bank of DDR2 SDRAM
0 512MB of memory
o Bandwidth: 3.2GB/s
* 4 channel serial communication (board-to-board)
0 Bandwidth: 2.5 Gb/s
0 Latency: 340 ns
* PCI-X connectivity with host

0 64-bit, 133MHz

Figure 3.5 shows the functional diagram of H1I01-XA@[17].

28

BANKO BANK | BANK2 DDR-| [BANK3 DDR-
DDR-Il SRAM DDR-II SRAM 11 SRAM Il SRAM
(1M336) (1 Mx36) {1Mx36) (IMx36)

'

: MINIDIMM
Figh Spead DDR-I
Serial Four SDRAM
Connections 250MBs u EPGA (72-bit data
ser i,
'[;Pctlj;(xsm and “-hidimm'onal-' o3 2 G/ s - 5
only) chasineks } 512MB
HI00-PCIXM = LX 100 el
(XCAVLX1 00- 10FF1 148C) e
——
Programmable >
Clocks (=2)

PCl Comms Bus (80-bit)

Fieed 200 and
< 250M bzt
ITAG Headers * | Oscillators
PCI-X Interface FPGA
[XCAVLXAD-| IFF6EBC)
Temperature, DOR.-ll SRAM
Voltage and 1 3 2GB sl)
Current
Monitoring

*Note that for clarity the full JTAG chain is not shown on this diagram,
ot populated.

Figure 3.5: Functional Diagram of H101 PCI-XM
During the development process, we used DIME-C pMABjch is a high-level

language, rather than a hardware description laggysach as VHDL or Verilog. DIME-
C [18] is a subset of ANSI-C and provides the paogmer with the flexibility of writing
code for the FPGA without having to focus on thediaare in detail. DIME-C compiles
code to VHDL automatically. This VHDL module is thesed as a Processing Element
(PE) that works inside an FPGA. Then we use DIMETaB], a tool for designing the

network that interfaces with the host. DIMETalk ide6 how the PEs are connected to

29

other on-chip or on-board resources. Using DIMETal& generate the bitstream and the
sample host code to be used in the host applicalibe host code is then modified
according to the application and the data that nistransferred. The host code is
responsible for reading from and writing to the PFRGwitching on and off the FPGA,

and other housekeeping operations.

3.3 Implementation Models
We will discuss four methods that comprise our enpéntation model. The methods
are:

e Communication Methods

Execution Methods

Implementation Methods

Configuration Methods

The Reconfigurable Processing Fabric (RPF), or AR& used as a coprocessor in

our system. Figure 3.6 shows the location of FP&#fHhe memory hierarchy.

30

s
offie

Figure 3.6: Location of the FPGA in the Memory Hiehy

Using the FPGA as a coprocessor has advantagesdisadvantages [20].
Integration of the FPGA as a coprocessor to artiegi€omputing system is simplified
compared to the tightly coupled or loosely coupRdelF architectures. But the primary
limitations are the restricted communication bamdtiviand increased latency. Therefore
this type of coupling is well suited for applicat®owhere the coprocessor can compute
despite limited communication to and from the hdstr example data streaming
applications like digital signal processing and gmgrocessing are suitable for this type
of coupling. This topology is one of the most imot limiting factors in accelerating
our GA application since it is not a streaming aggilon.

There are two types of execution methods [20]: militexclusive and parallel.
In the former, the FPGA and microprocessor nevecete simultaneously whereas in

the later, they can execute simultaneously to impnoarallelism and performance. Our

31

implementation model is mutually exclusive, whichsoa limits the achievable
performance of the overall GA application. One adage of the mutually exclusive
execution method is that it makes the partitionleat#on estimation easier. But in this
case we are only exploring a few hardware/softvyparétions.

Implementation methods are of two types: separatapath and fused datapath.
In separate datapath, the flow of data is indepaindbereas in fused, the paths are fused
to reduce the area overhead. Although in the fuldpath approach, the performance
may suffer due to a longer circuit path. As weasig a high-level language to program
the FPGA, we do not have control over these methattether our implementation will
use separate or fused datapaths depends on the platigkms and tools we are using.

Dynamic reconfiguration and partial runtime recgofiation are two
configuration methods that increase the effectivee sof the FPGAs. Dynamic
reconfiguration allows tasks to be time shared .[2¥E do not use this feature as the
logic resources are not the main limiting factor onr approach. Partial runtime
reconfiguration allows configuration of a portiorh the FPGA while other portions
continue to operate. This approach can improveopmdnce as it can execute code in a
portion of the FPGA without interrupting the otheegments of the FPGA that are
running. But this feature is generally not suppori@ currently available high-

performance RC systems.

34 Accderating State Vector Generation

The original MTA algorithm is shown in Figure 3Hor generating state vectors,

32

this algorithm iterates one billion times since are saving state vectors at intervals of
one billion numbers. That is why there is an oldep (line 3 of Figure 3.7) that iterates
one billion times. This outer loop limits the pearfance in the FPGA implementation
since DIME-C can only unroll the innermost loop.eBvwith the two innermost loops
(lines 6 and 9 shown in Figure 3.7), there are lehgks in finding and exploiting
parallelism. The primary limitation is the memorgcass pattern of the MTA algorithm.
Inside the for-loop, the same locationrof array is read and written back. This array is
an input to the FPGA passed from the host. In mplémentation, we use BRAM to
store that array. Therefore according to the DIMEpEcification [18], an array stored in
a BRAM is passed to the PE module. For this reaseen if the BRAMSs are dual ported,
the consecutive read/write inside the for-loop @drotcur in the same cycle. So even if
the two for loops in Figure 3.7 are the innermasipls, they cannot be fully unrolled as
they would violate this condition. As a result, shetwo innermost loops cannot be
pipelined. Since we loop through the code body bitieon times, this overhead is
multiplied and causes poor performance of the MIgbiathm in the FPGA.

To avoid the problems associated with the memopess pattern, there are a
couple of options to consider. Instead of using BR®& store the data, one option is to
use SRAM. We have four banks of SRAM available e tsystem. Data can be
duplicated in those banks allowing read and wrdetlte same location in different
memory banks. This option, while it enables theplamrolling, has the associated
overhead of copying the modifiedt back to the SRAM before the next iteration of the

outermost loop. Performing this copy operation bilgon times outweighs the benefits

33

of unrolling the innermost loops. Another optiortesstripe the data across the SRAMs.
For example, array location frof to N-M-1 can be stored in one SRAM and the
remainder of the array in another. But if we usg Eamguage of sequential nature like
DIME-C, we need to be careful in read/write openasi so that appropriate order is
maintained. The whole process becomes easier iisgea language which is inherently
parallel. Therefore, rather than trying to imprave performance of the state vector
generation process using the techniques mentidn@geaour approach seeks to improve

it algorithmically.

1. unsigned int vy;

2. static unsigned int nmag0l[2] ={0x0U, 0x9908b0df U};

3. for (i=1000000000-1;i>0;i--){

4. if (mi >= N {

5. int Kkk;

6. for (kk=0; kk<N-M kk++) {

7. y = (nt[kk] &UPPER_MASK) | (nt [kk+1] &LONER_MASK) ;
8. m[kk] = m[kk+M * (y >> 1) » mag0l[y & O0x1U]; }
9. for (;kk<N1;kk++) {

10. y = (mt[kk] &UPPER MASK) | (nt [kk+1] &LONER MASK) ;
11. m[kk] = m[kk+(MN] » (y >> 1) » mag0l[y & Ox1U]; }
12. y = (mt[N 1] &UPPER MASK) | (nt [0] &LOVWER MASK) ;

13. m[N-1] = m[M1] » (y >> 1) » mag0l[y & Ox1U];

14. ni = 0;

15. }

16. -py = mimidd B0 b 0 o

17.5 vihs [y 55 i i

18. 5 i B B

19.! y = (y << 15) & Oxef c60000U; |

20.5 oAl Ly s O E

21. & returny.. . . L. !

22.}

Figure 3.7: Original MTA Algorithm

1. unsigned int mag0l[2] ={0x0U, MATRI X A}
2. unsigned int y;

34

25.
26.}

int kk, I, ifl1=0, if2=0, elsel=0, flag=0;
f or (i =1000000000-1; i>0;i--){
if (mi>=N){

flag=1;
for (kk=0; kk<N-M kk++) {
y= (nt [kk] &UPPER_MASK) | (mt [kk+1] &LONER_MASK) ;
m[kk] = m[kk+M ~ (y >> 1) ~ magO0l[y & Ox1U];}
for (kk=N-M kk<N-1; kk++) {
y = (m[kk] &UPPER_MASK) | (mt [kk+1] &LONER_MASK) ;
m[kk] = m[kk+(MN)] ~ (y >> 1) » mag0l[y & 0x1U];}
y= (nt [N 1] &UPPER_MASK) | (it [0] &LONER_MASK) ;
mM[N-1] = m[M1] ~ (y > 1) » mag0l[y & O0x1U];

if(i-624>=0){
nti=624;
i =i-623; }
el se{
nti=i;
i=1;}
}
else if(nti<624 && flag==0) {
flag=1;
i =i-(624-nti)+1;
nti=624;}

Figure 3.8: Improved MTA for State Vector Generatio

Examining Figure 3.7 more closely, we find thatréh@re many unnecessary

computations if we are only generating state vectéiirst, outside the if statement,

generation and tempering of random numbers (théexshbox in Figure 3.7, lines 16-21)

are not necessary since we do not retain the randonbers while generating the state

vectors. Another important issue is the if loopliok 4 is executed only whemti is

greater than or equal té, therefore we do not need to loop through it oi@b times.

Considering these observations, the state vectoerggon algorithm is modified as

shown in Figure 3.8. The modification occurs betwdmes 15-25 to reflect the

35

observations mentioned above.

input —
= =I R FEY 5'.

HOST | PN, | CPGA

l BRAR J l nnnnnn J l BRAR]

U

T

Figure 3.9: MTA Implementation in an FPGA

Implementation of this algorithm in an FPGA is ggraforward. The host sends
the required input data to the BRAMs and collektsdutput data from BRAMS using the
PCI-X communication bus. The MTA block in Figur® 3s the Processing Element (PE)
in this case. The PE does the computations reqtorgdnerate the state vectors using the
MTA algorithm. The three BRAMs indicate the threargmeters passed to the PE
module as arrays, one for input and the other two for outpuatt andmti. The initialmti
is passed to the FPGA as a standalone integerr &fée host receives one set of the
output (state vector) from the FPGA, it writes thsults in a file called the state file. One
state file is used in one iteration of GA procdss. our purposes, we need a maximum of
six-hundred million random numbers. According ta algorithm, one state vector can
generate one billion non-overlapping random numb@iserefore we can generate

sufficient random numbers for one GA iteration foome state vector. We generate 32-

36

bit unsigned integers as the state vectors thohgHlow-line scheduling research used
64-bit unsigned long numbers. This smaller data tigpused because DIME-C does not
support long integers. A workaround for generatidgpit state vectors will be discussed

in section 3.6.

3.5 Implementing Genetic Algorithm in FPGA

The design of the basic GA functions for FPGA inmpéatation is similar to the
MTA implementation in the sense that the currenplementation of the GA only uses
BRAMSs, no external memory. First, the amount ofads small enough to fit in the
BRAMs and second the GA is not a streaming appiinatThe basic block diagram of
the design used to implement the core GA functisrghown in Figure 3.10. Three PEs
are implemented in the FPGA that correspond tdabemain operations of GA. Each of
the PEs requires random numbers that are geneusaiad the previously saved state
vectors. In our implementation, we generate theleannumbers inside each of the PEs
as they are required. In our implementation, déiferPEs are called from the host at
different times. As each of the PEs generate randmmbers from the state vector inside
the FPGA, thamti value is updated inside them. Timé value along with thent array is
always passed back to the host from the PEs sarttliae next call to PEs, the updated
ones are used.

The PE labelednitChrom initializes the population. In our implementatighe
size of the population is 100, i.e. the populatemsists of 100 chromosomes. Each of

the chromosomes is initialized with random genai@sl These gene values are double-

37

precision floating-point numbers. The PE labeRadaUnifCrossworks on selection and
crossover steps of the GA. Therefore this PE neleda for all of the chromosomes.
Random parents are selected for the crossovertapeedong with the random crossover
point. After the crossover, the successors are rg@® i.e. gene values of the
chromosomes are updated. These updated valueassedoback to the host to be used in
other required computations of the flow-line scHedy problem. The PE labeled
Immigrate performs the immigration operation discussed irtisec2.1.1. The starting
point of the immigration along with the gene valas the inputs to the PE. The gene
values of the chromosomes are updated during inatiagr and passed back to the host
via the PCI-X bus. The FPGA implementation of ttesib GA operations is shown in
Figure 3.10. As indicated by the dashed box outdidePEs, we have one single bitfile
for the overall GA application, although each af fPEs are called at different times from

the host to find a solution for our problem.

HOST

Figure 3.10: Design of Basic GA Functions in thé&SAP

The overall GA implementation flow diagram is shownFigure 3.11. Chromosomes

38

are initialized randomly. These chromosomes ara thealuated in host to see if it
satisfies the optimization criteria. If not theretimext three steps of the GA starts
executing in the FPGA - selection of qualified pasefor generating a better successor,
crossover to produce the successor, and mutateplaged by immigration in this

implementation) to increase the fitness of the sssor.

INput —)

MUTATION
L

Figure 3.11: Flow-Chart of the Overall GA Implemeatidn

3.6 Limitationsof Our Design

Since the GA is not a streaming application, nas ideally suited for our system
(where FPGA is a coprocessor) as discussed imse8iB. There are a couple of options
that can potentially improve the performance witttie constraints of the system and
tools. Our current design does not consider thgam®ms, but they are discussed below
with justifications for not supporting them.

The original GA implementation for solving the fldime scheduling problem
was targeted for a general-purpose microprocessl.take pieces of that code to

implement in a FPGA based on profile data. Thigagagh limits the overall performance

39

of the FPGA implementation as the original impletaéion never considered a
specialized architecture. The topology of the gediph indicates a significant amount of
communication overhead between the basic GA presemsd other modules of the flow-
line scheduling implementation. This communicattmerhead, though insignificant for a
general-purpose microprocessor, is a limiting fagoan FPGA implementation. This
bottleneck in performance results from the hardysafevare partition, which separates
the basic GA operations in the FPGA implementatimom the overall application
running in the host. That means, if we do not a®ersredesigning the application
targeting the FPGA, we have to pay the price fanmmnication overhead between the
host and the FPGA. Therefore while targeting thgpligation for the FPGA
implementation, better performance is possibldé €ntire application were redesigned
specifically for an FPGA-based platform.

We improved the state vector generation proceswitlighically, but we have not
incorporated the suggested memory access pattecnssied in section 3.4, which could
further improve performance.

An important design strategy of most FPGA impleragahs is passing data to
and from FPGA only when it is absolutely necessHrig crucial to move data judicially
as the corresponding overheads are significanbuindesign, we pass data back to host
whenever we have enough results for creating cate §te. Though it does not have a
significant impact for generating one state fithas a cumulative impact on how quickly
we can generate multiple state files.

Using a C-like programming language (such as DIME-tbough has the

40

advantage of higher productivity from the programmpoint of view, makes it harder to
take full advantage of the FPGA. Since DIME-C idl gequential in nature, the
programmer needs to code explicitly to take adwgataf the inherent parallelism of an
FPGA. Conversely, as VHDL is inherently parallelisi easier to exploit the parallelism
of an FPGA.

The biggest disadvantage of this design comes wigeconsider the design of the
GA algorithm in the FPGA. The random number genenais independent of the basic
GA operations since they are produced from theipusly generated state files, using
variables that are independent of the basic GAaijmers. But we are not fully taking
advantage of this available parallelism. Using €A algorithm and the previously
generated state vectors, random numbers can beatethend stored in a FIFO from
where these GA operators can access them as neéHusdconcept is shown in Figure

3.12. Our current implementation does not incorfgothis approach and is considered

for future work.

S

llnitChromI IParaUnifCrossl l Immigrate I ’

}
}

N
—— a

HOST

Figure 3.12: Random Number Getm@nan Parallel Using a FIFO

41

3.7 Summary

Our design and implementation techniques achiey®réormance gain in the
state vector generation but performance decreastsioverall GA process. Chapter 4
discusses the results and analyzes them withindhstraints of the RC systems and tools

used.

42

CHAPTER 4

PERFORMANCE AND RESULT ANALYSIS

This chapter presents and analyzes the performaeselts from the system’s
perspective: the underlying hardware architectunmemory hierarchy, and
communication interface. We also discuss how tigerahm interacts with the system

and impacts the final results and performance.

4.1 Performance I mprovement of State Vector Generation

Compared to the original implementation, the im@eWTA algorithm for state
vector generation, introduced in Chapter 3, perfoBiX faster in the general-purpose
microprocessor and 2.4 times faster than its oaigim the FPGA implementation. The
original FPGA implementation executes at a cloakqfrency of 139MHz while the
improved one runs at 157MHz. The clock frequenayaase is due to the improvement
in the algorithm. As shown in Figure 3.8, the impd algorithm does not iterate one
billion times through the code body. Therefore aed not access the state vector array
and the random numbers that many times. As a resufiputs are generated with fewer
memory accesses resulting in a higher clock frequenable 4.1 shows a summary of

the performance data of state vector generaticorighgn.

43

Table 4.1: Performance Data of State Vector Geiveratsing MTA Algorithm

Property Original Improved I mprovement
Algorithm Algorithm
S/W time for one state file 45.3 sec 9 sec 5.03X

(microprocessor)

S/W time for one state file 350 sec 146.44 sec 2.4X

(FPGA implementation)

H/W Cycles 12,724,078 9,892,294 1.488X

An important point to note from Table 4.1 is thia¢ improved algorithm has about
5X speedup over its original general-purpose migogssor implementation while only
about 2.4X speedup in the FPGA implementation. ifoved algorithm of Figure 3.8
has more conditional statements than the origimhich is suitable for the von Neumann
architecture but not ideal for an FPGA. As gen@rapose microprocessors are equipped
with efficient branch prediction units, efficienkexution of the improved algorithm is
not a problem. Since FPGAs do not have similar drgorediction units, a significant
performance bottleneck results while executing demhl and branch statements.
Without these branch prediction units, FPGAs maglé@ment all the cases of conditional
statements in the data path to improve performavdenever a conditional statement
occurs, assessing that condition requires extriesybat are not necessary in a general-
purpose microprocessor. For most modern micropsases the branch prediction

accuracy is more than 95%; meaning, in 95% cabey,do not execute the conditional

44

statements. They can safely assume the prediatisuitrfrom Prediction History Table
(PHT), a table where the previous conditional st&tet check results are stored. Based
on the results of PHT, they move to the later stagfanstruction execution. Only in less
than 5% of the cases, the miss-prediction occudsraquires extra cycles to bring the
proper set of instructions in the pipeline stag&s.general-purpose microprocessors
typically run 10X to 20X faster than FPGAs, the sapediction penalty of extra cycles
is insignificant. In our design, the FPGA runs ittuad 15X slower clock frequency than
the microprocessor. The cumulative effect of thesees results in the poor performance
of an FPGA while executing conditional and branttesnents.

Another important issue is the potential increasarea overhead when conditional
statements are implemented in FPGAs. In lieu ohdnaprediction units, FPGAs can
implement both data path conditions increasingatiea requirement.

The number of hardware cycles required in the im@doalgorithm implementation is
9,892,294 whereas the original implementation nmeguil4,724,078 cycles, a 1.488X
improvement. The hardware cycle count only considdgre cycles required for an
algorithm to execute in the FPGA. Whereas the nuesi discussed before also include
the data transfers and other communication. 19.6KBata is passed between the host
and the FPGA and the communication overhead isitseconds.

We use the following terms to defispeedumf an algorithm in an FPGA compared
to its general-purpose microprocessor implemematio

S CPU clock cycles

H Hardware (FPGA in this case) cycles

45

F FPGA clock frequency

M Microprocessor clock frequency
S F
Speedup —x— 6
p ey (6)

For our systemy is 2 GHz.

For the original algorithmk = 139 MHz,H= 12,724,078 cycles and for the improved
algorithm,F=157 MHz,H=9,892,294 cycles. To calculdgewe will use eq. (7).

CPU clock cycles = CPU execution time x Clock freqecy (7)

CPU execution time is 45.3 sec for the original 8rgkc for the improved algorithm.
Clock frequency is 2GHz. Therefore using eq. &fpr original and improved algorithm
are 45,300,000,000 cycles and 9,000,000,000 cyelgsectively. Now using eq. (6), the
speedup for the original algorithm in the FPGA iemkntation is 494.87X. The FPGA
implementation of the original algorithm runs 4948fasterthan the general-purpose
microprocessor if we consider the fact that theklvequency of the FPGA is about 20X
(in our design 14.388X) slower than the microprgoes Conversely, the normalized
speedup for the improved algorithm is 142.84X ie #BPGA implementation. Even
though the improved design runs at a higher cloe§uency (157MHz), the performance
is lower than the speedup of the original algorithiss previously mentioned, the
improved algorithm (improved for the microprocessoplementation) is not well suited
for an FPGA as it has several conditional statemeFtterefore the number of hardware
cycles is not low enough to raise the speedup Vadised on eq. (6).

The resource utilization for both the original antproved algorithms are shown in

Table 4.2. As compared to the other resources,Lth€ requirement is significantly

46

reduced (30.44%) for the improved algorithm. Refgrto the algorithm shown in Figure
3.8, the reduction in resource utilization resifrigsn not performing the random number
tempering on the variable In other words, we are using the variaplewer times than

in the original algorithm of Figure 3.7 contribugirto this reduction in the resource

requirements.

Table 4.2: Resource Utilization of State Vector &@ation Algorithm

Resour ce Original Improved % resource reduction
name algorithm algorithm
BRAMSs 51/240 (21%) 37/240 (15%) 27.45%
Slices 5451/49152 4124/49152 24.34%
(11%) (8%)
4-input LUTs 8351/98304 5809/98304 30.44%
(8%) (5%)

Both implementations pass 19.5KB of data betweest had FPGAs through the
PCI-X bus. This PCI-X bus is capable of passingbfiddata with a maximum of
133MHz theoretical speed [24]. Therefore the maxindata transfer rate is 8.3125Gb/s.
This data transfer rate is the theoretical ratethmdeffective rate is actually lower due to
the overhead and other system design tradeoffs. oeeheads include data transfer
overhead, transaction layer packet overhead, flowntrol overhead, etc. [25].

Considering these factors, the sustainable hogdviadih is 400 MB/s [24]. As the data

47

passed between the host and FPGA is only aboutKB9for one state file, the
communication overhead is insignificant, i.e. 16cmseconds to be specific. But
considering that we must generate many state fies,overhead can be significant. For
example, the flow line scheduling requires genegatB60K state files. With 16
microsecond communication overhead per file, thewdative overhead is 5.76 seconds
for all 360K files. One possible improvement ofstidesign would be to store state
vectors in on-board memory (like SRAM) and sendnthat set intervals or at the
conclusion of the file generation taking maximumvadage of the PCI-X bus
bandwidth. This approach will require analysis loé tradeoff between SRAM size and
PCI-X bus bandwidth and when it is most efficiemtsend data back to the host. As the
size of each SRAM is 4MB and the size of one diktes 20KB (625 unsigned integers),
we can store a maximum of 200K state files in a 8RBut the time to generate 4MB
data is too long. With our improved algorithm, tyeneration of 4MB data will require
about 339 days (200K files, each with 146.44 sespnd@hat means, if results are
returned to the host once the SRAM is filled ug tiser will have to wait for 339 days
before she can see the first state file. Therefloeee should be a tradeoff between the
maximal use of PCI-X bandwidth and throughput réi@sed on the application

requirement.

48

4.2 GA Performance Analysis

In this section we discuss the implementation tesahd performance of basic GA
operations. Table 4.3 shows the performance resiltsach of the PEs of the GA

process.

Table 4.3: Performance Data of Basic GA Operations.

Property InitChrom | ParaUnifCross | Immigrate

S/W time 50 micro sec. 0.17 sec. 50 micro sec.

(general-purpose microprocessor)

Total time (FPGA) 100 micro sec 1.21 sec. 100 ms=o.
H/W Cycles 1612 3123 1116
FPGA design frequency 101.871MHz 130.162MHz 10In8H2

As seen in the table, theitChromandimmigratemodules run 2X slower in the FPGA
than the general-purpose microprocessor whdtaesUnifCrossruns 7.12X slower. The
values ofS for these three modules are 50, 170 and 50 cyelgeectively. Therefore, the
speedup fornitChrom, ParaUnifCrossand Immigrate based on eq. (6) are 1.58x10
2.28x10°% and 3.54x103 respectively.

Even with the function by function comparison, #RGA implementation is much less
efficient as shown in the execution time compariddris inefficiency occurs because the
implementation of basic GA operations is not waltexd for a FPGA. The reasons can be

explained by analyzing the pseudocode in Figure 4.1

49

void InitChron(struct chrom*Chrom struct data *PD) {
i nt i
for (j=1; j<Chrom >numjobs; j++) {
if (InStage(PD, j, 0)) {
Chr om >St ageChr ons. keys[j] =CGener at eDi scUni f (0, Chrom
>St ageChr ons. nunmts - 1);
6. Chrom >St ageChromns. keys[j]=Chrom
>St ageChr ons. keys[j] *(int)pow 10, Chrom >pl aces);
7. Chrom >St ageChromns. keys[j]=Chrom

ok wDNPRE

>St ageChr ons. keys[j] +Gener at eDi scUni f (1, (int)pow 10, Chrom
>pl aces)-1);

8. }

9. el se Chrom >StageChrons. keys[j]=0;

10. }

11. Chr om >changed=TRUE;

12.}

Figure 4.11nitchrom Function in General-Purpose Microprocessor

As shown in lines 4, 5 and 7 of Figure 4.1, différéunctions are called from this
function with different parameters to initializeetthromosome. ThimStagefunction is
called with different parameters for each iteratibhe GenerateDiscUnifunction calls
the random number generation process. Even witlinttiaing of those functions, code
of this nature is not ideally suited for an FPGAplementation. Also the if-else
conditions of lines 4 and 9 add to the inefficiescias discussed earlier. One possible
improvement is to execute theStagefunction independent of this code segment and
store the results in a FIFO. In that case, thiseceelgment can simply read the values
from the FIFO and proceed.

If we want performance improvement of an applicatimplemented in an FPGA
verses its microprocessor counterpart, the algorghould have some characteristics that

will facilitate exploiting the architectural bentfiof an FPGA. They are discussed below.

50

The algorithm should have some options for expigitihe inherent parallelism of an
FPGA. This feature includes independent memory ss;agptions for loop unrolling and
loop flattening, independent tasks, etc. Evenefdlgorithm does not have these inherent
characteristics, there should be options availabi@modify the application to fit to those
features. This application is limited in this redjanainly because of the topology of the
call graph. The topology led us to a coarse-grap@ditioning whereas in most of the
cases it would be better if we could do fine-grdingartitioning. But fine-grained
partitioning would make the partition combinati@ugher since the functions are called
from many different places, and likely their comddion overhead would not perform
better.

Related to the previous point, an important quest® whether the implementation
suits the target architecture or not. As discussBedsection 4.1, the existence of
conditional and branch statements here in the (&&qss is a bottleneck for performance
improvement. The call graph of this algorithm réadeveals the fact that there is
significant jumping from one function to anotherdady to the probability of a
performance bottleneck for an FPGA implementation.

Another point is whether the application is straagnor not. As we are using the FPGA
as an independent coprocessor, having a streanpplicaion would improve the
chances of application acceleration. The GA fadiehas it is not a streaming application.

For hardware/software partitioning, we chose cegraged partitioning. An important
question is whether the fine-grained partitioningwd help us in any way for the

functions we chose to implement in the FPGA. Exangririgure 4.2, we conclude that

51

the function ParaUnifCross might have shown an improved performance if it ever

implemented to reflect a finer granularity.

1.

© o N O ®wDN

m PR R PR R R
o N o ok whE O

19.
20.

21.
22.

voi d ParaUni fCross(struct data *PD, struct popul ati on *NewPop,
struct popul ati on *Pop){
i nt k, j, nuncross, start, parl, par2, done;
doubl e val;
static struct chromtenpl, temp2;
nuncross = (int) (Pop->popsize * CROSS PERCENT);
start = (int) (Pop->popsize * ELI TE PERCENT);
Creat eChronm PD, &templ);
for (k=0; k<nuntross; k++) {
par 1=Gener at eDi scUni f (0, Pop->popsi ze-1);
par 2=Gener at eDi scUni f (0, Pop->popsi ze-1);
done=(par 1! =par 2) ;
whil e (!done) {
par 2=CGener at eDi scUni f (0, Pop->popsi ze-1);
done=(par 1! =par2);}
for (j=1; j<tenpl.nunjobs; j++) {
val =genr and_r es53();
if (val < PROBPARL)
tenpl. St ageChrons. keys[j] =Pop- >
Chr ons[par 1] . St ageChr ons. keys[j];
el se
templ. St ageChr ons. keys[j] =Pop- >
Chr ons[par 2] . St ageChrons. keys[j];}
CopyChr om(&NewPop- >Chr ons[k+start], & empl); }
}

Figure 4.2:ParaUnifCrossFunction in General-Purpose Microprocessor

There are calls to different functions at line97,10, 13, 16 and 21 of Figure 4.2. A

fine-grained partitioning (statement level) is ecieel to perform better in this case. The

reason is t

statements

he statements of lines 7, 9, 10, 131@&do not depend on their previous

. They depend only on the random nungmermsrated by the MTA algorithm

using the state vectors. But then again it becocoesplicated, as we need to consider

52

integrating it with the overall GA process and availy with the flow-line scheduling
application.

These reasons add to the inefficient runtime ofGiAeoperators compared to its von
Neumann counterpart. But an improved design as shawrigure 3.12 is expected to
improve the performance compared to the current ARGplementation as in Figure
3.10.

Resource utilization for GA operators (individu&source consumption of PES) is
shown in Table 4.4. It is evident that tRaraUnifCrossPE is consuming most of the
FPGA resourcesParaUnifCrossis actually a combination of selection and crogsov
operations of the GA so it has much more computatompared to the other PEs
currently implemented. The overall resource uttlma is almost equal to 100%. An
important point to note is that in our current ieplentation, all the GA operations
generate random numbers inside their own modules dpproach actually increases the
resource requirement. If the implementation reflegte design of Figure 3.12, we can

eliminate the need for a random number generatoPgeand thereby reduce the resource

utilization.
Table 4.4: Resource Utilization of GA Operations.
Resource Name [nitchrom ParaUnifCross Immigrate
BRAMSs 54/240 (22%) 109/240 (45%) 54/240 (22%)
Slices 13,397/49152 (27%)17890/49152 (36%) 13,428/49152 (27%
4-input LUTS | 18,592/98304 (18%)27341/98304 (27%) 18,689/98304 (19%

53

When the three modules are combined to generateyke itfile, the device utilization

summary is:
Number of Slices: 42634/491526%)
Number of 4 input LUTSs: 62169/983083%0)
Number of BRAMs 200/240 (83%)
Number of DSP48s: 45/96 46%)

The combination of the three modules consumes &¥urces when all three modules
have a random number generation process inside. tifieve consider the three modules
Initchrom ParaUnifCross and Immigrate as one single module of the GA, then an
important question is how many GA modules can welément in an FPGA. Clearly, in
our current implementation, we can only implemem GA module in a Virtex4-LX100.
Our estimation shows that if we implement the desigown in Figure 3.12, we cannot
implement more than two GA modules in the sameetdf@®GA. One single GA module
takes about 35% of the resource excluding the randomber generation portion, so if
we implement two GA modules along with one randarmhber generator PE that stores
numbers in a FIFO, we will exhaust the resourcehaxee but likely improve the overall
performance.

The maximum amount of data passed to the FPGAr th&ParaUnifCrossPE, which
is about 110 KB.Initchrom, and Immigrate require about 30KB and 16KB of data
respectively. Unlike section 4.1, we do not haveption to pass data back to the host in

a combined packet as these PEs are activated d¢rdg needed by the host application.

54

As discussed in section 3.1.2, the overall GA aapion speedup should ideally be
1.025X. But it is readily understandable that witle communication overhead and the
design problems discussed in section 4.2 and Bragtically it would not be possible to
achieve any speedup.

For our research, we have two separate bitfilestitie vector generation and the GA.
Though the state vector generation is an initih stecessary for the operation of the GA,
we consider the GA our overall application. Therefthe resource utilization in the state
vector generation does not count towards the tetdurce utilization of the application.
If we consider the resource utilization from Tabl2 and Table 4.4, we find that the total
percentage of BRAM usage is more than 100%. Sineditfiles are separate and we do
not run them simultaneously, this is not a problem.

The results for our current implementation, thouglt impressive, open the door for
some interesting and seminal work in the future. Wave exposed the issues and
understand the requirements necessary to designinapiément a high-performance
computing application for a specialized architeetto gain maximum throughput within

the given constraints. We will discuss these imptéias.

55

CHAPTER S

CONCLUSION AND FUTURE WORK

The focus of our work has been the acceleratiah®iGA in an FPGA. We have
shown that though there are challenges with the aisRC in scientific computing
applications like GAs, these challenges can beamree when certain conditions are met.
Our contribution in this field is summarized in 8en 5.1. Later in section 5.2, we
discuss in detail the ideas for future work thdt make RC a better fit for GAs.

51 Conclusion

We have presented an improved algorithm for statdor generation using MTA.
The algorithm eliminates some steps from MTA tha annecessary for state vector
generation. Though there are potential approaah@sprove performance by using the
FPGA resources more efficiently, the one billioargtions required before generating
one state vector limits the achievable performanfean FPGA implementation.
Therefore we chose to improve the performance bgrawing the algorithm. The
improved algorithm runs 5X faster in a general-sgmicroprocessor than its previous
implementation and 2.4X faster in the FPGA thamprsvious FPGA implementation.

We have designed and implemented the basic GAatpes in an FPGA. There
are four basic operations of the GA [5] and they r@presented in three different PEs in
the FPGA. These three PE’s are combined to forrmgles GA module, meaning our
implementation has a single bitstream that reptesdre GA operations although the
three PE’s are called from the host at differemites; there is only one active PE at any

given time during the FPGA execution. Each of thsib GA operation requires random

56

numbers for its operation. These random numberganerated from the state vectors
inside each of the PEs. Our FPGA implementatiothefGA runs about 7X slower than
its microprocessor counterpart for several reasdhs.original GA implementation was
targeted for a general-purpose microprocessor aas$ ehot consider any specialized
architectures like FPGAs. Therefore the implemeartais not ideal for an FPGA. We do
not design the application from scratch targeting systems, rather we chose some
portion of the original implementation based on phefiling results and perform coarse-
grained partitioning to implement that in the FPGiAsome cases fine-grain partitioning
may perform better, but due to the topology ofdak graph, it will not give us an overall
performance gain. Also we have not separated théora number generation process
from the basic GA operation, which is expectednigpriove performance in general and
allow for implementation of multiple GAs in a sieglFPGA. Overall, we have
inefficiencies in the FPGA implementation of the GFe reasons are discussed in detail

in section 3.6, 4.1, and 4.2 along with suggestfongmprovement.

57

52 FutureWork

Possiblefuture work involves both the state vector generatand the GA
implementations. First, we can implement the applbey in hardware description
languages (HDL) like VHDL or Verilog rather thaning a high-level language (HLL)
like DIME-C. As HDLs are inherently parallel, we limneed less attention to explicitly
specifying the parallelism in our implementatiors discussed in section 2.2, all previous
work on MTA and GA are in HDLs. One reason is thdLs allow the designer to
exploit the parallelism of the FPGA in a more dire@nner (not relying on the compiler
to infer the parallelism). Another interesting fregudirection would be a comparison
between the two implementation techniques: HDL Hhdl. This comparison will show
us how the programming languages and their conmmiatechniques impact the
performance of an application targeted to a FPGA.

As discussed in section 3.6, the original impletaton of the GA was targeted
for a von Neumann architecture with no consideratitb an accelerator or specialized
hardware such as an FPGA-based RC platform. Mosheoidesign constraints for our
approach relate to the inability to expose paialelor compute density in the original
application. To exploit the parallelism of the Rgst®m, we can design the application
from the scratch targeting the FPGA-based systéims key consideration of that design
will be to reduce the communication overhead betwdw basic GA operations and
other portions of the application. Therefore thsigie should support calling the basic
GA module as few times as possible. In that casevilemplement only the basic GA

operations in the FPGA and the host will use thguts for other computations. To

58

reduce the host-to-FPGA communication overheadcare perform GA operations on

the input data multiple times. This number will dad on the application and the host
can pass an upper limit of that number to the FP@Aen the output for the first GA

operation is available, the host can begin readimagse results from the FPGA and
proceed with its computation while the FPGA is commpy and storing the GA outputs in

an on-chip or on-board memory. This design wouldatively support parallel execution

of the host and the FPGA. As soon as the stoppiteyion is satisfied, i.e. the solution is

acceptable; the host will halt the execution of ERGA. The reduced communication
overhead along with the parallel execution of thsthand the FPGA will account for a

performance increase compared to our current imghéation and most likely verses the
von Neumann counterpart as well. Once we have an®8ule like the one described

above, we can use it to solve other optimizatiavbfams like placement and routing of
an FPGA and others that use a GA to find theirtsmts.

Our current implementation does not take advantagfe overlapping
communication with computation. This limitation & significant bottleneck for our
current implementation of the state vector genenatAlso we need to incorporate this
overlapping if we want to implement the design tegbhes of Figure 3.12 or the
technique described in the paragraph above. To thielge data transfer overheads, we
could use on-board memories like SRAM or SDRAM pxabip interfaces like FIFOs to

store data temporarily before the host reads them.

59

Another technique of parallelizing the state vegeneration process is to stripe
data across memory banks so that at least sonie @hémory accesses, shown in Figure
3.8 (line 8, 9, 11 and 12) can happen simultangousl

As discussed in section 3.6, allowing the randa/mlper generation to occur in
parallel with the GA process by incorporating a ®Iwill improve the performance of
the application and is considered an importantréutiirection.

Implementing the GA in other architectures like @&l Broadband Engine (Cell
BE) or a Graphics Processing Unit (GPU) may benggrésting area to explore. Each of
these systems has its own advantages and disadeanti@at may or may not suit an
application. GPUs are suitable for streaming appbms. As GA is not a streaming
application, most likely we will not be able to @&ke any significant performance gain
by implementing the GA in a GPU. On the other hati 6 different Synergistic
Processing Elements (SPE) of the Cell BE can bel userun 6 GA modules
independently, thereby extracting parallelism duthe multicore architecture of the Cell
BE.

Our future work also includes studying the behawbra GA in a large-scale
cluster. The primary focus is to work on a largalsaluster of FPGAs but a cluster of
Cell BE may also be considered once we have théemmgmtation in one Cell BE. With
the growing number of computing resources, perfoiceaand scalability of the GA
implementation in these clusters are important icetf analysis.

A relatively newer concept related to the GA is kable Hardware (EH). The

concept of EH arises from the analogy between iadibeing and a circuit. The DNA

60

(deoxyribonucleic acid) of a living being is a styi of symbols from a quaternary
alphabet (A, C, G, T). Similarly reconfigurable logdevices are configured by a
bitstream that constitutes of binary symbols (OThis analogy suggests the possibility of
applying the concepts of GA into circuit design.eTtnaditional circuit design task is
vulnerable to human error and the optimality obauson cannot be guaranteed for larger
circuits. Design automation is challenging for tatdsigners and with the increasing
complexity of circuits, higher abstraction levets aeeded [20]. EH arises as a promising
solution of this problem since from a behavioraé@fication of a circuit, the GA will
search for a bitstream to describe the circuit.rétoge the designer’s job is reduced to
constructing the GA setup (specifying the circejuirements, the basic elements of GA
operations like cross and mutation percentage) atal testing schemes for the fithness
function [20].

Thus far, the implementations of the GA using rdicoumable hardware, including
the one presented in this thesis, are focused oelerating existing applications with
existing systems and techniques. Accelerating golicgtion in an RC system requires
analysis and optimizations by the designers ansktiaee not always easy to do due to the
complexity and the size of the problem. The comipjeaf the design arises from the
characteristics of the application that will suite a specific architecture and how the
tools are going to facilitate the design methodke Tact that we did not achieve
performance gain in the GA process is related i@dbmplex interaction among various
architectures, application characteristics, andttimés and techniques used to solve the

problems. An open problem in this field is the ti@aof new tools and techniques for

61

reconfigurable hardware that will make these pnwmislanore tractable. Creating these
new tools and techniques will however require mdidtiplinary efforts between

mathematicians, computational scientists, compdientists, and computer engineers.

62

REFERENCES
[1] M. E. Kurz and R. G. Askin, “Scheduling flexéflow lines with sequence-dependent

setup times”European Journal of Operational Research, 159, 862804.

[2] M. Matsumoto and T. Nishimura, “Mersenne twistea 623-dimentionally
equidistributed uniform pseudo-random number gengraACM Trans. on Modeling

and Computer Simulation, 8(1):3-30, Jan. 1998

[3] Nebro, A.J., F. Luna, Enrique Alba, B. DorronsoJ.J. Durillo, A Beham., “AbYSS:
Adapting Scatter Search to Multiobjective Optimiaat, IEEE Transactions on

Evolutionary Computatiori,2, 439-457 2008

[4] Minella G., R. Ruiz, M. Ciavotta., “A Review dnEvaluation of Multiobjective

Algorithms”, INFORMS Journal on Computing0, 451-471, 2008.

[5] Wikipedia Genetic Algorithm, http://en.wikipeadorg/wiki/Genetic_algorithm, last

accessed on April 28, 2009.

[6] Ishaan D. and Deian S., “A Hardware Framewankthe Fast Generation of Multiple

Long-Period Random Number StreamsPGA 2008

[7]Hossam E. M., Ahmed I. K., Yasser Y. H., “Hardeamplementation of Genetic

Algorithm on FPGA” 21° National Radio Science Conference 2004

[8] Tatsuhiro, et al., “Proposal for Flexible Implentation of Genetic Algorithms on

FPGAs”,Systems and Computers in Japan, Vol.38, No 13,.2007

63

[9]John, H. H., “Adaptation in Natural and Artifali Systems”, The University of

Michigan Press, Ann Arbor, 1975

[10] Wikipedia Mersenne Twister, http://en.wikipadrg/wiki/Mersenne_twister, last

accessed on May 4, 2009.

[11] Matsumoto, et al., "Twisted GFSR generatof8CM Transactions on Modeling and

Computer Simulatior?: 179,1992

[12] Shrutisagar C. and Abbes A., “High PerformaneBGA Implementation of
Mersenne Twister"4™ IEEE International Symposium on Electronic Desigest and

Application, 2008

[13] Edson, et al., “Reconfigurable Parallel Arelotiure for Genetic Algorithms:
Application to the Synthesis of Digital Circuitslhternational Workshop on Applied

Reconfigurable Computing, 2007

[14] Paul G. and Brent N., “A Hardware Genetic Altfum for Travelling Salesman
Problem on Splash2’5™ International Workshop on Field-Programmable Logind

Application, 1995

[15] H. Emam, et al., “Introducing an FPGA basedda& algorithms in the application
of blind signal separation”3rd IEEE International Workshop on System-on-Chip for

Real-Time Applications, 2003

64

[16] G. M. Amdahl, “Validity of the single processapproach to achieving large scale

computing capabilities”AFIPS spring joint computer conference, 1967

[17] Nallatech Inc., H101 PCI-X Reference Guide,19T7-0313 — Issue 3.1.

[18] Nallatech Inc., DIME-C User Guide, NT102-0308%ssue 2.3.

[19] Nallatech Inc., DIMETalk User Guide.

[20] Scott Hauck and Andre DeHon, efeconfigurable Computing: The Theory and

Practice of FPGA-Based Computatidiorgan Kaufmann, Nov. 2007.

[21] J. P. Cardoso, et. al., “Architectures and @oens to Support Reconfigurable

Computing”,ACM Crossroads1999.

[22] Wikipedia Diehard tests, http://en.wikipediagghviki/Diehard_tests, last accessed on

May 15, 2009.

[23] Wikipedia Randomness tests, http://en.wikipeolig/wiki/Randomness_tests, last

accessed on May 15, 2009.

[24] Nallatech Inc., H101 PCI-XM product details

http://www.nallatech.com/?node_id=1.2.2&id=41&tal&xdquest=2008update

[25] Xilinx Inc., Understanding performance of PEXpress, WP350 (v1.1),

http://www.xilinx.com/support/documentation/whitegers/wp350.pdf, Sept. 2008.

65

	Clemson University
	TigerPrints
	8-2009

	Implementation of Genetic Algorithms in FPGA-based Reconfigurable Computing Systems
	Nahid Alam
	Recommended Citation

	

