1,081 research outputs found

    Privacy-Preserving Outsourcing of Large-Scale Nonlinear Programming to the Cloud

    Full text link
    The increasing massive data generated by various sources has given birth to big data analytics. Solving large-scale nonlinear programming problems (NLPs) is one important big data analytics task that has applications in many domains such as transport and logistics. However, NLPs are usually too computationally expensive for resource-constrained users. Fortunately, cloud computing provides an alternative and economical service for resource-constrained users to outsource their computation tasks to the cloud. However, one major concern with outsourcing NLPs is the leakage of user's private information contained in NLP formulations and results. Although much work has been done on privacy-preserving outsourcing of computation tasks, little attention has been paid to NLPs. In this paper, we for the first time investigate secure outsourcing of general large-scale NLPs with nonlinear constraints. A secure and efficient transformation scheme at the user side is proposed to protect user's private information; at the cloud side, generalized reduced gradient method is applied to effectively solve the transformed large-scale NLPs. The proposed protocol is implemented on a cloud computing testbed. Experimental evaluations demonstrate that significant time can be saved for users and the proposed mechanism has the potential for practical use.Comment: Ang Li and Wei Du equally contributed to this work. This work was done when Wei Du was at the University of Arkansas. 2018 EAI International Conference on Security and Privacy in Communication Networks (SecureComm

    Cloud-based Quadratic Optimization with Partially Homomorphic Encryption

    Get PDF
    The development of large-scale distributed control systems has led to the outsourcing of costly computations to cloud-computing platforms, as well as to concerns about privacy of the collected sensitive data. This paper develops a cloud-based protocol for a quadratic optimization problem involving multiple parties, each holding information it seeks to maintain private. The protocol is based on the projected gradient ascent on the Lagrange dual problem and exploits partially homomorphic encryption and secure multi-party computation techniques. Using formal cryptographic definitions of indistinguishability, the protocol is shown to achieve computational privacy, i.e., there is no computationally efficient algorithm that any involved party can employ to obtain private information beyond what can be inferred from the party's inputs and outputs only. In order to reduce the communication complexity of the proposed protocol, we introduced a variant that achieves this objective at the expense of weaker privacy guarantees. We discuss in detail the computational and communication complexity properties of both algorithms theoretically and also through implementations. We conclude the paper with a discussion on computational privacy and other notions of privacy such as the non-unique retrieval of the private information from the protocol outputs

    Vulnerability Assessment and Privacy-preserving Computations in Smart Grid

    Get PDF
    Modern advances in sensor, computing, and communication technologies enable various smart grid applications which highlight the vulnerability that requires novel approaches to the field of cybersecurity. While substantial numbers of technologies have been adopted to protect cyber attacks in smart grid, there lacks a comprehensive review of the implementations, impacts, and solutions of cyber attacks specific to the smart grid.In this dissertation, we are motivated to evaluate the security requirements for the smart grid which include three main properties: confidentiality, integrity, and availability. First, we review the cyber-physical security of the synchrophasor network, which highlights all three aspects of security issues. Taking the synchrophasor network as an example, we give an overview of how to attack a smart grid network. We test three types of attacks and show the impact of each attack consisting of denial-of-service attack, sniffing attack, and false data injection attack.Next, we discuss how to protect against each attack. For protecting availability, we examine possible defense strategies for the associated vulnerabilities.For protecting data integrity, a small-scale prototype of secure synchrophasor network is presented with different cryptosystems. Besides, a deep learning based time-series anomaly detector is proposed to detect injected measurement. Our approach observes both data measurements and network traffic features to jointly learn system states and can detect attacks when state vector estimator fails.For protecting data confidentiality, we propose privacy-preserving algorithms for two important smart grid applications. 1) A distributed privacy-preserving quadratic optimization algorithm to solve Security Constrained Optimal Power Flow (SCOPF) problem. The SCOPF problem is decomposed into small subproblems using the Alternating Direction Method of Multipliers (ADMM) and gradient projection algorithms. 2) We use Paillier cryptosystem to secure the computation of the power system dynamic simulation. The IEEE 3-Machine 9-Bus System is used to implement and demonstrate the proposed scheme. The security and performance analysis of our implementations demonstrate that our algorithms can prevent chosen-ciphertext attacks at a reasonable cost

    Secure Outsourced Computation on Encrypted Data

    Get PDF
    Homomorphic encryption (HE) is a promising cryptographic technique that supports computations on encrypted data without requiring decryption first. This ability allows sensitive data, such as genomic, financial, or location data, to be outsourced for evaluation in a resourceful third-party such as the cloud without compromising data privacy. Basic homomorphic primitives support addition and multiplication on ciphertexts. These primitives can be utilized to represent essential computations, such as logic gates, which subsequently can support more complex functions. We propose the construction of efficient cryptographic protocols as building blocks (e.g., equality, comparison, and counting) that are commonly used in data analytics and machine learning. We explore the use of these building blocks in two privacy-preserving applications. One application leverages our secure prefix matching algorithm, which builds on top of the equality operation, to process geospatial queries on encrypted locations. The other applies our secure comparison protocol to perform conditional branching in private evaluation of decision trees. There are many outsourced computations that require joint evaluation on private data owned by multiple parties. For example, Genome-Wide Association Study (GWAS) is becoming feasible because of the recent advances of genome sequencing technology. Due to the sensitivity of genomic data, this data is encrypted using different keys possessed by different data owners. Computing on ciphertexts encrypted with multiple keys is a non-trivial task. Current solutions often require a joint key setup before any computation such as in threshold HE or incur large ciphertext size (at best, grows linearly in the number of involved keys) such as in multi-key HE. We propose a hybrid approach that combines the advantages of threshold and multi-key HE to support computations on ciphertexts encrypted with different keys while vastly reducing ciphertext size. Moreover, we propose the SparkFHE framework to support large-scale secure data analytics in the Cloud. SparkFHE integrates Apache Spark with Fully HE to support secure distributed data analytics and machine learning and make two novel contributions: (1) enabling Spark to perform efficient computation on large datasets while preserving user privacy, and (2) accelerating intensive homomorphic computation through parallelization of tasks across clusters of computing nodes. To our best knowledge, SparkFHE is the first addressing these two needs simultaneously

    Privacy-Preserving Cloud-Assisted Data Analytics

    Get PDF
    Nowadays industries are collecting a massive and exponentially growing amount of data that can be utilized to extract useful insights for improving various aspects of our life. Data analytics (e.g., via the use of machine learning) has been extensively applied to make important decisions in various real world applications. However, it is challenging for resource-limited clients to analyze their data in an efficient way when its scale is large. Additionally, the data resources are increasingly distributed among different owners. Nonetheless, users\u27 data may contain private information that needs to be protected. Cloud computing has become more and more popular in both academia and industry communities. By pooling infrastructure and servers together, it can offer virtually unlimited resources easily accessible via the Internet. Various services could be provided by cloud platforms including machine learning and data analytics. The goal of this dissertation is to develop privacy-preserving cloud-assisted data analytics solutions to address the aforementioned challenges, leveraging the powerful and easy-to-access cloud. In particular, we propose the following systems. To address the problem of limited computation power at user and the need of privacy protection in data analytics, we consider geometric programming (GP) in data analytics, and design a secure, efficient, and verifiable outsourcing protocol for GP. Our protocol consists of a transform scheme that converts GP to DGP, a transform scheme with computationally indistinguishability, and an efficient scheme to solve the transformed DGP at the cloud side with result verification. Evaluation results show that the proposed secure outsourcing protocol can achieve significant time savings for users. To address the problem of limited data at individual users, we propose two distributed learning systems such that users can collaboratively train machine learning models without losing privacy. The first one is a differentially private framework to train logistic regression models with distributed data sources. We employ the relevance between input data features and the model output to significantly improve the learning accuracy. Moreover, we adopt an evaluation data set at the cloud side to suppress low-quality data sources and propose a differentially private mechanism to protect user\u27s data quality privacy. Experimental results show that the proposed framework can achieve high utility with low quality data, and strong privacy guarantee. The second one is an efficient privacy-preserving federated learning system that enables multiple edge users to collaboratively train their models without revealing dataset. To reduce the communication overhead, we select well-aligned and large-enough magnitude gradients for uploading which leads to quick convergence. To minimize the noise added and improve model utility, each user only adds a small amount of noise to his selected gradients, encrypts the noise gradients before uploading, and the cloud server will only get the aggregate gradients that contain enough noise to achieve differential privacy. Evaluation results show that the proposed system can achieve high accuracy, low communication overhead, and strong privacy guarantee. In future work, we plan to design a privacy-preserving data analytics with fair exchange, which ensures the payment fairness. We will also consider designing distributed learning systems with heterogeneous architectures
    corecore