
University of Arkansas, Fayetteville University of Arkansas, Fayetteville

ScholarWorks@UARK ScholarWorks@UARK

Graduate Theses and Dissertations

7-2021

Privacy-Preserving Cloud-Assisted Data Analytics Privacy-Preserving Cloud-Assisted Data Analytics

Wei Bao
University of Arkansas, Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/etd

 Part of the Categorical Data Analysis Commons, Databases and Information Systems Commons, Data

Science Commons, Data Storage Systems Commons, Digital Communications and Networking

Commons, Information Security Commons, Programming Languages and Compilers Commons, and the

Systems Architecture Commons

Citation Citation
Bao, W. (2021). Privacy-Preserving Cloud-Assisted Data Analytics. Graduate Theses and Dissertations
Retrieved from https://scholarworks.uark.edu/etd/4185

This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for
inclusion in Graduate Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more
information, please contact scholar@uark.edu.

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/etd
https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F4185&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/817?utm_source=scholarworks.uark.edu%2Fetd%2F4185&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.uark.edu%2Fetd%2F4185&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1429?utm_source=scholarworks.uark.edu%2Fetd%2F4185&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1429?utm_source=scholarworks.uark.edu%2Fetd%2F4185&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/261?utm_source=scholarworks.uark.edu%2Fetd%2F4185&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=scholarworks.uark.edu%2Fetd%2F4185&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=scholarworks.uark.edu%2Fetd%2F4185&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.uark.edu%2Fetd%2F4185&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=scholarworks.uark.edu%2Fetd%2F4185&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=scholarworks.uark.edu%2Fetd%2F4185&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd/4185?utm_source=scholarworks.uark.edu%2Fetd%2F4185&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu

Privacy-Preserving Cloud-Assisted Data Analytics

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy in Engineering with a concentration in Computer Science

by

Wei Bao
Huazhong University of Science & Technology

Bachelor of Science in Industrial Engineering, 2012
University of Arkansas

Master of Science in Industrial Engineering, 2014

July 2021
University of Arkansas

This dissertation is approved for recommendation to the Graduate Council

Qinghua Li, Ph.D.
Dissertation Chair

Xintao Wu, Ph.D. Brajendra Nath Panda, Ph.D.
Committee Member Committee Member

Jingxian Wu, Ph.D.
Committee Member

ABSTRACT

Nowadays industries are collecting a massive and exponentially growing amount of

data that can be utilized to extract useful insights for improving various aspects of our life.

Data analytics (e.g., via the use of machine learning) has been extensively applied to make

important decisions in various real world applications. However, it is challenging for resource-

limited clients to analyze their data in an efficient way when its scale is large. Additionally,

the data resources are increasingly distributed among different owners. Nonetheless, users’

data may contain private information that needs to be protected.

Cloud computing has become more and more popular in both academia and industry

communities. By pooling infrastructure and servers together, it can offer virtually unlimited

resources easily accessible via the Internet. Various services could be provided by cloud

platforms including machine learning and data analytics.

The goal of this dissertation is to develop privacy-preserving cloud-assisted data ana-

lytics solutions to address the aforementioned challenges, leveraging the powerful and easy-

to-access cloud. In particular, we propose the following systems.

To address the problem of limited computation power at user and the need of privacy

protection in data analytics, we consider geometric programming (GP) in data analytics, and

design a secure, efficient, and verifiable outsourcing protocol for GP. Our protocol consists

of a transform scheme that converts GP to DGP, a transform scheme with computationally

indistinguishability, and an efficient scheme to solve the transformed DGP at the cloud

side with result verification. Evaluation results show that the proposed secure outsourcing

protocol can achieve significant time savings for users.

To address the problem of limited data at individual users, we propose two distributed

learning systems such that users can collaboratively train machine learning models without

losing privacy. The first one is a differentially private framework to train logistic regression

models with distributed data sources. We employ the relevance between input data features

and the model output to significantly improve the learning accuracy. Moreover, we adopt

an evaluation data set at the cloud side to suppress low-quality data sources and propose a

differentially private mechanism to protect user’s data quality privacy. Experimental results

show that the proposed framework can achieve high utility with low quality data, and strong

privacy guarantee.

The second one is an efficient privacy-preserving federated learning system that en-

ables multiple edge users to collaboratively train their models without revealing dataset.

To reduce the communication overhead, we select well-aligned and large-enough magnitude

gradients for uploading which leads to quick convergence. To minimize the noise added and

improve model utility, each user only adds a small amount of noise to his selected gradients,

encrypts the noise gradients before uploading, and the cloud server will only get the aggre-

gate gradients that contain enough noise to achieve differential privacy. Evaluation results

show that the proposed system can achieve high accuracy, low communication overhead, and

strong privacy guarantee.

In future work, we plan to design a privacy-preserving data analytics with fair ex-

change, which ensures the payment fairness. We will also consider designing distributed

learning systems with heterogeneous architectures.

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor Prof. Qinghua Li. I greatly ap-

preciate all his contributions of time, idea, and support to make my Ph.D. study productive.

He is always available and supportive with amazing insights and advice. I am so fortunate

to have had the opportunity to work with him in the past few years.

My gratitude also goes to other members of my dissertation and advisory committee,

including Prof. Xintao Wu, Prof. Brajendra Nath Panda, and Prof. Jingxian Wu. I would

like to thank them for their constant support, feedback, and encouragement during my PhD

study.

Finally, on a personal note, I express my deepest gratitude to my beloved family for

their unconditional love, encouragement, and support.

TABLE OF CONTENTS

1 Introduction . 1
1.1 Overview of This Dissertation . 2

1.1.1 Privacy-Preserving Cloud-Assisted Mathematical Optimization for Data
Analytics . 3

1.1.2 Privacy-Preserving Cloud-Assisted Machine Learning for Data Analytics 4
1.2 Organization . 6
Bibliography . 6

2 Privacy-Preserving Outsourcing of Large-Scale Geometric Programming to the Cloud 8
2.1 Introduction . 8
2.2 Problem Formulation . 10

2.2.1 Geometric Problem Formulation . 10
2.2.2 System Architecture . 12
2.2.3 Threat Model . 12

2.3 A Privacy-Preserving Transformation Scheme 13
2.3.1 Privacy-Preserving Vector Addition 13
2.3.2 Privacy-Preserving Matrix Multiplication 15
2.3.3 Privacy-Preserving Matrix Permutation 18

2.4 The Lagrange Dual Problem . 19
2.5 Solving the Outsourced Problem . 23

2.5.1 An Iterative Solution . 24
2.5.2 A Secure Algorithm For Solving Large-scale GP 26

2.6 Performance Evaluation . 28
2.6.1 Computational Complexity . 28
2.6.2 Experiment Results . 29

2.7 Related Work . 31
2.8 Summary . 32
Bibliography . 33

3 Privacy-Preserving Cloud-Assisted Distributed Logistic Regression 36
3.1 Introduction . 36
3.2 Preliminaries . 38

3.2.1 Logistic Regression . 38
3.2.2 Differential privacy . 39
3.2.3 Layer-wise Relevance Propagation . 41

3.3 Privacy-Preserving Distributed Logistic Regression 42
3.3.1 System Architecture . 42
3.3.2 Differentially Private Relevance . 44
3.3.3 Relevance-aware Objective Function Perturbation 46
3.3.4 Privacy-Preserving Selection . 48

3.4 Performance Evaluation . 49
3.4.1 Compared Models . 51

3.4.2 Training Convergence . 52
3.4.3 Data Quality . 54
3.4.4 Accuracy vs. Privacy Budget . 54

3.5 Related Work . 56
3.6 Summary . 57
Bibliography . 58

4 Privacy-Preserving Cloud-Assisted Efficient Federated Learning 62
4.1 Introduction . 62
4.2 Preliminaries . 64

4.2.1 Distributed SGD . 64
4.3 System Framework . 65

4.3.1 System Overview . 65
4.3.2 Threat Model . 66
4.3.3 Local Gradient Selection . 67
4.3.4 Privacy-preserving Parameter Update 70

4.4 Performance Evaluation . 75
4.4.1 Benchmark Frameworks . 75
4.4.2 Dataset and Experimental Setup . 76
4.4.3 Communication Overhead . 77
4.4.4 Privacy Budget . 79
4.4.5 Scalability . 80

4.5 Related Work . 81
4.5.1 Efficient Federated Learning . 81
4.5.2 Privacy-preserving Federated Learning 82

4.6 Summary . 83
Bibliography . 84

5 Conclusions and Future Work . 90
5.1 Conclusions . 90
5.2 Future Work . 91
Bibliography . 92

LIST OF TABLES

Table 2.1: Computing Time (12 cloud nodes, 16GB memory per node) 29

LIST OF FIGURES

Figure 2.1: System architecture for outsourcing GP 11
Figure 2.2: Computing time of cloud server with different node sizes 31
Figure 2.3: Computing time of cloud server with different node memory sizes 31

Figure 3.1: Distributed logistic regression with low quality data 42
Figure 3.2: Training convergence for the IPUMS dataset with different number of clients 52
Figure 3.3: Training convergence for the Credit Card dataset with different number

of clients . 53
Figure 3.4: Misclassification rate of different frameworks with varying noise propor-

tion (IPUMS, N = 15) . 55
Figure 3.5: Misclassification rate of different frameworks with varying noise propor-

tion (Credit Card, N = 15) . 55
Figure 3.6: Misclassification rate under different privacy budgets (IPUMS, N = 15) . 56
Figure 3.7: Misclassification rate under different privacy budgets (Credit Card, N =

15) . 56

Figure 4.1: Federated learning framework . 66
Figure 4.2: Model accuracy for different frameworks (MNIST) 77
Figure 4.3: Model accuracy for different frameworks (SVHN) 78
Figure 4.4: Accuracy of different frameworks with varying privacy budget (MNIST) 79
Figure 4.5: Accuracy of different frameworks with varying privacy budget (SVHN) . 80
Figure 4.6: Federated learning with different clients (ε = 0.5, δ = 10−5) 81

LIST OF PUBLISHED PAPERS

1. Chapter 2: Wei Bao, and Qinghua Li, ”Efficient Privacy-Preserving Outsourcing

of Large-Scale Geometric Programming,” in the IEEE Symposium on Privacy-Aware

Computing (PAC), 2018.

1 Introduction

In recent years, the data collected every day via social media and networks, mobile

phones, and all other channels has been growing exponentially. These data would provide

huge amount of potential useful information and insights. Data analytics has been widely

used to extract insights from massive amount of data via machine learning techniques, such

as deep neutral networks, decision tree, and support vector machine. For example, hospitals

have been analyzing patients’ medical records to provide most cost-effective treatment plan

[1]; financial institutes also perform frequent data analytics process to detect fraudulent

transactions and illegal behaviors [2]; smart grid systems employ various data anayltics

tools to monitor the power transmission process [3]. Mathematical optimization techniques

have been employed frequently to improve performance of fundamental machine learning

algorithms. For example, authors in [4] use convex optimization to improve neural network

model accuracy. However, it is very challenging for individuals and small corporations to

process large-scale data due to limited resources. Moreover, data resources are increasingly

distributed and stored by different owners. How to efficiently analyze distributed data poses

challenges.

Cloud computing has been widely adopted in both academia and industry communi-

ties. With Internet access, it provides unlimited resources through the on-demand business

model, which helps solve computation-extensive tasks for resource-limited users. Also, the

cloud service can be easily reached through computers and mobile phones. That enables a

variety of services to be provided by the cloud, including cloud-facilitated data analytics.

Although cloud computing is promising to help solve large-scale mathematical op-

timization problems in data analytics, outsourcing mathematical optimization problems to

1

the cloud may pose security and privacy concerns. The first concern is data privacy for

both input data and model output. There may exist sensitive information in the problem

formulation and model results, thus we need to protect their privacy during outsourcing

process. To protect data against potential leakage, one can encrypt problem formulation

before outsourcing to the cloud. Another concern is the verifiability of results returned from

the cloud server. Since data operations on the cloud side remains unclear to the users, it is

necessary to verify the returned results. For example, the cloud server might not follow our

proposed algorithm to save computing resources. If the cloud sever is under attack during

the computation period or suffers from system failures, it might also return incorrect results.

In other words, the cloud server is considered malicious and the outsourcing algorithm should

be able to check the correctness of the returned results.

In addition, machine learning models for data analytics usually require a vast amount

of data, which may prevent individual users from obtaining high-accuracy learning models

based on their own data. One feasible solution would be that users collaboratively train

the machine learning models under the coordination of a cloud server. However, the users

may own private data and cannot disclose the data to the cloud server or other users. For

example, hospitals and healthcare institutes may be incentivized to collaboratively train

machine learning models for better diagnosis results, but health data is sensitive and should

not be shared with any third party. Moreover, communication overhead in the distributed

learning setting could also be a potential issue for edge/mobile devices that have limited

bandwidth.

1.1 Overview of This Dissertation

The goal of this dissertation is to design privacy-preserving cloud-assisted mathemat-

ical optimization and machine learning systems for data analytics. For this purpose, we

2

propose several cloud-assisted systems.

1.1.1 Privacy-Preserving Cloud-Assisted Mathematical Optimization for Data

Analytics

Mathematical optimization has been widely adopted in data analytics. For exam-

ple, Khosravi et al. [4] proposed to use Geometric Programming (GP) to learn a naive

Bayes distribution for improving the performance of logistic regression classifier with miss-

ing features. Solving mathematical optimization for data analytics is requiring extensive

computation power when the data scale is large. Some recent works [5, 6, 7] have been

proposed to solve large scale mathematical optimization by outsourcing the problem to the

cloud server, and homomorphic encryption techniques were adopted to protect their data

privacy. However, those techniques would usually introduce high computation cost and com-

plex encryption/decryption operations. Moreover, the users cannot verify the correctness of

returned results from the cloud server.

To address these issues, we design an efficient and privacy-preserving system for

outsourcing GP problems to the cloud server [8], which has not been studied before. In

particular, we consider a general GP problem. The GP is first converted to a convex dual

geometric problem (DGP) by variable substitutions and the Lagrange dual method. Next,

the user transforms (i.e., encrypts) the DGP through multiplying the decision variable and

constraints by random sparse matrices. We prove that the transformed DGP is computa-

tionally indistinguishable from the DGP both in value and in structure. Then based on the

dual problem theory and the gradient projection method, the cloud solves the transformed

DGP, and sends the result to the user, who can then efficiently derive the solution to its

original GP and verify the solution. The scheme protects the user’s privacy by letting the

cloud operate on the transformed DGP, rather than any original problem formulations. We

3

implement the system with both Amazon Elastic Compute Cloud (EC2) and a laptop to

evaluate performance of the designed outsourcing protocol. Experimental results show that

the proposed secure outsourcing system can achieve significant time savings for users.

1.1.2 Privacy-Preserving Cloud-Assisted Machine Learning for Data Analytics

To benefit from other users’ data in machine learning while protecting data privacy,

we propose two privacy-preserving cloud-assisted systems that each achieves differential pri-

vacy. The first system is Privacy-Preserving Cloud-Assisted Distributed Logistic Regression

that has high learning accuracy and is robust against low quality data of participating users.

To achieve differential privacy during training, noise is usually added to the gradients be-

fore uploading to cloud server. However, model accuracy would be affected by the noisy

gradients at each iteration. Our basic idea is to more wisely add noise by exploring the

relevance connection between model output and input features. That allows us to add less

noise to objective coefficients with high relevance, and vice-versa. This way, the model ac-

curacy could be improved significantly. Specifically, first each user computes the magnitude

of relevance between the learning output and the input data features based on layer-wise

relevance propagation [9]. Then, the local logistic regression learning objective is approxi-

mated with function of polynomial terms. Based on magnitudes of relevance for each data

feature, different carefully-crafted noises are injected to the different coefficients of the poly-

nomial objective function for achieving differential privacy. In addition, some users may hold

low-quality data possibly due to inaccurate data collection processes, which may impact the

effectiveness of the trained model in distributed learning. Thus, we utilize an evaluation

dataset on the cloud side to measure how good each users data quality is when the local pa-

rameters are uploaded to the cloud server and filter out low-quality data. Since low-quality

data are not included in the aggregation process, the learned model performance would not

4

be significantly impacted. Moreover, the global parameters are updated in a way that pre-

serves differential privacy, and user’s data quality privacy is also protected. This process

iterates until the training converges.

The second system is Privacy-Preserving Cloud-Assisted Efficient Federated Learning.

Federated Learning uses some form of distributed stochastic gradient descent (SGD) and

requires a cloud server to coordinate the training process. It usually involves many iterations

and incurs high communication cost. To reduce the communication cost, our basic idea is to

select gradients more effectively to achieve faster convergence of training. In particular, each

user trains on his local dataset and select the gradients that are aligned with global model

gradient tendency, as some local updates may not contribute to the model convergence due to

non-IID (independent and identically distributed) data among users. Gradient magnitude is

also considered as another selection criteria as large magnitude usually means more impact

to model training. By excluding those less consistent gradient uploads, the global model

updates would converge much faster as those uploads may contribute nothing to or diverge

the global updates. For privacy protection, we adopt the basic approach of adding noise to

gradients to achieve differential privacy, and try to minimize the noise and improve learning

accuracy by leveraging cryptography techniques. Existing work on this topic either adds

too much noise at each user [10] or relies on the untrusted server to add noise. Different

from them, in our solution, each client will first add a small amount of noise to perturb the

gradients uploading to cloud server. Then, homomorphic encryption is adopted to encrypt

the noisy gradients before uploading to the cloud server. Finally, the cloud server decrypts

the sum of the noisy gradients and updates the global model parameters without learning

anything else. The aggregate amount of noise in the sum is minimal but sufficient for

differential privacy.

5

1.2 Organization

The remainder of the dissertation is organized as follows. Chapter 2 presents an ef-

ficient privacy-preserving outsourcing protocol to solve large-scale Geometric Programming.

Chapter 3 introduces a collaborative privacy-preserving logistic regression learning system.

Chapter 4 presents a privacy-preserving efficient federated learning system. Chapter 5 con-

cludes the dissertation and discusses future work.

Bibliography

[1] K. Y. Ngiam and W. Khor, “Big data and machine learning algorithms for health-care

delivery,” The Lancet Oncology, vol. 20, no. 5, pp. e262–e273, 2019.

[2] T. U. Rehman, M. S. Mahmud, Y. K. Chang, J. Jin, and J. Shin, “Current and future

applications of statistical machine learning algorithms for agricultural machine vision

systems,” Computers and electronics in agriculture, vol. 156, pp. 585–605, 2019.

[3] E. Liberty, Z. Karnin, B. Xiang, L. Rouesnel, B. Coskun, R. Nallapati, J. Delgado,

A. Sadoughi, Y. Astashonok, P. Das, et al., “Elastic machine learning algorithms in

amazon sagemaker,” in Proceedings of the 2020 ACM SIGMOD International Confer-

ence on Management of Data, pp. 731–737, 2020.

[4] P. Khosravi, Y. Liang, Y. Choi, and G. V. d. Broeck, “What to expect of clas-

sifiers? reasoning about logistic regression with missing features,” arXiv preprint

arXiv:1903.01620, 2019.

[5] Q. Wang, J. Wang, S. Hu, Q. Zou, and K. Ren, “Sechog: Privacy-preserving outsourcing

computation of histogram of oriented gradients in the cloud,” in Proceedings of the 11th

ACM on Asia Conference on Computer and Communications Security, pp. 257–268,

ACM, 2016.

6

[6] C. Hu, A. Alhothaily, A. Alrawais, X. Cheng, C. Sturtivant, and H. Liu, “A secure and

verifiable outsourcing scheme for matrix inverse computation,” in INFOCOM 2017-

IEEE Conference on Computer Communications, IEEE, pp. 1–9, IEEE, 2017.

[7] X. Lei, X. Liao, T. Huang, and F. Heriniaina, “Achieving security, robust cheating

resistance, and high-efficiency for outsourcing large matrix multiplication computation

to a malicious cloud,” Information sciences, vol. 280, pp. 205–217, 2014.

[8] W. Bao and Q. Li, “Efficient privacy-preserving outsourcing of large-scale geometric

programming,” in 2018 IEEE Symposium on Privacy-Aware Computing (PAC), pp. 55–

63, IEEE, 2018.

[9] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and W. Samek, “On

pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propa-

gation,” PloS one, vol. 10, no. 7, p. e0130140, 2015.

[10] M. Hao, H. Li, G. Xu, S. Liu, and H. Yang, “Towards efficient and privacy-preserving

federated deep learning,” in ICC 2019-2019 IEEE International Conference on Com-

munications (ICC), pp. 1–6, IEEE, 2019.

7

2 Privacy-Preserving Outsourcing of Large-Scale Geometric Programming to

the Cloud

2.1 Introduction

Mathematical optimization has found applications in various data analytics areas,

such as computer science [1], signal processing [2], and economics [3]. If the objective func-

tion is geometric and the feasible region is constrained to a system of linear equalities and

inequalities, it is called Geometric Programming (GP), one of the most widely used mathe-

matical optimization. A number of works have been proposed to adopt GP in data mining

tasks. For instance, GP is utilized to learn a naive Bayes distribution that improves the

performance of a given logistic regression classifier and can efficiently output expected pre-

dictions with missing features [4]. The work in [5] employed GP to obtain the optimal power

and resource allocation in blockchain computation tasks. However, solving GP requires

many computing resources when its scale is large. Thus, it is attractive for a client with low

computing capability to outsource large-scale GP problems to the cloud.

Although outsourcing to the cloud allows a client to solve large-scale GP problems,

it also brings some new issues [6, 7]. Privacy is the first issue to be handled. Since both the

outsourced tasks and the results to these tasks may contain sensitive information that the

client does not expect to be exposed to the cloud. To ensure the input privacy (i.e., secrecy

of the original GP problem) is not breached, the client has to encrypt the original problem

before uploading it to the cloud. The output privacy should also be protected, which means

the cloud should not be able to infer the solution to the original GP problem.

Verifiability is the next issue to be considered. The client needs to verify whether the

result returned is correct or not. The cloud may return a random result to save computing

8

resources when the outsourced task is highly resource-consuming. Even though the cloud

performs faithfully, some inevitable hardware and software bugs in cloud may also lead to

an incorrect result. Thus without verification, the correctness of the result returned by the

cloud cannot be guaranteed.

Lastly, efficiency is also an issue that needs to be addressed. It requires that the over-

head of the client should be substantially reduced when outsourcing is chosen. Furthermore,

the amount of computation performed by the cloud is comparable to the overload of solving

the original problem.

In this chapter, we develop an efficient and privacy-preserving algorithm for out-

sourcing GP problems [8]. Specifically, we consider a general GP problem. Due to the

characteristics of GP, first the GP is converted to a convex dual geometric problem (DGP)

by variable substitutions and the Lagrange dual method. Next, the client transforms (i.e.,

encrypts) the DGP through multiplying the decision variable and constraints by random

sparse matrices. We show that the transformed DGP is computationally indistinguishable

from the DGP both in value and in structure. Then based on the dual problem theory and

the gradient projection method, the cloud solves the transformed DGP, and sends the result

to the client, who can then efficiently derive the solution to its original GP and verify the

solution. The algorithm protects the client’s privacy by letting the cloud operate on the

transformed DGP, rather than any original problem matrices.

The main contributions of this chapter are summarized as follows:

• To the best of our knowledge, it is the first privacy-preserving solution for outsourcing

GP problems to the cloud. It consists of a transform scheme that conveys GP to DGP,

a transform scheme that protects the DGP, and a scheme to solve the transformed

DGP at the cloud side.

9

• We formally prove that the transformed DGP problem can protect the client’s data

privacy. In particular, the transformed DGP has the property of computationally

indistinguishability.

• We implement the proposed solution on the Amazon EC2 platform and a laptop.

Experimental results show that the proposed secure outsourcing mechanism can achieve

significant time savings for the client.

The rest of the chapter is organized as follows. Section 2.2 presents problem formu-

lation. Section 2.3 introduces the secure transformation scheme. Section 2.4 describes the

DGP problem. Section 2.5 presents in detail the algorithm for solving the outsourced DGP.

Performance evaluation is presented in Section 2.6. Section 2.7 reviews related work. Section

2.8 concludes this chapter.

2.2 Problem Formulation

2.2.1 Geometric Problem Formulation

GP is a class of mathematical optimization and has the following form:

Minimize f0(x) =

N0∑
j=1

cj

n∏
i=1

x
aij
i

subject to gk(x) =

Nk∑
j=Nk−1+1

cj

n∏
i=1

x
aij
i ≤ 1, k = 1, . . . ,m

x > 0

(2.1)

where x = (x1, x2, . . . , xn)t is the optimization variable, and Nk, for k = 0, 1, . . . ,m, and cj,

for j = 1, 2, . . . , Nm represent the number of terms in each function and term coefficients,

respectively. Problem (2.1) is said to be a geometric programming problem because both

10

Client

Client’s Device

Cloud Server

Original GP Solution to

original GP

Transformed GP Solution to

transformed GP

Figure 2.1: System architecture for outsourcing GP

the objective function and constraint functions can be expressed as the sum of posynomial

terms [9].

GP problems arise frequently in engineering applications. For example, in a power

control problem, each decision variable xi represents the positive transmitting power level,

and the interface power of each transmitter/receiver pair can be expressed as posynomial

terms. This problem can be formulated as a GP problem where decision variables are subject

to practical constraint functions. Another example is semiconductor device operations. In

particular, the objective function is to choose the doping profile to minimize the base transit

time, while the doping profile value is bounded and consists of posynomial terms. Obviously,

this problem can also be formulated as a GP problem.

11

2.2.2 System Architecture

As shown in Fig. 2.1, we consider an asymmetric two-party computing architecture,

where a local client is resource limited while a remote cloud server has abundant computing

resources. The client is unable to solve the original GP problem with local computational

resources in an acceptable amount of time. Thus, the client outsources the GP problem

to the cloud after making certain transformations to it (it is called transformed GP after

transformations). Then, the cloud server solves the transformed GP and sends the solution

of the transformed GP back to the client, who will verify and decrypt the solution for the

original GP problem.

2.2.3 Threat Model

We assume a malicious cloud server. In particular, the cloud attempts to learn the

client’s original GP problem from the outsourced problem and the returned results of its

own computations. Additionally, the cloud may not follow the proposed protocol and return

incorrect results.

To securely outsource the computation of the GP problem, we adopt the concept of

computational indistinguishability under a chosen plaintext attack (CPA) [10]. In a matrix,

we notice that the elements’ values and positions both carry private information. In the

following, we formally define computational indistinguishability under a CPA for these two

types of private information, respectively.

We first present the definition of a pseudorandom function as follows, which will be

employed to perform matrix transformations with CPA security.

Definition 1. Let X = {Xn}n∈N be a probability ensemble and Y = {Yn}n∈N be

a truly random function. We say X is a pseudorandom function if for all probabilistic

12

polynomial-time distinguishers D, there exists a negligible function µ such that

|Pr[D(Xn) = 1]− Pr[D(Yn) = 1]| ≤ µ (2.2)

This definition can be extended to the case where a distinguisher D has access to

multiple elements of the vectors X and Y, i.e., when comparing two matrices.

Definition 2. Let R ∈ Rm×n be a random matrix with elements in its j th column

sampled from a uniform distribution with interval [−Rj, Rj] ∀j ∈ [1, n]. Matrices R and

G ∈ Rm×n are computationally indistinguishable if for any probabilistic polynomial time

distinguisher D there exists a negligible function β such that

|Pr[D(gij) = 1]− Pr[D(rij) = 1]| ≤ β (2.3)

where i ∈ [1,m], j ∈ [1, n], gij is the element in the ith row and j th column of G, and rij is

the element in the ith row and j th column of R. Distinguisher D outputs 1 when it finds

out gij is not chosen from matrix G and 0 otherwise.

2.3 A Privacy-Preserving Transformation Scheme

To securely outsource a GP problem to the cloud, the client must first encrypt

the problem by performing certain computations. In this section, we describe a privacy-

preserving transformation that hides elements of a vector, and elements and structure of a

matrix, which can be employed to encrypt a GP problem.

2.3.1 Privacy-Preserving Vector Addition

The client can efficiently hide a private variable vector by adding a randomly gener-

ated vector to it. Specifically, a private variable vector x = (x1, x2, . . . , xn)t can be encrypted

as follows:

y = x + r (2.4)

13

where yi = xi+ri for any i ∈ [1, n], and yi, xi, and ri are the ith element of vector y,x and r,

respectively. We assume that xi is within the range [−K,K], where K = 2l(l > 0) is a posi-

tive constant. Additionally, vector r ∈ Rn×1 is randomly generated with its elements subject

to uniform distribution and the corresponding probability density function is expressed as:

f(ri) =


1

2c
−c ≤ ri ≤ c

0 otherwise

(2.5)

where c = 2l+p(p > 0) is a positive constant, and ri, i ∈ [1, n] is the ith element of vector r.

Next we will obtain the following theorem that vectors r and y are computationally indis-

tinguishable.

Theorem 1. Let r be a random vector with elements sampled from a uniform distribution

with interval [−c, c]. Then vectors r and y = x + r are computationally indistinguishable.

Proof. According to Definition 1, we need to prove that any probabilistic polynomial time

distinguisher D cannot distinguish yi from ri for any i ∈ [1, n] except with negligible success

probability, where yi and ri are the ith element of vector y and r respectively. The best

strategy for a polynomial time distinguisher D when presented with a sample yi is to return

b← {0, 1} with equal probability if −c ≤ yi ≤ c, and 1 if yi < −c or yi > c. Therefore, the

success probability of the distinguisher with the input being yi = xi + ri is given by

Pr[D(yi) = 1] =
1

2
Pr[−c ≤ xi + ri ≤ c]

+ Pr[xi + ri < −c] + Pr[xi + ri > c]

=
1

2
(1− Pr[xi + ri < −c]− Pr[xi + ri > c])

+ Pr[xi + ri < −c] + Pr[xi + ri > c]

(2.6)

14

Recall that xi is within the range [−K,K], and ri is sampled from a uniform distribution

specified by (2.5). We have that

Pr[xi + ri > c] = Pr[ri > c− xi]

≤ Pr[ri > c−K] =
K

2c

(2.7)

Similarly, we find that Pr[xi + ri < −c] ≤ K
2c

. Consequently, we have that the success

probability of the distinguisher D is bounded as follows:

Pr[D(yi) = 1] ≤ 1

2
+
K

2c
(2.8)

On the other hand, when the input is ri, obviously we can obtain that:

Pr[D(ri) = 1] =
1

2
(2.9)

According to Eq. (2), for any i ∈ [1, n], we get that

|Pr[D(yi) = 1]− Pr[D(ri) = 1]| ≤ K

2c
(2.10)

Note that K = 2l and c = 2l+p. Hence, we have

µ(p) =
K

2c
≤ 2l

2l+p+1
=

1

2p+1
(2.11)

which is a negligible function for large p. This concludes the proof.

2.3.2 Privacy-Preserving Matrix Multiplication

The client efficiently encrypts the values of its private problem matrix by performing

sparse random matrix multiplications. In particular, a private matrix H ∈ Rm×n can be

efficiently encrypted by performing the following multiplications:

H̃ = DHF (2.12)

15

Here D ∈ Rm×m is a diagonal matrix defined as

di,j =


vi i = j for i, j ∈ [1,m]

0 otherwise
(2.13)

where the value vi, for i ∈ [1,m], is generated based on the uniform distribution defined in

(2.5). F ∈ Rn×n is also a diagonal matrix with elements being arbitrary positive constant

M . Consequently, the elements of H̃ in (2.12) are given by

h̃i,j = di,ihi,jfj,j = vihi,jM (2.14)

Assume that the element values of matrix H are within the range [−T, T]. Next we

can arrive at Theorem 2 that the encrypted private matrix H̃ and a random matrix R with

elements sampled from a uniform distribution are computationally indistinguishable.

Theorem 2. Let R ∈ Rm×n be a random matrix with elements in its j th column sampled

from a uniform distribution with interval [−c, c], for j ∈ [1, n]. Matrices R and H̃ are

computationally indistinguishable.

Proof. According to Definition 2, we need to prove that ri,j and h̃i,j, for i ∈ [1,m], j ∈

[1, n], are computationally indistinguishable for matrices R and H̃ to be computationally

indistinguishable. Specifically, we prove that any polynomial time distinguisher D cannot

distinguish h̃i,j from ri,j, for i ∈ [1,m], j ∈ [1, n], except with negligible success probability.

The distinguisher D is defined in the same way as in Theorem 1. Therefore, the

16

success probability of the distinguisher D is given by

Pr[D(h̃i,j) = 1] =
1

2
Pr[−c ≤ h̃i,j ≤ c]

+ Pr[h̃i,j < −c] + Pr[h̃i,j > c]

=
1

2
(1− Pr[h̃i,j < −c]− Pr[h̃i,j > c])

+ Pr[h̃i,j < −c] + Pr[h̃i,j > c]

(2.15)

where

Pr[h̃i,j > c] = Pr[vihi,jM > c]

= Pr[vihi,j >
c

M
]

≤ γPr[vi >
c

MT
] + (1− γ)Pr[vi <

−c
MT

]

=
1

2
− 1

2MT

(2.16)

the parameter γ is the probability of the element hi,j being positive and 1 − γ is hi,j being

negative. Similarly, we find that Pr[h̃i,j < −c] ≤ 1
2
− 1

2MT
. Consequently, we have that the

success probability of distinguisher D is bounded as follows:

Pr[D(h̃i,j) = 1] = 1− 1

2MT
(2.17)

On the other hand, we can easily obtain that Pr[D(ri,j) = 1] = 1
2
.

According to Eq. (2.3), for i ∈ [1,m], j ∈ [1, n], it follows that

|Pr[D(h̃i,j) = 1]− Pr[D(ri,j) = 1]| ≤ MT − 1

2MT
(2.18)

Note that M is an arbitrary positive constant, we have

β(M) =
MT − 1

2MT
(2.19)

17

Thus, β(M) can be guaranteed as a negligible function when MT approaches 1. This

concludes the proof.

2.3.3 Privacy-Preserving Matrix Permutation

Although the matrix transformation in Eq. (2.12) hides the values of the elements in

H, it still reveals the original positions of the non-zero elements, i.e., H’s structure, which is

also private. Next, we design secure permutations that can hide H’s structure by randomly

reordering the rows and columns of H.

The client applies the random permutations as follows:

Ĥ = EH̃U (2.20)

where E ∈ Rm×m and U ∈ Rn×n are random permutation matrices, and their elements are

defined by

ei,j = δπ(i),j ∀i ∈ [1,m], j ∈ [1,m]

ui,j = δπ(i),j ∀i ∈ [1, n], j ∈ [1, n]
(2.21)

where i and j are the row and column indexes, respectively. The random permutation

function π(·) maps an original index i ∈ {1, 2, · · · , n} to its permuted index within the same

range. Besides, the Kronecker delta function as defined in [11] is given by

δi,j =


1, i = j

0, i 6= j
(2.22)

The details of generating random permutation matrices in Eq. (2.20) are summarized

in Algorithm 1.

In addition, the client is able to recover the original matrix H̃ by applying the following

inverse permutations:

18

Algorithm 1 Random permutation matrix generation

Input: Initial index set N = {1, 2, . . . , n}
Output: Random permutation matrix P
1: Set π = In; (identical permutation)
2: for i = n down to 2 do
3: Set j to a random integer with 1 ≤ j ≤ i;
4: Swap π[i] and π[j] in set N ;
5: end for
6: for i = 1 to n do
7: for j = 1 to n do
8: π(i) outputs the ith element in set N ;
9: δπ(i),j outputs value based on Eq. (2.22);

10: Set P(i, j) = δπ(i),j;
11: end for
12: end for
13: return P;

H̃ = ETĤUT (2.23)

To get this result, the orthogonal property of permutation matrices are applied, i.e., ETE = I

and UTU = I, where I is the identity matrix.

2.4 The Lagrange Dual Problem

Since the objective function f0 and constraint functions gk in GP problem (2.1) are

posynomials and are non-convex in general [12], GP problem (2.1) is a non-convex opti-

mization problem and it can take exponential time to solve this problem, especially with

large-scale decision variables and constraints. In this section, we identify an equivalent dual

optimization problem that is convex with only linear constraints, i.e., the dual geometric

problem.

In particular, first we transform the original non-convex GP problem with the follow-

ing variable substitution:

y = log x (2.24)

19

where y = (y1, y2, . . . , yn) ∈ Rn×1,x = (x1, x2, . . . , xn) ∈ Rn×1.

Next, from (2.24) we denote

τj = cj

n∏
i=1

x
aij
i = cje

at
jy for j = 1, . . . , Nm (2.25)

where aj = (aj1, . . . , ajn)t for j = 1, . . . , Nm. Taking a logarithmic transformation of the ob-

jective and constraint functions, the original GP problem (2.1) can be equivalently rewritten

as:

Minimize log[F (y)]

subject to log[Gk(y)] ≤ 0, k = 1, . . . ,m.

y unrestricted in sign

(2.26)

where

F (y) =

N0∑
j=1

τj

Gk(y) =

Nk∑
j=Nk−1+1

τj for k = 1, . . . ,m

(2.27)

According to [13], the problem (2.26) is now a convex programming problem.

In the following, we use the Lagrangian dual approach to solve problem (2.26). Since

the interiority constraint qualification holds, there is no gap between problem (2.26) and its

Lagrangian dual stated below:

LD : Maximize L(y,u)

∇yL(y,u) = 0

u ≥ 0,y unrestricted

(2.28)

20

where the Lagrangian function is

L(y,u) = log[F (y)] +
m∑
i=1

ui log[Gi(y)] (2.29)

We now define a new variable vector δ as follows:

δk =
τk
F

for all k ∈ [1, N0]

δk =
uiτk
Gi

for all k ∈ [N0 + 1, Nm]

(2.30)

Note that, from Eq. (2.27) and (2.30), we have

N0∑
k=1

δk = 1

Nm∑
k=N0+1

δk = ui for i ∈ [1,m]

(2.31)

According to ∇yL(y,u) = 0 in the LD problem (2.28) and Eq. (2.30), we have

∇yL(y,u) =
∇F (y)

F (y
+

m∑
i=1

ui
∇Gi(y)

Gi(y)

=
1

F (y)

N0∑
k=1

τkak +
m∑
i=1

ui
Gi(y)

[
Nm∑

k=N0+1

τkak

]

=
Nm∑
k=1

δkak = 0

(2.32)

From Eq. (2.25), (2.30), and (2.31), the term ui log[Gi(y)] in Eq. (2.29) can also be

21

rewritten as:

ui log[Gi(y)] = ui log(ui) + ui log

[
Gi

ui

]

= ui log(ui) +
Nm∑

k=N0+1

δk log

[
τk
δk

]

= ui log(ui) +
Nm∑

k=N0+1

δk log

[
ck
δk
eaky

]

= ui log(ui) +
Nm∑

k=N0+1

δk log

[
ck
δk

]
+

Nm∑
k=N0+1

δkaky

(2.33)

Similarly, we have

log[F (y)] =

N0∑
k=0

δk log

[
ck
δk

]
+

N0∑
k=0

δkaky (2.34)

Thus, from Eq. (2.33) and (2.34), the objective function (2.29) can be rewritten as:

L(δ,u) =
Nm∑
k=1

δk log

[
ck
δk

]
+

m∑
i=1

ui log(ui) (2.35)

We finally use Eq. (2.31), (2.32), and (2.35) to replace the LD problem (2.28) with

22

the following dual geometric program (DGP) in the variables (δ,u):

DGP :Maximize
Nm∑
k=1

δk log

[
ck
δk

]
+

m∑
i=1

ui log(ui)

subject to Aδ = 0

N0∑
k=0

δk = 1

Nm∑
k=N0+1

δk − ui = 0 for i ∈ [1,m]

δ ≥ 0

u ≥ 0

(2.36)

where A = [a1 a2 . . . ak] ∈ Rn×Nm .

Note that the DGP problem (2.36) is a convex programming problem with linear

constraints. We denote the optimal solution to (2.36) as (δ∗, u∗).

Since the DGP problem (2.36) is convex and the affine constraints are feasible, the

strong duality holds [13] and according to Eq. (2.24), (2.25), and (2.30), we have that

y∗ = (AT)−1 log(δ∗/u∗c)

x∗ = ey∗
(2.37)

where c = (c1, c2, . . . , cNm)t. That is, we can use the result of the DGP problem (2.36) to

recover the result of the original GP problem (2.1).

2.5 Solving the Outsourced Problem

In this section, we describe a secure and efficient algorithm to solve the large-scale

GP problems based on the DGP problem derived in Section 2.4.

23

2.5.1 An Iterative Solution

Before we delve into details about the proposed algorithm, we first present the gradi-

ent projection method (GPM), an iterative solution method for nonlinear convex optimiza-

tion problems that we employ to solve the DGP problem in (2.36).

For optimization problems, the search direction of fastest descent is the negative

gradient of the objective function. However, moving along the negative gradient may lead

to violating the constraint functions. The main idea of the GPM is to project the nega-

tive gradient in such a way that improves the objective function while not violating any

constraints.

In particular, let’s first consider the following convex optimization problem

Minimize f(z)

subject to A′z = b′

z ≥ 0

(2.38)

Given a feasible point z, the moving direction of steep descent is −∇f(z). However, moving

along −∇f(z) may violate feasibility of the solutions. To this end, the moving direction d is

projected so that d = −P∇f(z), where P is a suitable projection matrix [13]. The following

Theorem 3 [13, 14] will provide a way to find an improving feasible direction d.

Theorem 3. Consider the optimization problem in (2.38), and suppose f(z) is differentiable

at the point z. Let projection matrix P be of the form P = I−A′T(A′A′T)−1A. Then

d = −P∇f(z) is an improving feasible direction if d 6= 0, and z is a KKT point if d = 0.

24

Proof. First of all, it is noted that

A′d = −A′P∇f(z)

= −A′(I−A′T(A′A′T)−1A′)∇f(z)

= 0

(2.39)

Thus d is a feasible direction. In addition, according to the properties of projection matrix

, i.e., P = PT, P = P2 [13], we have

∇f(z)Td = −∇f(z)TP∇f(z)

= −∇f(z)TPTP∇f(z)

= −||P∇f(z)||2 < 0

(2.40)

Thus d is also an improving direction if d 6= 0. From Eq. (3.8), (3.9), we have d is an

improving feasible direction, which completes the proof.

Once an improving feasible direction d is found, the optimal point of the objective

function f(z) can be approached in the following iterative way:

zk+1 = zk + λkdk (2.41)

where k is the iteration index, and the upper bound of λk defined as λmax is given by:

λmax =


min1≤i≤n :

{
−zik
dik

: dik < 0

}
dk 6≥ 0

∞ dk ≥ 0

(2.42)

where zik and dik are the ith elements of zk and dk, respectively. Hence, the value of λk is

determined by the following line search problem:

Minimize f(zk + λdk)

subject to 0 ≤ λ ≤ λmax

(2.43)

25

Next, since problem (2.38) consists of a convex objective function with only linear

constraints, the GPM converges. The proof for convergence of the GPM is omitted here due

to the space limitation.

2.5.2 A Secure Algorithm For Solving Large-scale GP

As shown in Section 2.4, the client transforms the original GP problem (2.1) to the

DGP problem (2.36), and the DGP problem is outsourced to the cloud server for solving. To

protect the client’s data privacy, we conduct some transformations based on the proposed

scheme in Section 2.3.

For convenience, we first rewrite the DGP problem in (2.36) as the following form:

Minimize D(z)

subject to Wz = b

z ≥ 0

(2.44)

where

D(z) = −L(δ,u) = −
Nm∑
k=1

δk log

[
ck
δk

]
−

m∑
i=1

ui log(ui)

b = (0, 1, 0, . . . , 0)t ∈ R(n+m+1)×1

z = (δ,u)t ∈ R(Nm+m)×1

Thus, to protect the sensitive information of the coefficient matrix, the client applies

the matrix transformations (2.12) and (2.20) to W in (2.44) as follows:

W̄ = VWT (2.45)

where V is formed by a random permutation matrix and a random diagonal matrix, i.e.,

V = ED, and T formed by a diagonal matrix of arbitrary positive constant and a random

permutation matrix, i.e., T = FU.

26

Furthermore, to protect the privacy of decision variable vector z, the vector transfor-

mation (2.4) is applied in the following:

z̄ = T−1(z + r) (2.46)

where r ∈ R(Nm+m)×1 is a random vector. Based on Eq. (2.45) and (2.46) we have

b̄ = W̄z̄ = V(b + Wr) (2.47)

Now we can transform the problem (2.44) into the following privacy-preserving prob-

lem:

Minimize D(z̄)

subject to W̄z̄ = b̄

z̄ ≥ T−1r

(2.48)

Next, the encrypted problem (2.48) will be sent to the cloud server, and the GPM

will be applied to solve it. The complete procedure is summarized in Algorithm 2.

Algorithm 2 Secure algorithm for solving outsourced large-scale GP

Input: Starting point z0 that W̄z̄0 = b̄
Output: Optimal point z̄∗ for problem (2.48)
1: Initialize k = 0;
2: Compute P and d0 from Theorem 3;
3: Let d = d0;
4: while d 6= 0 do
5: Compute λmax using Eq. (2.42);
6: Solve the line search for λk:

λk = argmin(0 ≤ x ≤ λmax){ f(zk + λdk)};
7: Let z̄k+1 = z̄k + λkdk;
8: k = k + 1;
9: Compute dk from Theorem 3;

10: Let d = dk;
11: end while
12: Let z̄∗ = z̄k, and z̄∗ is a KKT point;
13: return z̄∗;

27

As stated in Algorithm 2, the cloud server continues the iteration until the secure

outsourcing algorithm converges to the KKT point z̄∗. Once the cloud server determines

that the algorithm has converged, it sends z̄∗ back to the client, who verifies the correctness

of the returned result based on KKT conditions. If the returned result satisfies the KKT

conditions, the client determines the returned result is correct and compute the solution to

the DGP problem (2.36) as follows:

z∗ = Tz̄∗ − r (2.49)

From (2.44), we have z∗ = (δ∗,u∗)t. Thus the solution to the original GP problem (2.1) can

be obtained by following Eq. (2.37).

2.6 Performance Evaluation

This section presents the computational complexity of the proposed solution and

experiment results.

2.6.1 Computational Complexity

The computational cost at each step is analyzed as follows. First, the client transforms

the original GP problem to the DGP problem, which takes O(m2) computational cost. Then,

the client employs the privacy-preserving matrix transformation to encrypt the coefficient

matrices, which induces a computational complexity of O(2m2 + 4mn). Next, the cloud

server solves the outsourced problem, which needs computation of O(2m2n + m3). Lastly,

the client recovers the optimal solution based on the returned solution from the cloud server,

resulting in a computational complexity of O(2mn).

To summarize, the proposed privacy-preserving outsourcing protocol requires compu-

tational complexity of O(max{mn,m2}) at the client side and that of O(max{m2n,m3}) at

the cloud side.

28

Table 2.1: Computing Time (12 cloud nodes, 16GB memory per node)

of Variables Solving GP by Client
Client’s Computing

in Our Solution
Cloud’s Computing

in Our Solution
1,000 21.6s 0.31s 6.7s
2,000 43.9s 0.39s 13.1s
3,000 77.6s 0.52s 29.2s
4,000 137.7s 0.65s 48.1s
5,000 254.9s 0.86s 79.6s
6,000 355.7s 1.03s 98.4s
7,000 536.1s 1.34s 142.7s
8,000 1352.7s 2.17s 301.8s

2.6.2 Experiment Results

In the following, we evaluate the performance of the proposed privacy-preserving

outsourcing protocol for GP through experiments. We implemented the proposed protocol

in a real-world scenario. The client side was implemented on a laptop with a dual-core 2.3

GHz CPU, 8GB RAM, and 256 GB solid state drive. The cloud side was implemented on

the Amazon Elastic Compute Cloud (EC2) with a number of computing nodes each of 16GB

memory. Both the client-side and the cloud-side computations were implemented by Matlab

R2018a. The GP problems used in evaluations are randomly generated. Each data point

presented below is the average of 20 runs with different randomness seeds.

We first measure the computing time of the proposed protocol at both the client

and the cloud side. In these experiments, we only used 12 cloud nodes. Table 2.1 shows

the results. It can be observed that the client can complete the needed computations very

quickly, even for large-size GPs. For example, it only takes the client 2.2s to complete the

computation for GP problem size 8000 (i.e., parameter m). The computing time of the cloud

server to obtain the optimal solution is much longer than the client due to the complex nature

of solving the problem. Not surprisingly, the computation time at both the client side and

the cloud side increases when the problem size increases.

Subsequently, we examine the computing saved for the client by our outsourcing

29

protocol. As shown in Table 2.1, we compare the computing time of the client when it solves

GP by itself with that when it outsources GP to the cloud. The saved computing increases

dramatically as the problem size increases. For example, the saving can reach 624-fold for

problem size 8000, indicating a 99.8% reduction in computing at the client. This validates

the efficacy of our proposed protocol for the client.

The overall delay for solving GP is also much shorter when outsourcing it to the

more powerful cloud. When the client solves GP by itself, the delay is the time shown in

the second column of Table 2.1. When the client outsources GP to the cloud using our

protocol, the overall delay is the client’s computing time (the 3rd column of Table 2.1) plus

the cloud’s computing time (the 4th column of Table 2.1). Here when delay is concerned the

communication time between the client and the cloud is neglected since it is much shorter

than the computing time. Then from Table 2.1, it can be seen that the overall problem

resolving delay is several times shorter in our solution.

Next, we investigate the computing time at the cloud server when a varying number

of nodes are used. The results are shown in Fig. 2.2. It can be observed that the computing

time of the cloud server decreases as the number of nodes used grows. For example, the

computing time is as low as 302s when 12 nodes are used compared with about 520s when

only 4 nodes are used. The computing time of the cloud server can be further shortened by

using more cloud nodes.

Lastly, we measure the computing time of the cloud server with different node memory

sizes. As it can be seen from Fig. 2.3, the computing time at the cloud server decreases as

the node memory increases. For example, when node memory size increases from 8GB to

32GB, the computing time decreases from 372s to 287s for problem size 8000, indicating a

huge time saving at the cloud side. We also noticed that when the memory size increases

from 16GB to 32GB, the reduction in computing time is only a little compared with the

30

4 nodes

8 nodes

12 nodes

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
s
)

0

100

200

300

400

500

600

Number of Variables

0 1000 2000 3000 4000 5000 6000 7000 8000

Figure 2.2: Computing time of cloud server with different node sizes

8GB node memory

16GB node memory

32GB node memory

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
s
)

0

100

200

300

400

Number of Variables

0 1000 2000 3000 4000 5000 6000 7000 8000

Figure 2.3: Computing time of cloud server with different node memory sizes

reduction when the memory size increases from 8GB to 16GB. That is because 16GB node

memory is already good for the maximum problem size experimented, i.e., 8000. When the

problem size is larger, the reduction in computing time when node memory increases from

16GB to 32GB should be more.

2.7 Related Work

In recent years, researchers have developed many protocols for privacy-preserving

cloud computing.

Based on fully homomorphic encryption (FHE) [15], Gennaro et al. [16] proposed

a privacy-preserving outsourcing algorithm by employing fully homomorphic encryption

31

(FHE). Wang et al. [17] developed an iterative algorithm to solve linear systems of equa-

tions, where a client transforms and encrypts the coefficient matrix using homomorphic

encryption, and the cloud carries out computations on ciphertexts. Hu et al. [18] designed

secure interactive protocols to distribute the feature extraction computations to two inde-

pendent cloud servers. However, these algorithms require the client to perform extensive

data pre-processing and encryption/decryption operations.

Without resorting to homomorphic encryption, Wang et al. [19] presented an efficient

algorithm to securely compute histogram of oriented gradients based on matrix transforma-

tions. Du et al. [20] designed a secure outsourcing protocol for the non-linear programming

problem by applying the reduced gradient method. Shen et al. [21] developed a secure out-

sourcing scheme to solve linear algebraic equations. Some secure outsourcing protocols for

matrix computation have also been developed, such as matrix inversion [22], matrix multi-

plication [23], and matrix determinant [24]. Besides, Zhang et al. [25] considered employing

matrix digest techniques to securely outsource batch matrix multiplication. However, the

privacy-preserving outsourcing algorithm for large-scale GPs has not been studied so far.

2.8 Summary

In this chapter, we investigated privacy-preserving outsourcing of large-scale geomet-

ric programming problems. To the best of our knowledge, this is the first work to solve

geometric programming in cloud computing with privacy protection. We employed a trans-

formation scheme to protect the client’s private data, and formally proved its effectiveness.

The gradient projection method was used by the cloud server to solve the transformed geo-

metric programming problem. Experimental results based on Amazon EC2 showed that the

proposed protocol can provide significant time savings to the client.

32

Bibliography

[1] E. Aarts and J. Korst, “Simulated annealing and boltzmann machines,” 1988.

[2] D. P. Palomar and Y. C. Eldar, Convex optimization in signal processing and commu-

nications. Cambridge university press, 2010.

[3] S. A. Zenios, Financial optimization. Cambridge university press, 2002.

[4] P. Khosravi, Y. Liang, Y. Choi, and G. V. d. Broeck, “What to expect of clas-

sifiers? reasoning about logistic regression with missing features,” arXiv preprint

arXiv:1903.01620, 2019.

[5] S. Fu, Q. Fan, Y. Tang, H. Zhang, X. Jian, and X. Zeng, “Cooperative computing

in integrated blockchain-based internet of things,” IEEE Internet of Things Journal,

vol. 7, no. 3, pp. 1603–1612, 2019.

[6] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable, and fine-grained

data access control in cloud computing,” in Infocom, 2010 proceedings IEEE, pp. 1–9,

Ieee, 2010.

[7] F. Chen, T. Xiang, and Y. Yang, “Privacy-preserving and verifiable protocols for scien-

tific computation outsourcing to the cloud,” Journal of Parallel and Distributed Com-

puting, vol. 74, no. 3, pp. 2141–2151, 2014.

[8] W. Bao and Q. Li, “Efficient privacy-preserving outsourcing of large-scale geometric

programming,” in 2018 IEEE Symposium on Privacy-Aware Computing (PAC), pp. 55–

63, IEEE, 2018.

[9] S. Boyd, S.-J. Kim, L. Vandenberghe, and A. Hassibi, “A tutorial on geometric pro-

gramming,” Optimization and engineering, vol. 8, no. 1, p. 67, 2007.

[10] J. Katz and Y. Lindell, Introduction to modern cryptography. CRC press, 2014.

33

[11] L. Zhou and C. Li, “Outsourcing large-scale quadratic programming to a public cloud,”

IEEE Access, vol. 3, pp. 2581–2589, 2015.

[12] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press, 2004.

[13] D. P. Bertsekas, Nonlinear programming. Athena scientific Belmont, 1999.

[14] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear programming: theory and

algorithms. John Wiley & Sons, 2013.

[15] C. Gentry et al., “Fully homomorphic encryption using ideal lattices.,” in STOC, vol. 9,

pp. 169–178, 2009.

[16] R. Gennaro, C. Gentry, and B. Parno, “Non-interactive verifiable computing: Outsourc-

ing computation to untrusted workers,” in Annual Cryptology Conference, pp. 465–482,

Springer, 2010.

[17] C. Wang, K. Ren, J. Wang, and Q. Wang, “Harnessing the cloud for securely outsourcing

large-scale systems of linear equations,” IEEE Transactions on Parallel and Distributed

Systems, vol. 24, no. 6, pp. 1172–1181, 2013.

[18] S. Hu, Q. Wang, J. Wang, Z. Qin, and K. Ren, “Securing sift: Privacy-preserving out-

sourcing computation of feature extractions over encrypted image data,” IEEE Trans-

actions on Image Processing, vol. 25, no. 7, pp. 3411–3425, 2016.

[19] Q. Wang, J. Wang, S. Hu, Q. Zou, and K. Ren, “Sechog: Privacy-preserving outsourcing

computation of histogram of oriented gradients in the cloud,” in Proceedings of the 11th

ACM on Asia Conference on Computer and Communications Security, pp. 257–268,

ACM, 2016.

[20] W. Du and Q. Li, “Secure and efficient outsourcing of large-scale nonlinear program-

ming,” in Communications and Network Security (CNS), 2017 IEEE Conference on,

pp. 1–9, IEEE, 2017.

34

[21] W. Shen, B. Yin, X. Cao, Y. Cheng, and X. S. Shen, “A distributed secure outsourcing

scheme for solving linear algebraic equations in ad hoc clouds,” IEEE Transactions on

Cloud Computing, 2017.

[22] C. Hu, A. Alhothaily, A. Alrawais, X. Cheng, C. Sturtivant, and H. Liu, “A secure and

verifiable outsourcing scheme for matrix inverse computation,” in INFOCOM 2017-

IEEE Conference on Computer Communications, IEEE, pp. 1–9, IEEE, 2017.

[23] X. Lei, X. Liao, T. Huang, and F. Heriniaina, “Achieving security, robust cheating

resistance, and high-efficiency for outsourcing large matrix multiplication computation

to a malicious cloud,” Information sciences, vol. 280, pp. 205–217, 2014.

[24] S. Fu, Y. Yu, and M. Xu, “Practical privacy-preserving outsourcing of large-scale matrix

determinant computation in the cloud,” in International Conference on Cloud Comput-

ing and Security, pp. 3–15, Springer, 2017.

[25] X. Zhang, T. Jiang, K.-C. Li, A. Castiglione, and X. Chen, “New publicly verifiable

computation for batch matrix multiplication,” Information Sciences, 2017.

35

3 Privacy-Preserving Cloud-Assisted Distributed Logistic Regression

3.1 Introduction

In recent years, more and more data are generated in various domains. Industries and

academia have been developing tools and techniques to transform data into useful knowledge

aimed to improve various aspects of our life [1]. With the recent advance in computation

power, machine learning algorithms have been widely adopted to analyze massive data and

make accurate predictions due to their excellent performance in modeling complex patterns

within data. Data sources, such as browsing histories in social media, smart wearables, and

medical data, are usually distributed and could be used together to help improve machine

learning algorithms.

While machine learning techniques are promising and gaining increasing popularity,

there may exist private information in the training data used by the machine learning al-

gorithms, and thus need to be protected. In the past decades, various privacy-preserving

algorithms have been proposed. Motlagh et al [2] presented an association rule (AR) tech-

nique to protect user data. In terms of collaborative learning, secure multi-party computation

(SMC) is proposed to protect intermediate results during training among distributed data

owners. SMC has been used in various machine learning tasks, such as learning decision

trees [3], linear regression functions [4], Naive Bayes classifiers [5], and k-means clustering

[6]. However, those techniques are usually computation-extensive, making it impractical for

large-scale applications.

Differential privacy [7] has also been widely adopted to protect user privacy. Theo-

retically, it could provide formal privacy guarantees no matter what extra information the

attackers have. A lot of work have adopted differential privacy to protect user privacy in

36

the training process. A typical approach is first generating noise via Laplace mechanism or

exponential mechanism and then building a noisy model for their dataset using these gener-

ated noises [8]. Some other approaches modify the objective function of the training model

[9]. These mechanisms can perturb the objective function by adding noise to coefficients,

and output predictions of the noisy model.

In fact, there exist various applications of logistic regression in academia and indus-

try. However, only a few work have been proposed to utilize differential privacy in logistic

regression algorithm. The main challenge would be that regression involves solving an opti-

mization problem. It is usually difficult to analyze the relationship between the optimization

results and the original data. Thus, it is hard to determine on the minimum amount of noise

necessary to make the optimization results differentially private. In addition, some users

may hold low-quality data possibly due to inaccurate data collection processes, which may

impact the effectiveness of the trained model in distributed learning. The protection of pri-

vacy usually hides any accurate information of a user’s data, making it difficult to check the

data quality.

In this chapter, we propose a privacy-preserving distributed logistic regression frame-

work that has high learning accuracy and is robust against low quality data of participating

clients. In particular, first each client computes the magnitude of relevance [10] between

the learning output and the input data features. Then, the local logistic regression learn-

ing objective is approximated with function of polynomial terms. Based on magnitudes of

relevance for each data feature, different carefully-crafted noises are injected to the different

coefficients of the polynomial objective function for achieving differential privacy; i.e. more

noise is injected to the coefficients with less relevant features and vice-versa. Then, all the

local parameters will be uploaded to a cloud server, which uses an evaluation dataset [11] to

measure how good each client’s data quality is. The cloud server selectively aggregates the

37

local parameters of a subset of clients based on their data quality and updates the global pa-

rameters in a way that preserves differential privacy. This process iterates until the training

converges.

The main contributions of this chapter are summarized as follows:

• We propose a differentially private distributed logistic regression framework, which

employs the relevance between input data features and the model output [10] to wisely

add noise to the objective function and maintain good learning accuracy.

• Extensive experimental results show that the proposed framework can achieve low mis-

classification rate, robustness against low quality data, and strong privacy guarantee.

The chapter is organized as follows. Section 3.2 explains the preliminaries of logistic

regression, differential privacy, and layer-wise relevance propagation. Section 3.3 presents

our privacy-preserving algorithm for distributed logistic regression. Section 3.4 presents

performance evaluation results. Section 3.5 discusses related work. Section 3.6 concludes

the chapter.

3.2 Preliminaries

In this section, we provide a background introduction to logistic regression, differential

privacy, and Layer-wise Relevance Propagation (LRP).

3.2.1 Logistic Regression

Logistic regression is a widely adopted machine learning algorithm and applied in dif-

ferent domains to solve regression and classification tasks. Given a database D with n feature

and label tuples, i.e. {(x1, y1), (x2, y2), · · · , (xn, yn)}, and xi = (xi1, xi2, · · · , xid) where d is

38

the dimension of data features, without loss of generality, we assume that
√∑d

j=1 x
2
ij ≤ 1

where xij > 0, yi ∈ {0, 1}.

The loss function is then defined as follows:

f(θ) =
1

n

n∑
i=1

[−yi log(hθ(xi))− (1− yi) log(1− hθ(xi))] (3.1)

where hθ is the output of the sigmoid function given by:

hθ(x) =
1

1 + exp(−θTx)
=

1

1 + exp(−
∑d

j=1 θjxj)
(3.2)

Here we are training the logistic regression model to find the optimal weights θ? that

minimizes the loss function f(θ):

θ? = arg min
θ
f(θ) (3.3)

When the training process terminates, given a new data point x = (x1, x2, · · · , xd),

the model is able to predict the binary value of the output as follows:

y =


1 if h?θ(x) ≥ τ

0 if h?θ(x) < τ
(3.4)

Typically, threshold τ is set as 0.5.

3.2.2 Differential privacy

Definition 1: Given two databases D and D′ differing at most one data tuple, let S

be a randomized algorithm, and O be the set which contains any possible output of S. S

achieves ε-differential privacy, if and only if the following holds:

39

Pr[S(D) = O] ≤ eεPr[S(D′) = O] (3.5)

where ε is the privacy budget that is used to control the strength of the privacy guarantee.

The privacy preservation of S is strong when the value of ε is small.

Laplace mechanism [8] is widely adopted as an efficient way to preserve ε-differential

privacy. In particular, the Laplace mechanism utilizes the global sensitivity ∆, which mea-

sures the largest difference in query results within D and D′. ε-differential privacy is guar-

anteed by injecting noise η into output of f(θ) as follows:

S(D) = f(D) + η,where η ∼ Lap(∆/ε) (3.6)

Since the Laplacian mechanism only works for numerical cases, Mcsherry et al. [12]

proposed the Exponential mechanism for achieving ε-differential privacy in selection process,

which is defined as follows:

Definition 2: Let u be a utility function, and ∆u be the sensitivity of the utility

function. Given a mechanism M and dataset D, we have

M(D, u) = choose r out of R with probability proportional to exp(
εu

2∆u
) (3.7)

where R denotes all the possible outcomes.

There are also two properties associated with differential privacy.

Property 1 (Sequential Composition): Let M1,M2, · · · ,Mn be a set of mechanism

and each satisfies εi−differential privacy, where i ∈ {1, ..., n}. Then the mechanism that

sequentially performs M1,M2, · · · ,Mn will achieve
∑

i εi−differential privacy.

Property 2 (Parallel Composition): Assume each Mi achieves εi−differential privacy,

where i ∈ {1, ..., n}. A mechanism that performs each Mi over disjoint dataset Di would

40

satisfy max(εi)−differential privacy.

3.2.3 Layer-wise Relevance Propagation

To measure how related model output is to input features, we adopt Layer-wise

Relevance Propagation (LRP) [10, 13] scheme. Specifically, LRP maps the relevances for

each layer in a backward sequence for a multi-layer framework. The relevance of nodes in

layer l will be calculated from relevance of connected nodes in layer l+ 1. Let Rl
i denote the

relevance value of node i in layer l, pli be the activation value of node i in layer l, and wij be

the weight between node i and j, so the relevance backward propagation process could be

written as follows:

aij = pliwij

Rl
i =

∑
j

aij∑
i aij + bl

Rl+1
j

(3.8)

where bl is the bias of layer l.

However, when the denominator
∑

i aij + bl is too small, the value of Rl
i could be

unbounded during the backward propagation process. An efficient way to address this issue

is to introduce a predefined stabilizer α as follows:

Rl
i =



∑
j

aij∑
i aij + bl + α

Rl+1
j if

∑
i

aij + bl ≥ 0

∑
j

aij∑
i aij + bl − α

Rl+1
j if

∑
i

aij + bl < 0

(3.9)

where α ≥ 0.

Hence, the relevance of nodes at each layer could be obtained by applying Eq. 3.8

and 3.9 in the backward propagation process. The relevance between model output f(θ)

41

Figure 3.1: Distributed logistic regression with low quality data

and input features can then be described as RL
f(θ) =

∑
iR

l0
i . Finally, we would compute the

average relevance Rj(D) for input features xij and perform linear normalization to range

(0, 1) as follows:

Rj(D) =
1

|D|
∑
xi∈D

Rl0
xij

Rj(D) =
Rj(D)−minj(Rj(D))

maxj(Rj(D))−minj(Rj(D))

(3.10)

3.3 Privacy-Preserving Distributed Logistic Regression

In this section, we introduce the privacy-preserving algorithm for distributed logistic

regression with relevance and data quality awareness.

3.3.1 System Architecture

As we can see in Fig. 3.1, there are two types of entity in the system: client and cloud

server. Specifically, each client holds a private dataset, and tries to collaboratively train a

logistic regression model with other clients. The cloud server coordinates the collaborative

42

training process at each iteration. Since each client is not willing to share his dataset due to

privacy or business concerns, this system allows clients to only share their updated gradients

and the cloud server coordinates and averages global parameters accordingly. Besides, there

exists an evaluation dataset on the cloud side in case some clients hold low quality data,

which might affect the model’s performance. The purpose of the evaluation set is to measure

the utility score (i.e. accuracy) of the model parameters from each client. Then the cloud

server chooses to accept model parameters from a subset of clients with differential privacy

guarantee.

We consider the following threat models. Firstly, we assume that the cloud server is

honest-but-curious. That is, the cloud server follows the algorithm but tries to infer clients’

data records during the training process. Additionally, the clients are also assumed to be

honest-but-curious, which means they correctly compute model parameters and upload to

the cloud server but try to learn other clients’ data records. Clients may also want to learn

about the data quality of other clients. Since other clients’ data quality information is not a

necessity to know, we also aim to protect clients’ data quality information from each other.

Note that since clients’ data quality information is very important for the server to purge

low quality data and improve learning accuracy, we do not aim to protect such information

from the cloud server. That is, clients’ data records are protected against the server but

their data quality information is not protected as a type of trade-off between privacy and

utility. Multiple clients may collude to learn the private information of other clients.

Since directly sharing parameters with the cloud server would breach data privacy,

each client adds Laplacian noise to the polynomial form of the objective function based

on the relevance magnitude of different input data features. Then, the noisy gradients are

uploaded to the cloud server. Next, on the cloud side, an evaluation set is employed to assess

the data quality of clients by testing on their uploaded gradients. A utility score is generated

43

after assessment. Simply choosing gradients from those clients with high utility scores may

also leak data quality privacy. For example, some clients may infer the data quality of other

clients if only high data quality clients are selected during the training process. Hence, we

adopt the exponential mechanism to protect the privacy of clients’ data quality while filtering

out low quality data with high probability. In the following, we will discuss the details of

proposed privacy-preserving mechanisms.

3.3.2 Differentially Private Relevance

Recall that for multi-layer structure, we can compute the relevance between the input

data features and the model output by applying LRP. Based on weights matrix multiplica-

tion, sigmoid activation function and unit step function workflow, a logistic regression model

can be structured to a multi-layer framework in the following way, and thus LRP can be

adopted to compute the relevance between the model output and input features.

In particular, for input layer l0 of logistic regression model, each dimension j of input

xi has the following relevance rule:

Rl0
j (xi) =



xijθj∑d
j=1 xijθj + b0 + α

RLs(xi) if
d∑
j=1

xijθj + b0 ≥ 0

xijθj∑d
j=1 xijθj + b0 − α

RLs(xi) if
d∑
j=1

xijθj + b0 < 0

(3.11)

where α is a predefined stabilizer and α ≥ 0. b0 is the bias term. RLs(xi) is the relevance

propagation rule for sigmoid function layer Ls and defined as follows:

RLs(xi) =
d∑
j=1

1

1 + exp(−θjxij)
RL(xi) (3.12)

44

For output layer L of logistic regression model, relevance of the final output layer L

with the unit step function shown in Eq. 3.4 can be rewritten as:

RL(xi) =


fxi(θ) if h?θ ≥ τ

0 if h?θ < τ
(3.13)

By substituting Eq. 3.12 to Eq. 3.8 and using Eq. 3.11 at the input layer and Eq.

3.13 at the output layer, the whole relevance between the input feature xij and the model

output would be computed. Hence, we have derived the relevance between the input features

and model output for logistic regression.

Since the original input data features are used to compute the relevance value in the

LRP scheme, the relevance value might also reveal clients’ input data and thus needs to be

protected. Hence, we adopt the Laplace mechanism to protect the privacy of original rele-

vance values. In particular, Laplace noise is injected into the Rj(D) to obtain the perturbed

relevance Rj, which is as follows:

Rj =
1

|D|
∑
xi∈D

Rl0
xij

+ Lap(
∆

ε1
) (3.14)

where ε1 is the privacy budget, and ∆ is the global sensitivity of relevance. According to Eq.

3.10, Rl0
xij

is linearly normalized to range (0, 1), and the number of input features is limited

as d, so the largest difference between the relevances of two neighboring dataset is 2d, and

the average relevance difference of dataset D is 2d/|D|. Therefore, ∆ is set to be 2d/|D|,

and the perturbed relevance Rj achieves ε1−differential privacy.

45

3.3.3 Relevance-aware Objective Function Perturbation

In this section, we will perturb the loss objective function of the logistic regression

model. Recall that the loss function of logistic regression is f(x,w) = log(1 + exp(xTi w))−

yix
T
i w. By applying the Tyler Expansion theorem [14] at the point x = 0, we have:

f̂(x,w) =
n∑
i=1

∞∑
k=0

f
(k)
1 (0)

k!
(xTi w)k −

(
n∑
i=1

yix
T
i

)
w (3.15)

According to Eq. 3.15, there exists the infinite summation term and no closed form

solution for f
(k)
i (0). To address these two issues, the infinite summation is truncated and

only reserve the first three orders, i.e. k = 0, 1, 2. So, we have f
(0)
1 = log 2, f

(1)
1 = 1/2, f

(2)
1 =

1/4. Then we have the polynomial function f̂D(w) =
∑n

i=1

∑
xi∈D γxiφ(w), where γxi is

the coefficient. Based on functional mechanism [9], the global sensitivity ∆L can be set as

2 maxi
∑n

i=1 |γxi |. Thus, we have:

∆L = 2 max

(
f

(1)
1 (0)

1!

d∑
j=1

xj +
f

(2)
1 (0)

2!

∑
j,l

xjxl + y
d∑
j=1

xj

)

≤ 2(d/2 + d2/8 + d) = d2/4 + 3d

Next, since some input features are more relevant to the model output and some are

less relevant, we introduce more noise to coefficients of the polynomial objective function

terms that have less relevant features and less noise to those with more relevant features.

According to the privacy-preserving relevance definition in Eq. 3.14, we can divide up the

total privacy budget ε2 proportionally to its relevance value, which is shown as follows:

46

αj =
Rj(D)∑d
j=1 Rj(D)

, ∀j ∈ [1, d]

γj =
∑
xi∈D

γjxi + Lap(
∆L

αjε2
)

(3.16)

Here αj can be treated as the corresponding contribution of the j th input feature to the

model output.

LEMMA 1. Given ∆L = d2/4 + 3d, the relevance-aware objective function pertur-

bation achieves ε2−differential privacy.

Proof 1. Let two datasets D and D′ be neighboring datasets. Without loss of generality,

assume D and D′ differ in the last tuple xn(x′n). Since the perturbation of the relevance

Rj(D) can be written as Eq. 3.14, we have:

Pr(f(D))

Pr(f(D′))
=

∏n
i=1

∏d
j=1 exp(

αjε2‖
∑

xi∈D
γjxi−γj‖

∆L
)∏n

i=1

∏d
j=1 exp(

αjε2‖
∑

x′
i
∈D′ γjx′

i
−γj‖

∆L
)

≤
n∏
i=1

d∏
j=1

exp(
αjε2 ‖

∑
xi∈D γjxi −

∑
x′i∈D′

γjx′i ‖
∆L

)

≤
n∏
i=1

d∏
j=1

exp(
αjε2 ‖ γjxn − γjx′n ‖

∆L

)

≤ exp(
ε2
∑n

i=1

∑d
j=1

Rj(D)∑d
j=1Rj(D)

‖ γjxn − γjx′n ‖

∆L

)

≤ exp(
2ε2 maxi

∑n
i=1 ‖ γxi ‖

∆L

)

= exp(ε2)

(3.17)

This concludes the proof.

47

3.3.4 Privacy-Preserving Selection

In the system, some clients may hold low-quality data, which is quite possible in

reality. Take medical data records for an example. Small hospitals may not have advanced

equipment to gather as accurate data as large hospitals. To reduce the possible impact of

low-quality data on learning accuracy, we propose a data quality-aware selection mechanism

on the cloud side to purge the effect of low-quality data. To ensure that clients cannot infer

other clients’ data quality information, the selection processes provides differential privacy

guarantee.

In particular, an evaluation dataset is utilized by the cloud server to assess each

client’s data quality. Each client’s uploaded gradients are evaluated with the dataset and a

utility score is generated. For simplicity, we use the publicly available benchmark dataset

MNIST [15] as the evaluation dataset (in deployment, other datasets could be used dependent

on the application scenarios) and classification accuracy is used as the utility score. If the

server directly chooses the clients whose model gradients have high utility scores, that could

potentially leak some clients’ data quality information to other clients via the aggregate

model parameters. To address this, we adopt the exponential mechanism to add uncertainty

to this selection process. Specifically, the server samples M clients without replacement such

that

Pr(choose client i) ∝ exp(
ε3ui

2M∆u
) (3.18)

where ui is the utility score of client i, and ∆u is the global sensitivity.

LEMMA 2. Given a dataset D, the global sensitivity ∆u for classification tasks

would be 1/2.

Proof 2. Let x and y be number of correct predictions and total number of records, respec-

48

tively. Since y ≥ 1 and y ≥ x, so we have:

∆u =
x+ 1

y + 1
− x

y

=
y − x
y(y + 1)

≤ 1/2

(3.19)

Thus, we set ∆u = 1/2, and this concludes the proof.

LEMMA 3. The selection process on the cloud side satisfies ε3−differential privacy.

Proof 3. According to Definition 2, selecting each client i satisfies ε3
M
−differential privacy.

The whole selection process samples M clients which would achieve ε3−differential privacy.

The whole privacy-preserving logistic regression scheme is summarized in Algorithm

3. On the client side, differentially private relevance and objective function perturbation

achieve (ε1 + ε2)−differential privacy for data records. On the cloud side, privacy-preserving

selection satisfies ε3−differential privacy for data quality information.

3.4 Performance Evaluation

In this section, we evaluate the performance of our differentially private logistic

regression algorithm with relevance and data quality awareness, which is abbreviated as

DPLRRQ. We use two well-known benchmark datasets: Integrated Public Use Microdata

Series (IPUMS)[16] and Default of Credit Card Clients [17]. There are 600,000 census records

in the IPUMS dataset, the attributes of which include Sex, Age, Race, Family Size, Number

of Children, Ownership of Dwelling, Living Difficulty, Education, Hours Work per Week,

Filed of Degree, Number of Children, Number of Rooms, Private Health Insurance, Marital

49

Algorithm 3 Privacy-preserving distributed logistic regression algorithm

Input: Database D1, D2, · · · , DN , loss function L(θ), privacy budget ε1, ε2, ε3, sampling size
M , the number of batches T , the number of clients N , random seed S

Output: θT

1: The cloud server initializes all the global parameters with random seed S
2: Each client downloads the current global parameters
3: Each client computes Rj(D) = 1

|D|
∑

xi∈D Rxij(xi) for j in [1, d] according to the LRP

Algorithm (3.10)
4: Set ∆ = 2d/|D| based on Section 3.3.2
5: for j ∈ [1, d] do
6: Rj = 1

|D|
∑

xi∈D Rxij(xi) + Lap(∆
ε1

)
7: end for
8: αj =

Rj(D)∑d
j=1Rj(D)

,∀j ∈ [1, d]

9: Convert loss function f(x,w) to approximated loss function f̂i(x,w)

10: f̂i(x,w) =
∑n

i=1

∑2
k=0

f
(k)
1 (0)

k!
(xTi w)k −

(∑n
i=1 yix

T
i

)
w

11: Set ∆L = d2/4 + 3d based on Lemma 1
12: for j = 1 to d do
13: γj =

∑
xi∈D γjxi + Lap(∆L

αjε2
)

14: end for
15: for t ∈ [T] do
16: for i = 1 to N do
17: Each client i computes θti = arg min f i(w)
18: The cloud server collects all the model parameters θti and choose to accept M clients

by applying (3.18)
19: The cloud server averages M model parameters, updates and broadcasts the global

parameters
20: end for
21: end for
22: return θT

50

Status, and Income Class. The logistic regression task based on this dataset is to classify

whether the person belongs to the high-income class or not. For the Default of Credit Card

Clients dataset, it contains 30,000 records and 24 attributes, including credit card owner

attributes (e.g., gender), history of past payment, amount of bill statement attributes, and

amount of previous payment attributes. The classification goal of Credit Card dataset is to

predict whether a credit user will default or not.

For categorical features in the two datasets, we use the one-hot encoding [18] to

transform these attributes to numerical values. All the other feature values are normalized

to range [0, 1]. We randomly sample 20% of the records as the testing set, 10% of the

records as the evaluation set, and the remaining records as the training dataset. Then

training dataset is randomly split into 5 partitions and each client holds one partition. N is

the total number of clients. The clients hold the partitions evenly, such that each partition

is held by N/5 clients. We use the misclassification rate as the performance metric, which is

defined as the ratio of falsely classified records to total records.

To simulate the low-quality data held by some clients, we randomly choose 1/3 of

clients and replace a random fraction (denoted by β) of their dataset with random noise

drawn from range [0, 1]. For simplicity, in the following, we set ε1 = ε2 = 1
2
ε3, and use ε to

denote ε3.

3.4.1 Compared Models

We compare our proposed scheme with other benchmark schemes. The first one

is the Central framework, where all the data are collected and trained in a centralized

manner without protecting privacy. The second one is ADMM [19], where each client adds

differentially private noise to the uploaded parameters in each iteration. The last one is the

standalone framework. No distributed learning is involved in the standalone framework, and

51

Central

Standalone

ADMM

DPLRRQ

M
is

c
la

s
s
ifi
�c
a

ti
o

n
 r

a
te

0.2

0.4

0.6

0.8

Communication rounds

50 100 150 200 250 300 350 400

(a) N = 5

Central

Standalone

ADMM

DPLRRQ

M
is

c
la

s
s
ifi
�c
a

ti
o

n
 r

a
te

0.2

0.4

0.6

0.8

Communication rounds

50 100 150 200 250 300 350 400

(b) N = 10

Central

Standalone

ADMM

DPLRRQ

M
is

c
la

s
s
ifi
�c
a

ti
o

n
 r

a
te

0.2

0.4

0.6

0.8

Communication rounds

50 100 150 200 250 300 350 400

(c) N = 15

Figure 3.2: Training convergence for the IPUMS dataset with different number of clients

each client learns based on its own data without considering privacy. All the frameworks are

implemented on Pytorch [20].

3.4.2 Training Convergence

In this experiment, we measure the training convergence with different frameworks.

The number of clients ranges from 5 to 15. We set β = 0, ε = 1 and M = 0.6N . As illustrated

in Fig. 3.2 and Fig. 3.3, our proposed DPLRRQ outperforms ADMM and Standalone, which

is especially clear over the Credit Card dataset. DPLRRQ outperforms ADMM because it

considers the relevance between input features and the model output which reduces the noise

added to the model and it also considers the data quality of clients which mitigates the impact

of low-quality data. Intuitively, the Standalone scheme achieves the worst misclassification

52

Central

Standalone

ADMM

DPLRRQ

M
is

c
la

s
s
ifi
�c
a

ti
o

n
 r

a
te

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Communication rounds

50 100 150 200 250 300 350 400

(a) N = 5

Central

Standalone

ADMM

DPLRRQ

M
is

c
la

s
s
ifi
�c
a

ti
o

n
 r

a
te

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Communication rounds

50 100 150 200 250 300 350 400

(b) N = 10

Central

Standalone

ADMM

DPLRRQ

M
is

c
la

s
s
ifi
�c
a

ti
o

n
 r

a
te

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Communication rounds

50 100 150 200 250 300 350 400

(c) N = 15

Figure 3.3: Training convergence for the Credit Card dataset with different number of
clients

53

rate due to the limited training data that each client has. The Central scheme has the

best performance since it has all the data and it does not add noise for differential privacy.

When the number of clients increases, however, the performance of our DPLRRQ scheme

gets closer to that of the the Central scheme. This is mainly because more data is available

for training at each iteration when there are more clients.

3.4.3 Data Quality

In this part, we evaluate the data quality awareness of the proposed scheme. To

better demonstrate the effectiveness of using an evaluation dataset at the cloud server in our

scheme, we add No Evaluation into comparison, which is the same as DPLRRQ except that it

does not have the privacy-preserving selection based on the evaluation dataset (see Section

3.3.4). Fig. 3.4 and Fig. 3.5 show the misclassification rates of different schemes when

the fraction of low-quality data β = 20%, 40%, 60%. Generally, the misclassification rate

increases as the amount of low-quality data increases. It is worth noting that there is minimal

degradation of performance in our scheme, while all the other frameworks are significantly

impacted. For example, at a high low-quality data level β = 60% in the IPUMS dataset,

the misclassification rate for DPLRRQ is 23%, while for Central, Standalone, ADMM and

No Evaluation, the misclassification rate reaches 38%, 45%, 44% and 44% respectively. This

shows the effectiveness of our scheme in considering data quality.

3.4.4 Accuracy vs. Privacy Budget

In this experiment, the classification accuracy of different schemes under various pri-

vacy budgets are evaluated. To show the effectiveness of considering the relevance between

input features and the output model in our proposed scheme DPLRRQ, we added No Rel-

evance into comparison, which is the same as DPLRRQ except that the relevance is not

54

Central

Standalone

ADMM

DPLRRQ

No evaluation

M
is

c
la

s
s
ifi
�c
a

ti
o

n
 r

a
te

0

0.1

0.2

0.3

0.4

0.5

Noise proportion β

20% 40% 60%

Figure 3.4: Misclassification rate of different frameworks with varying noise proportion
(IPUMS, N = 15)

Central

Standalone

ADMM

DPLRRQ (MNIST)

DPLRRQ (Adult)

No evaluation

M
is

c
la

s
s
ifi
�c
a

ti
o

n
 r

a
te

0

0.1

0.2

0.3

0.4

0.5

0.6

Noise proportion β

20% 40% 60%

Figure 3.5: Misclassification rate of different frameworks with varying noise proportion
(Credit Card, N = 15)

considered and the same scale of noise is added to all the coefficients of the objective func-

tion. As shown in Fig. 3.6 and Fig. 3.7, the misclassification rate of DPLRRQ, ADMM and

No Relevance decreases as the privacy budget increases. DPLRRQ outperforms ADMM and

No Relevance due to the consideration of relevance. Central and Standalone are not affected

by privacy budgets since they do not provide differential privacy. Our DPLRRQ scheme

reaches comparable misclassification rate with Central when ε = 1 or higher, which means

our scheme can achieve high accuracy while maintaining privacy. In addition, our scheme

outperforms Standalone when ε ≥ 0.1.

To summarize, our proposed DPLRRQ achieves a high model accuracy and a strong

55

Central

Standalone

ADMM

DPLRRQ

No relevance

M
is

c
la

s
s
ifi
�c
a

ti
o

n
 r

a
te

0.2

0.3

0.4

0.5

0.6

Privacy budget ε

0.01 0.1 1 10 100

Figure 3.6: Misclassification rate under different privacy budgets (IPUMS, N = 15)

Central

Standalone

ADMM

DPLRRQ

No relevance

M
is

c
la

s
s
ifi
�c
a

ti
o

n
 r

a
te

0.2

0.3

0.4

0.5

0.6

0.7

Privacy budget ε

0.01 0.1 1 10 100

Figure 3.7: Misclassification rate under different privacy budgets (Credit Card, N = 15)

privacy guarantee.

3.5 Related Work

There is a line of work on privacy-preserving logistic regression. Zhang et al. [21]

protected the training data via homomorphic encryption. Bost et al. [22] investigated several

classifiers in the setting of two-party computation, in which the server holds the secret model

and the client holds the sensitive data. Both interact in a way with many rounds so that

at the end the client learns the classifier with high accuracy. Recently, Jayaraman et al.

[23] proposed to improve the noise bounds of logistic learning by adding noise directly to

the aggregated model parameters in the multiparty computation setting. Duverle et al. [24]

also proposed a secure two-party learning algorithm to train the logistic regression classifier

without revealing private training sets from each client. Xie et al. [25] showed a secure

56

framework to train a logistic regression model in a distributed manner. Their method is

based on Yao’s garbled circuit and an additive homomorphic encryption scheme. Kim et

al. [26, 27] demonstrated secure outsourcing methods to train a logistic regression model on

encrypted data and showed their feasibility with real datasets. However, these encryption-

based schemes generally incur high computation and communication costs.

Zhang et al. [9] demonstrated the Functional mechanism (FM) that protects user data

by perturbing the coefficients of the objective function and finds the optimal parameters by

minimizing the perturbed objective function. However, the noise injected to coefficients are

the same, which may have negative impact on model accuracy. Ligett et al. [28] proposed a

general noise reduction framework for regularized linear regression based on the covariance

perturbation and output perturbation. In particular, the noise reduction mechanism is

adopted to generate a variety of private hypothesis by gradually relaxing the value of ε and

the privacy hypothesis can be computed by optimizing the perturbed objective function.

Recently, Du et al. [29] designed a privacy-preserving logistic regression training framework

by adding carefully-crafted noise to objective function. In addition, other works adopting

different types of noise scaling to achieve differential privacy over distributed data have

also been reported [30, 31, 32, 33]. However, the existing work has not addressed privacy-

preserving distributed logistic regression considering the relevance between input features

and the output model and the data quality of clients.

3.6 Summary

In this chapter, we investigated privacy-preserving distributed logistic regression. We

developed differentially private layer-wise relevance propagation and loss function pertur-

bation for logistic regression models, which can achieve high accuracy due to consideration

of the relevance between input data features and the output model. When generating the

57

aggregate model, the cloud server takes clients’ data quality into account through an evalu-

ation dataset while protecting clients’ data quality privacy via the exponential mechanism.

Experimental results showed that the proposed differentially private learning scheme can

achieve low misclassification rate and strong robustness against low-quality data.

Bibliography

[1] S. B. Kotsiantis, I. Zaharakis, and P. Pintelas, “Supervised machine learning: A review

of classification techniques,” Emerging artificial intelligence applications in computer

engineering, vol. 160, pp. 3–24, 2007.

[2] F. N. Motlagh and H. Sajedi, “Mosar: a multi-objective strategy for hiding sensitive

association rules using genetic algorithm,” Applied Artificial Intelligence, vol. 30, no. 9,

pp. 823–843, 2016.

[3] Y. Li, Z. L. Jiang, L. Yao, X. Wang, S. Yiu, and Z. Huang, “Outsourced privacy-

preserving c4. 5 decision tree algorithm over horizontally and vertically partitioned

dataset among multiple parties,” Cluster Computing, vol. 22, no. 1, pp. 1581–1593,

2019.

[4] G. Dudek, “Pattern-based local linear regression models for short-term load forecast-

ing,” Electric Power Systems Research, vol. 130, pp. 139–147, 2016.

[5] T. Li, J. Li, Z. Liu, P. Li, and C. Jia, “Differentially private naive bayes learning over

multiple data sources,” Information Sciences, vol. 444, pp. 89–104, 2018.

[6] X. Liu, X. Zhu, M. Li, L. Wang, E. Zhu, T. Liu, M. Kloft, D. Shen, J. Yin, and

W. Gao, “Multiple kernel k-means with incomplete kernels,” IEEE transactions on

pattern analysis and machine intelligence, 2019.

[7] C. Dwork, “Differential privacy,” Encyclopedia of Cryptography and Security, pp. 338–

340, 2011.

58

[8] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to sensitivity in

private data analysis,” in Theory of cryptography conference, pp. 265–284, Springer,

2006.

[9] J. Zhang, Z. Zhang, X. Xiao, Y. Yang, and M. Winslett, “Functional mechanism: re-

gression analysis under differential privacy,” arXiv preprint arXiv:1208.0219, 2012.

[10] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and W. Samek, “On

pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propa-

gation,” PloS one, vol. 10, no. 7, p. e0130140, 2015.

[11] L. Zhao, Q. Wang, Q. Zou, Y. Zhang, and Y. Chen, “Privacy-preserving collaborative

deep learning with unreliable participants,” IEEE Transactions on Information Foren-

sics and Security, vol. 15, pp. 1486–1500, 2019.

[12] F. McSherry and K. Talwar, “Mechanism design via differential privacy.,” in FOCS,

vol. 7, pp. 94–103, 2007.

[13] N. Phan, X. Wu, H. Hu, and D. Dou, “Adaptive laplace mechanism: Differential privacy

preservation in deep learning,” in 2017 IEEE International Conference on Data Mining

(ICDM), pp. 385–394, IEEE, 2017.

[14] G. B. Arfken and H. J. Weber, “Mathematical methods for physicists,” 1999.

[15] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to

document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[16] M. Center, “Integrated public use microdata series, international: Version 6.4

[database],” University of Minnesota, Minneapolis http://doi. org/10.18128/D020V64,

2015.

59

[17] I.-C. Yeh and C.-h. Lien, “The comparisons of data mining techniques for the pre-

dictive accuracy of probability of default of credit card clients,” Expert Systems with

Applications, vol. 36, no. 2, pp. 2473–2480, 2009.

[18] M. Cassel and F. Lima, “Evaluating one-hot encoding finite state machines for seu

reliability in sram-based fpgas,” in 12th IEEE International On-Line Testing Symposium

(IOLTS’06), pp. 6–pp, IEEE, 2006.

[19] Y. Hu, P. Liu, L. Kong, and D. Niu, “Learning privately over distributed features: An

admm sharing approach,” arXiv preprint arXiv:1907.07735, 2019.

[20] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,

L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,” 2017.

[21] J. Zhang, R. Jin, Y. Yang, and A. G. Hauptmann, “Modified logistic regression: An

approximation to svm and its applications in large-scale text categorization,” in ICML,

vol. 3, pp. 888–895, 2003.

[22] R. Bost, R. A. Popa, S. Tu, and S. Goldwasser, “Machine learning classification over

encrypted data.,” in NDSS, vol. 4324, p. 4325, 2015.

[23] B. Jayaraman and L. Wang, “Distributed learning without distress: Privacy-preserving

empirical risk minimization,” Advances in Neural Information Processing Systems, 2018.

[24] D. A. Duverle, S. Kawasaki, Y. Yamada, J. Sakuma, and K. Tsuda, “Privacy-preserving

statistical analysis by exact logistic regression,” in 2015 IEEE Security and Privacy

Workshops, pp. 7–16, IEEE, 2015.

[25] W. Xie, Y. Wang, S. M. Boker, and D. E. Brown, “Privlogit: Efficient privacy-preserving

logistic regression by tailoring numerical optimizers,” arXiv preprint arXiv:1611.01170,

2016.

60

[26] M. Kim, Y. Song, S. Wang, Y. Xia, and X. Jiang, “Secure logistic regression based on

homomorphic encryption: Design and evaluation,” JMIR medical informatics, vol. 6,

no. 2, p. e19, 2018.

[27] A. Kim, Y. Song, M. Kim, K. Lee, and J. H. Cheon, “Logistic regression model training

based on the approximate homomorphic encryption,” BMC medical genomics, vol. 11,

no. 4, pp. 23–31, 2018.

[28] K. Ligett, S. Neel, A. Roth, B. Waggoner, and S. Z. Wu, “Accuracy first: Selecting a dif-

ferential privacy level for accuracy constrained erm,” in Advances in Neural Information

Processing Systems, pp. 2566–2576, 2017.

[29] W. Du, A. Li, and Q. Li, “Privacy-preserving multiparty learning for logistic regres-

sion,” in International Conference on Security and Privacy in Communication Systems,

pp. 549–568, Springer, 2018.

[30] Y. Fan, J. Bai, X. Lei, Y. Zhang, B. Zhang, K.-C. Li, and G. Tan, “Privacy preserving

based logistic regression on big data,” Journal of Network and Computer Applications,

vol. 171, p. 102769, 2020.

[31] L. Song, H. Wu, W. Ruan, and W. Han, “Sok: Training machine learning models over

multiple sources with privacy preservation,” arXiv preprint arXiv:2012.03386, 2020.

[32] S. Suthaharan, “Characterization of differentially private logistic regression,” in Pro-

ceedings of the ACMSE 2018 Conference, pp. 1–8, 2018.

[33] J. M. Cortés-Mendoza, A. Tchernykh, M. Babenko, L. B. Pulido-Gaytán, G. Radchenko,

F. Leprevost, X. Wang, and A. Avetisyan, “Privacy-preserving logistic regression as

a cloud service based on residue number system,” in Russian Supercomputing Days,

pp. 598–610, Springer, 2020.

61

4 Privacy-Preserving Cloud-Assisted Efficient Federated Learning

4.1 Introduction

In recent years, more and more data are generated by individuals in various domains.

Industries and academia have been developing tools and techniques to transform data into

useful insights aimed to improve various aspects of our life [1]. Machine learning techniques

have gained increasing popularity over years to extract knowledge from data. For example,

massive data from social media websites and apps have been collected every year, such

as browse histories in Twitter, which facilitates analysis and sending customized contents

to targeted customers. Machine learning algorithms also have massive applications in the

medical field. For example, hospitals have been adopting advanced computer vision devices

to detect cancer based on the images. This could provide high detection accuracy and easy

to scale.

Traditionally, a typical machine learning algorithm is to learn and make predictions

based on a single dataset [2]. However, a number of data resources are increasingly dis-

tributed and owned by different organizations. For example, financial data can be distributed

in several banks and financial institutes. Pooling data from multiple sources for learning can

usually achieve better prediction performance. Consequently, the traditional paradigm of

learning from a single dataset has been shifting towards distributed learning, i.e., data from

multiple parties are used to collaboratively train a learning model. In a conventional collab-

orative learning approach, there exists a central server, i.e., a cloud server and let multiple

data owners directly upload their data to the cloud server for training [3, 4].

Although federated learning achieves better performance than single dataset based

learning, there are some concerns on the data privacy. It is likely that during the training

62

process, the private information of each party, e.g. health data records, can be disclosed,

which will breach users’ privacy. Hitaj et al. [5] proposed a GAN-based reconstruction attack

against the federated learning by assuming a malicious client, which utilized the shared model

as the discriminator to train a GAN framework. Hence, it becomes increasingly critical to

design a protocol to train a learning model from the distributed datasets, while guarantee

their privacy.

In addition, most federated learning frameworks require massive training data from

clients. Clients are usually distributed and may perform their unique activities associated

with their own environment, which leads to local dataset generated with different sizes

and distributions. In other words, clients generally holds non-IID dataset. Moreover, mo-

bile clients usually have limited resources and could not participate in time-consuming and

communication-extensive training process. Thus, efficiency aspect of federated learning also

needs to be addressed.

In this chapter, we propose an efficient privacy-preserving federated learning algo-

rithm. Specifically, each client trains on his local dataset and select the gradients that are

aligned with global model gradient tendency, as some local updates may not contribute to

the model convergence due to non-IID data among clients. Gradient magnitude is also con-

sidered as another selection criteria as large magnitude usually means more impact to model

training. By excluding these less consistent gradient uploads, the communication overhead

could be reduced significantly. In addition, clients will first add noise to perturb the gradi-

ents uploading to cloud server. Then, homomorphic encryption is adopted to encrypt the

noisy gradients before uploading to cloud server. Finally, the cloud server decrypts the sum

of the noisy gradients and updates the global model parameters without learning anything

else.

The main contributions of this chapter are summarized as follows:

63

• We propose an efficient privacy-preserving federated learning framework, which care-

fully selects aligned and large magnitude gradients for uploading and in this way sig-

nificantly accelerates convergence and reduces the communication overhead during

training.

• We propose a privacy-preserving gradient uploading scheme that combines distributed

and collective noise adding and efficient homomorphic encryption to achieve differential

privacy without incurring too much noise. In particular, each client’s data is protected

by adding a small amount of noise to selected gradients before uploading. Noisy gradi-

ents are then encrypted so that the cloud server will only get the noisy sum of gradients.

The noisy sum contains minimal but enough noise to achieve ε−differential privacy.

Our scheme does not rely on the cloud server or a third party to add noise; the clients

collaboratively generate noise for differential privacy.

• Extensive experimental results show that the proposed scheme can achieve high accu-

racy while dramatically reduces communication overhead with strong privacy guaran-

tee.

The rest of the chapter is organized as follows. Section 4.2 presents preliminaries

for distributed SGD and differential privacy. Section 4.3 introduces proposed framework.

Performance evaluation is presented in Section 4.4. Section 4.5 reviews related work. Section

4.6 concludes this chapter.

4.2 Preliminaries

4.2.1 Distributed SGD

Deep learning has been widely adopted to extract useful knowledge in image recog-

nition, text mining, and audio inferences areas. Stochastic gradient descent (SGD) [6] is

64

proposed and proven to be an efficient way to train deep learning frameworks. In particular,

with a mini-batch of client data, the model first computes the objective loss function L(θ)

based on the difference of predicted label y′ and ground truth label y. Then, the loss func-

tion would be minimized by updating the weights of model through −∂L/∂θ direction. The

training process iterates until convergence.

Distributed SGD [7] has been proposed to minimize the objective loss function L(θ)

in distributed ways. Applying classic mini-batch SGD, we perform updates to the model

parameters θ in the following way. Let αn ∈ Dn be a mini-batch dataset of client n, then at

each iteration k, distributed SGD can be performed as follows:

θk+1 := θk − η[
1

N

∑
n∈N

g(θk)] (4.1)

where each client n computes his own gradient g(θ) = (1/|αn|)
∑

i∈αn
∆l(θ;xni , y

n
i) based on

the mini-batch αn, and the cloud server averages these gradients from all the clients and

updates the global model parameters with learning rate η.

4.3 System Framework

In this section, we will introduce the system architecture, efficient gradient upload

and differentially-private uploading scheme under the federated learning framework.

4.3.1 System Overview

The federated learning framework for deep learning with edge computing is depicted

in Fig. 4.1. The system consists of two different entities: client node and cloud server. Client

nodes include different kinds of devices, such as smartphones, laptop, and wearable devices.

Specifically, each client node holds his own private dataset D, and is willing to col-

65

Figure 4.1: Federated learning framework

laboratively train a deep learning model without revealing his own data. Generally mobile

clients are resource-limited. Thus, the local gradients are selected based on the efficient

gradient upload scheme. Moreover, local gradients are perturbed with differentially-private

noise and encrypted before uploading to prevent the cloud server from learning additional

information (e.g. each client’s data). The noisy sum aggregated by the cloud server will not

change much whether a client participates or not.

Despite the federated learning system benefits significantly from edge computing,

there are mainly two challenges existing in the system: a) during training process, how to

reduce communication overhead while ensure high model utility; b) how to securely aggregate

each client’s gradients with leaking his data privacy. To address those challenges, we propose

an efficient gradient selection scheme and privacy-preserving parameter updating mechanism

respectively.

4.3.2 Threat Model

We assume an honest-but-curious cloud server. Namely, the cloud server will correctly

execute operations according to the algorithm, but is curious to learn any information from

the clients. Additionally, some clients may be compromised during training to collude and

steal sensitive information from honest clients. It is assumed that the system has an estimate

over the upper bound of β for the fraction of compromised clients.

66

A trusted key dealer is also assumed to securely issue keys to the clients and the cloud

server. Note that this assumption can be easily relaxed to an honest-but-curious key dealer

not colluding with the cloud server.

4.3.3 Local Gradient Selection

Motivation

In federated learning domain, the learning model is obtained by pooling massive

distributed local models. Since local models are trained using the client-specific data, to

some extent, there exists difference between the local and global models. As we mentioned

the non-IID property of local data, some local updates may not contribute to the training

process. For example, when training a computer vision framework on mobile, clients usually

have different local datasets associated with his own environment and usage pattern. Some

local updates could be tangential to the collaborative trend of the training convergence.

Thus, uploading these local gradients to the cloud server makes little contributions and may

also slow down the convergence of the training process.

Communication-efficient Upload

Since some local updates may not contribute to the convergence of training process,

we need to find a way to identify and filter out these local updates. The intuition here is

to compare the local updates with global trend. Specifically, the global gradient direction

indicates the current global convergence trend, if the local updates could not align well with

the global direction, then there is no need to upload the current local updates to the cloud

server.

Gradient magnitude has been used to estimate the relevance of the local updates in

many work ([9], [10]). However, even though magnitude could be an good estimate of local

67

updates, it may still not identify and filter out those helpless local gradients. Specifically,

some local updates may contain gradients with large norm magnitude, but their gradient

direction may not be consistent with global model trend, therefore contributes little to global

convergence. To the contrary, some local updates with small norm magnitude could have

significant impact to global convergence if their gradient direction aligns well with global

trend.

Algorithm 4 Communication-efficient federated learning

Input: Database D1, D2, · · · , DN , mini-batch size B, alignment threshold ωλ, magnitude
threshold ωm, learning rate η, number of gradients M , bound C, privacy budget ε1

Output: θT

1: Initialize global parameters and global gradient g0

2: for each iteration t = 1, · · · , T do
3: for all client i = 1, 2, · · · , N in parallel do
4: Client i downloads current global model parameters θt

5: Client i computes the gradients gti based on his own dataset
6: if λ(gti,g

t−1) + Lap(4M
ε1

) ≥ ωtλ + Lap(2M
ε1

) or |gti| + Lap(8MC
ε1

) ≥ ωtm + Lap(4MC
ε1

)
according to Eq. 4.3 and 4.4 then

7: Client i uploads gti to cloud server
8: Cloud server adds gti to set κ
9: end if

10: end for
11: Cloud server computes the average of uploaded gradients: gt = 1

|κ|
∑

gt
i∈κ

gti
12: θt+1 = θt − ηgt
13: end for
14: return θT

To this end, we propose an efficient communication upload scheme which considers

not only the magnitude, but also the local gradient direction alignment with the current

global convergence trend. Specifically, in each learning iteration, clients compare their local

updates with the global update so as to determine if their updates are aligned with global

update. The challenge here is that the global update cannot be known before the cloud

aggregation happens. One way to address this is to use the global gradients from previous

iteration to estimate the current global gradients, because there usually exists only slightly

68

change between two consecutive updates.

Next, we propose an efficient way to measure the alignment of local update and

global update. In particular, we compare the sign of the local gradients and global gradients

element-wise, as same sign of gradients indicates similar tendency of updates. For each

iteration t, the metric is described as follows:

ψ(gtij, g
t
j) =


1, sign(gij) = sign(gij)

0, otherwise

(4.2)

λ(gti,g
t) =

1

M

M∑
j=1

ψ(gtij, g
t
j) (4.3)

where gti and gt mean the local gradient for client i and global gradient at iteration t,

respectively. M is the length of the gradients.

If the value of alignment metric in Eq. 4.3 for local update and global update is less

than a pre-defined threshold ωtλ, where t is the iteration index, the local update will not be

uploaded to the cloud server since it’s not consistent with the tendency of global convergence.

In this way, we can significantly reduce the communication overhead in the training process.

In addition, for gradient magnitude, we also select the local gradients which are

greater than a pre-defined threshold to upload, as large magnitude would have significant

contribution to global convergence. The whole selection process of each client i at iteration

t is shown as follows:

Selectionti = {gti| λ(gti,g
t) ≥ ωtλ or |gti| ≥ ωtm} (4.4)

Since how gradients are selected for sharing may also leak clients’ privacy, we adopt

sparse vector technique [11] to protect the threshold selecting process. The details of the

69

procedure is summarized in Algorithm 4.

4.3.4 Privacy-preserving Parameter Update

Since the model training process requires gradients sharing between clients and cloud

server, the cloud server might learn each client’s gradients during training process which

will breach clients’ privacy. To this end, we propose a privacy-preserving parameter update

scheme. In particular, clients will first perturb the gradients uploading to cloud server by

adding Laplacian noise. Then, the noisy gradients will be encrypted with homomorphic

encryption before uploading to cloud server. Finally, the cloud server decrypts the sum of

the noisy gradients and updates the global model parameters.

There are three privacy aspects being considered in our scheme. First, the cloud

server gets the noisy sum only but nothing else (e.g. each individual client’s data). Second,

an client will not infer anything without the cloud sever capability. The last privacy aspect

is that the noisy sum obtained by cloud server will not be affected much whether a specific

client participate in the training or not. We will describe the details of encryption method

and achieving differential privacy in the following sections.

Encryption method [12]

Setup: The key dealer first creates a set of Nq random secrets, i.e. T = {t1, · · · , tNq}.

Set T is randomly separated into N disjoint subsets T1, · · · , TN , where there are q secrets in

each subset. Then, a subset T̃ of s secrets is randomly sent to the cloud server. Next, T − T̃

is again divided into N disjoint subsets T ′1, · · · , T ′N . Each client i receives Ti and T ′i .

Encryption: At each round t, each client generates key ki = (
∑

j∈Ti H(fj(t)) −∑
j∈T ′i

H(fj(t))) mod M , where M = 2dlog2(NC)e and C is the maximum value of gradi-

ents. As suggested in [12, 13], inner function fj(t) could be implemented as the HMAC of

70

t with j as the key to save operation time. Moreover, function H could be formulated in

a way that truncates the output of fj(t) into shorter bits with length of log2M and uses

exclusive-OR to compensate the bits of the intermediate output. Each client finally encrypts

his own gradients by computing gi = (gi + ki) mod M .

Decryption: At each round t, the cloud sever generates key k0 = (
∑

j∈T̃ H(fj(t)))

mod M , which is used to decrypt the sum S by computing S = (
∑N

i=1 gi − k0) mod M .

Achieving differential privacy for update

Since the accurate sum S of gradients may leak clients’ privacy, we adopt differential

privacy to add noise to the gradients on the client side so that the cloud server would only

learn the noisy sum. Also the noisy sum will not change much whether a specific client

participates or not.

In particular, first each client clips the gradients to have bounded sensitivity ∆. The

clipping function we use is as follows:

Clip(gi) = min(1,
C

||gi||
)gi (4.5)

where C is the desired gradient bound.

Next, noise ri is added to each client’s gradients such that

gi = Clip(gi) + ri (4.6)

Here, if the noise ri is too large (e.g. making each clients’ gradients differentially

private), the cloud server would collect massive noise in the gradient summation, which

degrades the performance of trained model. If the noise ri is too small, the summation of

gradients may not be fully protected against privacy leakage. Hence, considering β fraction

71

compromised clients may contribute wrong noise to cloud server, we set

ri =
Lap(C/ε)

(1− β)p
(4.7)

where ε is the privacy budget, and p is the total number of clients at each iteration. In this

way, clients would collectively contribute enough noise to achieve differential privacy in the

summation of gradients on the cloud server side.

By following [14], privacy bugdet under Laplace mechanism can be estimated by

adopting moments accountant mechanism. In particular, for laplace mechanism with x ∈

Lap(∆f
ε

), privacy loss function L(x) can be formulated as follows:

L(x) =


−ε if x > ∆f

− ε

∆f
(2x−∆f) otherwise

(4.8)

Let ∆f = C, the λ-th moment function αL(λ), which denotes the log of the moment

generating function evaluated at λ, would be obtained as:

αL(λ) = log[
λ+ 1

2λ+ 1
eλε +

λ

2λ+ 1
e(−ε(λ+1))] (4.9)

According to Tail bound theorem in [14], the whole algorithm achieves (ε, δ)−differential

privacy by solving the following tail bound equation:

δ = min
λ

exp[αL(λ)− λε] (4.10)

Thus, the moments accountant mechanism would output the accumulated privacy

cost when the training process terminates.

72

Algorithm 5 Communication-efficient differentially-private federated learning

Input: Database D1, D2, · · · , DN , total iterations T , mini-batch size B, privacy budget
ε1, ε2, learning rate η, number of gradients M , bound C

Output: θT

1: Initialize global parameters and gradients g0

2: for each iteration t = 1, 2, · · · , T do
3: for all client i = 1, 2, · · · , N in parallel do
4: Client i receives current global model parameters
5: Client i computes the gradients gti based on his own dataset
6: if λ(gti,g

t−1) + Lap(4M
ε1

) ≥ ωtλ + Lap(2M
ε1

) or |gti| + Lap(8MC
ε1

) ≥ ωtm + Lap(4MC
ε1

)
according to Eq. 4.3 and 4.4 then

7: Client i sends notification to cloud server
8: end if
9: end for

10: The cloud server waits for notifications from all clients and randomly selects p clients
at iteration t

11: if p clients are selected then
12: The key dealer runs the setup process to assign secrets to the server and the p clients
13: for all client i = 1, 2, · · · , p in parallel do
14: Clip gradients gti = min(1, C

||gt
i||

)gti according to Eq. 4.5

15: Add Laplacian noise to gradients gti = gti + Lap(C/ε2)
(1−β)p

based on Eq. 4.7
16: Encrypt the noisy gradients and upload to cloud server according to section 4.3.4
17: end for
18: The cloud server decrypts the noisy sum with its key k0

19: Global parameters are updated by: θt+1 = θt − η[1
pB

(
∑p

i=1 gti + Lap(C/ε2))]
20: else if less than p clients are received at iteration t then
21: The cloud server performs no global updates and continues to iteration t+ 1. Each

client updates his parameters locally for iteration t
22: end if
23: end for
24: return θT and accumulated privacy cost (ε, δ)

73

To summarize, after the initialization step, all clients whose gradients align well with

global gradient or have large norm magnitude would send cloud server a notification. The

cloud server waits for notifications from all clients and randomly selects a subset of clients at

each iteration to upload their gradients through gradient clipping and encryption uploading

steps. Then the cloud server would decrypt the noisy sum with its key and update the

global parameters. If there are less than expected clients at the iteration, the global gradient

updating process would abort and proceed to next iteration. All the clients would update

their parameters locally at this iteration. The entire communication efficient differential

privacy algorithm is summarized in Algorithm 5.

LEMMA 1. Let’s set global sensitivity ∆ = 2C, Algorithm 5 achieves ε2−differential

privacy for cloud aggregation.

Proof 1. Let two datasets D and D′ be neighboring datasets. Without loss of generality,

assume D and D′ differ in the last tuple xn(x′n). Aggregation in the cloud server is written

as follows:

ĝ =

p∑
i=1

gti + Lap(C/ε2) (4.11)

So we have:

74

Pr(S(D) = z)

Pr(S(D′) = z)
=

∏n
i=1 exp(

ε2‖ 1
|D|

∑
xi∈D

g(xi)−ĝ‖
∆

)∏n
i=1 exp(

ε2‖ 1
|D′|

∑
x′
i
∈D′ g(x

′
i)−ĝ‖

∆
)

≤
n∏
i=1

exp(
ε2 ‖

∑
xi∈D g(xi)−

∑
x′i∈D′

g(x′i) ‖
|D|∆

)

≤
n∏
i=1

exp(
ε2 ‖ g(xn)− g(x′n) ‖

|D|∆
)

≤
n∏
i=1

exp(
2ε2C

|D|∆
)

≤ exp(

∑n
i=1 2ε2C

|D|∆
)

= exp(ε2)

(4.12)

This concludes the proof.

4.4 Performance Evaluation

4.4.1 Benchmark Frameworks

In this section, the effectiveness of proposed algorithm will be evaluated. We imple-

ment the following four SGD-based frameworks for comparison.

1) Vanilla FL[15]: This is the conventional, no-privacy framework.

2) DSSGD [9]: Under this scheme, differential privacy noise is added into selected

gradients. The parameters (e.g. batch size, learning rate) of DSSGD are tuned to its best

performance and the hyperparameters are set as follows: gradient upload ratio θu = 0.5,

gradient download ratio θd = 1, gradient selection threshold τ = 0.0001, and gradient bound

γ = 0.001.

3) EPFL[16]: Under this scheme, differential privacy noise is added into gradients.

75

Then additively homomorphic encryption is adopted to encrypt noisy gradients before up-

loading to cloud server.

4) Standalone framework: In this framework, clients individually train local models

using standard SGD without any collaboration, which are susceptible to being trapped at

local optima.

4.4.2 Dataset and Experimental Setup

We experiment on two benchmark datasets: MNIST [17] and SVHN [18]. There are

70,000 data records in the MNIST dataset, out of which 60,000 records are training records

and the remaining are testing records. The size of each record is 32× 32, and it is grey-level

image with digits centered and ranging from 0 to 9. SVHN is another well-known dataset

which shows house numbers in different street views. There are 600,000 32×32 color images

in SVHN dataset. We use 100,000 as training examples and 10,000 as testing examples.

We use the accuracy of classification to evaluate the performance of different frame-

works. All the samples are sorted by their digit labels and then each client receives same

amount of examples (3,000 examples for MNIST, and 5,000 examples for SVHN), which

simulates a non-IID data distribution.

In this experiment, one of the most popular neural network architectures is imple-

mented, convolutional neural network (CNN). CNN framework is built with two convolu-

tional layers, which is followed by a Sigmoid layer and a max pooling layer for each convo-

lutional layer.

The architecture is implemented using Pytorch [19] framework. We set the learning

rate as 0.01 and the mini-batch size as 16. For weights initialization, we draw random value

from normal distribution with 0 mean and 1 standard deviation.

For MNIST dataset, we set clipping bound C = 1, and δ = 10−5. For SVHN dataset,

76

Vanilla FL

Standalone

DSSGD

EPFL

Our scheme

A
c
c
u

ra
ry

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Training iteration

100 200 300 400 500 600 700

(a) 30 client nodes

Vanilla FL

Standalone

DSSGD

EPFL

Our scheme

A
c
c
u

ra
ry

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Training iteration

100 200 300 400 500 600 700

(b) 60 client nodes

Vanilla FL

Standalone

DSSGD

EPFL

Our scheme

A
c
c
u

ra
ry

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Training iteration

100 200 300 400 500 600 700

(c) 90 client nodes

Figure 4.2: Model accuracy for different frameworks (MNIST)

we set clipping bound C = 0.5, and δ = 10−5. ε1 = ε2 = 1/2ε. The accumulated privacy

budget ε for each setting is computed using the privacy moments accounting method [14].

The experiments were set up with different clients to simulate federated learning setting.

The initial alignment threshold ωλ is set as 0.5. The initial value of ωm is set as 10%. Below,

we evaluate the performance of our framework in different settings.

4.4.3 Communication Overhead

In this section, communication overhead is measured among different frameworks.

Here we set an intermediate value of ε = 10 and upper bound for δ as 10−5. As we can

see from Fig. 4.2 and 4.3, generally our scheme outperforms DSSGD, EPFL and standalone

frameworks under different settings and datasets. With the same training accuracy, the

77

Vanilla FL

Standalone

DSSGD

EPFL

Our scheme

A
c
c
u

ra
ry

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Training iteration

200 400 600 800 1000 1200 1400

(a) 30 client nodes

Vanilla FL

Standalone

DSSGD

EPFL

Our scheme

A
c
c
u

ra
ry

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Training iteration

200 400 600 800 1000 1200 1400

(b) 60 client nodes

Vanilla FL

Standalone

DSSGD

EPFL

Our scheme

A
c
c
u

ra
ry

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Training iteration

200 400 600 800 1000 1200 1400

(c) 90 client nodes

Figure 4.3: Model accuracy for different frameworks (SVHN)

performance of our scheme needs much less training iterations than DSSGD, EPFL and

Vanilla FL. For example, under 30 client nodes scenario with MNIST dataset, when train-

ing accuracy reaches 80%, our scheme needs only 180 iterations under 30 clients setting,

while DSSGD needs 44% more iterations, Vanilla FL needs 66% more iterations and EPFL

needs 133% more iterations, which shows the effectiveness of uploading aligned gradients

in our scheme. For SVHN dataset, the comparison results are also similar to performance

with MNIST dataset. As the total number of clients increases, generally we achieve better

performance results. This is mainly due to more data is available to the model at each

iteration.

78

Vanilla FL

Standalone

DSSGD

EPFL

Our scheme

A
c
c
u

ra
ry

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Privacy budget

0.1 1 10 100

(a) 30 client nodes

Vanilla FL

Standalone

DSSGD

EPFL

Our scheme

A
c
c
u

ra
ry

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Privacy budget

0.1 1 10 100

(b) 60 client nodes

Vanilla FL

Standalone

DSSGD

EPFL

Our scheme

A
c
c
u

ra
ry

0.75

0.80

0.85

0.90

0.95

1.00

Privacy budget

0.1 1 10 100

(c) 90 client nodes

Figure 4.4: Accuracy of different frameworks with varying privacy budget (MNIST)

4.4.4 Privacy Budget

In this experiment, we will evaluate the tradeoff between model accuracy and privacy

budget ε. Specifically, the alignment threshold ωλ = 0.8, ωm = 0.1. We vary the privacy

budget from 0.1, · · · , 100 with δ as 10−5.

As we can see from Fig. 4.4 and 4.5, our proposed scheme could achieve comparable

accuracy with vanilla FL framework with modest privacy budget. For example, when ε =

5, 10, N = 30 in MNIST dataset, our scheme achieves 92.5% and 93.5% accuracy respectively,

which is comparable to that of vanilla FL (i.e. 94%). Moreover, our scheme outperforms

EPFL, DSSGD and standalone frameworks with different privacy budget. This is mainly due

to much less noise is added on the client side during training, hence the model performance

would not degrade much. With more clients participating in the federated learning, the

79

Vanilla FL

Standalone

DSSGD

EPFL

Our scheme

A
c
c
u

ra
ry

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Privacy budget

0.1 1 10 100

(a) 30 client nodes

Vanilla FL

Standalone

DSSGD

EPFL

Our scheme

A
c
c
u

ra
ry

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Privacy budget

0.1 1 10 100

(b) 60 client nodes

Vanilla FL

Standalone

DSSGD

EPFL

Our scheme

A
c
c
u

ra
ry

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Privacy budget

0.1 1 10 100

(c) 90 client nodes

Figure 4.5: Accuracy of different frameworks with varying privacy budget (SVHN)

model accuracy can be improved even with stronger privacy guarantee (e.g. ε = 0.1, 1).

4.4.5 Scalability

In this section, we evaluate the scalability of the proposed algorithm with different

number of clients, which is illustrated in Fig. 4.6. A small ε = 0.5 is adopted, δ = 10−5, and

the number of clients ranges from 30 to 150. As shown in the Fig. 4.6, the model accuracy

improves with more clients participating in federated learning, which is due to the increasing

availability of training data.

In summary, our proposed scheme achieves the best tradeoff between communication

cost and privacy guarantee of clients’ data and scales well.

80

MNIST

SVHN

A
c
c
u

ra
ry

0.70

0.75

0.80

0.85

0.90

0.95

Number of clients

30 60 90 120 150

Figure 4.6: Federated learning with different clients (ε = 0.5, δ = 10−5)

4.5 Related Work

This section provides the background of efficient federated learning algorithms, as

well as privacy-preserving federated learning approaches.

4.5.1 Efficient Federated Learning

Most efficient distributed deep learning works can be classified into two categories.

The first category is quantization, which reduces the precision of parameters. Vanhoucke

et al. [20] proposed to leverage fixed-point instructions to facilitate the training of neural

networks. Hubara et al. [21] demonstrated to significantly reduce run-time communication

overhead during training with short bit weights and activations. Shen et al. [22] also pro-

posed to use second order Hessian information for quantizing BERT models to ultra low

precision. Suresh et al. [23] applied a structured random rotation before quantization to fur-

ther reduce the less error of training objectives. Sun et al. [24] proposed Lazily Aggregated

Quantized gradient (LAQ) to reduce transmitted bits as well as communication rounds.

The other category is sparsification. Strom et al. [25] proposed to select important

gradients based on a constant threshold, and only uploads ones greater than the threshold.

Mills et al. [26] proposed to leverage a distributed form of Adam optimisation for reducing

communcaitoon overhead. Teerapittayanon et al. [27] proposed to generate precise feature

81

extraction by dissecting DNN frameworks into two parts and improve performance in the

cloud. However, end users are involved in the iterative training phase, where training passes

gradients through devices, resulting in high communication overhead. Ivkin et al. [28]

demonstrated to communicate gradient sketches during training to reduce communication

cost. Nikoli et al. [29] proposed to choose the gradients based on threshold and then encode

it with lower-bits. Shi et al. [30] developed an optimal merged gradient sparsification

algorithm, which merges gradients in different layers to further accelerate the training. Chai

et al. [31] presented asynchronous training tiers with each client holding Non-i.i.d. dataset,

which supports synchronous and asynchronous tiers training to accelerate model training.

Our work belongs to the line of sparsification, but selecting gradients based on align-

ment with global gradient and gradient magnitude has received little attention.

4.5.2 Privacy-preserving Federated Learning

Existing works on privacy-preserving distributed learning mostly utilize either differ-

ential privacy mechanism, secure multiparty computation or homomorphic encryption. For

differential privacy, Pathak et al. [4] introduced a DP-based global classifier by aggregating

the locally trained classifiers. Sun et al. [32] proposed to apply Noise-Free Differential Pri-

vacy (NFDP) mechanism into a federated learning framework. Chen et al. [33] perturbed

local embedding to ensure the differential privacy of local information. Choudhury et al.

[34] studied applying differential privacy to protect sensitive healthcare data. Triastcyn and

Faltings [35] improved the process of recording privacy budgets in distributed learning at

different training stages by adopting Bayesian privacy accounting method. Zhao et al. [36]

proposed to efficiently improve performance of crowdsourcing applications under federated

learning based on local differential privacy (LDP).

Similarly, secure multiparty computation aims to jointly compute a function over dis-

82

tributed participants data while ensuring data privacy. Xu et al. [37] proposed to employ

an SMC protocol based on functional encryption to account for participants dropping out

during training. Bonawitz et al. [38] adopted using secret sharing that enables authenti-

cated encryption. Byrd and Polychroniadou [39] constructed a federated learning system by

applying differential privacy on top of MPC to learn on financial institute datasets.

A number of works have been proposed to adopt homomorphic encryption for fed-

erated learning tasks. Xu et al. [40] proposed to protect users’ data privacy (i.e. local

gradients) with double-masking scheme during distributed learning process. The users can

also verify the aggregated results from cloud server by testing the Proof. Liu et al. [41]

built an homomorphic encryption based framework to train federated transfer learning set-

ting. Hardy et al. [42] adopted additively homomorphic scheme to train federated logistic

regression model. Liu et al. [43] proposed utilizing partial homomorphic encryption method

to encrypt model parameters for optimizing training convergence process. Zhang et al. [44]

proposed to adopt a large integer for encoding and concatenating gradient batches. Then

the integer would be encrypted for transmission. They also presented to efficiently perform

element-wise aggregation in the encoded gradient batches by applying advanced quantization

schemes. Gradient clipping protocol was also proposed to help bound the gradient range.

However, efficient federated learning with both homomorphic encryption and differential

privacy has not been studied well.

4.6 Summary

In this chapter, we have investigated efficient federated learning with differential

privacy. In particular, each client uploads his gradients based on the efficient gradient

upload scheme. Then, the selected gradients would be perturbed and encrypted before

transmitting to cloud server for averaging. The cloud server would learn the noisy sum but

83

nothing else during the training process. In addition, the noisy sum would not change much

whether a specific client participates or not. Extensive experimental results show that the

proposed framework can achieve high training accuracy with strong privacy guarantee while

significantly reduce communication cost and scales well.

Bibliography

[1] S. B. Kotsiantis, I. Zaharakis, and P. Pintelas, “Supervised machine learning: A review

of classification techniques,” Emerging artificial intelligence applications in computer

engineering, vol. 160, pp. 3–24, 2007.

[2] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical machine

learning tools and techniques. Morgan Kaufmann, 2016.

[3] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin, K. Vaswani, and

M. Costa, “Oblivious multi-party machine learning on trusted processors,” in 25th

{USENIX} Security Symposium ({USENIX} Security 16), pp. 619–636, 2016.

[4] M. A. Pathak, S. Rane, and B. Raj, “Multiparty differential privacy via aggregation of

locally trained classifiers.,” in NIPS, pp. 1876–1884, Citeseer, 2010.

[5] B. Hitaj, G. Ateniese, and F. Perez-Cruz, “Deep models under the gan: information

leakage from collaborative deep learning,” in Proceedings of the 2017 ACM SIGSAC

Conference on Computer and Communications Security, pp. 603–618, 2017.

[6] L. Bottou, “Large-scale machine learning with stochastic gradient descent,” in Proceed-

ings of COMPSTAT’2010, pp. 177–186, Springer, 2010.

[7] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao, “Optimal distributed online

prediction using mini-batches,” Journal of Machine Learning Research, vol. 13, no. Jan,

pp. 165–202, 2012.

84

[8] D. van Esch, E. Sarbar, T. Lucassen, J. O’Brien, T. Breiner, M. Prasad, E. Crew,

C. Nguyen, and F. Beaufays, “Writing across the world’s languages: Deep internation-

alization for gboard, the google keyboard,” arXiv preprint arXiv:1912.01218, 2019.

[9] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in Proceedings of the

22nd ACM SIGSAC conference on computer and communications security, pp. 1310–

1321, ACM, 2015.

[10] K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G. R. Ganger, P. B. Gibbons,

and O. Mutlu, “Gaia: Geo-distributed machine learning approaching {LAN} speeds,”

in 14th {USENIX} Symposium on Networked Systems Design and Implementation

({NSDI} 17), pp. 629–647, 2017.

[11] C. Dwork, A. Roth, et al., “The algorithmic foundations of differential privacy.,” Foun-

dations and Trends in Theoretical Computer Science, vol. 9, no. 3-4, pp. 211–407, 2014.

[12] Q. Li and G. Cao, “Efficient privacy-preserving stream aggregation in mobile sensing

with low aggregation error,” in International Symposium on Privacy Enhancing Tech-

nologies Symposium, pp. 60–81, Springer, 2013.

[13] C. Castelluccia, A. C. Chan, E. Mykletun, and G. Tsudik, “Efficient and provably

secure aggregation of encrypted data in wireless sensor networks,” ACM Transactions

on Sensor Networks (TOSN), vol. 5, no. 3, pp. 1–36, 2009.

[14] M. Park, J. Foulds, K. Choudhary, and M. Welling, “Dp-em: Differentially private

expectation maximization,” in Artificial Intelligence and Statistics, pp. 896–904, PMLR,

2017.

[15] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-

efficient learning of deep networks from decentralized data,” in Artificial Intelligence and

Statistics, pp. 1273–1282, PMLR, 2017.

85

[16] M. Hao, H. Li, G. Xu, S. Liu, and H. Yang, “Towards efficient and privacy-preserving

federated deep learning,” in ICC 2019-2019 IEEE International Conference on Com-

munications (ICC), pp. 1–6, IEEE, 2019.

[17] L. Deng, “The mnist database of handwritten digit images for machine learning research

[best of the web],” IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 141–142, 2012.

[18] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng, “Reading digits in

natural images with unsupervised feature learning,” 2011.

[19] N. Ketkar, “Introduction to pytorch,” in Deep learning with python, pp. 195–208,

Springer, 2017.

[20] V. Vanhoucke, A. Senior, and M. Z. Mao, “Improving the speed of neural networks on

cpus,” 2011.

[21] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Quantized neural

networks: Training neural networks with low precision weights and activations,” The

Journal of Machine Learning Research, vol. 18, no. 1, pp. 6869–6898, 2017.

[22] S. Shen, Z. Dong, J. Ye, L. Ma, Z. Yao, A. Gholami, M. W. Mahoney, and K. Keutzer,

“Q-bert: Hessian based ultra low precision quantization of bert,” in Proceedings of the

AAAI Conference on Artificial Intelligence, vol. 34, pp. 8815–8821, 2020.

[23] A. T. Suresh, X. Y. Felix, S. Kumar, and H. B. McMahan, “Distributed mean estima-

tion with limited communication,” in International Conference on Machine Learning,

pp. 3329–3337, PMLR, 2017.

[24] J. Sun, T. Chen, G. B. Giannakis, and Z. Yang, “Communication-efficient distributed

learning via lazily aggregated quantized gradients,” arXiv preprint arXiv:1909.07588,

2019.

86

[25] N. Strom, “Scalable distributed dnn training using commodity gpu cloud computing,” in

Sixteenth Annual Conference of the International Speech Communication Association,

2015.

[26] J. Mills, J. Hu, and G. Min, “Communication-efficient federated learning for wireless

edge intelligence in iot,” IEEE Internet of Things Journal, vol. 7, no. 7, pp. 5986–5994,

2019.

[27] S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Distributed deep neural networks

over the cloud, the edge and end devices,” in 2017 IEEE 37th International Conference

on Distributed Computing Systems (ICDCS), pp. 328–339, IEEE, 2017.

[28] N. Ivkin, D. Rothchild, E. Ullah, V. Braverman, I. Stoica, and R. Arora,

“Communication-efficient distributed sgd with sketching,” arXiv preprint

arXiv:1903.04488, 2019.

[29] N. Dryden, T. Moon, S. A. Jacobs, and B. Van Essen, “Communication quantization

for data-parallel training of deep neural networks,” in 2016 2nd Workshop on Machine

Learning in HPC Environments (MLHPC), pp. 1–8, IEEE, 2016.

[30] S. Shi, Q. Wang, X. Chu, B. Li, Y. Qin, R. Liu, and X. Zhao, “Communication-efficient

distributed deep learning with merged gradient sparsification on gpus,” in IEEE IN-

FOCOM 2020-IEEE Conference on Computer Communications, pp. 406–415, IEEE,

2020.

[31] Z. Chai, Y. Chen, L. Zhao, Y. Cheng, and H. Rangwala, “Fedat: A communication-

efficient federated learning method with asynchronous tiers under non-iid data,” arXiv

preprint arXiv:2010.05958, 2020.

[32] L. Sun and L. Lyu, “Federated model distillation with noise-free differential privacy,”

arXiv preprint arXiv:2009.05537, 2020.

87

[33] T. Chen, X. Jin, Y. Sun, and W. Yin, “Vafl: a method of vertical asynchronous federated

learning,” arXiv preprint arXiv:2007.06081, 2020.

[34] O. Choudhury, A. Gkoulalas-Divanis, T. Salonidis, I. Sylla, Y. Park, G. Hsu, and

A. Das, “Differential privacy-enabled federated learning for sensitive health data,” arXiv

preprint arXiv:1910.02578, 2019.

[35] A. Triastcyn and B. Faltings, “Federated learning with bayesian differential privacy,”

in 2019 IEEE International Conference on Big Data (Big Data), pp. 2587–2596, IEEE,

2019.

[36] Y. Zhao, J. Zhao, M. Yang, T. Wang, N. Wang, L. Lyu, D. Niyato, and K.-Y. Lam, “Lo-

cal differential privacy based federated learning for internet of things,” IEEE Internet

of Things Journal, 2020.

[37] R. Xu, N. Baracaldo, Y. Zhou, A. Anwar, and H. Ludwig, “Hybridalpha: An efficient

approach for privacy-preserving federated learning,” in Proceedings of the 12th ACM

Workshop on Artificial Intelligence and Security, pp. 13–23, 2019.

[38] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel, D. Ram-

age, A. Segal, and K. Seth, “Practical secure aggregation for privacy-preserving machine

learning,” in proceedings of the 2017 ACM SIGSAC Conference on Computer and Com-

munications Security, pp. 1175–1191, 2017.

[39] D. Byrd and A. Polychroniadou, “Differentially private secure multi-party computation

for federated learning in financial applications,” arXiv preprint arXiv:2010.05867, 2020.

[40] G. Xu, H. Li, S. Liu, K. Yang, and X. Lin, “Verifynet: Secure and verifiable federated

learning,” IEEE Transactions on Information Forensics and Security, vol. 15, pp. 911–

926, 2019.

[41] Y. Liu, Y. Kang, C. Xing, T. Chen, and Q. Yang, “A secure federated transfer learning

framework,” IEEE Intelligent Systems, vol. 35, no. 4, pp. 70–82, 2020.

88

[42] S. Hardy, W. Henecka, H. Ivey-Law, R. Nock, G. Patrini, G. Smith, and B. Thorne,

“Private federated learning on vertically partitioned data via entity resolution and ad-

ditively homomorphic encryption,” arXiv preprint arXiv:1711.10677, 2017.

[43] C. Liu, S. Chakraborty, and D. Verma, “Secure model fusion for distributed learning

using partial homomorphic encryption,” in Policy-Based Autonomic Data Governance,

pp. 154–179, Springer, 2019.

[44] C. Zhang, S. Li, J. Xia, W. Wang, F. Yan, and Y. Liu, “Batchcrypt: Efficient homomor-

phic encryption for cross-silo federated learning,” in 2020 {USENIX} Annual Technical

Conference ({USENIX}{ATC} 20), pp. 493–506, 2020.

89

5 Conclusions and Future Work

5.1 Conclusions

In this dissertation, we proposed a set of systems to protect users’ privacy in cloud-

assisted data analytics.

In Chapter 2, we proposed a secure, efficient, and verifiable outsourcing protocol for

geometric programming, which has wide applications in data analysis. In particular, a secure

and efficient transformation scheme is employed to protect the data privacy. We apply the

gradient projection method to solve the encrypted geometric programming problem in the

cloud side. Experiments were conducted on both Amazon Elastic Compute Cloud (EC2)

and a laptop to evaluate performance of the designed outsourcing protocol, and the results

showed the feasibility and efficiency of the proposed algorithm.

In Chapter 3, we designed a differentially private framework to train logistic regres-

sion models out of distributed data sources (e.g., individual users and organizations). To

achieve high learning accuracy while maintaining privacy, our solution considers the relevance

between input data features and the model output when generating noises. In particular,

at each data owner, more noise is added to the coefficients of the objective polynomial

form that are less relevant to the local model output, and less noise to those that are more

relevant. When the local parameters are uploaded to a cloud server for aggregation, the

server uses an evaluation dataset to assess the data quality of clients, and then selects the

model parameters of a subset of clients into aggregation based on the data quality of clients

while protecting clients privacy. Extensive experimental results showed that the proposed

framework can achieve high classification accuracy while protecting privacy and being robust

against low-quality data.

90

In Chapter 4, we proposed an efficient privacy-preserving federated learning system

that enables multiple clients to collaboratively train their neural network models without re-

vealing their own dataset. In particular, each user selectively chooses the gradients to upload

based on the tendency of the global model convergence and gradient magnitude. Moreover,

clients first perturb the gradients uploading to cloud server by adding Laplacian noise. Then,

the noisy gradients are encrypted with homomorphic encryption before uploading to cloud

server. Finally, the cloud server decrypts the sum of the noisy gradients and updates the

global model parameters during the training process. Extensive experiments on benchmark

dataset show that the efficient privacy-preserving deep learning scheme significantly reduces

communication overhead, achieves minimal accuracy loss with strong data privacy and scales

well.

5.2 Future Work

This dissertation proposed several systems to provide privacy protection for cloud-

assisted data analytics. Besides collecting more datasets to better validate the proposed

systems, there are still many other issues that deserve further exploration. In the following,

we discuss two future research directions.

• Privacy-Preserving Cloud-Assisted Data Analytics with Fair Exchange: Al-

though we proposed a secure and efficient outsourcing scheme for large-scale geometric

programming, we have not addressed the fair exchange issue in the system. In partic-

ular, if the cloud server performs computation tasks before user paying the service fee,

the user might not pay after receiving the results. If the user pays the service fee first,

the cloud server might not execute the computation and return random and invalid

results. Some work have been done to address the fair exchange issue [1, 2, 3, 4], but

their schemes have not been adopted in secure outsourcing of large scale mathematical

91

optimizations. Therefore, it is necessary to design a privacy-preserving outsourcing

system with fair exchange.

• Privacy-Preserving Distributed Learning with Heterogeneous Architectures:

Even though we have designed privacy-preserving distributed logistic regression and

efficient federated learning systems to protect user privacy during training, the current

design can only learn the same model across all the users. Since different users may

need different learning models, it would be interesting to study how to extend federated

learning to collaboratively train models with heterogeneous architectures.

Bibliography

[1] H. Shafagh, L. Burkhalter, A. Hithnawi, and S. Duquennoy, “Towards blockchain-based

auditable storage and sharing of iot data,” in Proceedings of the 2017 on Cloud Computing

Security Workshop, pp. 45–50, 2017.

[2] K. Christidis and M. Devetsikiotis, “Blockchains and smart contracts for the internet of

things,” Ieee Access, vol. 4, pp. 2292–2303, 2016.

[3] A. B. Kurtulmus and K. Daniel, “Trustless machine learning contracts; evaluating

and exchanging machine learning models on the ethereum blockchain,” arXiv preprint

arXiv:1802.10185, 2018.

[4] C. Lin, D. He, X. Huang, X. Xie, and K.-K. R. Choo, “Blockchain-based system for secure

outsourcing of bilinear pairings,” Information Sciences, vol. 527, pp. 590–601, 2020.

92

	Privacy-Preserving Cloud-Assisted Data Analytics
	Citation

	tmp.1637258043.pdf.JlsFk

