27 research outputs found

    Joint Trajectory Generation and High-level Control for Patient-tailored Robotic Gait Rehabilitation

    Get PDF
    This dissertation presents a group of novel methods for robot-based gait rehabilitation which were developed aiming to offer more individualized therapies based on the specific condition of each patient, as well as to improve the overall rehabilitation experience for both patient and therapist. A novel methodology for gait pattern generation is proposed, which offers estimated hip and knee joint trajectories corresponding to healthy walking, and allows the therapist to graphically adapt the reference trajectories in order to fit better the patient's needs and disabilities. Additionally, the motion controllers for the hip and knee joints, mobile platform, and pelvic mechanism of an over-ground gait rehabilitation robotic system are also presented, as well as some proposed methods for assist as needed therapy. Two robot-patient synchronization approaches are also included in this work, together with a novel algorithm for online hip trajectory adaptation developed to reduce obstructive forces applied to the patient during therapy with compliant robotic systems. Finally, a prototype graphical user interface for the therapist is also presented

    Cognitive assisted living ambient system: a survey

    Get PDF
    The demographic change towards an aging population is creating a significant impact and introducing drastic challenges to our society. We therefore need to find ways to assist older people to stay independently and prevent social isolation of these population. Information and Communication Technologies (ICT) provide various solutions to help older adults to improve their quality of life, stay healthier, and live independently for a time. Ambient Assisted Living (AAL) is a field to investigate innovative technologies to provide assistance as well as healthcare and rehabilitation to impaired seniors. The paper provides a review of research background and technologies of AAL

    Lumbopelvic muscle function during low impact weight-bearing exercise: development of the functional re-adaptive exercise device

    Get PDF
    The aim of this thesis was to develop our understanding of the Functional Re-adaptive Exercise Device (FRED): a novel prototype exercise device proposed to facilitate the activation the deep paraspinal and anterolateral abdominal wall musculature in a manner consistent with the requirements of motor control training in people with low back pain. Firstly, the intra- and interday reliability and precision of measurement of ultrasound imaging of the lumbar multifidus (LM) and transversus abdominis (TrA) were established. LM and TrA demonstrated good (ICC ≥ 0.75) to excellent (ICC ≥ 0.9) intrarater reliability for both intra- and interday measurements of absolute linear muscle thickness across all conditions. Normalised thickness change, expressed relative to resting values, also demonstrated good reliability between days, with ICCs in excess of 0.75 across all conditions. Secondly, the typical nature of LM and TrA function during this mode of exercise was evaluated in relation to commonly used assessment techniques such as the abdominal drawing-in manoeuvre, active straight-leg raise, and contralateral arm-lift. All contraction conditions successfully resulted in active relative thickness change of LM and TrA. Relative thickness change of the LM when using the FRED was favourable in that it was lower than that observed in loaded contralateral arm raise and walking conditions, suggesting that one of the key features of specific motor control training (contraction intensity of 30-40 % MVC) has been met. Thirdly, activity of the LM and TrA during this mode of exercise and other commonly used corrective/rehabilitative techniques based on relatively static challenges to stability was compared (gym ball, balance board). All stability challenges successfully induced non-volitional concomitant activation of both the LM and TrA. Additionally, it was observed that the LM followed a pattern where all standing conditions elicited greater recruitment than seated conditions, with no additional effect of surface lability. Contrastingly, the TrA only demonstrated an effect of surface instability during FRED conditions. The preferential contraction ratio of the TrA in comparison to IO and EO was greatest during use of the exercise device in the standing position. Fourthly, the intrinsic kinematic stability of the lumbopelvic region whilst using the exercise device was examined, revealing further evidence of the underlying mechanisms facilitating LM and TrA contraction. Key differences between FRED exercise and overground walking included reduced axial rotation of the trunk with respect to the pelvis (i.e. increased lumbopelvic stability) and a more anteriorly tilted pelvis. FRED exercise potentially moved the pelvis into a more advantageous position for the recruitment of TrA and LM. However, the unstable base of support afforded by FRED exercise would seem to add a challenge to movement control that could result in greater TrA and LM activity than overground walking. Finally, the pattern of global muscle activation during this exercise was examined, and provided evidence as to the tonic nature of FRED mediated muscle activity of the lumbar paraspinal and anterolateral abdominal muscles. FRED exercise a) promoted more tonic activity of the lumbopelvic musculature compared to overground walking, b) resulted in greater spinal extensor activity than spinal flexor muscles compared with overground walking, and c) resulted in greater knee extensor activity compared with overground walking

    Proceedings of the NASA Conference on Space Telerobotics, volume 1

    Get PDF
    The theme of the Conference was man-machine collaboration in space. Topics addressed include: redundant manipulators; man-machine systems; telerobot architecture; remote sensing and planning; navigation; neural networks; fundamental AI research; and reasoning under uncertainty

    2019 Symposium Brochure

    Get PDF

    Proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress

    Get PDF
    Published proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress, hosted by York University, 27-30 May 2018
    corecore