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Kurzfassung 

In den vergangenen zwei Jahrzehnten haben Forscher verschiedene Robotersysteme 
entwickelt, um die Gangrehabilitation von Menschen zu verbessern, deren Gang aus 
medizinischen Gründen beeinträchtigt ist. Zu der Zielgruppe gehören 
Schlaganfallpatienten sowie Patienten unterschiedlichen Alters, die unter zerebralen 
Lähmungen, traumatischen Hirnverletzungen, Rückenmarksverletzungen und Multipler 
Sklerose leiden. Die Entwicklung dieser Art von Geräten wurde durch die offensichtlichen 
Vorteile der robotergestützten Rehabilitation gegenüber der traditionellen manuellen 
Therapie vorangetrieben, denn Robotersysteme sind in der Lage, das Bewegungstraining 
intensiv, präzise und reproduzierbar durchzuführen. 

Es ist allerdings noch nicht ausreichend erforscht, wie genau diese Geräte eingesetzt 
werden müssen, um die bestmöglichen Rehabilitationsergebnisse zu erzielen. Es wurden 
bereits zahlreiche unterschiedliche Strategien zur Bestimmung des Unterstützungsgrads 
und des vom System zu verwendenden Referenzgangmuster vorgestellt, die sich an den 
aktuellen Therapiemodellen wie z.B. „Assist as Needed“ („Bedarfsgerechte 
Unterstützung“) orientieren. Allerdings schränken die meisten dieser Strategien die 
Einbindung der Therapeuten in die Therapieplanung stark ein. Die spezifischen 
Bedürfnisse und Einschränkungen der Patienten bleiben bei der Parametrierung der 
robotergestützten Therapie oftmals unberücksichtigt, was aber die Effektivität des 
Rehabilitationsprozesses mindert.  

Die vorliegende Dissertation stellt eine Reihe von neuartigen Methoden für die 
roboterbasierte Gangrehabilitation vor, die mit dem Ziel entwickelt wurden, ausgehend 
vom spezifischen Zustand des Patienten stärker individualisierte Therapien anzubieten und 
hierdurch die gesamte Rehabilitationserfahrung sowohl für den Patienten als auch für den 
Therapeuten zu verbessern. Das erste Verfahren umfasst die Erzeugung und Anpassung 
von Trajektorien für Hüft- und Kniegelenke auf der Basis von gesunden Gangmustern. Die 
hier vorgeschlagene neuartige Methode zur  Gangmustererzeugung ermöglicht es dem 
Therapeuten, die vom System für die Regelung herangezogenen Referenztrajektorien 
durch einfache grafische Manipulation der Gangkurven anzupassen, um somit die 
speziellen Bedürfnisse und Einschränkungen des Patienten besser berücksichtigen zu 
können. 

Die zweite Gruppe von Methoden umfasst die Bewegungsregelung und die 
Synchronisation zwischen Roboter und Patient. Zunächst werden einige Strategien für die 
Bewegungsregelung vorgestellt, die für das mobile robotergestützte 
Gangrehabilitationssystem MOPASS entwickelt wurden. Das System MOPASS besteht aus 
einer mobilen Plattform, einer aktuierten Orthese mit aktiven Hüft- und Kniegelenken und 
einem Mechanismus zur aktiven Unterstützung des Beckens. Zu den vorgestellten 
Regelungsstrategien gehören die Bewegungsregelung für die Hüft- und Kniegelenke 
(sowohl der im MOPASS – System umgesetzte Positionsregler als auch der 
vorgeschlagene „Assist as Needed“-Impedanzregler), sowie die Bewegungssteuerung für 
die mobile Basis und den Beckenantrieb. Die Bewegungsregelung wird durch eine Reihe 
von Methoden zur Synchronisation zwischen dem Roboter und dem Patienten ergänzt. 
Probleme bei der Synchronisation zwischen dem vorgegebenen Referenzgangmuster und 
dem tatsächlichen Gangmuster des Patienten sind allen robotergestützten 
Gangrehabilitationssystemen inhärent, die sich nachgiebig verhalten und eine Abweichung 
von den Referenztrajektorien zulassen. Die vorgeschlagenen Methoden umfassen zwei 
Synchronisationsansätze sowie einen Algorithmus zur Online-Adaption der 
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Hüfttrajektorien, der obstruktive Kräfte während der Therapie mit nachgiebigen 
Robotersystemen reduziert. 

Zum Schluss wird eine prototypische Umsetzung einer grafischen Benutzeroberfläche 
(Graphical User Interface – GUI) vorgestellt. Diese implementiert die neuartigen 
Funktionalitäten zur Erzeugung und Anpassung von  Hüft- und Knietrajektorien, die 
vorgeschlagene Methode zur Anpassung des Unterstützungsgrades sowie andere 
Funktionalitäten, die sich speziell auf den Betrieb des MOPASS-Systems beziehen. 

Zusätzlich zu den vorgeschlagenen neuartigen Methoden gibt die vorliegende 
Dissertation eine Übersicht über gesundes und pathologisches Gehen sowie eine 
Aufstellung der wichtigsten Gangrehabilitationsgeräte, um dem Leser die zu 
bewältigenden Herausforderungen der robotergestützten Gangrehabilitation zu 
verdeutlichen. Daneben werden detaillierte Informationen über das MOPASS-System 
präsentiert, einschließlich der mechanischen Konstruktion und Architektur. 
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Abstract 

During the past two decades researches have been developing several robotic systems 
meant to improve the gait rehabilitation of people who are impaired in their lower limbs 
due to a medical condition. Target patients include stroke survivors and people who have 
suffered cerebral palsy, traumatic brain injury, spinal cord injury and multiple sclerosis, 
among other conditions, ranging from children to elderlies. The development of this kind 
of devices has been made thanks to the evident advantages of robotic systems over 
traditional, manual therapy approaches. Robotic systems are able to perform motion 
training in an intensive, precise, repetitive and reproducible way.  

However, it is not yet clear what the most efficient way to utilize these devices is, in 
order to maximize the rehabilitation outcome. Several strategies to determine the level of 
assistance given by the robotic system to the patient and to set the reference walking 
patterns used by the system’s controllers have been presented widely, following current 
therapy paradigms such as ‘assist as needed’. Nevertheless, most of the current strategies 
limit the involvement of the therapist in the decision making and do not take into account 
the specific needs of the patients during the setting of the robot-assisted therapy, which 
would increase the effectiveness of the rehabilitation process. 

This dissertation presents a group of novel methods for robot-based gait rehabilitation, 
which were developed with the objective of offering more individualized therapies based 
on the specific condition of each patient, aiming as well to improve the overall 
rehabilitation experience for both patient and therapist. The first method involves the 
generation and adaptation of hip and knee joint trajectories based on healthy walking 
patterns. The proposed novel methodology for gait pattern generation allows the therapist 
to easily and graphically adapt the reference trajectories, used by the system’s controllers, 
in order to fit better the patient’s needs and disabilities.  

A second set of methods involving motion control and robot-patient synchronization is 
also presented. First, some strategies for the motion control are introduced, which were 
developed for the MOPASS system, a robotic device for over-ground gait rehabilitation 
consisting of a mobile platform, an actuated orthosis with active hip and knee joints, and a 
mechanism for active pelvic assistance. The presented control strategies include the 
motion controllers for the hip and knee actuated joints (namely a position controller 
implemented in the MOPASS system and a proposed impedance-based ‘assist as needed’ 
controller), as well as the motion controllers of the mobile platform and the pelvic 
mechanism. The motion control is complemented with a set of robot-patient 
synchronization methods. Problems regarding the synchronization between the reference 
gait pattern and the actual gait pattern of the patient are inherent of robotic gait 
rehabilitation systems that possess a compliant behavior which allows the patient to 
deviate from the reference trajectories. The proposed methods introduce two 
synchronization approaches, as well as an online hip trajectory adaptation algorithm 
developed to reduce obstructive forces during therapy with compliant robotic systems. 

 Finally, a prototype graphical user interface (GUI) is also presented, which 
implements the functionalities offered to the therapist including the hip and knee 
trajectories’ generation and adaptation, a proposed method for the adjustment of support 
levels, and other functionalities specifically related to the operation of the MOPASS 
system. 
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Additional to the high-level methods, this dissertation includes also an overview of 
healthy and pathological walking to help the reader understand the problems faced by 
robot-based gait rehabilitation, as well as a summary of the most relevant state-of-the-art 
devices developed for gait rehabilitation. It presents as well detailed information about the 
MOPASS system, including the mechanical design and architecture. 
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1 Introduction 

Physical impairment on adults and children is a health issue well known worldwide with 
millions of reported cases. The impairment in an affected person may include the inability to 
generate optimal motor response of the lower limbs to perform daily actions such as stand 
up/sit down, and walk. These physical disabilities can be caused by several medical 
conditions, including congenital diseases and injuries inflicted during the lifetime. Among the 
causes one can find strokes (or cerebrovascular accidents - CVA), cerebral palsy (CP), 
traumatic brain injuries (TBI), spinal cord injuries (SCI), multiple sclerosis (MS), and other 
different physical injuries that lead to the necessity of physical therapy to regain the motor 
skills, including falls, sport and car crash injuries, among others. These conditions are of big 
concern for physicians and researchers all around the world, showing considerable numbers of 
occurrence. There were over 15 million estimated cases of Stroke in 2010 worldwide, with 
prevalence of around 33 million [1], being the leading cause of acquired disability in adults 
[2]. The prevalence of cerebral palsy lies around 3 to 4 per 1000 live-births in the United 
States marked by a reduction of the mortality of children with CP result of improvements in 
obstetric and neonatal care, leading CP to be the most common motor disability in childhood 
[3]. Although population-based statistics for traumatic brain injury have been difficult to 
gather [4], the incidence rates in Europe are calculated to be around 235 per 100,000 
inhabitants per year [5], whereas in the United States around 1.7 million people suffer a TBI 
every year from which 275,000 are hospitalized [6], making TBI a leading cause of death and 
disability for adolescents and young adults [7]. Spinal cord injury is another major cause of 
physical disability, where almost 300,000 people live with it only in United States and 
Canada, with a rate of new cases of around 11,000 per year, almost half of them resulting in 
incomplete SCI [8]. Multiple sclerosis affects approximately 350,000 individuals in the 
United States and around two million people around the world [9]. 

Due to the high incidence and prevalence rates of the aforementioned medical conditions, 
without disregarding other traumatic physical injuries that people may suffer on their daily 
lives or all the cases of prostheses holders (e.g. hip and knee replacement patients), 
researchers all over the world have been taking special attention on finding optimal treatments 
for the rehabilitation of the patients, including therapy approaches that can lead to a regain of 
the lost motor abilities or plausible enhancement of the ones that are left, improving therefore 
their lifestyle. This ideal is supported by several laws and statements such as the article 26 of 
the Convention on the Rights of Persons with Disabilities from the United Nations, which 
declares that “States Parties shall take effective and appropriate measures, including through 
peer support, to enable persons with disabilities to attain and maintain maximum 
independence, full physical, mental, social and vocational ability, and full inclusion and 
participation in all aspects of life” [10].  

Moreover, since walking is one of the functionalities typically affected by these 
conditions and it influences directly the quality of life of people, many efforts have been put 
into gait rehabilitation. In stroke survivors, for instance, improving walking with respect to 
safety and speed is a major goal [11]. Independent walking is often a major objective after 
moderate to severe TBI [7]. In pediatric rehabilitation the goals are focused on the restoration 
of previous levels of ability and facilitation of the development of functionalities, including 
walking [12]. Consumer-based studies have reported that incomplete SCI patients consider 
the restoration of walking to be fundamental in the level of quality of life making it one of the 
ultimate goals of rehabilitation and hence making gait improvement a very important aspect in 
this population [13]. Studies on the impact of Multiple sclerosis have also reported that that 
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walking impairment is one of the most impactful symptoms on the quality of life of both 
patients and care partners [14]. 

There is no discussion that walking impairments affect the quality of life of the people 
suffering them and hindrance their day-to-day interaction with society. For instance, 
significantly decreased walking speed is one of the common manifestations present in 
pathological walking. It has been suggested that walking speeds over 0.80 m/s are necessary 
for effective community ambulation (e.g. to timely cross the street) [11], which normally is 
considerably higher than the walking speed in people whose gait is impaired (e.g. the 
preferred speed of chronic stroke patients ranges between 0.1m/s and 0.76 m/s [11]). Hence, 
the regain of normal walking speeds is a major goal in rehabilitation.  

It is clear that efficient gait rehabilitation strategies are needed to increase the recovery 
level on the patients. Some of the therapy approaches nowadays include (and in some cases 
combine) functional electric stimulation (FES), muscle strength training, neuro-stimulation, 
mental imagery, task-oriented therapy, over-ground gait training, treadmill gait training, 
body-weight supported gait training, active and passive lower limb orthosis (e.g. knee-ankle-
foot orthosis), constraint-induced movement therapy (CIMT), and virtual reality [11] [12] [15] 
[16]. In the last two decades, robot-based rehabilitation has emerged as an alternative strategy 
in gait rehabilitation thanks to the evident advantages of robotic systems over traditional, 
manual therapy approaches. Robotic systems are able to perform motion training in an 
intensive, repetitive and reproducible way. In conditions such as post-stroke and SCI, 
treatments focused on high-intensity and repetitive task-specific practices have shown 
promising results in the improvement of motor recovery [8] [17] [18]. These facts corroborate 
the idea that robot-based systems may improve significantly the recovery process of impaired 
patients. Moreover, robotic rehabilitation enables parameterized active, assistive, and resistive 
exercises, and facilitates the patient assessment process thanks to the feedback they offer (e.g. 
level of assistance used during training or actual trajectories of the joints). Additionally, 
robotic systems are not restricted by the physical limitations of the therapists and reduce the 
number of therapist needed for each training session, easing the therapists’ job on the way.  

Several devices have been designed throughout the last years [19] aiming to identify the 
most efficient way to conduct therapy and improve the rehabilitation outcomes. Many designs 
and control strategies have been developed and tested with both healthy and impaired people. 
Several strategies to determine the level of assistance given by the robotic system to the 
patient and to set the reference walking patterns used by the system’s controllers have been 
presented widely, following current therapy paradigms such as ‘assist as needed’. However, to 
this date it is not yet clear what the best approach for robotic gait rehabilitation is. Moreover, 
despite the efforts, many of the state of the art systems tend to automate many of the 
processes and decision making related to the therapy, leading in many cases to training 
approaches that assist the patients in a rather general manner instead of in a patient-specific 
way. These general approaches are not in line with some concepts of optimal rehabilitation: 
there exists the necessity to develop training strategies that are oriented towards specific needs 
of both the patient and the care giver, implying that the rehabilitation interventions should be 
customizable and adaptable [15].  

From the point of view of the author, one of the hindrances to patient-specific robot-
based training is the exclusion of the therapist from the loop of decision making. In many 
cases, several of the therapy parameters are set automatically by the high-level components of 
the robotic systems (e.g. joint trajectory estimators and adjusters), while the tasks of the 
therapist are reduced to set some very general parameters (such as the desired training 
walking speed or the anthropometric characteristics of the patient) and to oversee the training 
sessions with the system. Bearing this in mind, the primary objective in this research was to 
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find a middle point in which we could make use of the advantages brought by robotic systems 
and their high-level intelligent components without disregarding the experience and valuable 
input from the therapists.  

The research focus point selected to achieve this objective was the generation of 
reference trajectories that included the therapist in the parametrization process in a higher 
degree. The selection of correct therapy (reference) gait patterns is a crucial step towards gait 
recovery [15]; hence the trajectory generation is a key element in robot-based therapy. The 
novel trajectory generator presented in this dissertation was developed aiming to achieve 
“patient-tailored’ therapy by meeting two objectives. The first one was to provide the 
therapist with ‘healthy-like’ joint trajectories automatically generated based on some desired 
gait parameters (e.g. walking speed or cadence) and on the patient’s features (e.g. height). 
These healthy-like trajectories are estimated based on experimental studies on over-ground 
walking of healthy subjects, and are used by the therapist as reference templates of healthy 
gait patterns. The second objective was to allow the therapist to adapt these joint trajectories 
in an easy, intuitive and graphical manner in order to address the patient’s specific needs. This 
adaptation is done through the adjustment of a set of points that highly influence the 
trajectories’ profile (curve shape), such as the joints’ maximum flexion and extension points 
(extrema). With the proposed trajectory generator, the therapist is able to train with the patient 
not only healthy walking, but also, if desired, compensatory patterns that could be beneficial 
to the patient and might lead to better rehabilitation outcomes (e.g. independent walking) 
which may not be reached by using healthy walking patterns as reference. The trajectory 
generator was implemented and tested in the MOPASS system [20], a robotic device for over-
ground gait rehabilitation consisting of a mobile platform, an actuated orthosis with active hip 
and knee joints, and a mechanism for active pelvic assistance. Both the estimation of healthy 
like trajectories and handling of the trajectories based on the adaptations made by the therapist 
were included in the final implementation.  

Additional to the trajectory generation, this dissertation also presents the motion control 
strategies developed for the MOPASS system. This subject includes the development of the 
motion controllers of the active joints of MOPASS (i.e. hip, knee, pelvis and wheels) which 
were used during the practical tests and the initial clinical trials of the robotic system. It also 
includes a proposed ‘assist as needed’ control approach (for future use), which is based on 
impedance-based control strategies that have been used with success in other state of the art 
systems. The objective of ‘assist as needed’ approaches is to assist the patients only when 
needed, depending on their actual performance, instead of using approaches such as fixed 
position controllers. The aim of the presented ‘assist as needed’ approach was to enhance 
current strategies towards a more patient-specific therapy by introducing easily adaptable 
levels of assistance.  

The inclusion of ‘assist as needed’ and ‘patient-cooperative’ therapy strategies in robot-
assisted gait rehabilitation leads to the need of compliant systems to allow the patient to move 
more freely during the training. Systems that possess a compliant behavior (achieved, for 
instance, by implementing impedance control without high stiffness) allow the patient to 
deviate from the reference trajectories and therefore to walk with a cadence and walking 
speed different from those set as reference ones for the therapy (for example, selected by the 
therapist). This leads to problems of synchronization between the system’s reference gait 
pattern and actual patient’s gait pattern. Hence, a set of methods were also developed to 
overcome this synchronization problems that are inherent to compliant robotic systems. The 
robot-patient motion synchronization methods proposed in this dissertation are based on 
strategies that have been used successfully in other systems, but were enhanced to tackle the 
synchronization problems in a more favorable and effective manner. The proposed methods 
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introduce two synchronization approaches: one that performs cyclic phase-compensation, 
calculated every time that a new gait cycle is detected, to reduce the phase difference between 
the reference and the actual gait patterns; and a second one based on a phase controller that 
performs continues phase-compensation throughout the complete gait cycle. An online hip 
trajectory adaptation algorithm is also part of the proposed synchronization methods, which 
was developed to reduce obstructive forces during therapy with compliant robotic systems. 

Finally, a prototype graphical user interface (GUI) was developed to put together the 
concepts and functionalities developed during this work, including the trajectory generation 
and adaptation, and the setting of assistance levels. The GUI comprises all the developed 
functionalities and offers them to the therapist as a set of tools to provide patient-tailored 
therapy.  

1.1 Chapters’ outline 

Chapter 2 makes an introduction to human gait. It includes the basics of human 
locomotion during the walking process, focusing mostly in the kinematics of the lower-body 
joints and the gait-related spatiotemporal parameters. It also includes a review on the 
abnormalities characterizing pathological walking, examining some of the impairments 
affecting specifically the aforementioned medical conditions (i.e. stroke, cerebral palsy, 
traumatic brain injury, spinal cord injury and multiple sclerosis). 

Chapter 3 includes a detailed introduction to the state of the art systems used in gait 
rehabilitation, classifying them depending on its mechanical design and giving some general 
information about each one of them. It also presents the MOPASS system, including specifics 
on its mechanical design and control architecture. 

Chapter 4 is dedicated to the generation of reference hip and knee joint trajectories. First, 
the state of the art related specifically to trajectory generation in robotic gait rehabilitation 
devices is presented. Afterwards, the concept for trajectory parametrization and generation 
developed in this work is presented, followed by the explanation of the estimation methods 
used to obtain healthy-like joint motion profiles, including the experimental setup used to 
obtain the data to train the estimators, the corresponding data processing, and the specifics of 
the estimators (including performance and error measurements). Finally the evaluation of the 
complete trajectory generation concept and implementation, including the limitations, is 
presented. 

Chapter 5 includes the explanation of the motion control strategies used in MOPASS, 
namely the motion control of the hip, knee, wheels and pelvis modules. It also includes a 
proposed control strategy based on impedance models yet to be implemented and tested in the 
MOPASS system. Finally, it presents some methods developed to overcome problems of 
desynchronization between the reference gait patterns from the system and the actual gait 
pattern from the patient, which are common during gait training when using compliant 
systems. 

Chapter 6 introduces the design of the graphical user interface (GUI). It makes a quick 
review of the functionalities of the GUI. Additionally, it includes a detailed explanation of 
three of the functionalities offered to the therapists for patient-tailored therapy adjustments, 
namely the advanced options for trajectory generation, the tools for assistance-level 
adaptations, and the adjustments of the reference trajectories following an online change of 
gait parameters. 

Finally the conclusions and open topics for future work are presented.  
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1.2 Main contributions 

The most important contribution of this work is related to the trajectory generation of hip 
and knee joints. It presents a novel approach for parametrization and regeneration of hip and 
knee angular-motion profiles, aiming to an easy graphical adaptation by the therapists. Thanks 
to the adaptation features offered by the developed trajectory generator, the therapist can 
adjust as desired the joint trajectories that are used as reference by the control components of 
the robotic system. This type of direct manual adaptation of the reference motion profiles of 
the active joints is not seen in other state of the art approaches1. Additionally, it presents a 
novel trajectories’ adjustment method used during online adaptation of the gait parameters 
(i.e. cadence) which takes into account the initial settings of the therapists (i.e. the manually 
adjusted reference trajectories). This type of online trajectory adaptation is also not present in 
other state of the art systems1. The generator also includes the generation and adaptation of 
the trajectories of the initial step, which are normally not treated in literature. Finally, a novel 
method for advanced manual shaping of the joint motion profiles was also developed, which 
is strongly related to the proposed trajectories’ parametrization. This contribution allows the 
therapist to further adapt the shape of the joint trajectories and incorporate these adaptations 
in the following generation of gait patterns. 

The second contribution is a set of synchronization methods designed for compliant 
rehabilitation therapy. Even though these methods were designed based on current strategies 
for synchronization developed for other systems, they contain improvements that enhance the 
performance of the synchronization process. Specifically, this work proposes different ways 
to implement some of the elements of the current methods, and includes a hip trajectory 
adaptation (not present in the current methods) that enhances the synergy between the system 
and the patient during robot-assisted walking. Additionally, it presents some methods for a 
comfortable and timely adaptation of the walking speed (i.e. the speed of the system’s 
platform or the treadmill) during synchronization. This specific topic has not been treated in 
the literature1. 

The last contribution relates to the setting of assistance profiles in the graphical user 
interface. The GUI possesses methods for manual (graphical) adjustments of the assistance 
levels throughout the gait cycle targeting patient-tailored therapy. Although these methods are 
not presented as better than other strategies developed with similar objectives, they are 
introduced as a suggested way to interact with the therapist in order to facilitate the interplay 
between user and robot.  

Secondary contributions, mostly related specifically to the proposed concepts or 
characteristics of the MOPASS system (and therefore with low applicability outside of this 
work), include the design of the position controller using the built-in controllers of the motor 
drives, the development of search algorithms to obtain some of the parameters of the joint 
trajectories (namely the shaping points’ coefficients) and the design of the software 
architecture used in the controller computer of the MOPASS system.  

   
 

 
  

                                                
1 To the best of the author’s knowledge 
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2 Theoretical background on human walking 

The process of human walking comprises several control motor tasks, namely support of 
the body weight, maintenance of stability along the transverse plane (forward, backward and 
lateral stability) and maintenance of forward progression [11]. This chapter is dedicated to 
introduce the basics on human walking to have a better understanding of the problems faced 
during gait rehabilitation. It is more focused on the kinematics of walking (motion) and the 
spatiotemporal gait parameters, rather than on the kinetics (forces, powers and energies of the 
movements) and the behavior of the skeletomuscular, neural and nervous systems during gait. 
The chapter is divided in two: first, a quick review on the most important aspects of healthy 
walking are given; second, a review on the pathological gait patterns caused by some medical 
conditions is presented. The second part covers the generalities of pathological gait, but also 
introduces some specifics related to some of the most important medical conditions that affect 
walking. 

It is important to understand that walking is a very complex process involving 
synchronization, balance, displacement of the center of mass of the body, muscle activation 
and synergies, and compensations, among other matters. This dissertation only presents a 
rough overview on the topic. For more detailed and complete explanation of the walking 
process, for both normal and pathological gait, please refer to specialized literature such as 
[21], [22], [23], [24] and [25]. 

2.1 Basics of human walking  

 Let us open this section by making an introduction of the different body planes, axis, 
joints and motions involved in the process of walking. There exist three different body planes 
perpendicular to each other: sagittal, frontal and transverse planes. Fig. 1 shows these planes, 
together with alternative names to each one of them. Each one of the planes possesses an axis 
perpendicular to it (depicted also in Fig. 1), namely coronal, sagittal and longitudinal axes. 
Several body parts are involved in the walking process, together with the different joints 
associated with them. In this manuscript, only some parts of the lower body will be taken into 
account for the following explanations because they are the ones that influence the most the 
process and are the ones to be part of the discussion in the following chapters. Four different 

 
Fig. 1  Body planes, axis and translations 
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joints are analyzed: pelvis, hip, knee and ankle. The corresponding axis of rotations and the 
rotation themselves of the aforementioned joints are shown in Fig. 2. Because of the body 
symmetry, the internal/external rotations of hip, knee and ankle, the hip abduction/adduction 
and the ankle inversion/eversion are mirrored with respect to the sagittal plane, i.e. they are 
opposite for left and right joints.  
To understand human walking, it is necessary to introduce some of the related terminology. It 
is important to make clear that the terminology presented in this section of the chapter was 
introduced for healthy walking. However, it could be inadequate to describe pathological gait 
patterns [26]. The first concept to be introduced is the gait cycle (GC). During walking, the 
body moves forward as a result of the motion of the two lower limbs (legs). During this 
motion, one of the limbs serves as a source of support while the other one advances towards a 
subsequent support location. Once it reaches this new support location, the limbs exchange 
their roles, while the body shifts its weight from one limb to the other. This sequence of 
events is repeated during the walking process. A single sequence is referred to as gait cycle 
[21]. The upper images in Fig. 3 show the single sequence for the right leg. Normally, the 
start of the gait cycle is considered to be the moment in which the foot makes the first contact 
with the ground (initial contact). In this case, the gait cycle would comprise the sequence of 
events following this moment until the next time the foot makes contact with the ground. 

  
                                  Pelvis                                                                Hip 

 

                              Knee                                                                  Ankle  
Fig. 2  Pelvis, hip, knee and ankle axis and rotations. 
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More generally, the GC is defined as the sequence of events between two successive 
occurrences of one of the repetitive events of walking [22].  

Stride and step are terms that are often confused by people. Stride relates to the 
movement of one limb during the gait cycle, whereas the step relates to the motion of both 
legs. The stride duration is the time elapsed between consecutive initial contacts of one leg 
(i.e. the corresponding cycle duration). Hence, the stride length is the distance covered 
between two successive initial contacts of the same foot. On the other hand, the step duration 
refers to the time elapsed between the initial contact of one leg and the immediately next (or 
previous) initial contact of the other leg, and step length refers to the distance covered 
between successive initial contacts of different feet. Therefore, the stride length consists of 
two step lengths, and two steps are taken during one gait cycle period (also called stride 
period). Although it is possible that the lengths of two successive steps are different during 
forward walking with constant speed, the stride length from the left limb must be same as the 
one from the right one, even in the presence of marked gait asymmetry [25]. This fulfills 
unless there is turning involved [22].  

 
Fig. 3  Example angular trajectories in sagittal plane of hip, knee and ankle 

joints throughout a gait cycle during normal walking2. 

                                                
2 Angles extracted from [24] 
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Other important concepts are cadence and walking speed. The cadence refers to the 

number of steps taken in a given period of time (i.e. step frequency), commonly given in steps 
per min. Notice that, because cadence measures steps and not strides, the cadence is two times 
higher than the gait cycle frequency (1 cycle /min = 1 stride / min = 2 steps/min). The walking 
speed corresponds to the distance covered by the whole body in a given period of time. 
Hence, it is equal to the stride length over the gait cycle period. Naturally, it can also be 
calculated from the step length and cadence. However, the walking speed is not constant 
throughout the gait cycle. 

The gait cycle is divided into two phases: stance and swing. The stance phase 
corresponds to the period in which the foot is in contact with the floor starting in the moment 
of initial contact (heel strike in natural walking) and finishing when the foot is lifted from the 
ground (toe-off). Consequently, the swing phase is the period from the toe-off event until the 
next heel-strike event, i.e. when the foot is moving in the air. The duration of the stance phase 
during normal walking lies around 60% of the complete cycle duration, whereas the 
remaining 40% correspond to the swing phase [21] [22] [23] [24]. Naturally, the precise 
duration of each phase is subject-dependent. Moreover, these relative durations are also 
dependent on the walking speed. As the speed increases, the swing phase increases its relative 
duration, whereas the stance phase shortens its [27]. 

Each one of these gait phases is divided into sub-phases (or simply phases), also depicted 
in Fig. 3. The stance phase starts with the loading response3, which has a duration of around 
10% of the GC and where the shock absorption, body weight shifting (weight-bearing 
stability) and preservation of the progression happen. The second and third sub-phases of the 
stance phase are the mid-stance and terminal-stance sub-phases, which have durations of 
around 20% of the GC each. The mid-stance starts at the moment of toe-off of the opposite 
leg, whereas the terminal stance starts at the moment of heel-rise, which is the time when the 
heel begins to lift from the ground. The last sub-phase during stance is the pre-swing, where 
the weight is transferred back to the contralateral leg and the limb prepares for the rapid 
demands of the swing. It starts at the moment of initial contact of the opposite limb and its 
duration is around 10% of the GC. The swing phase starts with the initial swing sub-phase, 
which takes around one third of the swing period (13% of the GC), and is where the foot 
clearance from the ground and the advancement of the leg from the trailing position occur. 
The transition between this sub-phase and the next one (mid swing) happens when the swing 
limb passes the stance limb (event known as feet adjacent). The mid-swing endures around 
14% of the GC, and is characterized by the further limb-advancement and foot-clearance from 
the ground. Finally, the swing motion ends with the terminal swing sub-phase, which takes 
around 13% of the GC and where the limb completes its advancement and prepares for the 
stance. It starts at the moment where the tibia of the swinging leg is perpendicular to the 
ground (tibia vertical).  

Considering that there are two limbs during natural walking, and assuming periodicity 
during walking and symmetry in the motions of both legs4, it is considered that the events of 
the opposite (contralateral) limb are offset by 50% of the GC [23], i.e. the initial contact of 
one leg happens 50% of the GC duration before/after the initial contact of the other leg. With 
                                                
3 Sometimes in literature the initial contact is considered the first sub-phase of the stance phase. Here, however, 
it is considered as the event that starts the stance phase and has no real duration. 
4 The assumption of periodicity is not completely true due to the fact that, even in healthy normal walking, there 
exist inter-stride variability between the joint angles. Likewise, a certain degree of asymmetry between legs is 
also present even during normal walking of unimpaired subjects [254].  
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this in mind, it is possible to divide the stance phase also in the following three sub-phases: 
initial double limb stance, single limb stance and terminal double limb stance. The first and 
latter ones correspond to the double stance phases of the gait cycle (shadowed areas in Fig. 3), 
where both limbs are in contact with the ground and the body weight shifting happens 
(loading response and pre-swing sub-phases). The single stance sub-phase is therefore the 
period in which the limb is in contact with the ground, and the opposite limb is swinging 
(mid- and terminal stance sub-phases). Hence, during the double stance phases, the body 
weight is resting in both limbs, whereas during single stance all the weigh is resting in the 
limb that is in contact with the ground. The duration of these three sub-phases is around 10%, 
40% and 10% of the GC, respectively. Again, the duration of the sub-phases is dependent on 
the subject and on the walking speed. For instance, increasing the speed shortens the duration 
of the double stance sub-phases, and increases the one from the single stance [21], until the 
moment in which there is no double stance, marking the transition from walking to running. 

Let us analyze now the behavior of the lower body joints in each one of the gait (sub) 
phases during normal walking at self-selected speed. Only the joint motions in sagittal plane 
will be analyzed in detail due to the fact that these are the most representative motions during 
walking.  

An example of the hip joint angular displacement in sagittal plane during natural walking 
is depicted in Fig. 3, whereas Fig. 4 shows the relation between the measured angles and the 
leg segments5. During one gait cycle, the hip has one period of extension and one period of 
flexion. The maximum flexion is reached around mid-swing. The hip is kept highly flexed 
(i.e. minimal variations in the angle) until the moment of heel strike, following a higher 
degree extension movement during the loading response. The hip continues to extend during 
the mid-stance phase (where it passes from a flexion to an extension state) and terminal 
stance. Significant muscle activity about this joint occurs in the frontal plane throughout the 

                                                
5 Several approaches for hip angle measurement are taken by researchers. For more details, refer to [21]. 

  
Fig. 4  Hip, knee and ankle angular measurements (H: hip, K: knee, A: 

ankle). 
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single-stance sub-phase [22]. The maximum flexion is reached around the transition between 
terminal stance and pre-swing (or, in other words, around the moment of initial contact of the 
opposite limb). From this point, the hip performs a flexion movement, starting even before the 
foot leaves the ground (toe off). The flexion movement is continued throughout most of the 
pre-swing sub-phase and the swing phase, making the hip transition from extended to flexed 
state around the beginning of the swing phase, until the maximum flexion is again reached. 
The range of motion of the hip during normal walking averages 40° [21]. The peak extensor 
torque in the hip in sagittal plane is around 10 BWLL6, and it is reached at the onset of limb 
loading, around the starting point of the pre-swing sub-phase. The peak flexor torque happens 
within the fist 2% of the GC (shortly after the initial contact) and it is around 8.2 BWLL [21]. 
Regarding the motion of the hip in coronal plane (ab/adduction), smaller deviations are made 
during the gait cycle, with ranges of motion of around 15°. Internal and external hip rotations 
are also present during the cycle, although in a much lower degree (the range of motion 
averages 8°).  

Fig. 3 also shows an example of the knee displacement with respect to the upper leg 
segment. During healthy walking the knee always stays in the flexion state, normally having 
two flexion and two extension peaks per gait cycle at normal walking speed. The global peak 
flexion happens during the initial swing (swing phase knee flexion) before the feet are 
adjacent. After reaching the peak, it starts a fast extension motion that goes through the mid-
swing and most of the terminal swing until reaching a fully extended (0°)7 state. Before the 
initial contact, the knee starts a flexion motion that continues in the loading response sub-
phase. This flexion is referred to as knee stance flexion. Around the moment of toe-off of the 
opposite limb the knee reaches the stance-phase peak flexion. The degree of flexion during 
stance is very dependent on the walking speed, even disappearing at very slow walking [21]. 
Moreover, its moment of occurrence is also subject- and speed- dependent. After the stance 
peak is reached, the knee starts again an extension motion though most of the mid-stance and 
part of the terminal stance, until it reaches an extension peak near the moment of heel-rise. A 
fast flexion motion starts and continues throughout the pre-swing sub-phase and part of the 
initial-swing, until it reaches the global maximum flexion. The range of motion of the knee is 
around 70°. The knee presents four torque peaks during the cycle. An initial extensor torque 
peak of around 2.6 BWLL happens at the initial contact as a result of the impulse of the foot-
ground strike. The maximum flexor torque occurs by the end of the loading response, with a 
value around 7.8 BWLL. The maximum extensor torque is reached by the middle of the 
terminal stance and has a value of around 3.8 BWLL. Finally, by the middle of the pre-swing 
sub-phase a flexor peak torque of around 1.5 BWLL occurs [21].  

Regarding the knee angles, it is important to make clear that, normally, the convention 
used in the literature for the direction of the angles in the knee joint is opposite to the one 
proposed in this dissertation (Fig. 3 and Fig. 4). Most of the medical references use positive 
values for the flexion stages of the hip and knee joints. Nevertheless, from the point of view 
of robotics and engineering, this will lead to a usage of rotation axis with opposite directions 
in each one of the joints. Therefore, to be more consistent and clear from the engineering 
point of view, the selected rotation axis for hip and knee joints have the same direction, and 
consequently the knee flexion angles are presented as negative. 

The displacement of the ankle joint is not as high as the ones from the hip and knee joints 
(Fig. 3), with an average range of motion of around 30° (±10°). However, its motion is of 
                                                
6 Anatomical units (scaled for body weight and limb segment length): body weight / leg length [21] 
7 When talking about the knee, full extension refers to the moment when the leg is straight. Beyond this point (in 
the positive direction in our convention), it is referred to as hyper-extension. 
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great importance for progression and shock absorption during the stance phase. The ankle 
possesses four states during the GC: two plantarflexion (PF) and two dorsiflexion (DF) states. 
Three of this states happen during the stance phase (PF, DF, PF), and the remaining one (DF) 
in the swing phase. At the moment of initial contact, the ankle is near the neutral position (0°), 
where it starts its first stance phase plantarflexion motion. By the middle of the loading 
response it reaches the first PF peak, and subsequently starts moving in opposite direction 
throughout the mid-stance and most of the terminal stance until reaching the DF global peak 
before the pre-swing sub-phase starts. During a small part of the terminal stance and all the 
pre-swing the ankle performs a plantarflexion motion until reaching a PF global peak shortly 
after the moment of toe-off. Throughout the swing phase the ankle performs a dorsiflexion 
motion reaching a low DF peak and finally returns to an almost neutral position before the 
heel strike. The torque presents two peaks during the GC (more specifically, during the stance 
phase). The first, relatively low, in the first half of the loading response corresponding to a 
plantarflexion torque of around 1.5 BWLL. The second, much higher, occurs shortly before 
the pre-swing and corresponds to a dorsiflexion torque of around 17 BWLL [21]. During the 
swing phase, the torque in the ankle is almost zero [24].  

The trunk and the head behave like a unit during normal gate, with very small deviations 
from each other. Throughout the gate cycle, this ‘unit’ experiences translation in all three 
body axes. The vertical displacement (longitudinal axis) is characterized by two superior 
(upwards) and two inferior (downwards) movements (see Fig. 5), and possesses a range of 
motion of around 4.55 cm at normal speed [21]. The two peak downward deviations occur at 
the beginning of the two double stance phases, i.e. in the first halves of the loading response 
and the pre-swing. The two upward peaks, on the other hand, occur during the single-stance 
phases of each leg, most precisely during the first half of the terminal stance (or, in other 
words, during the terminal stance and late mid-swing of one leg). The lateral displacement 
(coronal axis) is characterized by one movement to each side (left and right), as shown in Fig. 
6, and has a range of motion of around 4.5 cm at normal speed. At the moment of initial 
contact the trunk and head are located in the neutral position. From this point, a motion in the 
direction of the stance leg is carried out, reaching a peak displacement around the onset of the 
terminal stance. After this point, the trunk starts moving gradually back to the neutral 
position, reaching it around the moment of initial contact from the opposite leg. The same 
sequence is repeated from this point with the opposite leg throughout the second half of the 
gait cycle. The lateral displacement is consistent with the body weight shifting during the 

  
Fig. 5  Upper-body vertical displacement during normal walking 
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cycle. In the case of the anteroposterior displacement (sagittal axis), a relationship between 
the mean gait speed and the displacement is drawn. The speed of the upper body is variable 
during the GC. During the first third of the GC the speed of the trunk is higher than the mean 
walking speed; the trunk speed later decreases to be lower than the mean walking speed. In 
general, the upper body speed is lower than the mean speed in the middle of the stance and 
swing phases and higher in the double support sub-phases [22]. Consequently, the peak 
positive displacement of the upper body with respect to the average progression occurs shortly 
after the onset of the mid-stance and in the middle of the pre-swing, whereas the peak 
negative displacements occur in the late terminal stance and in the second half of the terminal 
swing [21]. At initial contact, the position of the trunk is about half stride length behind the 
location of the leading foot.  

The pelvis, which behaves as a mobile link between the two lower limbs, also 
experiences some asynchronous motion patterns throughout the gait cycle, with peak values 
of pelvic obliquity (drop), tilt and rotation of around 4°, 4° and 10°, respectively [21]. It is 
important to notice that pelvic motion results in displacement of the hip with respect to the 
center of the pelvis, influencing the positions of the lower limb segments (e.g. feet) with 
respect to the centroids of the pelvis and trunk (or other reference frames/points). In the case 
of the rotation about the vertical axis, for instance, pelvic motion results in hip displacement 
in the transverse plane, which ultimately may contribute to the step length. Following the 
same idea, pelvic obliquity may contribute to foot clearance. 

2.2 Overview of pathological walking  

There exist a large amount of medical conditions that affect the ability to walk in patients, 
with pathologies that differ from disease to disease. However, the abnormalities imposed by 
them on the gait mechanics can be generally classified in four different categories: deformity, 
muscle weakness, pain and impaired control [21]. Functional deformity happens when body 
tissues put constrains that impede enough passive mobility to the person to achieve normal 
ranges of motion and postures characteristic of the walking process. Muscle weakness refers 
to the lack of sufficient muscle strength to fulfill the demands of gait. Muscular and skeletal 
pain alters as well the way people walk, and is related also with deformity and muscular 
weakness. Finally, impaired motor control is related with patients that suffered a central 
neurological lesion that caused paralysis (e.g. stroke, cerebral palsy, brain injury, incomplete 
spinal cord injury and multiple sclerosis). These patients suffer from spasticity (overreaction 
to stretch), lack of selective control (they cannot control the timing and intensity of the muscle 
activation), inappropriate phasing, primitive locomotor patterns and alteration of the muscle 
control due to limp positioning and body alignment. Other cause for pathological gait is the 
loss of sensory feedback, where the person is unable to reliably know, for instance, the actual 

  
Fig. 6  Upper-body lateral displacement during normal walking 



15 
 

state of the limbs and joints or the type of contact with the ground, resulting in feelings of 
insecurity during walking. 

The gait deviations resulting from anatomical and functional alterations due to a medical 
condition can be generally classified into primary and secondary [11]. The primary ones refer 
to the deviations that were caused directly by the pathology of the medical condition, 
commonly present in the early stages. The secondary ones comprise the passive deviations 
consequence of physical effects from the primary deviations, and the active deviations (also 
referred to as tertiary deviations) caused by the mechanisms used to compensate for the 
functional limitations and counteract primary and passive secondary deviations.  

Each one of the lower limb joints is affected by the aforementioned dysfunctionalities. 
The following is a summary of the kinematic abnormalities in the joints, mostly obtained from 
[21].  

The hip joint, because of its high mobility (degrees of freedom) is affected in all three 
planes. Several issues may rise in this joint depending on the pathology of the condition: 
inadequate (low, limited) flexion and extension, and excessive flexion, adduction, abduction, 
internal rotation and external rotation. Inadequate extension affects the weight-bearing 
stability and prevents progression. It causes modifications in the alignments of pelvis and 
thigh during mid-stance, resulting in abnormal postures such as trunk leaning and knee 
flexion. Abnormal postures are also present during the terminal stance due to limited hip 
extension. Excessive flexion normally results in high lower-limb posture alteration. It is 
present in pre-swing and initial swing sub-phases as a continuation of the inadequate hip 
extension in the previous sub-phases. During mid-swing, excessive flexion causes high pelvic 
tilting. Both inadequate extension and excessive flexion can be caused by contractures, 
spasticity, arthrodesis (fusion of bones via surgery to reduce or eliminate joint mobility) and 
pain, as well as deliberate movements done by the patient to compensate for other limitations 
(e.g. excessive hip flexion to increase the foot clearance and compensate for foot drop). Low 
angles from inadequate hip flexion during the initial swing can reduce the limb advancement 
and limit the knee flexion, and can also contribute to foot/ankle related issues such as toe-drag 
and abnormal plantarflexion. This abnormal motion may continue throughout the mid-swing, 
even being present in the terminal swing and loading response. Normally, this limitation in 
hip flexion is caused by the lack of active muscle control (e.g. insufficiencies in the hip 
flexor). Other cause can be arthrodesis. The excessive adduction can be present in both stance 
and swing phases, and can be caused by abductor weakness, contracture, spasticity and 
muscle substitution for functional purposes. In the case of excessive abduction, the high 
angles result in wider strides (walking base), which increase stability during stance and easier 
floor clearance. However, it also results in higher demands during the weight shifting. Causes 
of excessive abduction include contractions, discrepancy in the leg lengths, and voluntary 
abduction normally used as a substitution in the presence of inadequate hip flexion. Finally, 
excessive rotations in the transverse plane can be caused by muscle over-activity, excessive 
ankle plantarflexion in the ankle and muscle weakness.   

In the case of the knee most of the abnormal displacements due to pathological walking 
are present in the sagittal plane rotations. Inadequate knee flexion might cause several 
problems during some of the gait sub-phases. In loading response, limited flexion reduces the 
quality of the shock absorption by the knees in the moments following (and including) the 
initial contact. Low flexion angles during pre-swing can hinder the toe-off, making more 
difficult the transition from stance to swing, whereas during the initial swing they can cause 
toe-drag and hinder the advancement of the limb, and might be continued to the mid-swing 
sub-phase. On the other hand, the knee can also have two types of excess in extension: 
extension thrust (which inhibits the knee flexion due to an excessive extensor force) and 



16 
 

hyperextension (positive knee angles in Fig. 3 that happened when the knee has the degree of 
mobility to reach such postures). Inadequate flexion and excessive extension in the knee joint 
can be caused by muscle weakness, spasticity, pain, excessive plantarflexion in the ankle and 
contractures. Likewise, there can also be excessive knee flexion and inadequate extension. 
The first one can be present in the loading response and mid-swing sub-phases; the latter can 
be seen in mid- and terminal stance (generally as a continuation of excessive flexion in 
loading response) and terminal swing. The causes of these two abnormal motions include 
muscle weakness, contractions, inappropriate hamstring activity and excessive plantarflexion 
in the ankle.  

The ankle joint can present excessive plantarflexion and dorsiflexion. Excessive 
plantarflexion causes abnormal functions in both stance and swing phases. In the first one, 
generally put, it affects the progression by decreasing it, leading to shorter stride lengths. 
Moreover, it hinders the maintenance of an upright posture. In the case of the swing phase, it 
hinders the limb advancement. More specifically, it draws issues differently in each of the 
sub-phases, starting from the moment of initial contact. As stated before, in normal walking 
the initial contact corresponds to the heel strike. However, in pathological walking, the initial 
contact might be done with the frontal part of the foot (forefoot contact) caused by excessive 
plantarflexion. Other type of contact caused by this abnormal pattern is the low-heel contact, 
where even though the heel is the one making the first contact with the floor, the foot is in an 
almost horizontal position with respect to the ground level (flat-foot contact). In the loading 
response, the effects are related to the type of initial contact. Normal heel strike, for instance, 
can be followed by foot-drop, and fore-foot contact can lead to abnormal loading patterns. 
During mid-stance, excessive plantarflexion reduces the progression, causing shorter step 
lengths from the opposite leg. Normally, people experiencing this dysfunctionality appeal to 
three substitutions: premature heel rise, knee hyperextension (if mechanically possible) and 
forward trunk leaning. The effects in the terminal stand include hindrance of advancement 
and reduction of the step length. During pre- and initial swing, the effects are not that 
significant. During mid-swing excessive plantarflexion would cause toe drag, resulting in a 
hindrance to the limb advancement and premature termination of the swing phase. As stated 
before, one substitution for this case is the increase of hip flexion during this sub-phase. 
Finally, in the terminal swing there are no significant interferences caused by the excessive 
plantarflexion, and normally the toe-drag from the previous sub-phase is corrected in this sub-
phase. Excessive plantarflexion can be caused by muscle weakness, contractures and 
spasticity.  

While excessive ankle plantarflexion introduces significant abnormalities in four of the 
gait sub-phases, excessive dorsiflexion does it in five of them (all but mid- and terminal 
stance), although they might not be as significant as with the previous one. If present during 
the initial contact (very seldom), excessive dorsiflexion can be the cause of instability. During 
the loading response it can lead to greater knee flexion, whereas during the swing phase, no 
clinical significance exists related to high dorsiflexion except for the way the foot is 
positioned to perform the initial contact. Causes for excessive dorsiflexion include muscle 
weakness, lock of the ankle joint (e.g. by an orthosis) and persistent stance knee flexion. 

Besides the hip, knee and ankle joints, abnormal motions can be also present in the pelvis 
and trunk. As with the hip, the pelvis motion can be altered by the pathologies in all three 
planes do to its high number of degrees of freedom. In the sagittal plane, the pelvis might 
present anterior tilting, caused by muscle weakness, contractures and spasticity. In the frontal 
plane the pelvis could expose pelvis hike (lateral elevation of the pelvis above the neutral 
position) during the swing phase, used deliberately to assist the foot clearance from the 
ground; and contralateral drop (descent of the opposite side of the pelvis) during stance phase, 
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which can be caused by muscle weakness, contractures and spasticity, among other reasons. 
Finally, in the transverse plane, the pelvis can present excessive forward and backward 
rotations, and insufficient pelvic rotation. The trunk, on the other hand, can present backward 
leaning, caused by muscle weakness and inadequate hip flexion; forward leaning, caused by 
muscle weakness or deliberate reduction of muscle activation during loading response, and 
abnormal ankle plantarflexion in mid- and terminal stance; lateral lean, caused by muscle 
weakness, contractions, significant differences in the length of the legs and scoliosis, among 
other causes; and excessive rotations about the vertical axis, which can be caused by trunk 
synergy with the pelvic motions or walking aids. 

It is important to make clear that the aforementioned pathological joint motions affect 
directly the walking parameters. For example, it is common that the step lengths from both 
legs are significantly different during pathological gait [22], which results in lower walking 
speeds. Other matters such as energy consumption are also affected by pathologic walking 
(more specifically by the abnormal movements, spasticity and contraction of antagonistic 
muscles), being higher than during normal walking [22]. Rhythmic disturbances can also be 
present during pathological walking. These disturbances can come as asymmetric or irregular 
disturbances. Asymmetric disturbances refer to the cases when there exists difference in the 
gait timing of both limbs caused, for example, by the pursuit of a reducing of pain in one of 
the limbs or by differences in the legs’ lengths; irregular disturbances refer to the alteration of 
the timing from one stride to the other, which is seen in some neurologic diseases [22]. 
Finally, other abnormalities observed during pathological gait include tremblers and abnormal 
movements of the head and upper limbs (e.g. hindered arms’ swing). 

As stated before, several clinical conditions affect, in a lower or higher degree, the 
walking ability of the people suffering from them. A quick review on the characteristics on 
the walking related abnormalities from stroke, cerebral palsy, brain injury and spinal cord 
injury will be presented next. 

Stroke (cerebrovascular accident) 

A stroke (or cerebrovascular accident – CVA) happens when the flow of blood to an area 
of the brain is poor (or blocked), causing cell death due to the privation of oxygen. When this 
happens, the abilities controlled by the affected brain area (including muscle control and 
memory) are compromised. In general, around 80% of the people that suffer stroke exhibit 
walking issues three months after the accident occur [11]. An extensive prospective study [28] 
on 804 stroke survivors in the acute phase showed that 51% of the participants were unable to 
walk following the accident onset, 12% could walk assisted and the remaining 37% could 
walk independently. After rehabilitation, 18% were unable to regain any walking capability, 
11% were able to walk assisted and 50% regain the capabilities to walk independently. The 
study had a mortality rate of 21%.  

The sensorimotor impairments caused by strokes include muscle weakness, impaired 
selective motor control, spasticity and proprioceptive deficits [29], resulting in hemi-paretic8 
gait. It is important to understand that the related hemiparesis is a consequence of a disruption 
in the neural system which does not cause direct lesions neither in the spinal network nor in 
the musculoskeletal system [11]. Hemiparesis affects the gait symmetry, the temporal and 
spatial parameters, the kinematics of the joints, and the kinetics of the body.  

                                                
8 Unilateral impaired movement, i.e. one side of the body 
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Asymmetry between the two lower limbs is characterized by an inadequate selective 
motor control, disturbed equilibrium reactions and a reduction of the weight support by the 
paretic leg [29]. This asymmetry compromises the smooth progression of the body, and is 
often partly caused by the compensation made to overcome the limitations of the paretic side 
of the body (e.g. adjustments in the pelvis and the non-paretic side). The recovery of normal 
symmetry during post-stroke rehabilitation is a point of discussion. Some specialists suggest 
that asymmetry plays an important role in the walking performance of chronic hemi-paretic 
patients, compensating for the neurologic deficits and being a source of gait functionalit ies 
[29]. Discussions about allowing compensation in the early post-stroke stages and its 
influence in suboptimal recovery have been also held [11].   

One of the most critical effects of hemiparesis in the gait parameters is the reduction of 
the walking speed [30], although it is dependent on the motor recovery of the patients (higher 
motor recoveries have shown less reduction in the speed and less asymmetry [31]). Besides 
poor motor recovery, other causes for speed decrement include impaired balance and muscle 
weakness [29]. Significant temporal and spatial asymmetries between the two legs are also 
often present during hemi-paretic gait analysis: 48% to 82% of post-stroke patients show 
temporal asymmetries, whereas 44% to 62% show spatial asymmetries [11]. In a study 
involving 54 chronic post-stroke patients, 55.5% of the participants exhibited abnormal 
temporal asymmetry, whereas 33.3% exhibited significant spatial asymmetry [32]. Reported 
effects on the temporal features include reduction of the cadence [33], lower and higher 
(relative) durations of the stance phase in the paretic [34] and sound legs [33], respectively, 
higher durations of double-limb support sub-phases [31], reduction of the duration of single-
limb support sub-phase in the paretic leg [29], and durations in the pre-swing higher than in 
the loading response in the paretic limb (mostly at low speed) [11]. Regarding the spatial gait 
parameters, the mostly compromised feature is the step length symmetry between both limbs, 
where generally the step length from the paretic length (the foot of the affected leg is ahead) is 
longer than the one from the sound leg, although cases where it is shorter have been also 
reported [11]. However, some studies have indicated that asymmetries in the step length do 
not necessarily cause limitations on the self-selected walking speed of the patients [29]. 

The kinematics of the lower limb joints are also affected [29]. The hip experiences a 
reduction of extension (caused in part by limited ankle dorsiflexion in the late stance) and 
flexion during the stance and swing phases, respectively. The knee shows different type of 
patterns during hemi-paretic walking. During stance phase the knee can experience an 
increment of flexion (particularly at initial contact), a reduction of flexion during the initial 
stance, hyperextension during the terminal stance, or high and prolonged hyperextension 
during most of the stance period. High hyperextension presents usually at very low speeds and 
is associated with abnormal initial contact (fore-foot or flat-foot), prolonged ankle 
plantarflexion and low knee flexion previous to the initial contact. Moderate hyperflexion 
presents typically in relatively normal to high walking speeds, and is caused by irregular 
initial contact and abnormal ankle plantar- and dorsiflexion during the stance. During the 
swing phase the knee can experience a decrement of knee flexion (causing stiff knee) and 
decrement of extension in the moments before the initial contact. In the case of the ankle, the 
joint can experience low plantarflexion prior to toe-off and decrements on the dorsiflexion (or 
continues plantarflexion) during swing-phase that hinders the ankle to reach the neutral 
position, normally achieved at mid-swing to prevent toe drag, which ultimately can cause an 
abnormal initial contact. As stated before, the patient might do some compensation to avoid 
the toe drag, including pelvic elevation. Moreover, the kinematics of the arms and trunk are 
also affected by the hemiparesis, presenting asymmetries in their motions [11]. Three 
examples of the affected joint kinematics in hemi-paretic gait can be seen in Fig. 7. 
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Fig. 7  Examples of joint angles in hemi-paretic gait9 

Besides the spatial-temporal and kinematic abnormalities, hemi-paretic gait in stroke 
survivors is also characterized by high risk of falling [11] and higher energy consumption, the 
latter based on the level of oxygen spend during walking and varying depending on the degree 
of weakness, spasticity and training [29]. 

Cerebral Palsy 

Cerebral palsy (CP) is caused by damage in the brain during its development, ultimately 
consequence of lack of oxygen that kills or damages developing neurons, and can affect 
different areas of the organ. Unlike stroke, it is of great difficulty to identify the area of the 
brain that is affected [12]. CP is not one disease, but rather a collection of diverse syndromes, 
and its severity and clinical effects possess a high inter-subject variability [22], where the 
clinical picture is based on the muscles that are affected and their contraction timing relative 
to the gait cycle. Because CP is related to damage in the immature brain, studies normally 
focus in the medical condition of children. However, the effects continue to the adulthood of 
the people who suffered it, where premature aging due to the stress and strain caused by the 
disability is characteristic [35]. The effects from the brain damage continue developing 
throughout the child up-growing and current treatments are unable to do anything for the 
damage itself. However, some treatments can help prevent or reduce some of the secondary 
effects.  

The motion patterns caused by CP are diverse and include spastic, dyskinetic, hypotonic, 
ataxic, and mixed forms of movements, where spastic motions are the most common and the 
other types represent a minority of the cases [12]. Hence, spasticity is often the dominant 
clinical feature affecting most of the CP patients [22] and is one of the focus points in this 

                                                
9 Angles extracted from [11] 
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section. Primary abnormalities that are consequence of CP include loss of selective motor 
control, abnormal tone and problems with balance. Secondary abnormalities include abnormal 
bone growth, muscle growth, joint alignments (e.g. dislocation) and foot deformities. The 
emergence of primitive patterns of contraction is also characteristic of CP patients. In general, 
muscle weakness is not one of its primary effects. Compensations arise to overcome the 
primary and secondary abnormalities, although successful treatment of the secondary 
abnormalities (the primary are normally permanent and untreatable) may lead to an 
unnecessity of these compensations commonly leading to their disappearance.  

Generally, CP can cause hemiplegia10, spastic diplegia, spastic quadriplegia (also called 
double hemiplegia) and triplegia. As the names suggest, spastic diplegia is characterized by 
paralysis in both sides of the body but mostly affecting the lower limbs, quadriplegia affects 
all four limbs (more severely in the lower limbs) and triplegia refers to paralysis primarily 
involving the lower limbs and one of the arms [22]. The following explanations focus on 
hemiplegia and diplegia.  

In the case of hemiparesis, and specifically referring to children and young adults, Winters 
et al. [36] conducted experiments with 46 young patients who had suffered CP, traumatic 
brain injury and stroke (mostly CP) and divided the group in four based on the level of 
disability: from group I (with the mildest deviation from normal gait) to group IV (the more 
severely impaired). Group I was characterized by foot drop (although the ankle dorsiflexion 
range during stance phase was adequate), increased knee flexion in terminal swing and 
loading response (including initial contact), hip hyperflexion (increased flexion) during swing 
phase and increased anterior pelvic tilt throughout the gait cycle. Group II also presented hip 
hyperflexion and increased anterior pelvic tilt, together with persistent plantarflexion 
throughout the gait cycle and knee full extension or hyperextension in stance phase. Group III 
showed more limited knee flexion than the previous group, as well as hip hyperflexion, 
increased anterior pelvic tilt and persistent plantarflexion. Finally, group IV showed the same 
limitation of group three, but in a higher degree. All groups presented walking speeds lower 
than the average speeds for the corresponding age. These findings concur with the kinematic 
analysis of hemiplegia presented in the previous section.  

In spastic diplegia, as inferred from the name, spasticity plays a prominent role. The 
presence of spasticity during the muscle development can also lead to deformity. Patients 
suffering from spastic diplegia are normally characterized by a lack of stability in both 
standing and walking [22]. As stated before, the limitations and effects differ from patient to 
patient, but normally they include increased hip flexion (which leads to increased anterior 
pelvic tilt) and internal rotation, increased knee flexion, ankle eversion, and deformity of the 
foot, which causes forefoot contact and loss of plantarflexion in loading response, 
dorsiflexion in mid-stance and plantarflexion in pre-swing [22] [37]. Hyperextension of the 
knee and ‘stiff-leg’ are also present in some patients suffering from spastic diplegia. However, 
it is important to make clear that these are only some of the disabilities and abnormalities 
present in diplegic patients. 

Some studies have focused strictly in the knee limitations in CP patients. Sutherland and 
Davids [38] identified four types of primary knee joint abnormalities after conducting gait 
analysis in over 588 CP patients: jump knee, crouch knee, recurvatum knee and stiff knee 
[37]. Jump knee is characterized by increased knee flexion in the initial stance with correction 
to almost normal in the mid-stance and terminal stance. Crouch knee presents increased 

                                                
10 Although strictly speaking hemiplegia refers to total paralysis, it is often used to refer to both total paralysis 
and partial paralysis (hemiparesis).  
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flexion in stance phase and variable motion in swing phase. Recurvatum knee was 
characterized by increased extension in mid-swing and terminal stance and variable motion in 
swing phase. Finally, stiff knee presented a highly decreased range of motion in swing phase. 
Some examples of lower joints’ trajectories from diplegic CP patients are shown Fig. 8, 
including the cases of jump, crouch and recurvatum knee. 

  
Fig. 8  Examples of hip, knee and ankle trajectories in diplegic CP patients11  

Traumatic brain injury 

The causes of traumatic brain injury (TBI) are very diverse, although the leading ones are 
car accidents, firearms and falls [39]. The effects of severe TBI include motoric, cognitive, 
behavioral and emotional dysfunctions, however not much is known on how gait patterns are 
affected by the neurophysiologic impairments caused by TBI [7]. A high amount of patients 
express problems with instability and balance [4], as well as spasticity [40]. Dysfunctional 
patterns in TBI patients that have been reported include persistent hip flexion throughout the 
stance phase (causing shortened steps in the contralateral leg and affecting the stability during 
single limb support), hip adduction during terminal swing (narrowing the support base 
potentially causing balance problems), persistent knee extension during pre- and initial swing 
(stiff knee), delay in the timing of the knee flexion (causing reduction of hip flexion and 
possible toe-drag), persistent knee flexion during stance and swing phases (inducing 
compensatory hip flexion in stance phase and increased contralateral hip and knee flexions in 
swing phase, hindering the advancement of the limb in both swing and stance phases, 
shortening the step length, and potentially affecting balance and energy efficiency), 
equinovarus foot (plantarflexion with inversion), higher hip flexion in foot clearance, 
excessive knee flexion at initial contact, abnormal trunk and pelvic movements, and decrease 
of the walking speed [7] [40] [41].    

Spinal cord injury 

As with TBI, the causes of spinal cord injury (SCI) are diverse, with the main ones being 
car accidents, falls, violence (mostly involving gun shuts) and sports [42]. TBI can be 
complete, where the damage to the spinal cord is absolute and leads to a permanent loss of 
functionality below the injury level; and incomplete, where the damage caused incomplete 
loss of feeling and functionalities leading to different types of incomplete paralysis 
(paraplegia, quadriplegia). Reported pathological patterns include inadequate hip extension 
during stance, excessive ankle plantarflexion during stance, contralateral vaulting of the foot, 
limited hip and knee flexion during swing, excessive plantarflexion during swing, abnormal 
                                                
11 Angles extracted from [37] 
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hip rotations during swing, impaired ankle eversion during swing, pelvic hiking, and impaired 
foot contact [13]. The first three contribute to impairments in stance instability, the latter to 
impairment in the foot positioning, and the remaining six to impairments in foot clearance.  

Multiple sclerosis 

Multiple sclerosis (MS) is a disease of the central nervous system that causes damages in 
the nerve tissues of the brain and spinal cord and is characterized by impairments in several 
neurologic functions [43]. Although the exact cause of MS is yet to be identified, it is known 
that something causes the immune system to attack the brain and spinal cord, typically 
causing sensory, cognitive and motor impairments [9]. Neurologic abnormalities commonly 
found in MS patients are spasticity, weakness and ataxia [44]. Other possible symptoms 
caused by MS include paralysis, pain, fatigue, memory problems, numbness, tingling, changes 
in the mood, and blindness, varying from person to person. These symptoms can be short or 
long lasting, and some patients can experience gradual loss of function (progressive MS) [45].  

Although gait disorders are commonly present in MS patients, there exist a relatively low 
number of studies related to the gait patterns. Most of the studies report a decrease in the 
stride length and walking speed with respect to healthy subjects, which can be related to 
protective strategies towards balance and stability at the expense of speed [44]. Other findings 
include increased stance-to-swing ratios (longer double support times), higher step length 
difference between legs, wider base support, arrhythmic gait, increased hip flexion, knee 
flexion and ankle plantarflexion at initial contact, decreased hip and knee extension at toe-off, 
reduced ankle plantarflexion during swing, increased hip flexion during swing (leading to 
higher ranges of motion of the hip), reduced range of motion in the ankle, reduced cadence, 
reduced walking endurance, and increased metabolic cost during walking [43] [9] [44] [46]. 
Elevated variability in both joint kinematics and spatiotemporal gait parameters has also been 
reported by multiple studies, linking it with different possible causes including the level of 
disability, usage of walking aids, dual-task performance and fatigue [9]. Some of the walking 
abnormalities were found even in minimally disabled MS patients [47]. Additionally, falls are 
a recurrent issue faced by these patients, where several studies inform that 50%-70% of the 
people suffering from MS reported falls in the past two to six months [48].  

Elderly 

The walking patterns in the elderly population are subject to two factors: the effects of 
aging and the effects of pathologies such as osteoarthritis and Parkinsonism [22] (although 
some pathologies affecting walking could be also undiscovered by the patient or his/her 
doctors). If the second effects are excluded, the gait of healthy elderly generally resembles 
slow walking in younger adults [49]. Generally seen patterns include decreased stride length, 
variable and typically decreased cadence, increased walking base, and increased relative 
duration of the stance phase. It is suggested that these changes in the gait features are 
triggered by the need to improve the security during walking [49], characterized by lower 
times in which the weight is supported by only one limb, and making easier to keep balance 
by reducing the stride length and increasing the walking base.  

 
 

  



23 
 

3 Robotic gait rehabilitation systems 

During the past two decades researches have been developing several robotic systems 
meant to improve the gait rehabilitation of people that are impaired in their lower limbs due to 
a medical condition. These efforts are made thanks to the evident advantages of robotic 
systems over traditional, manual therapy approaches. Robotic systems are able to perform 
motion training in an intensive, precise, repetitive and reproducible way, without being 
restricted by the physical limitations of the therapists and reducing the number of therapist 
needed for each training session, easing the therapists’ job on the way. In the same way, 
robotic rehabilitation enables parameterized active, assistive, and resistive exercises. 

This chapter presents an overview of the state of the art in robot-based gait rehabilitation. 
Additionally, it presents the robotic system for over-ground gait rehabilitation MOPASS, 
which was developed by a consortium composed of technical and clinical partners for the 
design, control and test of the system.  

3.1 State of the art  

The state of the art systems implement several therapy techniques, mechanical designs and 
control approaches. Most of them base their robotic-aided rehabilitation techniques on the 
idea of fomenting the active participation of the patient, assisting him/her depending on 
his/her performance during the training, avoiding the usage of full-assistance to closely track 
the desired joint trajectories, or implementing adaptive reference gait patterns. These 
techniques are referred to as ‘assist-as-needed’ or ‘patient-cooperative’ strategies. 

Different types of systems have been built until now for both commercial and research 
purposes, with sundry designs and degrees of freedom (DoF). After a careful investigation, 
the robotic gait rehabilitation systems (RGRS) can be classified as follows: treadmill systems 
with lower-limb robotic orthoses, footplate systems, mobile platforms with lower-limb robotic 
orthoses and stand-alone systems. 

Treadmill-based exoskeleton systems 

Treadmill-based exoskeleton systems are the most common type of RGRS. These systems 
are usually characterized by big structures that include a treadmill and an attached robotic 
system assisting different joints and movements in the body. Due to their size and stationary 
operation, treadmill systems often include partial or complete body-weight support (BWS) for 
the patients. 

Lokomat [50] [51] is the most known RGRS worldwide. It is commercially available and 
is the system that has undergone more clinical tests. It consists of a treadmill, a controlled 
BWS mechanism, a parallelogram for trunk stability and horizontal movement, a lower-limb 
exoskeleton for active assistance in hip and knee flexion/extension, and passive foot lifters to 
support dorsiflexion in both ankles. Although the commercial system implements a fixed 
position control, several researchers have presented assist-as-needed and patient-cooperative 
strategies to foment the active participation of the patients while using Lokomat [52] [53], for 
instance, by adjusting the trajectory or controller parameters in order to minimize the 
interaction forces between the device and the patient. A newer version of this system, the 
LokomatPro [54], offers new features, such as weight shift and balance activation through 
lateral and rotational movements of the pelvis and assist-as-needed support. However, no 
specifics on the design or implementation are given to this date.  
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Another widely researched RGRS is LOPES (LOwer-extremity Powered ExoSkeleton). 
The first version of the system [55] [56] [57] consists of an exoskeleton for the legs and an 
end-effector robot for the pelvis working together with a treadmill. It offers eight DoF, 
namely ab/adduction in hip joints, flexion/extension in hip and knee joints, and mediolateral 
and anteroposterior movements in the pelvis, together with a passive joint for longitudinal 
pelvic motion. LOPES implements different virtual physical models (VM) (such as inertias, 
springs and dumpers), to generate interaction forces between the robotic system and the 
patient. These VMs are activated and deactivated during the gait cycle, so that each VM is 
used during a specific gait (sub) phase. LOPES II [58], the latest version of the system, is 
composed of a treadmill, a harness, and a parallel ‘shadow leg’ structure located behind the 
patient and connected to the patient’s joints with rods. It offers the same eight powered DoF 
from the previous version, whereas all the other DoF can be left free to enable quasi-
unconstrained movement in the corresponding joints. This system implements an assist-as-
needed approach together with an admittance controller. It enables the therapist to set desired 
support levels during different gait (sub) phases, and translates these desired support levels 
into stiffness profiles and adjustments of the reference joint trajectories. 

PAM (Pelvic Assist Manipulator) and POGO (Pneumatically Operated Gait Orthosis) are 
two other known RGRS that work together with a treadmill and a controlled BWS mechanism 
[59] [60]. PAM is composed of two robotic mechanisms (each one with three pneumatic 
cylinders) for pelvic support, whereas POGO consists of two pneumatic cylinders, fixed to a 
telescoping rail system, that induce hip/knee joint flexion/extension movement. Together, 
they offer a wide range of active DoF: POGO offers two active DoF (flexion/extension in 
knee and hip joints) and two passive DoF (hip ab/adduction and ankle dorsiflexion) per leg; 
whereas PAM offers five active DoF on pelvis (the three translational DoF, pelvic rotation and 
pelvic obliquity) and one passive DoF (pelvic tilt).  

Another well-known system is ALEX (Active Leg EXoskeleton), which to this date 
possesses three versions. The first version is composed of a treadmill together with a trunk 
and a leg orthosis attached to the patient. The trunk orthosis offers four DoF, namely 
mediolateral and longitudinal translations, and rotation in sagittal and transverse planes. The 
leg orthosis, on the other hand, offers active DoF for flexion/extension of the hip and knee 
joints, and passive DoF for hip ab/adduction and ankle dorsiflexion. It offers an assist-as-
needed therapy approach by means of a force-field controller implemented in world space 
coordinates, which applies support forces in the foot composed by a force tangential to the 
foot trajectory (to help the patient when he/she has problems following the trajectory speed) 
and a force normal to the foot trajectory (to maintain the user near the desired trajectory). The 
latter force is calculated with respect to a virtual wall around the desired foot trajectory 
wherein no normal support forces are applied. The design of the second version, ALEX II 
[61], which consists of a back support and a leg orthosis, is similar to its predecessor, offering 
the same DoF and implementing the same force-field controller. ALEX III [62] [63], on the 
other hand, presents an enhanced design with 12 active DoF: four in the pelvis (rotation 
around the vertical axis, and anterior/posterior, superior/inferior and lateral translations) and 
four in each leg (hip adduction/abduction, hip and knee flexion/extension, and ankle 
plantar/dorsiflexion). Additionally, it implements an adaptive assist-as-needed controller 
which includes a force-field controller with an adjustable virtual wall. 

A treadmill-based robotic gait rehabilitation trainer is also presented in [64] [65]. This 
system was designed to apply corrective force fields in pelvic obliquity, while trying to mimic 
the interaction between patient and therapist during traditional rehabilitation. The system 
consists of a stationary frame standing over a treadmill, and an actuated pelvic mechanism. It 
offers active assistance for pelvic rotation about the anteroposterior axis, while leaving free 
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the other DoF in the pelvis. The system is meant to work with a lower-limb exoskeleton in 
charge of transferring corrective moments to the pelvis, imparting forces onto the user’s lower 
body, and altering the orientation of the pelvis in the frontal plane. The initial implementation 
of the system presented a legs' exoskeleton with passive DoF for hip ab-/adduction, hip 
internal/external rotation, hip and knee flexion/extension and ankle plantar-/dorsiflexion. 
However, the idea is to combine it with the AndROS lower-limbs exoskeleton [66]. AndROS 
offers active DoF for knee flexion/extension and passive DoF for hip ab/adduction and 
flexion/extension, and is originally designed to assist only one leg generating its reference 
trajectories from the unassisted leg. Both the pelvic mechanism and AndROS implement 
impedance controllers in their actuated joints to generate corrective force/torque fields. 

Another commercially available system is the AutoAmbulator [67] [68], although not 
many details from this system are available. It consists of a treadmill, a BWS mechanism and 
a couple of robotic arms to assist flexion/extension of hip and knee joints. The Walkbot 
system [69] [70] is also commercial, comprising a treadmill, a lower-limbs orthosis, a gravity 
balancing orthosis and a BWS mechanism. 

 Although the aforementioned systems are the most know RGRS working with treadmills, 
there exist sundry devices that have been developed worldwide for research purposes. An out-
of-the-box system is presented in [71] called RGTW. It consists of a pneumatic lower-limb 
orthosis that offers active DoF for hip and knee rotations in sagittal plane and passive DoF in 
the ankles, and works together with a treadmill to train the walking underwater. COWALK 
[72] comprises a treadmill, a lower-limb exoskeleton and a gravity compensator, offering 
three active DoF in pelvis (translational motion in the horizontal plane and rotational motion 
along the longitudinal axis), three active DoF per leg (hip and knee flexion-extension and 
ankle dorsi-/plantarflexion), and two passive DoF per leg (ankle inversion-eversion and hip 
ab/adduction). In [73], a soft-actuated exoskeleton for lower limbs designed to work together 
with a treadmill and BWS is presented. The exoskeleton is powered by Pneumatic Muscle 
Actuators (pMA), and offers four active DoF per leg, namely ab/adduction in hip, 
flexion/extension in hip and knee, and dorsi-/plantarflexion in ankle. In [74], a system 
consisting of treadmill, BWS and a lower-limbs’ exoskeleton driven by pneumatic actuators is 
presented, which offers active DoF for flexion/extension in hip and knee, and dorsi-
/plantarflexion in ankle. These are only some examples of research prototypes. 

Footplates systems 

Similar to the treadmill systems, footplates devices are stationary and often include BWS. 
The basic idea of these systems is to train the gait patterns of the patient by assisting the feet 
movement through programmable footplates, normally allowing the movement of the feet in 
the sagittal plane. 

The first footplates-based system was the Gait Trainer [75], which offers assistance to the 
feet to perform walking-like movements in sagittal plane, whilst controlling the patient’s 
center of mass in vertical and horizontal directions. It also offers partial or total support of the 
gait movements by adjusting the output torque according to the patient’s active participation. 
The HapticWalker [76] [77] is another well-known system of this type. It consist of a 
programmable footplates device with three active DoF per foot, corresponding to the foot 
movements in the sagittal plane (two translational and one rotational). The HapticWalker 
implements virtual environments (e.g. walking and going up/down stairs) which might 
include perturbations (e.g. stumbling and sliding), and offers programmable trajectories to 
that end. Another interesting approach is presented in [78], where a system composed of a 
lower-limb mechanism (consisting of footplates and a sliding device that generates 3-DoF 
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spatial motions on the sagittal plane for each foot) conjunct with BWS and an upper-limb 
mechanism (which allows users to swing their arms naturally) is presented. The device is 
combined with a simple virtual reality component that allows the user to navigate in virtual 
environments while training. Additionally, the lower-limb mechanism can be used to simulate 
different terrain types, e.g. stairs and slopes. LOKOIRAN [79] and LokoHelp [80] are other 
systems that combine a footplates mechanism with BWS. The latter one also includes a 
treadmill in the therapy process. 

Mobile systems for over-ground training 

Unlike the previous groups, these devices are not stationary, letting the training to be 
performed on actual foot-ground interaction. In general, these systems comprise a motorized 
platform holding other complementary mechanisms, which may include lower-limb active 
orthoses and pelvic attachment systems. This type of RGRS may also have BWS mechanisms, 
leading to bulkier and heavier devices. 

The WalkTrainer [81] [82] [83] is the first example of this type of systems. It consists of a 
motorized mobile platform, an active pelvic orthosis, an active leg orthosis, a controlled BWS 
mechanism and electrical muscle stimulators, offering six active DoF in the pelvis and three 
active DoF in each leg, namely hip and knee flexion-extension and ankle dorsi-
/plantarflexion. The WalkTrainer uses a compliance controller and implements an assist-as-
needed strategy that aims to automatically select the level of compliance of each one of the 
active DoF. Additionally, it uses EMG (Electromyography) to calculate the level of muscle 
stimulation given to the patient by means of CLEMS (Closed Loop Electrical Muscle 
Stimulation), aiming to minimize the forces that the patient is applying to the orthosis. 

NaTUre-gaits (NAtural and TUnable REhabilitation gait system) [84] [85] [86] [87] [88] 
is another extensively researched RGRS. This system consists of three modules: a motorized 
platform, a pelvic assistance mechanism and leg robotic orthoses. The pelvic assistance 
mechanism includes BWS, and is composed by a couple of compound robotic arms (one in 
each side of the patient) which give active assistance to perform translational motion in the 
sagittal plane in each side of the pelvis (resulting as well in pelvic rotation about the vertical 
and sagittal axis), as well as mediolateral movements. Additionally, it offers passive rotation 
of the pelvis about the transverse axis. Thanks to this mechanism, the system is able to 
perform balance control. The leg orthoses offers active assistance for hip and knee flexion-
extension and ankle dorsi-/plantarflexion. This assistance can be full or partial in order to 
compensate the patient’s lower-limb muscle power. 

Another mobile RGRS that offers a wide range of active DoF is CORBYS [89] [90] [91], 
whose development was based on the design and analysis of the RoboWalker concept [92] 
[93]. Besides incorporating an omnidirectional motorized mobile platform for over-ground 
therapy, the CORBYS system includes the option to also work with treadmill in cases when 
the space is an issue. Additionally, it includes a pelvic structure and two active leg orthoses. 
These three components offer a total of 16 DoF to the patient: 10 active, namely longitudinal 
and mediolateral translations of the pelvis, pelvic rotation in the frontal and transverse planes, 
flexion-extension in the hip and knee joints and dorsi-/plantarflexion in the ankle joints; and 
six passive, namely ab/adduction and internal/external rotation in hip joints, and 
eversion/inversion in the ankle joints. The system implements an impedance controller in joint 
space, that works together with a robot model compensator, a velocity limiter controller and 
the torque controllers of each drive.  

An interesting design of a mobile RGRS can be found in [94], where a combination of a 
motorized wheel chair and a lower-limbs exoskeleton is presented. The exoskeleton offers 
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three active DoF per leg, namely hip and knee flexion-extension and ankle dorsi-
/plantarflexion, and three passive (two in the hip joint and one in the ankle). This versatile 
approach enables training not only of over-ground walking, but also of motion for standing 
up, sitting down, and stair climbing. Some other more simple designs can also be found in 
literature, e.g. the system presented in [95], the ARGO prototype [96] and EXPOS [97]. For 
instance, EXPOS is a system consisting of a motorized walker and a legs’ exoskeleton. It 
offers active flexion/extension in hips and knees, and passive dorsi-/plantarflexion in ankle. 
However, this simplistic approach with a walker (like the ones used by the elderly to support 
their weight while walking) does not provide enough safety (e.g. concerning balance and 
falling) which becomes an issue for patients that require high or medium assistance in most 
aspects of walking, like for example balance control.  

The aforementioned systems are composed by a mobile platform and some kind of lower-
limb active orthosis. Nevertheless, there exist also mobile RGRS that do not include orthosis 
for the legs. This type of systems is mainly used to train the balance of the patients during 
over-ground walking in a fall-safe scenario. Two of these systems are the WHERE-I and 
WHERE-II [98]. The WHERE-I consists of a motorized mobile platform with a one-link 
rotary arm used as attachment to the patient and as electric BWS mechanism, whereas the 
WHERE-II is composed of a mobile vehicle with two one-link manipulators and a pneumatic 
BWS mechanism. Additionally, both devices possess a safety system and an intention 
analysis system. The latter is used when the systems are set to follow the movement intentions 
of the patient, instead of having a set trajectory to be followed, which describes their second 
operation mode. Both systems offer longitudinal motion (controlled by the BWS 
mechanisms), anteroposterior movement and rotation in place. Another system for balance 
training is the KineAssist [99]. It consists of an omnidirectional motorized mobile platform 
with a partial BWS mechanism and a pelvis/torso harness, offering active trunk rotations 
around the frontal and sagittal axis, passive torso rotation around the longitudinal axis, passive 
anteroposterior, mediolateral and longitudinal trunk movements, and passive pelvic rotations 
in all three axes. KineAssist also offers different operation modes: free walking, challenge 
mode (balance, obstacles), strength training mode (resistance), stabilization mode (adjustable-
stiffness forces on trunk and pelvis), postural control mode (forces applied to maintain 
pelvis/trunk in certain position), adjustable BWS mode, and perturbation mode (therapist can 
push patient). Finally, the GaitEnable system is presented in [100]. This system is composed 
by an omnidirectional mobile base, a passive BWS mechanism and a passive pelvic linkage. It 
implements an admittance controller for the platform to move depending on user's intentions, 
and offers the possibility to generate gentle gait perturbations to facilitate balance training and 
gait assessments. 

Stand-alone systems 

Stand-alone devices are referred here as exoskeleton systems that do not use a support 
structure such as a platform or a static base. In principle, this type of devices are not designed 
for gait rehabilitation, but rather to give full assistance to people that have lost the movement 
on the legs (e.g. paraplegics), or as devices for human augmentation utilized, for instance, to 
enhance the strength of a person to lift heavy objects or to achieve high endurance during 
physical activities. Although their main objective is not gait rehabilitation, these systems have 
the potential to be combined with support mechanisms and proper control algorithms to be 
used as RGRS, and thanks to their autonomy, could be suitable devices to train movements 
such as going up/down stairs and stand-up/sit-down. In general, stand-alone systems can be 
divided into two groups: systems to enable handicapped people to walk, which usually are 
complemented with crutches or canes, and human augmentation systems. 
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In the first group we find commercial systems such as the ReWalk [101] [102] and the 
EKSO [103] [104] systems. Another system of this kind is MINA [105] [106]. All three 
aforementioned devices possess an exoskeleton that offers active DoF for hip and knee 
flexion/extension, and the users may use either crutches or canes if needed. Another system 
belonging to this category that has been tested with complete SCI patients (paraplegics) is 
MINDWALKER [107]. This exoskeleton offers active DoF for hip and knee flexion/extension 
and hip ab/adduction, together with passive DoF for hip and ankle endo/exo-rotation and 
ankle dorsi/plantarflexion. It implements a finite-state machine (FSM) that defines different 
motion scenarios and the assistance given in each one of them, and a HMI that triggers the 
transition between the states of the FSM depending on the user's intentions. The joint 
reference trajectories are tracked by means of variable-impedance controllers (in joint space) 
which are supervised by the FSM. Although stable walking was achieved during tests with 
healthy subjects using the system without any kind of support, in the case of Spinal Cord 
Injury (SCI) paraplegics there was the need to use crutches. Another system that could be part 
of this group is the one presented in [108], where the system consists not only of elastic 
crutches and a lower-limb orthosis that offers active DoF for hip and knee rotation in sagittal 
plane, but also a sort of skates-like foot-platforms, which allows forward and backward 
movements and turning. However, this system appears to be design more to roll rather than to 
walk assisted by it.  

In the second group, the HAL (Hybrid Assistive Limb) commercial systems [109] [110] 
[111] stand out. The HAL series comprises different versions of the system, including a full-
body exoskeleton (for upper- and lower- limbs), a two-leg exoskeleton and a one-leg 
exoskeleton. The lower-limbs exoskeletons are offered with active assistance in hip and knee 
joints for rotation in sagittal plane, and either passive or active dorsi-plantarflexion on the 
ankle joints. At first, the HAL systems were designed to apply joint torques and generate 
motion based one bioelectrical signal from the user (e.g. EMG) by means of a ‘voluntary’ 
controller. This way, the system was able to assist the user and move based solely on the 
user’s intentions. The HAL systems have been widely used to assist physically impaired 
people, and some approaches to rehabilitation have been made as well with some success. In 
[112] [113], the two-leg version of HAL was used to perform gait support for complete SCI 
patients. Because of the difficulty of severely impaired people to produce bioelectrical signals 
that are appropriate for the voluntary controller, an autonomous controller was designed to 
complement it. It bases its operation in three steps: a user-swing-intention estimation based on 
the behavior of the center of ground reaction force (CoGRF): an inference of the speed of the 
swing leg based on the relationship between the walking velocity and the duration of the 
double stance phase: and the trajectory generation dependent on the outputs of the previous 
state. As stated before, the HAL systems have also shown modularity capabilities, being able 
to be used as a one-leg exoskeleton. This configuration was implemented to assist hemiplegic 
people in their affected leg based on the performance of the sound leg [114] [115] [116]. For 
this implementation, the autonomous controller was adapted to fulfill the requirements of the 
new tasks at hand. The control strategy for the HAL systems using the autonomous mode is 
normally a position Proportional–Integral (PI) controller, sometimes complemented with 
dynamic-model-based feedforward torques (e.g. torques corresponding to the dynamics of the 
system or to the gravity terms of the model). 

Other systems are more focused in human augmentation. The BLEEX [117] and XOS 2 
[118] [119], for instance, are two exoskeleton systems developed for military purposes aiming 
to increase the user’s strength, agility and endurance capabilities. In [120] [121] a 10-active-
DoF body exoskeleton for assisting nurse labor is presented. Other examples of systems 
designed for load-transferring tasks can be found in [122], [123] and [124]. 
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Other systems 

Besides the systems that have been presented so far, there exist some devices that have 
been developed to assist only one or two leg joints, independent from a static or mobile frame. 
In this group we find the so-called AFO (Ankle-Foot Orthosis) and KAFO (Knee-Ankle-Foot 
Orthosis), as well as other single-joint orthoses (e.g. knee orthoses). These devices can be 
used to help the users to walk, similar to the first type of stand-alone devices presented above, 
or can be combined with some other mechanisms (e.g. BWS, mobile or static platforms, etc.) 
to assist the patients during rehabilitation therapy. Some examples of this type of devices are 
presented in [125] (RoboKnee), [126] (TUPLEE), [127] (Tibion PK100), [128], [129] and 
[130], among many others. 

Additionally, there exist some treadmill-based gait rehabilitation systems that do not 
possess a lower-limb active orthosis. A very out-of-the-box design of treadmill-based RGRS 
is StringMan [131] [132], which is a string-based mechanism with partial BWS that allows 
posture control in six DoF, comprising seven wires attached to a trunk/pelvic harness. This 
system does not assist the legs of the patients, but rather helps the patients to correct their 
posture and balance. The MIT-Skywalker [133] is another example of this type of systems. 
This device consists of BWS mechanism and two separate treadmills (one per foot) with 
different DoF in them. It offers as well a vision system for gait analysis and position sensing 
for high level control. Three different training approaches are offered by the MIT-Skywalker: 
rhythmic training (moving the ground in swing phase), discrete training (to train step length) 
and balance training.  

Other type of systems used in gait rehabilitation are simulation systems, which include 
some motion simulator and a virtual-reality training environment. In this group we find, for 
instance, the Rutgers Mega-Ankle [134], a system that simulates walking by moving some 
platforms where the feet are located while a virtual environment is displayed in front of the 
user; and the Sarcos Treadport [135], which comprises a tilting treadmill (designed to apply 
forces to the user’s torso), a harness and a virtual environment. 

Finally, there are sundry devices that have been developed for lower-limb physiotherapy 
but not for gait rehabilitation. Here we can find, for example, couch/bed-based devices, such 
as the MotionMaker [136] [137], and the iLeg [138]. These two systems offer active DoF for 
hip, knee and ankle rotation in sagittal plane. Other type of devices designed to perform other 
type of lower-limb training (e.g. stand-up/sit/down motion) are presented in [139] and [140], 
among others. 

Assessment of robot-based gait rehabilitation 

Several tests have been done using RGRS (mostly LOKOMAT) with both healthy and 
impaired subjects. Although the studies tend to favor robot-based rehabilitation, they have 
yielded mixed results regarding the effectiveness of their usage and benefits and deficiencies 
with respect to traditional physiotherapy.  

Several studies have been carried out to assess the outcome of therapy after using RGRS. 
Most of these studies showed that robot-assisted therapy improved many gait-related 
parameters (e.g. [141], [142], [143] and [144]). However, a few studies showed abnormal 
measurements in some gait parameters when using RGRS by both healthy [145] [146] [147] 
and impaired [148] subjects. Nonetheless, it is important to take into account that abnormal 
measurements can also be present during other types of therapy and may not be exclusive of 
RGRS. Other studies focused on finding the difference between robot-based gait 
rehabilitation and conventional therapy. These studies showed more mixed findings than the 
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previously mentioned ones, although most of them favor robotic rehabilitation. Some studies 
have reported advantages of RGRS with respect to conventional methods (e.g. [149], [150], 
[151] and [152]); others did not find significant differences between the two (e.g. [153], [154] 
and [155]); and finally, some have reported disadvantages of robot-based rehabilitation (e.g. 
[156] and [146]). A summary of the findings of some studies can be found in Appendix A. 

3.2 MOPASS system 

The MOPASS system [20] is an over-ground gait rehabilitation system developed by the 
MOPASS consortium12, composed by technical partners with expertise in actuation, 
mechanical design for medical purposes, control and information technologies, as well as 
medical partners with expertise in rehabilitation. This section will present the features of the 
MOPASS system, including mechanical design, components and software design. 

3.2.1 Mechanical design 

The MOPASS system consists of a motorized platform and a pair of actuated leg orthoses. 
The CAD design is shown in Fig. 9, including the active DoF (circles), the main mechanical 
parts (diamonds), and the computers and batteries (stars). 

The mobile platform consists of a chassis {A} with adjustable height and width, two 
motorized wheels {W}, and four caster wheels {B}. The patient display {PPC}, controller 
computer {CPC} and two batteries {B} for power supply of the computers and drives are 
attached to the chassis. The orthotic legs are connected to the platform through the trunk 
support {C}, which allows limited lateral displacement along the frontal axis, as well as 
limited trunk rotation in all axes. The trunk support contains a couple of waist holders/cuffs 
{D} and one motor on each side {1} used to perform pelvic active movement. The base of 

                                                
12 Research supported by the German Federal Ministry of  Education and Research as part of the MOPASS 
(Mobiles, dem Patienten angepasstes,robotergestütztes Gangrehabilitationssystem) project under project number 
13EZ1123A–E . 
 

  
Fig. 9  MOPASS gait rehabilitation system 
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each leg orthosis {E} is attached to the trunk support by a mechanism that prevents rotation of 
the base in the sagittal plane regardless of the motion of the pelvis motors. Additionally, 
passive hip ab/adduction is introduced in this attachment between the leg base and the trunk 
support. The leg base and upper-leg link {F} of the orthosis are connected to a motor which 
allows hip active rotation in the sagittal plane {3}. The upper-leg link contains a thigh cuff, 
and permits length adjustments to adapt the link to the patient’s leg. Finally, the lower- and 
upper-leg links are connected through a second motor that allows knee active rotation in the 
sagittal plane {4}. The lower-leg link {H} contains additionally a shin cuff. 

The system offers several passive DoFs, briefly explained above, plus the active DoFs 
given by the eight motors installed on it. The active DoFs include hip {3} and knee {4} 
rotation in the sagittal plane, trunk/pelvis rotation {1}, and translation and rotation of the 
platform in the transverse plane given by the control of the powered wheels {W} (subject to 
the corresponding non-holonomic constraints introduced by the wheels). The pelvis active 
rotation is described by an eccentric movement that leads to circular motion of the leg’s base. 
For simplicity, it can be described as two coupled DoFs, one active {1} and one passive {2}, 
performing rotation in the sagittal plane. The active DoF is provided by the motor, and the 
passive DoF is enabled by the mechanical construction of the joint. The coupling is done so, 
that the angle of the virtual passive joint {2} has always the opposite sign of the angle of the 
active joint {1}. A list of all the passive and active DoFs of MOPASS system is given in Table 
1. Additional information regarding the dynamic model of the system can be found in 
Appendix B. 

The hip and knee joints are actuated using Maxon EC45 flat motors [157] with HFUS-2A 
harmonic drives [158] and Elmo Whistle Solo G-SOLWHI20/100SE servo-drives [159]. The 
mobile platform uses AMT SRG05 gear-motors [160] to actuate the wheels, together with the 
aforementioned Elmo servo-drives. Schunk PDU 70-101 servo motor drives [161] are used to 
actuate the pelvis modules. The position, velocity, current and torque limits of each one of the 
active joints are given in Table 2. 

3.2.2 Architecture 

This section will give a brief explanation of the overall architecture of the MOPASS 
system. The complete system consists of several components comprising computers, sensors 
and drives/motors.  

Three computers are used in MOPASS: the therapist portable PC (Tablet), the patient PC 

Table 1  Active and passive DoF in the MOPASS system 

Degrees of Freedom Active (A) /  
Passive (P) 

2-dimensional translation of the platform in the transverse plane a A 

Rotation of the platform around the longitudinal axis A 

Hip and knee rotation in sagital plane (in each leg) A 

Trunk/pelvis rotation constrained to circular motions b A 

Hip ab-adduction (in each leg) P 

Trunk translation along the frontal axis  P 

Limited trunk rotation around all axis P 

a. Subject to non-holonomic constraints 
b. Given by the pelvis motors and mechanisms in each side of the body 
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attached to the mobile platform frame, and the controller PC. The therapist PC comprises the 
therapist user interface which is used by the therapists and doctors to give all the settings of 
the therapy, set and adjust the reference gait patterns, retrieve, show and save patient personal 
data, retrieve and save assessment and motion measurements and show them in real time, and 
handle the device operation. The Patient PC has two components: the server of the system and 
the patient graphical user interface. The server is the heart of the communication between all 
the components in the system. It is in charge of the network management and of retrieving 
and delivering the information between other components in the network. The patient 
interface offers a limited set of functions to the patient during training, such as stopping the 
device when desired or showing some therapy measurements for assessment and 
encouragement. Finally, the controller PC comprises all the control functionalities of the 
system (except for the low-level controller built in the motor drives). A detailed explanation 
of these functionalities is given in the next section.  

The device is equipped with six motors with their corresponding drives. All of them 
communicate with the controller PC via CAN-bus, where the Elmo drives use CAN-Open as 
application layer protocol whereas the Schunk drives use a proprietary application protocol 
(Schunk Motion Protocol – SMP [162]). Additionally, MOPASS possesses heart-rate and 
foot-pressure sensors for assessment, which are optional to use and are not utilized by the 
system controllers.  

The communication between all the components (except the drives and sensors of the 
motors, which communicate directly with the controller PC) is done through the server using 
Ethernet – TCP-IP. A proprietary application layer protocol was developed for this 
communication: Mopass Communication Protocol (MCP). This protocol included all the 
necessary functionalities to ensure a reliable and organized exchange of information between 
components aiming to have a high communication throughput. However, the details of the 
protocol are out of the scope of this manuscript. Fig. 10 shows the overall software 
architecture and communication network in the MOPASS system. 

3.2.3 Controller computer 

The control architecture of MOPASS is located in the controller computer, and it is based 
on the software framework offered by the Orocos project [163]. It consists of eight 
components in charge of management, communication and medium -level control of the eight 
actuated joints of the system, and three management components in charge of tasks such as 
general management, user commands handling and medium-level and synchronization 
control, additional to the build-in management and control tools in the Elmo and Schunk 
drives. The Orocos toolchain is a software tool to create real-time robotics applications using 
modular, run-time configurable software components. It offers real-time components, 
interacting scripting, state machines, distributed processes and code generation. 

Table 2  Limits of the active joints’ in MOPASS 

Joint Maximum ang.  
position [deg] 

Minimum ang.  
position [deg] 

Maximum ang. 
velocity [deg/s] 

Maximum 
current [amp] 

Maximum 
torque [Nm] 

Hip -10 100 180 3.21 / 5 20 
Knee -90 0 180 3.21 / 5 20 
Pelvis unlimited unlimited --- 4 / 8 15 / 30 
Wheel unlimited unlimited 1200 --- --- 
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There are a total of eleven Orocos components in the MOPASS control network, namely 
Guard, Therapist-Controller Interface (TCI), Controller, and the eight components in charge 
of the motor drives. A detailed diagram of this network is shown in Fig. 11. As it can be seen, 
the Guard component is connected to all the other components in the network. These 
connections appear as data flow connections and inter-component commands executions. 
Further connections are between the TCI component and the Controller component, and 
between the Controller component and the eight joint components. A brief explanation of 
each type of components is presented next. 

Guard component: 

As it can be inferred by the name, this component makes sure that all the components 
in the network are working without any problems, and takes action when that is not the 
case. Its thread runs at a relative low frequency of 10 Hz. Its main set of functions covers: 
 Overall management of the Orocos components: it administrates what components are 

enabled, as well as it controls the Orocos components’ state machines (Pre-
Operational  Stopped  Running).  

 Perform all the configuration on the components that must be done before they are run 
(i.e. in pre-operational and stopped states). 

 Receive the error and warning messages from the components, handle them and take 
the corresponding administrative action. 

 Act as the main interface between the user and the controller computer, publishing the 
errors and warnings to the higher layers, and handling the user commands that are not 
related with control and trajectory generation (e.g. enabling components, quitting 
program). 

 

  
Fig. 10  Overall software architecture and communication in the MOPASS 

system  
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Fig. 11  Diagram of the controller PC architecture  
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Therapist-Controller Interface (TCI) component: 

This component is the second interface between the user and the controller computer. 
It runs at a frequency of 20 Hz. Its main functions include: 
 Handling the user commands that are related to control and trajectory generation (e.g. 

set joint trajectories, change velocity, change controller state). It verifies the input 
commands to make sure that they fulfill the controller specifications, such as motion 
limits and controller state machine allowed events. Once verified, they are passed to 
the Controller component to be executed. 

 Publish the controller related data to the upper layers, e.g. joint positions and position 
errors. 

Controller component: 

This component is in charge of the control state machine, mid-level control and 
trajectory management. It runs at a frequency of 100 Hz and its functionality includes: 
 Administration of the control state-machine: It performs an internal revision to allow 

or dismiss commanded state changes and setting modifications, and implements the 
functionality of each specific state. (The details about the controller state-machine will 
be given afterwards).  

 Generates the trajectories for the hip and knee joints based on the curve parameters 
(points) and other gait parameters given by the Generator component. 

 Generates the motion profiles of the pelvis and wheels joint so that they are 
synchronized with the hip and knee desired trajectories. 

 Implements the first level of mid-control which involves the states of all joints in the 
system, such as synchronization and, if available, ‘assist as needed’ control. 

 Send the specific control commands to the joint components, such as desired angular 
position or velocity. 

Elmo components: 

There are a total of six Elmo components in the network, one for each wheel, hip and 
knee joint. The hip and knee components run at a frequency of 333.33 Hz. whereas the 
wheel components do it at a frequency of 200 Hz. Their main functions are: 
 Implementation of the CANOpen protocol and the Elmo-specific functionality to act 

as an interface between the Elmo-drives (plus external sensors) and the controller 
computer. 

 Initialize the corresponding Elmo drive and external sensor by setting some CANOpen 
and control parameters. 

 Send motion commands to the Elmo drives. 
 Retrieve data from the Elmo drives and external sensors, such as actual position and 

current. 
 Implements the second level of mid-level control which involves only the 

corresponding joint, e.g. the joint-space position control explained later on in section 
5.1.1. 

 General administration of the Elmo drives, including error handling. 
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SMP components: 

There are two SMP (Schunk Motion Protocol) components in the network, one for each 
side of the pelvis (trunk). Each one of them runs at a frequency of 20 Hz. Their functions 
include: 
 Implementation of the CAN-Bus protocol and the SMP-specific functionality to act as 

an interface between the Schunk-drives and the controller computer. 
 Initialize the Schunk drives by setting protocol and control parameters. 
 Send motion commands to the Schunk drives. 
 Retrieve data from the Schunk drives and external sensors, such as actual position and 

velocity. 
 General administration of the Schunk drives. 

Additional to the controller computer and its mentioned components, the build-in control 
components of the Elmo and Schunk drives must be included in the overall control 
architecture. Each one of the drives counts with internal position and velocity controllers, 
among others. These drives communicate with the controller computer (more exactly with the 
respective Orocos components) via CAN-Bus. The complete CAN communication was 
distributed over four different buses in order to achieve better bandwidth usage, higher 
communication frequencies and therefore faster control components.   

As stated above, the Orocos Controller component possesses a state machine in charge of 
avoiding invalid system state changes and user commands. The state machine was built for 
both, integrity of the usability and operation of the system, and safety measurements. It is the 
basis of the whole MOPASS operation, and was designed to give a high level of usability to 
the system, including features such as ‘platform-driving’ mode to move the platform without 
patient, turning mode to turn the platform and set its direction of walking before starting the 
walking training, therapy with position control for close tracking of the reference trajectories, 
enhanced therapy control strategies (e.g. ‘assist as needed’), ‘zero-force’ control and 
spasticity detection. However, not all of these functionalities (namely the later three) have 
been implemented in the system because of the lack of appropriate user-intention feedback 
(e.g. torque sensors). Nonetheless, these functionalities can be easily added in future 
enhancements of the MOPASS system. The state machine consists of two layers: the outer 
layer, which corresponds to the generic Orocos component state machine (Pre-Operational 

 Stopped  Running); and the inner layer consisting of the operation states during 
training.  

A diagram of the controller state machine is shown in Fig. 12. For safety reasons, the 
system will always start in ‘Halt’ state every time it is initialized. Additionally, states as 
‘Position control’, ‘Therapy control’, ‘Turning’ and ‘Drive’ are only accessible if the system 
is in the home position, or if it is in halt and the previous state was the now commanded one 
(i.e. the user want to continue with the previous operation mode after a ‘halt’ command). 
Additionally, the states ‘Zero-force control’ (Follow-up mode) and ‘Spasticity mode’ can be 
activated from any of the other (Running) states, since these states are available to release 
pain or other uncomfortable situations. Furthermore, only some user commands are allowed 
in each of the controller states, for the same safety and operation related reasons. For instance, 
the leg with which the system will give the first step can only be set while ‘at home’. 
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Fig. 12  Controller state-machine  
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4 Generation of reference gait patterns 

This chapter presents the key contribution of the thesis and covers the theory behind the 
concept and implementation of the hip and knee joints trajectory generation for patient-
tailored therapy. Initially, an overview of the state of the art regarding specifically trajectory 
generation for robot-based gait rehabilitation will be presented. Next, the specifics of the 
trajectory generator developed for the robotic system MOPASS will be explained. First, the 
concept for trajectory generation proposed in this work will be introduced. This concept is 
based on the generation and adaptation of joint trajectories through some points (also referred 
as knots) in the position curves, namely the characteristic points (which influence the most the 
motion pattern) and the shaping points (used for shaping the curve). The adjustment of these 
points is offered to the therapist in order to fit better the therapy reference trajectories to a 
specific patient and his/her (dis)abilities and preferences. The adaptation is done in a 
graphical way, so that it is easy and intuitive for the therapist to adjust the curves as desired. 
Besides the intuitive adaptation of the trajectories, the therapists are also offered healthy gait 
patterns’ templates to be used as reference for the desired adaptations. The idea is that the 
therapist are able to see how would the joint trajectories of a healthy walking pattern look like 
depending on some desired therapy gait parameters, namely walking speed and cadence. 
Based on these healthy-like trajectories, the therapist will be able to adapt the patient-tailored 
therapy reference trajectories in a better manner.  

To be able to automatically estimate the healthy-like trajectories, an experiment on 
healthy subjects performing over-ground walking was carried out in order to obtain the data 
that will be used to train the estimation algorithms. The specifics of the experiment are 
therefore presented in this chapter. Additionally, a detailed explanation of the raw data 
processing is given, including the cycle segmentation, the drift compensation and the 
automatic extraction of the characteristic points, walking speed and cadence. Next, the 
training and performance of the characteristic points’ estimation algorithm are presented. In 
this case, Artificial Neural Networks (ANN or NN) were used to perform such estimation. The 
shaping knots’ estimation process is presented afterwards, including the different methods 
that were used for the automatic extraction of the shaping knots’ parameters from the 
processed data and the estimation of such parameters depending on the desired walking speed 
and cadence. This way, the complete process of reference trajectories’ generation is covered. 
Ultimately, an evaluation of the final trajectories’ estimation method is presented and the 
limitations of the proposed experiment and methods are introduced. 

4.1 State of the art 

Not many publications address in detail the issue of trajectory generation and 
manipulation for robotic gait rehabilitation systems. Some of the ones addressing this topic 
are presented below.  

The LOKOMAT system, implements position control to track fixed angular trajectories of 
knee and hip joints based on recordings of healthy gait patterns. Not much information is 
given about the selection of these reference trajectories, but it is known that it is made based 
on the patient’s height and the range of motion at the joints [146]. Some trajectory adaptation 
algorithms have also been presented which aim at ‘patient-cooperative’ therapy strategies 
using the LOKOMAT system. Three adaptation algorithms are presented in [52] which modify 
the hip and knee joint curves changing their period, amplitude and angular off-set based on 
the patience active participation. The first algorithm makes a model-based adaptation of the 
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trajectories by minimizing the estimated active forces exerted by the patient; the second one 
uses the direct dynamics formulation to perform a variation in the acceleration of the joint 
motions; and the third one modifies the trajectories based on an impedance controller and the 
interaction forces between the patient and the system.  

The NaTUre-Gaits system incorporates the trajectory generator GaitGen. Several 
approaches have been studies and implemented by this research group. In [164], a healthy-gait 
database is used together with a mapping algorithm and a normalized formula for gait 
parameters to obtain the extrema points of the joint curves depending on desired gait 
parameters (namely walking speed, stride length and stance-phase timing) and the 
anthropometric features of the patients (Lower-limb segment length, height and physical 
constraints). These extrema points are later interpolated using cubic splines to generate the 
joint motion profiles. In [165] and [166], the authors used Multi-Layer Perceptron Neural 
Network (MLPNN) to predict natural values of cadence and stride length depending on the 
age, gender, height, and weight of the patient (Stage 1), which are used afterwards as inputs 
by a multiple linear regression model that delivers sets of Fourier coefficients, which are 
ultimately used to generate the hip, knee and ankle joint curves via discrete Fourier transform 
(Stage 2). In [167], MLPNN were used in Stage 2 instead of the linear regression models to 
estimate the Fourier coefficients, with their inputs being the desired stride length and cadence 
(obtained in Stage 1), the patient’s anterior superior iliac spine, and the lengths of the upper-
leg, lower-leg and foot of the patient. Finally, in [168], two sets of Generalized Regression 
Neural Networks (GRNN) are used in Stage 1: one to predict suggested ranges of walking 
speed depending on the patients age, gender, height, and weight: and another one to predict 
the stride length based on the aforementioned physical characteristics of the patient and the 
selected walking speed. The selected walking speed and stride length are finally used by a gait 
parameters’ calculator to obtain the final stride length and cadence which is used as input of 
Stage 2. 

The LOPES group has also published some strategies for trajectory generation, including 
[169] where reference trajectories for hip ab-/adduction, and hip and knee flexion/extension 
are obtained, based on measurements done to unimpaired subjects, by predicting some key 
curve parameters using regression models with walking speed and the subjects’ leg lengths as 
inputs. These key parameters correspond to normalized time, position, velocity and 
acceleration of the joint curves in some key events: the moments where the position and 
velocity reached a minimum or maximum, the starting and ending points of each trajectory 
(heel contact), and some additional fixed instants (fixed values of normalized time) to reduce 
fitting errors. Finally, these parameters were used to interpolate the time-position points 
(ordered pairs) corresponding to each event using 6th order B-splines. The LOPES team later 
presented an improvement of the previous method [170] adding one key parameter per joint 
and including a study in ankle dorsi-plantar flexion. In the new method, regression models 
based on walking speed (2nd degree polynomials) and subject’s height (1st degree 
polynomials) were used to predict the key parameters, and piece-wise quintic splines were 
used to interpolate them. LOPES II [58] incorporates the previous method in its trajectory 
generator (only that it uses 3rd order splines to interpolate the key points), and combines it 
with an user interface that allows the therapist to indirectly change the joint trajectories by 
adjusting the level of support for each patient based on some gait sub-tasks. 

Another detailed method is given in [171], where recorded data of healthy subjects 
walking at different speeds is used to build a database which is later utilized to obtain patient-
specific joint trajectories depending on the patient’s gender, age, height, weight, thigh length 
and shank length. The customization is made through a probability distribution model and the 
obtained trajectories can be further adapted by desired kinematic parameters such as walking 
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speed and step length. The CORBYS system [90] goes for a different approach for trajectory 
generation. This device allows the therapist to interact physically with the legs of the patients, 
as he/she would do in traditional therapy with BWS, while the system is in a full-compliant 
mode, allowing the therapist to move the legs as desired. This is a learning process for 
CORBYS, where it records the desired trajectories and corrections for each specific patient 
and, after some data processing, reconstructs periodic joint motion curves that are 
representative of the therapist’s correction across all gait variables. 

In [76], a special Fourier-based interpolation method is implemented to generate cyclic 
foot trajectories for the HapticWalker. In [172], a pattern adaptation approach is shown for the 
ALEX system, where the patient’s pre-training pattern is initially acquired and then modified 
towards a healthy pattern depending on the patient’s progress. In [173], a model-based 
adaptation tool is offered to be used in the LERE system, focused on deriving adaptive joint 
trajectories by minimizing the active torque exerted by the patient, with the help of the inverse 
dynamic model, a fuzzy adaptation algorithm, and a trajectory generator. Another attempt to 
generate hip and knee trajectories from recorded data from a healthy leg that takes into 
account desired gait characteristics such as walking speed, gait cycle period and gait phase 
changes can be found in [174], where Radial Basis Functions Neural Networks were used to 
fit the joint curves. In [112], quintic splines are used to generate the hip, knee and ankle 
trajectories in the HAL system during gait training with Spinal Cord Injury patients. This 
generation is done together with a swing-motion intention estimator and a swing-speed 
calculator, and is performed on the basis of minimizing the jerk related to the trajectories.  

Some other approaches have been followed specifically for patients that present 
disabilities in only one leg, whilst the other leg has only mild impairments, as it is normally 
the case of patients with hemiplegia. The idea behind these approaches is to generate online 
the reference trajectory for the affected leg based on the actual movement of the sound leg, 
which moves unconstrained. One example can be seen in [175] [176], where the authors 
tested the generation of joint trajectories by means of Complementary Limb Motion 
Estimation (CLME). The objective of the CLME is to map the current position and velocities 
of the unaffected leg into reference angular positions and velocities for the affected leg. Inter-
joint coordination patterns were extracted from recorded physiological gait patterns to this 
end. In this case, the authors implemented the CLME following two approaches: Principal 
Component Analysis (PCA) and Best Linear Unbiased Estimator (BLUE). Other examples 
can be seen in [114] [115], where a single-leg version of the HAL system is adapted to assist 
people with hemiplegia. In this case, the sound leg moves without constraints while recording 
the motion of its hip and knee joints during the swing phase. This recorded swing motion 
profiles are used as the reference trajectories for the hip and knee joints of the impaired leg 
during the subsequent swing phase. During the stance phase of the affected leg, its reference 
trajectory is fixed to a constant trajectory (no information about these trajectories is given). 

From most of the aforementioned studies it can be seen that the freedom given by the 
systems to the doctors and therapists to adapt the gait patterns to fit a specific patient’s 
capabilities is very constrained, limited to the setting of just very general parameters such as 
cadence and walking speed. Some others attempt to generate patient-specific trajectories 
incorporating more personal features as inputs, such as age and height, which at first glance 
might seem to tackle the customization problem, but the fact that people have personal 
walking patterns, that patients possess different disabilities, and that most methods lack 
enough freedom to change the proposed patterns to fit the patient’s personal walking 
preferences and disabilities suggest that there is still place for improvement. Moreover, most 
of the trajectory-related handling is non-transparent and inaccessible to the users. The usage 
of not-intuitive trajectory parametrization methods, such as usage of Fourier coefficients and 
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joint accelerations, hinder the possibility of giving more freedom and decision power to the 
doctors and therapists during the trajectory generation process. 

4.2 Concept for trajectory generation for hip and knee motion in 
sagittal plane 

The idea in the MOPASS project was to design a user-friendly interface that allowed the 
therapist to adjust the hip and knee trajectories in an easy and intuitive way, as well as to 
select desired gait parameters such as walking speed and cadence, aiming to a more patient-
specific therapy. This way, the doctors and therapist have more freedom to select and adjust 
the joint trajectories, instead of leaving most of the decision power to the trajectory estimators 
of the system. Consequently, the therapist can address in a more specific and effective way 
the different abnormalities present in the kinematics and spatiotemporal gait parameters of 
impaired patients (presented in 2.2) or set compensatory reference trajectories to cope with 
specific patient dysfunctions which, although they might be considered non-normal patterns, 
they might increase the chances to get better rehabilitation outcomes (e.g. independent 
walking). 

The objective behind the adaptation of hip and knee motion profiles is to offer the 
therapist a way to adjust the joint trajectories in an intuitive and graphical way, so that the gait 
patterns that are taken as reference for the robot-assisted therapy could be adapted thinking on 
each patient’s limitations and preferences. The proposed method was developed based on the 
adaptation of the joint trajectories through some characteristic points of the curves (the ones 
that influence the most their shapes and the gait pattern resulting from them), such as the 
extrema. To this end, an extensive research in literature regarding the shape of the hip and 
knee angular displacements in the sagittal plane during healthy walking was carried out in 
order to see which points from the joint trajectories should be taken as the characteristic 
points.  

In the case of the knee joint, most of the curves showed a similar shape, with a clear 
presence of four extrema points during the complete gait cycle. An example, taken from [24], 
can be seen in Fig. 13, where the extrema PM1…PM4 are circled. Thanks to this, the selection 
of the four extrema points of the curve as the characteristic points that will rule the shape of 
the knee trajectories was straight forward. Referring to the theory behind human walking 
presented in section 2.1, these points correspond to the maximum knee flexion (PM1) at the 
end of the loading response, a minimum flexion (PM2) at the terminal stance, the global 
maximum extension (PM3) at the end of the initial swing, and the minimum flexion (PM4) 
present at the end of the terminal swing, near the moment of heel strike. In the case of the hip 
joint, the curve shapes extracted from the literature differ slightly from each other. In general, 
there were three different types of shapes: with clear presence of four extrema (Fig. 14-a); 
with only two extrema but a marked bending point near the maximum hip flexion (Fig. 14-
b/c); and with only two extrema and no marked bending points (Fig. 14-d). These points are 
circled (with no shade) in Fig. 14. It was decided to take four characteristic points to rule the 
shape of the hip trajectory since it is possible to cover all three types of curves when they are 
conveniently set. For the first type of curves it is clear that the characteristic points correspond 
to the four extrema points. For the second type, the selected characteristic points would be the 
two extrema, together with the marked bending point and the point between the global 
maximum and bending points that influences the most the curve shape (e.g. a second bending 
point). For the third type, two points near the maximum extension can be taken as 
characteristic points, together with the global minimum and maximum points. Since there are 
no marked bending points in this curve, the selection doesn’t affect significantly the shape of 
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the curve. For the latter two cases, the selection of the extra points as described (one point for 
the second type and two points for the third type) will conserve the shape and will not affect 
negatively the form of the curve, thanks to the interpolation method used to regenerate the 
trajectories, explained in the next section. Examples of these extra points can be seen in Fig. 
14, circled with shade.  

 
Fig. 13  Knee joint trajectory for healthy walking13  

 
Fig. 14  Hip joint trajectories for healthy walking14 

                                                
13 Angles extracted from [24] 
14 Angles extracted from [195] (a), [196] (b), [197] (c) and [201] (d). 
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The spatio-temporal behavior of the hip and knee joints is completely governed by the 

selected characteristic points. Because of this, care must be taken when setting the limits in 
which the therapist can adapt these points. A slightly misplacement of any of these points can 
highly affect the resulting walking pattern. On the other hand, the right selection of these 
points can results in trajectories that tackle better the disability of a specific patient and help 
him/her achieve better results. For example, an increase in the swing maximum flexion of the 
knee (PM3) could help in cases of foot drop. If the ankle is not fit enough to perform the 
dorsiflexion necessary to avoid contact of the foot with the floor during swing phase, a higher 
knee flexion can compensate that deficit. Because only the maximum flexion during swing 
phase has to be changed, the therapist must be able to change the parameters of that 
characteristic point alone, without disturbing the other ones, in a way that is simple and 
intuitive. In the same way, other specific disabilities can be tackled by adjusting only the part 
of the joint trajectories related to them (i.e. in the cycle phases where they are present), 
without disturbing the motion of the joints in the other phases. 

Fitting methods for curve reconstruction 

Several fitting methods were researched and tested in order to obtain the most appropriate 
one, able to fulfill the basic requirements given by the concept of generation and adaptation of 
joint trajectories via curve characteristic points. The researched methods were developed for 
curve generation on different areas, including computer graphics. Specifically, seven fitting 
methods were selected for a more detailed study: 

1. Cubic spline interpolation from MATLAB [177] [178]  
2. Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) offered by MATLAB 

[179], based on [180].  
3. Piecewise Quintic Hermite Interpolation (PQHI) taken from [181] 
4. Boundary-Valued Shape-preserving Interpolating Spline (BVSIS), taken from [182] 

and explained on [183] [184] [185], based on Bernstein polynomials. 
5. SDDEEL energy-minimization framework with strain energy optimization [186]. 
6. SDDEEL energy-minimization framework without strain energy optimization [186]. 
7. Periodic spline shared by MATLAB user Bruno Luong via MATLAB Central 

Newsreader [187]. 
Table 3 shows the main features of each one of the studied interpolation methods. The 

continuity degree is very important in this specific application since the first and second 
derivatives of the interpolation function correspond to the angular velocity and acceleration of 
the joint, respectively, and it influences directly the smoothness of the trajectories. Abrupt 
jumps on the velocity or acceleration on the joints are highly undesired in robotic applications 
and should be avoided. On the other hand, locality is important at the moment of computation, 
since local methods will search for the solutions fulfilling the desired constraints without 
revising all the data and recalculating all the function parameters, but doing it just in the 
vicinity of the knots where the constraints are not fulfilled. Locality is also important from the 
shape point of view because changes on one specific point will affect the shape only of the 
vicinity of that point, leaving the curve unchanged in the other areas. The polynomial degree 
is worth of taking into account because of the pros and cons related to it. The higher the 
degree, the more degrees of freedom one has, which might be useful when setting constraints 
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on the interpolation knots; but higher degrees imply also more complex polynomials and 
bring some other issues related to monotonicity that are explained afterwards.  

Piecewise-monotonicity is not only a desired feature but a required one because of the 
concept of trajectory generation in the project, explained previously. To be able to ensure that 
the global and local minimum and maximum points selected by the therapist remain as the 
extrema of the curve after interpolation, it is necessary that the selected fitting method 
possesses a piecewise monotonic behavior. An example of non-desired interpolation behavior 
from fitting methods without piecewise monotonicity can be appreciated in Fig. 15-a. It is 
also desired that the only extrema present in the curve are the ones selected by the therapist. A 
problem on this regard might arise with interpolation methods that use high-degree 
polynomials (even with constraints in the higher derivatives (e.g. 1st and 2nd) in the 
interpolation points, although it is more unlikely to happen), due to the fact that there might 
exist a polynomial that fulfills the interpolation constraints for the given interpolation points, 
but has other local minimums and maximums between them. A trivial example can be seen in 
Fig. 15-b, where a quintic polynomial is plotted. This polynomial possesses two local 
minimum and two local maximum points. If it is desired to have only two extrema points, 
denoted in Fig. 15-b by the shaded points, a quintic spline that uses this polynomial would 

Table 3  Main features of the curve fitting methods 

Method Continuity degree Locality Polynomial 
Degree 

Piecewise 
Monotonicity Periodicity Boundary 

constraints 

(MATLAB) 
Spline C2 No 3th No No No 

PCHIP C1 Yes 3th Yes No No 
PQHI C2 Yes 5th Yes No Yes 
BVSIS C2 Yes 6th Yes No Yes 

SDDEEL C2
 (if possible) 

Minimum C1
 

No 3th Yes No No 

Periodic 
spline C2 No 3th No Yes No 

    
Fig. 15  Problems with non-monotonic interpolation 
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insert two undesired additional extrema points, denoted by the unshaded points. 
Finally, periodicity is also a highly important feature due to the nature of the application. 

The joint trajectories are considered to be quasi-periodic: a pure periodicity is not present in 
real-life walking, but the gait cycles are considered to be periodic for analysis purposes. In the 
case of gait rehabilitation, the reference trajectories used for the therapy are normally 
periodic. Accordingly, it is needed that the generated trajectories possess periodic attributes 
with boundary continuity (i.e. continuity in the transition from cycle to cycle). If the 
interpolation method is not inherently periodic, some actions can be done to achieve a 
periodic behavior as smooth as possible.  

If the fitting methods possess boundary constraints, they can be used as workaround. 
Boundary constraints refer to desired derivative values (e.g. angular velocity and acceleration) 
in the first and/or last interpolation point of a series. In our case, it is possible to duplicate the 
first extremum point from the curve and locate the duplicate one period ahead. Let’s analyze 
the case where a joint trajectory with gait period T is to be generated, and a set of n 
interpolation knots  that includes m ( ) extrema points 

 are used to generate it. Each point is represented as an ordered pair with a temporal and an 
angular value: . Suppose that PM1 is the first extremum point, i.e. the time value 
tM1 is lower than the time values of {PM2…PMm}. All the interpolation points Pk that have a 
time value lower than tM1 can be translated to the end of the curve by adding the period to 
their time values: tk

* = tk +T. Likewise, PM1 can be duplicated, and the duplicate knot PM1
* 

can be located at the end of the set, with a time value tM1
* = tM1 +T. Note that the new set P* 

contains now n+1 knots, and that the relocated knots, as well as the duplicate, possess the 
same angular values as the original knots. Moreover, because the new initial and final knots of 
the set are in principle the same knot, the boundary constraints are equal for both ends. If the 
method offers non-separable boundary constraints (i.e. automatic selection of the derivative 
values for the first and last interpolation knots so that they are equal in both ends), periodicity 
and boundary continuity in the derivatives are ensured. When that is not the case and the 
values of the derivatives for the boundary knots have to be set, C1 continuity can be ensured 
due to the fact that the desired velocity in the first and last knots is zero (they are either a 
minimum or a maximum point). Nevertheless, note that this method only ensures C1 boundary 
continuity unless the acceleration is known for the extrema points, which is not the case in our 
application. A default acceleration (e.g. equal to zero) could be set to overcome this problem 
and obtain a non-ideal 2nd degree of continuity.  

For the sake of understanding, suppose that the original set of interpolation knots were as 
follows: , with  . The set P contains four extrema knots: , 

, , . Therefore, it is possible to obtain a new ordered set 
, where , 

, and . An illustration of the operation is shown in Fig. 16. 
If there are no boundary constraints offered by the fitting method, a second method can be 

applied to obtain pseudo-periodic interpolation with C1 continuity in the cycle-to-cycle 
transition. The ordered set of knots   can be triplicated, and the two sets of 
clone knots can be located one and two periods ahead in the curve, with the corresponding 
change in their time values, obtaining a final ordered set 

 with 3n knots. This means that the extrema knots 
 are also triplicated and relocated, getting a new set of ordered set of 

extrema knots . One can now interpolate the 
whole set and extract the generated curve in the middle area, starting from  and ending in 

. This way, we obtain a periodic curve with C1 boundary continuity. The values of the 
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second derivative in the boundary knots will be set automatically by the fitting methods, but 
most likely will differ from each other. Nevertheless, the existing difference between   
and  is not high. Note that this method increases the complexity of the fitting by 
triplicating the number of knots to be interpolated, which ultimately increases the computation 
time. An example of this method is depicted in Fig. 17.  

Taking all the above into consideration, the Boundary-Valued Shape-preserving 

 
Fig. 16  Knots manipulation to achieve periodicity using boundary 

constraints 

 

 
Fig. 17  Knots manipulation to achieve periodicity using knots multiplication 
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Interpolating Spline (BVSIS) [183] was finally selected as fitting method15. In summary, this 
method offers C2 continuity degree, which means continuity in position, velocity and 
acceleration, and piece-wise monotonicity, which ensures preservation of selected extrema 
points and prevent undesired behaviors regarding the shape. Although this method is not 
inherently periodic, it offers the possibility to set separable and non-separable boundary 
constraints, therefore periodicity can be achieved. Also, if the non-separable constraints 
cannot be fulfilled, the two workarounds presented previously can be used to generate 
pseudo-periodic curves, which would be acceptable for the application.  

It is important to stress that there exist other interpolation methods that allow setting of 
higher derivatives values in the points to be interpolated. In joint trajectory generation, it 
would mean to set desired angular velocity and acceleration values to the interpolation knots. 
An example of such methods can be seen in [170], where quantic splines are used to 
interpolate some given points constrained by desired time, position, velocity and acceleration. 
This will ensure both piecewise monotonicity and periodicity if the points are correctly 
handled. Nevertheless, this increases the complexity of the selection of the points since the 
derivative values of all knots must be known a priori. That is not the case of the method 
proposed here, since the therapist only interacts with the time and position values of the 
desired knots and only the desired velocities of the extrema are known (the velocities in these 
points are zero). Therefore these methods are not suitable for the proposed trajectory 
generation and adaptation method.  

Curve-shaping principle 

Although the characteristic points are the most influential regarding the shape of the joint 
trajectories and, ultimately, regarding the walking patterns resulting from them, it is necessary 
to include other curve parameters to obtain more healthy-like trajectories. In other words, it is 
necessary to influence the shape of the curves between the selected characteristic points, 
mostly in the area surrounding the maximum extension point in hip (PM2) and the maximum 
flexion point during in the terminal stance in knee (PM3). To this end, an inclusion of extra 
shaping knots is done. After an initial study with some reference joint trajectories extracted 
from the literature, it was decided to include four and six shaping knot for the hip and knee 
joint trajectories generation, respectively. In the case of the hip, two extra knots will be 
inserted between the maximum extension point (PM2) and the previous characteristic point 
(PM1), and two will be inserted between the maximum extension point (PM2) and the next 
characteristic point (PM3). For the knee, two extra knots will be inserted between the 
maximum flexion point (PM3) and minimum flexion point in the terminal stance (PM2); two 
will be inserted between the maximum flexion point (PM3) and the minimum flexion point in 
the terminal swing (PM4); one will be inserted between the maximum flexion point in the 
loading response (PM1) and the minimum flexion point in the terminal stance (PM2); and one 
will be inserted between the minimum flexion point in the terminal swing (PM4) and the 
maximum flexion point in the loading response (PM1). The selected areas for the placement of 
shaping knots can be seen Fig. 18, where an example with random shaping knots is shown. 

Now, a selection of those ten shaping points must be done. To this end, the characteristic 
and extra shaping knots are expressed as ordered pairs of the form 

                                                
15 The code offered in [182] in Fortran programming language was translated into MATLAB and C++ 
programming languages to be used throughout the study. 



49 
 

  
Fig. 18  Characteristic and shaping knots for hip and knee trajectories16 

 

 , (1) 

where is the time value normalized with respect to the gait period and  is the 
angular value. These two values are referred as the parameters of the points. The proposed 
method expresses the shaping knots as a normalized function of the characteristic points 
adjacent to them (i.e. the characteristic points are input parameters for the calculation of the 
shaping knots): 

   

   

  , (2) 

where  is a shaping knot ordered pair with the corresponding time and angular values, and 
the ordered pairs  and  correspond to the characteristic 
points located immediately after and before the shaping-point, respectively (i.e. the ones 
immediately surrounding it). The proposed functions are of the form 

  (3) 

        (4) 

where mod is the modulo operator, γ = 0 if , and γ = 100 otherwise. The problem is 
now reduced to find suitable values of  and  (referred as the shaping knots’ coefficients 
or α-values) that characterize each one of the shaping knots. The automatic selection of these 
values is explained in section 4.3.3.  

The manual selection of fixed values for the shaping points can also be offered to the 
therapist in an ‘expert mode’ in case they decide that a higher adaptation of the curve shape 
may benefit a certain patient, one that cannot be achieved only through the characteristic 

                                                
16 Angles extracted from [24] 
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points. In this case, α-values can be recalculated depending on this selection, and later be used 
to maintain the shape given by the therapist when the characteristic points are changed. 

Trajectories for the initial step 

The generation of the hip and knee trajectories for the initial step, starting from straight-
standing position, is also covered in the study. For this, a short experiment was conducted 
with one subject performing over-ground walking to study the shape of these initial step 
trajectories and to revise the way they are related to the subsequent (quasi) periodic joint 
profiles. For the experiment, three markers were placed in one of the legs of the subject, as 
shown in Fig. 19: one on the hip, one on the knee, and one on the ankle. The subject was 
asked to start walking from a straight-standing position ten times: five swinging first the leg 
with the markers and five swinging first the leg with no markers. The movements were 
recorded with a RGB-D camera. Afterwards, the same markers were placed in the other leg in 
the same locations and the experiment was repeated to obtain the data from the second leg. 
Finally, marker-based joint detection and tracking was carried out using the Kinovea [188] 
software to extract the hip and knee joint trajectories from the recordings. For this study, the 
initial-step duration was considered as the time elapsed from the start of the step to the 
moment in which the knee of the swinging leg reached its minimum flexion point in the 
terminal swing (PM4). After analyzing the raw data, it could be seen that the initial-step 
duration lied around 40%-50% of the gait cycle time. A default value of 50% was selected for 
the trajectory generator, but it can be manually changed by the therapist. Further analysis was 
done to each of the four trajectories at issue.  

Regarding the knee joint of the leg performing the initial swing (referred as main leg in 
this report), the maximum flexion during this first step had an average normalized value of 
60% of the maximum knee flexion (PM3) angle of the subsequent step (i.e. the periodic 
trajectory). Likewise, this maximum flexion happened at around 0.6·T1s, where T1s is the 
initial-step time. Taking this into account, an initial set of first-step characteristic knots was 
selected: one corresponding to the starting moment, with an angular value equal to the 
reference (standing) position, normally 0°; a second one corresponding to the maximum knee 
flexion during the first step, with a default angular value of 0.6·θM3; and one corresponding to 
the minimum flexion point in terminal swing (PM4) from the periodic trajectory, where the 
connection between initial- and periodic- curves in done. Finally, an additional knot was 

  
Fig. 19  Placement of markers for initial-step experiment 
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added to the curve between the first two characteristic points in order to shape it closer to the 
recorded ones. The angular and temporal values of this knot are relative to the values of the 
surrounding characteristic knots, following the same principle of the shaping knots from the 
periodic curve explained in the previous section. The temporal values of these four knots 
depend on the initial-step duration and are relative to the normalized time value of PM4. An 
example of the knee curve for the main leg is shown in the lower-left plot of Fig. 20. A further 
manipulation of the maximum initial-step flexion knot is also offered to the therapist to adapt 
the initial-step trajectories to each patient to, for instance, exercise the foot clearance in this 
first step. Adaptation of the shaping knot can also be offered to the therapist as an extra 
feature for ‘expert mode’ trajectory adaptation.  

For the other three trajectories (namely the curves of the hip and knee joints of the 
secondary leg and the curve of the hip joint of the main leg), a smooth transition between the 
given starting positions and a corresponding extrema point was performed with no extra 
shaping knots, as shown in Fig. 20. In the case of the main leg’s hip, the curve connects the 
starting position with the maximum extension point (either PM1 or PM3 or PM4) of the given 
periodic trajectory, whereas for the joints of the secondary leg, the transition is made from the 
starting positions to the hip maximum extension (PM2) and the knee terminal stance minimum 
flexion (PM3) points of the periodical curves. Notice that for these three joints, the time spent 
by these initial-step trajectories is not necessarily the same as the initial-step duration (i.e. the 
time spent by the main leg’s knee to achieve the minimum point in the terminal swing). 
Instead, they are dependent on the time parameter of the characteristic points of the periodic 
curves. 

 
Fig. 20  Initial step trajectories 
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4.3 Automatic generation of hip and knee trajectories for therapy 

As it is explained in the previous section, the generation of the periodic trajectories for hip 
and knee joints for the proposed method is parameterized by the characteristic and the shaping 
knots, together with the desired cycle period. Several studies have reported dependencies of 
the kinematic and spatiotemporal gait parameters on factors such as the walking speed17-A, 
cadence17-B, age17-C and gender17-D. Therefore, it is expected that these factors will directly 
influence the parameters of the knots used in the trajectory generation method, mostly the 
characteristic points. Accordingly, it is desired to give some of these factors as desired input 
parameters to the generator to automatically generate the trajectories based on them. More 
precisely, it is desired that the therapists are able to set some of these parameters and that the 
generator automatically creates healthy-like joint trajectories depending on them. This way, 
the therapist can use the estimated trajectories as reference patterns during the therapy 
sessions. To this end, a study on how the characteristic and shaping knots correlate to those 
input parameters is necessary. Because of the difficulty to obtain a large amount of subjects to 
cover a wide range of all four factors, the age and gender were not included in the study, 
leaving only the cycle period and walking speed as case study parameters.  

Moreover, from a kinematic analysis of the leg’s motion during walking, it can be seen 
that the leg segments’ lengths have a direct influence on gait parameters such as step length 
and walking speed. In other words, if two persons have the same gait period and angular 
displacements in hip and knee, the person with larger leg segments will achieve a larger step 
length and, hence, a higher walking speed. A better insight to this fact can be appreciated in 
the following sub-section. This leg segment’s lengths are tightly related to the height of the 
person. Hence, the height is also taken into account in the study. Normalization of stride/step 
length and walking speed with respect to the height is a common approach in gait analysis to 
scale these parameters [189]. 

To obtain the aforementioned correlations between input parameters (period, speed and 
height) and the knot parameters, a multi-task experiment on healthy subjects was conducted. 
The obtained data was later processed and fed to some learning algorithms in order to 
estimate the knots parameters based on the input parameters. The following sub-sections 
explain in detail the experiment and data processing, together with the implementation and 
results of the estimation algorithms for the characteristic and shaping knots.  

4.3.1 Experimental study on healthy subjects 

An experimental study was carried out in order to obtain healthy gait patterns’ data during 
over-ground walking. These data, corresponding to hip and knee joint angular positions, was 
later processed to be used as input to the learning algorithms and further trajectory generation 
functionalities that will be explained in this section.  

Experimental set-up 

This section explains the details of the experiment that was carried out. A total of 18 
subjects between 24 and 47 years old took part in the experiment. To the best of their 
knowledge, none of them possessed any health condition that would cause pathological 

                                                
17 A) [23] [25] [195] [255] [256] [194] [257] ; B) [23] [258] ; C) [25] [49] [195] [255] [256] [259] [260] [261] 

[262] ; D) [258] [260] [261] 



53 
 

walking. All the participants were informed about the scope of the experiment and gave their 
consent. From the study group, 7 of the subjects were female whereas 11 were male. The 
ranges of age, height and weight can be observed in Table 4, as well as their mean and 
standard deviation values. The lengths of the leg segments, namely upper-leg and lower-leg, 
were also obtained for each participant to be used in a later stage for kinematic analysis. 

The joint angles were measured using the FMS-9 Inertial measurement units (IMUs) 
produced by Hillcrest Labs [190]. These 9-axis IMUs are low-cost modules with a dynamic 
accuracy of 2.5° that include a tri-axial accelerometer, a tri-axial gyroscope and a tri-axial 
magnetometer. Two IMUs where used in each leg, located in the frontal part of the upper and 
lower legs. Fig. 21 shows the sensors’ placement. Special care was taken to place the sensors 
as aligned with the leg links as possible, since only data from one axis of rotation 
(corresponding to the sagittal plane) was used for the data processing. The sensor data was 
recorded with a sampling frequency of 50Hz by a graphical user interface developed in C++ 
using the libraries offered by Hillcrest Labs, which also recorded the participants’ relevant 
data in an anonymous manner. The hip angle  corresponds to the rotation angle of the 
upper-leg IMU, whereas the knee angle  corresponds to the angle formed by the upper- and 
lower- leg segments and was obtained following  

 , (5) 

where  and  are the rotation angles given by the IMUs located in the upper- and lower-
leg segments, respectively. 

Once the subjects were explained the goals of the experiment and the IMUs were placed 
in their legs, they were asked to walk on the floor as comfortable as possible while avoiding 
strange (unnatural) walking and while following some given instructions related to desired 
gait parameters. The experiment was divided in three sections:  

Ex1: The first exercise consisted in walking at different speeds. The subjects were asked 
to walk with the following speeds: as slow as possible, slow, medium, fast, and as 
fast as possible. For this exercise, unlike the next two exercises, the interpretation 
of the instructions was subjective, since no fixed target values were given to the 
participant. Likewise, no instructions on cadence or step length were given.  

Ex2: For the second exercise, the participants were asked to walk while trying to 
maintain a given step length. The selected range of step lengths was 0.4 to 1 m, 
with increments of 0.1 meters between courses. To achieve this, several markers 
were placed in the floor equidistant from each other, depending on the desired step 
length of the course. The step frequency for this exercise was selected by each 
subject without any explicit instructions on this regard. 

Ex3: Finally, the subjects were asked to walk trying to keep a given cadence, where the 
target step frequencies varied from 0.6 to 2 steps/s, increasing 0.2 steps/s in every 
course. For this, a periodic sound feedback was given to the subjects with the 
corresponding frequency. No instructions regarding step length were given to the 
participants. 

Table 4  Age, height and weight of the study subjects 
Mean SD Max Min 

Age[years] 30.72 6.99 47 24 
Height [m] 1.75 0.10 1.92 1.52 

Weight [Kg] 68.83 15.03 100.00 48.00 
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Additionally, at the beginning and at the end of each one of the three sections, the subjects 
were asked to walk with their desired speed, step length and cadence, respectively. Taking 
this into account, a total of 26 courses were carried out by each subject (7 in Ex1, 9 in Ex2 and 
10 in Ex3), shown in Table 5, where they walked between 30 and 35 steps per course. In each 
one of the exercises, the subjects were given the chance to practice the walking with the 
desired parameters before the recording started, to get familiar with them and obtain the most 
comfortable and natural pattern possible. Likewise, they were able to repeat the exercise when 
they were not feeling comfortable or when their walking parameters were distant from the 
instructed ones. In the case of two subjects, one or more of the longest step lengths courses 
where discarded because of the difficulty to achieve the desired step length (Ex2) due to the 
subjects’ leg lengths. Additionally, two subjects presented problems following the lower 
cadences of Ex3; hence these courses were also discarded.  

Data processing 

The raw data was processed by a program developed in MATLAB. The program was 
composed by different algorithms in charge of the gait cycles’ segmentation, the drift 
corrections, the automatic extraction of the characteristic points (explained in section 4.2), and 
the calculation of gait parameters. The algorithms and program calculations are presented 
next. 

Gait cycles segmentation  

Initially, the raw data was filtered with a 2nd-order low-pass Butterworth filter with a 
normalized cutoff frequency of 0.35 to smooth the curves and remove high-frequency noise. 
Next, the filtered data of each course and of each leg was segmented into complete cycles. 
Since no ground-reaction forces were sensed during the experiment, the recognition of cycles 
was done solely with the hip and knee curves of the leg being analyzed. In this case, a 
recognition based on the horizontal position of the foot among the sagittal axis with respect to 
the hip was performed. This foot position is calculated straightforward using the kinematic 
relations of the subjects legs, based on the joint angles and the lengths of the upper and lower 
leg segments: 

 
Fig. 21  Placement of the IMUs on the study subjects 
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  (6) 

where x is the ith foot horizontal position, lUL and lLL are the upper and lower leg segment’s 
lengths, respectively, and θH and θK are the hip and knee angles, respectively. Fig. 22(a) 
illustrates this relation between the foot displacement in the sagittal axis and the leg 
kinematics.  

A new cycle was recognized every time the horizontal displacement achieved a local 
maximum value, but only if that value was higher than a selected threshold. An example of 
this procedure is depicted in Fig. 22(b) and Fig. 23. Following the convention for angles’ 
directions used throughout this document, the hip flexion angles are positive and are 
measured with respect to the longitudinal axis, whereas the knee flexion angles are negative 
and measured with respect to the upper leg segment. Once the curves where segmented in 
cycles, it was decided to discard the first cycle and last cycle of each course to avoid the 
inclusion of atypical curves generated by the first and last steps. Additionally, the segmented 
data were manually checked in order to find and discard abnormal cycles, i.e. cycles where 

 
Fig. 22  Relation between the foot displacement in sagittal axis and the leg kinematics 

Table 5  Exercises of the experiment 
Exercise Instruction  Exercise Instruction 

P1-1 Walk with desired walking speed  P2-7 Walk with a step length of 0.9 meters 
P1-2 Walk as slow as possible  P2-8 Walk with a step length of 1 meter 
P1-3 Walk slow  P2-9 Walk with desired step length 
P1-4 Walk with medium speed  P3-1 Walk with desired cadence 
P1-5 Walk fast  P3-2 Walk with a cadence of 0.6 steps/s 
P1-6 Walk as fast as possible  P3-3 Walk with a cadence of 0.8 steps/s 
P1-7 Walk with desired walking speed  P3-4 Walk with a cadence of 1  step/s 
P2-1 Walk with desired step length  P3-5 Walk with a cadence of 1.2 steps/s 
P2-2 Walk with a step length of 0.4 meters  P3-6 Walk with a cadence of 1.4 steps/s 
P2-3 Walk with a step length of 0.5 meters  P3-7 Walk with a cadence of 1.6 steps/s 
P2-4 Walk with a step length of 0.6 meters  P3-8 Walk with a cadence of 1.8 steps/s 
P2-5 Walk with a step length of 0.7 meters  P3-9 Walk with a cadence of 2 steps/s 
P2-6 Walk with a step length of 0.8 meters  P3-10 Walk with desired cadence 
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the curves presented unusual behavior due to wrong operation of the sensors (e.g. loss of data 
or excessive drifting) or irregular steps (e.g. caused by loss of balance). Some examples of 
discarded cycles can be appreciated in Fig. 24, were the area corresponding to the discarded 
data is shadowed. In the upper four plots, it can be seen that the discarded cycles possess a 
rather atypical form. In the case of plots a, b, and d, it might have been caused by loss of data, 
either by the sensors or by the recording program. Regarding plot c, the causes of the strange 
curves could be the improper operation of the sensors or irregular walking from the subject. 
The plot in Fig. 24(e) shows a case of strange behavior occurring in the knee flexion during 
the swing phase. This behavior could be caused by the participants walking, but it could also 
be caused by drifting produced by the IMUs that affected the cycle data, therefore it was 
decided to also discard this type of cycles to avoid the inclusion of probably corrupted data. 
Finally, Fig. 24(f) shows a clear case of data drifting in the knee curve caused by the IMUs. 
Unlike the previous case, this couldn’t have been caused by the subject’s walking, because the 
data show hyperflexion angles of almost 10°.  

Drift corrections  

Some drifting behavior was spotted in the knee curves after the first data processing. Even 
though the curves with excessive drifting were manually discarded for the data analysis, it 
became clear that some drifting could be present in the accepted knee processed curves. 
Therefore, an algorithm was developed for the compensation of this lower drifting in the knee 
trajectories. This algorithm was developed with one assumption in mind: the global maximum 
and range of motion of the knee trajectory cycles from the same course do not change much 
from cycle to cycle, i.e. the gait pattern is almost uniform during the course. For this reason, 
the algorithm mas executed separately for each one of the courses.  

 
Fig. 23  Gait cycles recognition. Horizontal displacement of the foot with 

respect to the hip (up) and hip and knee angles (down) 
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The algorithm is executed for every cycle of the course. The execution starts from the 
forth cycle, comparing the cycles in question with the first three cycles of the course, which 
are assumed to have no significant drifting. It initially checks if it is necessary to do drift 
corrections in the knee cycle being revised (cycle i) by comparing the angle of the cycle’s 
global maximum (θmax,i) and the cycle’s range of motion (ROMi) with the average angle of the 
global maximums of the first three cycles ( ) and with the average ROM of the first three 
cycles ( , respectively, and by checking if the differences surpass some defined 
thresholds (εθ and εROM). If the thresholds are surpassed, then some drift correction must be 
done.  

The overall correction done in each cycle is divided in three areas to be corrected (A1, A2 
and A3) based on two correction parameters (C1 and C2). A1 goes from the first sample of the 
cycle (P0,i) to the cycle’s global maximum point (Pmax,i), where the samples in between are 
subject to a smooth dynamic compensation in their angular values ruled by C1, which is 
computed from the differences between the maximum angle and ROM with the respective 

 
Fig. 24  Examples of discard of cycles due to corrupted recorded data (shaded area) 
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average values of the first cycles, and by a ROM correlation factor (KROM). The corrections on 
the areas A2 and A3 are done based also on the differences between the maximum angle and 
ROM of the next cycle, θmax,i+1 and ROMi+1, with the average values from the first three 
cycles. In the case of A2, which covers the area from Pmax,i until the first sample of the next 
cycle (P0,i+1), the smooth dynamic compensation is ruled by KROM and C2, which is based on 
the differences from the next cycle, and works together with a fixed offset compensation 
given by C1. Finally, all the remaining data from the course is located in A3, from P0,i+1 until 
the last processed sample, and are subject to a fixed offset compensation given by C1 and C2. 
It is important to clarify that the smooth compensation is presented as dynamic because it 
depends on the time value of the sample being corrected and its relation with the time values 
of other specific points, namely P0,i, Pmax,i and Pmax,i+1. On the other hand, the offset 
compensations are presented as fixed because their value is invariant, regardless of the time 
value of the sample. Fig. 25 shows an illustration to help understanding the main idea behind 
the process with an example of a curve with drifting, where the cycle i=5 is being checked. 
An elaborate flowchart of the algorithm is shown in Fig. 26, where a more detailed 
explanation regarding the computations made by the algorithm can be seen. After a careful 
revision of Fig. 26, it can be noticed that the corrected angles (θC

j) are continues at the three 
boundary points of the correction areas (P0,i , Pmax,i and P0,i+1) thanks to the appropriate 
handling of the correction parameters C1 and C2. Note also that, although the algorithm is 
executed having a specific cycle under scope, it affects all the cycles following that cycle. 
Moreover, after the algorithm finishes with a given cycle (correcting as well the subsequent 
cycles), it continues with the next cycle and, if necessary, performs more corrections on it and 
its subsequent cycles. This must be done until the last cycle of the course is reached.  

Albeit most of the knee trajectories were not affected or were only minimally affected by 
the algorithm, some curves showed a more significant correction. Fig. 27 shows an actual 
example of the performance of the algorithm. In this plot, the dashed line corresponds to the 
original curve which possesses an evident drifting problem, whereas the solid line 
corresponds to the corrected curve. The correction in this example can be observed in the 6th 
and 7th cycles, where the algorithm has performed a compensation to keep the curve close to 
the first cycles. The algorithm could also be used in the discarded curves that presented mayor 
drifting, but it was decided not to do it to protect the results from incorrect compensations and 

 
Fig. 25  Illustration of idea behind drift correction 
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corrupted data. This decision is backed up by Fig. 28, which shows the results of applying the 
drift correction algorithm to the discarded knee curve previously introduced in Fig. 24(f). 
Note how, although the algorithm manages to maintain the curves close to each other, the 
ROM of from the 6th to the 9th cycle show a rather unusual behavior.  

Additionally, although the drift compensation algorithm was developed for the knee joint 
only, it was also applied to the hip curves to study their behavior. Almost all the hip curves 
remained unchanged by the algorithm, and, when the algorithm did alter them, almost all the 
changes were minimal, which suggests that the initial assumption applies in most of the cases. 
Nevertheless, some problems were spotted when the hip ROM was altered by the subject 
during the course, contradicting the initial assumption. In these cases, the alteration will be 
perceived as a drift caused by the IMU and make the corresponding corrections. These ill 
corrections will inflict drifting in the processed data, due to the fact that the algorithm corrects 
the differences between global maximum points and the influence of the global minimums in 
lower. Fig. 29 shows an example of such behavior. Notice how the high flexion angles of the 
first two cycles influence the wrong correction of the trajectories, making an ill adjustment to 
a curve that apparently possessed no drifting. If at some point it becomes necessary to 
perform also drifting corrections in the hip trajectories, it is recommended to use an algorithm 
specific for this joint, which wouldn’t be based on the global maximums but on the angular 
value between the global extrema  

  (7) 

Moreover, if drift compensation has to be done to the hip curves, a recalculation of the 
knee angles with respect to the upper leg segment must be done based on (5). 

Extraction of characteristic points  

Two separate algorithms, one for each joint, were developed to automatically obtain of 
characteristic points from the experimental data, based the concept explained in section 4.2. 
Both algorithms were executed for each extracted cycle. For the following explanations, 
consider that each cycle C possesses parameters that are specific to the cycle, e.g. the period 
TC or the samples (tC,i,θC,i). For simplicity, the subscript C will not be used in the subsequent 
formulations, but it must be understood that the data are already segmented by cycles, and that 
the values of parameters such as T, ti, θi, among others, correspond to a specific cycle C. 

The first steps of the process are the same for both algorithms. Initially, a resampling of 
the data is done for each cycle, bearing in mind that the amount of samples per cycle in the 
original data depends on the cycle period and it is not necessarily the same for all cycles. The 
resampling is done by interpolating the samples of each cycle using the BVSIS fitting method 
with n = 401 new samples that are equidistant in time. This way, all cycles will possess the 
same number of (fitted) samples. Now, we can consider that each cycle possesses a set of n 
samples which are expressed as ordered pairs Pi = (ti,θi), with i=0,1,…,n-1. For convenience, 
the time value of the first sample is subtracted from all the time values from the resampled 
data, so that t0 = 0 and tn-1 = TC. It is important not to forget that the curves in question are 
treated as periodic for the data analysis. This means that the first and last samples of a cycle 
are connected in a (pseudo-) continues manner and that any sample (tC,j,θC,j), j≠i, is considered 
to be both to the right and to the left of sample (tC,i,θC,i). So, if it is necessary to check the 
samples to the right (ahead in time) of a certain point, one should not stop evaluating in 
sample Pn-1, but restart from sample P0 until the evaluation criteria are met or until a complete 
cycle has been evaluated.  
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Fig. 26  Flowchart of the algorithm for drift correction 
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Once the cycles are resampled, the normalized time values of the samples are calculated, 
based on the period TC of each cycle:  

  (8) 

where  is the normalized time value of sample Pi, and  is the time factor 
for a given cycle. This way, the normalized time values of all samples of a given cycle lay 
between the 0% and 100% of the cycle’s period: 0 ≤ ti,norm ≤ 100. Likewise, the range of 
motion (ROM) and the ROM factor (ROMF) of each cycle are calculated: 

  (9) 

 , (10) 

where  and  are the minimum and maximum angles is the cycle, 
respectively. 

 
Fig. 27  Example of drift correction on knee curve 

 
Fig. 28  Example of drift correction on discarded knee curve 

 
Fig. 29  Ill drift correction in hip curves 
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From this point, the process of extraction of characteristic points is different for each one 
of the joints. In the case of the hip, the curve forms acquired from the experimental data were 
similar to the expected ones, i.e. with two global extrema and either 1) two marked local 
extrema, 2) non-maxima points bending the curve or 3) neither additional extrema nor 
bending points (refer to section 4.2). The extraction of the characteristic points was done 
based on several time- and angle-based conditions in order to avoid an ill selection of the 
points. Fig. 30 depicts a simplified flowchart of the algorithm developed for the automatic 
extraction of the hip characteristic knots from the experimental data. A more detailed step-by-
step procedure containing the different selection conditions can be found in Appendix C. Fig. 
31 shows some examples of the output of the algorithm corresponding to the previous 
mentioned cases: Fig. 31(a) shows three cycles where a set of four marked extrema were 
selected as characteristic points; Fig. 31(b) shows two cycles where two bending points were 
selected as characteristic points, together with the global extrema; and Fig. 31(c) shows the 
case where no points, different from the global extrema, where found which influenced 
significantly the shape of the curve, therefore two samples near the maximum extension point 
were selected as the remaining pair of characteristic knots. 

In the case of the knee, the behavior of some of the recoded curves was not the expected. 
Although most of the recorded knee curves possessed the general form obtained from 

 
Fig. 30  Flowchart of the automatic extraction process of hip characteristic points 

from the experimental data 
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literature (section 4.2), some curves differed significantly from it, mostly in the cases where 
the cadence and walking speed were low. The most significant differences appeared in the 
region corresponding to the stance phase, where no salient local extrema points were present, 
leading to an unclear selection of the characteristic points PM1, PM2 and PM4 that suit the 
proposed trajectory generation method. Fig. 32 depicts a simplified flowchart of the automatic 
extraction process of the knee characteristic knots from the experimental data. As before, a 
more detailed step-by-step procedure containing the different selection conditions can be 
found in Appendix C.  

Fig. 33 shows an example of the performance of the extraction algorithm with curves that 
had the expected form. As it can be seen, the four characteristic points could be extracted in a 
clear, straight-forward manner based on the local and global extrema. On the other hand, Fig. 
34 shows some examples of unexpected behavior in the recorded knee curves. Fig. 34(a) 
shows an example of mild rippling in the stance phase, where more than one pair of local 
extrema appeared in the left side of the curve. Fig. 34(b) shows a case where no significant 
local maximum was located during the stance phase, whereas Fig. 34(c) depicts a similar 
behavior, only that in this case the angular profile during the stance phase is highly flattened. 
These three cases don’t appear to be very critical regarding the shaping of the curve, but they 
might affect the performance of the estimation process.  

The other cases (d to j) represent a potential cause of high error levels in both shaping and 
estimation performances. Fig. 34(d) shows a case of excessive rippling with several salient 
local extrema, being completely inconsistent with the curve form exhibited in literature and 
causing a rather random selection of point PM1. This affects considerably the correlation 
performance of the estimation methods. Fig. 34(e) to Fig. 34(g) depicts a case where a point 

 
Fig. 31  Examples of the automatic extraction of hip characteristic points 
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causing a notable bending appears after PM3 and before the global/local minimum point, 
yielding an unclear selection of PM4. Selecting the bending point as PM4 will preserve the 
curve shape in the second half of the swing phase but will affect the shape in part of the stance 
phase, whereas selecting the minimum point will preserve the shape in part of the stance 
phase but will affect not only the shape corresponding to the second half of the swing phase, 
but also the shape of the initial part of the stance phase. In these particular cases, the selection 
of the bending point as PM4 was preferred because it would affect the curve shape in a lower 
degree. Additionally, the time values of the bending points seem to be more consistent 
between cycles, which will affect positively the performance of the estimation methods. 
Nonetheless, the shape of the reconstructed curve will differ significantly in the area between 
PM4 and PM1. Finally, Fig. 34(h) to Fig. 34(i) show some cases where the selection of the point 
PM2 was not clear, similar to the previous case, or where there was a presence of some 
additional salient extrema during the stance phase. Similarly, these cases will affect 
significantly the shape-related performance of the reconstructed curves and could have an 
important influence in the performance of the estimation algorithms. 

 
Fig. 32  Flowchart of the automatic extraction process of knee characteristic 

points from the experimental data 
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Fig. 33  Examples of the automatic extraction of knee characteristic points 

 

 
Fig. 34  Examples of the automatic extraction of knee characteristic points with 

unexpected curve shapes 



66 
 

Calculation of gait parameters 

Besides the characteristic points, other gait parameters were extracted for each of the 
segmented cycles, namely cadence, step length and walking speed. The cadence (step 
frequency) is calculated directly from the cycle period TC, which is known once the cycle is 
recognized. Note that each cycle covers two steps (one per leg), hence the cadence is given by 

  (11) 

To obtain the walking speed, it is necessary to calculate the step length in order to know 
the distance covered by the subject during the duration of each cycle. Therefore, the problem 
is reduced to the obtainment of the step length of each cycle. The step length (SL) is 
considered here as the distance covered by the trunk between the moment of initial contact 
(IC) and the moment of toe-off, i.e. the distance covered while the foot was in contact with 
the ground. Because no external measurement system was used to identify the moments of 
foot contact and clearance (e.g. foot-pressure sensors or image-based systems), the calculation 
of the step length was done based on the horizontal displacement of the foot computed solely 
from the angular data from the hip and knee joints, following the same kinematic analysis 
used for the cycles segmentation explained at the beginning of the section and illustrated in 
Fig. 22. By finding the distance between the minimum and maximum horizontal displacement 
one can get the maximum distance (FD) covered by the foot with respect to the hip joint 
during a certain cycle. Nevertheless, this distance is not strictly equal to the length of the 
corresponding step. Normally, the heel strike happens shortly after the maximum horizontal 
position of the foot is reached, when the foot is already moving backwards. Therefore, SL is 
shorter than FD. On the other hand, pelvic rotations about the vertical axis during walking 
cause a slight translation of the hip joint in world space, contributing to the resulting 
horizontal displacement of the foot. The relation between the FD and SL is dependent on the 
subject. To estimate SL from the calculated FD, the following formulation is proposed:  

  (12) 

where  is a polynomial function of order n (1 ≤ n ≤ 3) and  are constant values that 
are specific to each subject . To obtain these constants, the data gotten from the experiment 
section Ex2 where utilized. The FD calculated from the cycles from each course of Ex2 was 
averaged and compared with the known target step length of each course. Having these 
values, the specific polynomial  was yielded for each subject via regression. Two examples 
of such regression for different subjects are shown in Fig. 35. It is important to bear in mind 

 
Fig. 35  Examples of regression to obtain fs(FD) of two different subjects 
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that this is only an estimation of the real step length and as so is not free of error.  
Once the step length and period are obtained for each cycle, it possible to estimate the 

walking speed in that cycle:  

  (13) 

where WS is the walking speed, given normally in m/s of Km/h. Nevertheless, because the 
step length (and consequently the walking speed) are dependent on the subject’s height (or, 
more specifically, on the length of the leg segments), it is necessary to include the subject’s 
height in the estimation process. Normalization of spatial parameters is a common practice in 
gait analysis, where some measurements are divided by some aspect of the body size (e.g. 
height or leg length), particularly when analyzing gait in children [22]. In this work, the 
inclusion of the subject’s height is made by normalizing the step length and walking speed 
with respect to the height. Consequently, two new gait parameters are introduced:  

  , (14) 

  , (15) 

where SLs,norm and WSs,norm are the normalized step length and normalized walking speed of 
subject s with respect to his/her height hs. Notice that SLs,norm and WSs,norm are given in 
subject’ heights and heights/s, respectively. 

4.3.2 Automatic estimation of characteristic curve points 

The outputs acquired from the data collection and processing are the characteristic points, 
cadence, normalized step length and normalized walking speed of each cycle. The later three 
were potential inputs to the estimation algorithm, whereas the characteristic points are the 
variables to be estimated based on the inputs. The objective now was to study which of the 
input variables should be used to get the best correlation between the experimental values of 
the characteristic points and the predicted ones. In this case, six different sets of outputs were 
tested: normalized walking speed (WSs,norm), cadence (cad), normalized step length (SLs,norm), 
and a combination of the previous inputs, namely WSs,norm&cad, WSs,norm& SLs,norm, and 
cad&SLs,norm. The combination of all the three variables was not taken into account due to the 
fact that the one of them is always a function of the other two, based on (13). Moreover, based 
on the same fact, it is expected that the performances of the estimation process using the input 
sets consisting of combined variables are almost the same. The ranges and mean values of 
normalized walking speed (in heights/s), cadence (in steps/min) and normalized step length 
(in heights) were [0.066, 1.359] (mean = 0.58), [20.24, 174.93] (mean = 91.38), [0.11, 0.65] 
(mean = 0.37), respectively. 

The estimation method selected for this task was the Artificial Neural Network (NN). Two 
different training algorithms were tested: Levenberg-Marquardt [191] and Bayesian 
regularization [192]. The Bayesian regularization algorithm usually improves the performance 
of the NN in terms of estimating the target values, but the training time spent by it is 
considerably higher than the one needed by the Levenberg-Marquardt algorithm. Each tested 
neural network had one hidden layer with ten neurons and started with random initial weight 
values. The outputs of the neural networks were the characteristic points, more specifically, 
the (normalized) time and angular values of each of the eight characteristic points of both 
joints. One neural network was used for each of the output variables. This way, the complete 
configuration for the learning process contains 16 neural networks, each one receiving a set of 
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inputs (consisting of one or two input variables) and estimating 16 output values. The 
configurations with only one input will be referred as 1I1O, whereas the ones with combined 
input values will be 2I1O. Fig. 36 shows the diagram of the neural network configuration. The 
MATLAB Neural Network Toolbox [193] was used for the training of the neural networks. A 
total of 11399 processed gait cycles were used for the NNs training, from which 70% were 
used for the training itself, 15% for validation and 15% for testing. The selection of these 
three sets was done randomly.  

To test the performance of the trained neural networks, the Pearson cross-correlation 
coefficients (R) were calculated for each output to measure the linear dependency between the 
measured and the fitted values of each of the 16 outputs. The correlation coefficient of two 
sets of random variables is defined as 

  (16) 

where  is the set of measured values,  is the set of fitted values, cov is the covariance 
between the two set of values, and  and  are the standard deviations of the measured and 
fitted values, respectively. The covariance between the two sets of variables is defined as  

  (17) 

where N is number of elements in sets  and  (i.e. number of processed cycles),  and  are 
corresponding elements of the sets, and μ is the mean value of a set. The definitions of the 
mean and standard deviation values are  

  (18) 

  
Fig. 36  Neural networks’ configuration 
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  (19) 

The correlation coefficients given by each one of the networks with each one of the input 
sets are shown in Table 6. Values of R close to one mean close relationships between the two 
sets whereas values close to zero mean random relationships. Contrary to what was expected, 
the resulting coefficients from using Bayesian regularization were only slightly better than the 
ones using the Levenberg-Marquardt algorithm, thus, from this point, the results presented 
will be the ones corresponding to the NNs trained with Bayesian regularization. 
Unfortunately, most of the correlation coefficients are relatively low. One reason for this is 
the fact that this study deals with human behavior and the intra-subject preferences when 
walking might have affected considerably the performance of the estimation. Related poor 
predictability results were also reported by other studies [194]. Complementary measurements 
of the mean absolute errors (MAE), standard deviation of the absolute errors and root mean 
square errors (RMSE) can be found in Appendix D. 

Some additional observations can be made from Table 6. First of all, it is easy to note how 
close the correlation coefficients for the combined-inputs (2I1O) neural networks are. As 
explained previously, this is expected since the walking speed is calculated directly from the 
step length and cadence, deriving in a tight relationship between them. Second, note that the 
results using combined inputs are in most of the cases better than the ones using just one 
input. This shows how variable can human walking be, where, for instance, the same walking 
speed can be achieved with different cadences. Finally, it can be seen that the best correlation 
results were achieved for the maximum hip extension points (t2, a2 in hip), whereas some 
parameters from the points of the knee motion during the stance phase (a1, t2, t3, a3 in knee) 
scored lower. These low values might be consequence of the sundry and unexpected curve 
shapes of the knee trajectories presented in section 4.3.1, mostly while walking with some gait 
parameters such as low cadence and very slow walking. As explained in the previous section, 
these sundry knee curve shapes lead to an unclear automatic selection of the points during the 
data processing stage and, consequently, to a lower performance of the neural networks’ 
estimation.  

To have a better look on the behavior of the characteristic point’s parameters obtained 
after training the neural networks with the data from all subjects, the trained NNs were used to 
predict different sets of characteristic points with different input values. The predicted 

Table 6  Resulting correlation coefficients using Bayesian regularization with all 
processed data 

 Correlation Coefficient ( R ) 
HIP KNEE 

tM1 θM1 tM2 θM2 tM3 θM3 tM4 θM4 tM1 θM1 tM2 θM2 tM3 θM3 tM4 θM4 
 0.42 0.61 0.75 0.66 0.36 0.62 0.33 0.57 0.49 0.25 0.30 0.68 0.13 0.18 0.63 0.52 

cad 0.33 0.42 0.81 0.50 0.25 0.47 0.18 0.39 0.48 0.23 0.26 0.54 0.10 0.18 0.60 0.50 

 0.43 0.68 0.52 0.72 0.36 0.67 0.38 0.63 0.40 0.21 0.28 0.68 0.20 0.18 0.52 0.44 
 & 

cad 0.46 0.69 0.81 0.73 0.54 0.69 0.43 0.65 0.51 0.33 0.32 0.71 0.26 0.29 0.65 0.52 

 & 
 0.46 0.69 0.81 0.73 0.53 0.69 0.42 0.65 0.51 0.33 0.32 0.72 0.26 0.26 0.65 0.54 

cad & 
 0.46 0.69 0.80 0.73 0.54 0.69 0.43 0.66 0.51 0.33 0.31 0.71 0.26 0.28 0.65 0.53 
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characteristic points were then interpolated, together with corresponding shaping knots, using 
BVSIS splines. The selection of the α-values of the shaping knots’ was done based on the 
results of Method 1 for coefficients computation, explained in the following section (4.3.3). 
Because of the nature of the NNs, it is important to stay within the ranges of the input values 
that were used during the training. Stepping outside these limits during the prediction process 
is likely to cause very poor results. Moreover, this kind of undesired behavior is also caused 
by stepping outside the regions of combined input values used during the training of the NNs 
with multiple inputs. An example of the regions for multiple inputs can be seen in Fig. 37(a), 
where the combined inputs WSs,norm&cad are analyzed. The figure shows the plot of WSs,norm 
vs cad with the data used to train the NNs. It is recommended therefore to stay inside a region 
such as the one delimited by the orange perimeter to avoid potential poor results. This way 
one not just prevents a poor performance of the neural network, but also avoids unrealistic 
inputs’ combinations, such as a high walking speed with a low cadence. An example of curves 
generated without taking into account the inputs’ limit region is depicted in Fig. 37(b). There, 
the value of the input variable WSs,norm was left fixed at 0.685[Heights/s] (purple line in Fig. 
37.a) whereas the values for the second input cad varied between the minimum and maximum 
cadence values registered in the experiment. Note how only the curves corresponding to the 
region with training samples (more or less from 91 to 118 steps/min) appear to be normal 
walking patterns. Most of the other cadence values generate either completely non-sense 
trajectories or trajectories that at first sight show normal shapes, but they present 
flexion/extension values too high or too low to be considered normal. This shows that it is not 
recommended to rely in the extrapolation capabilities of the NNs.   

Fig. 38 shows some examples of joint curves that were generated using the characteristic 
points predicted by the NNs. The curves generated with the outputs from the NNs with only 
WSs,norm as input are shown in Fig. 38(a), whereas some curves generated with the combined 
input WSs,norm&cad are shown in Fig. 38(b-d). For the later ones the walking speed was 
varying, whereas a specific cadence value was selected for each normalized walking speed. 
Fig. 39 shows the plot of cad vs WSs,norm, where the solid line corresponds to the selected 

 
Fig. 37  (a) WSs,norm vs cad plotting the processed data used for training (light 
green points) with an example of a recommended application region (orange 
perimeter), plus (b) an example of regenerated curves with incorrect input 

selection out of the region 
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cadence used to plot Fig. 38(b), whereas the upper and lower dashed lines correspond to the 
plots in Fig. 38(c) and Fig. 38(d), respectively. From these figures, it can be seen that the 
generation of smooth curves is possible employing 1I1O and 2I1O neural networks. Only 
when using very small inputs (e.g. darkest blue curves in Fig. 38), the curves showed some 
unnatural behavior. This suggests that problems may arise when considering very low values 
of cadence, speed and step length as inputs of these NNs, which would be better to avoid in 
the final application. Notice as well how the curves in the four plots defer depending on the 
cadence (or the absence of it as input), even if the input value of normalized speed was the 
same for all. Example of generated curves using other sets of inputs can be found in Appendix 
E.  

A second correlation analysis was done, but this time by training the neural networks for 
each subject independently using only the corresponding subject’s processed data. The 
predictability of most of the parameters increased considerably for most of the subjects 
compared to the one using the complete data set, showing an average improvement higher 
than 0.18 in the correlation coefficients. The level of improvement was subject-dependent, 
though. The subject that presented the higher amelioration had an average improvement of 
0.3, whereas the lowest average improvement was of just 0.1. These results show that the gait 

  
Fig. 38  Generation of hip and knee trajectories depending on WSs,norm (a) and 

WSs,norm&cad (b,c,d)  
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patterns possess a high inter-subject variability even when people are asked to maintain 
similar gait parameters, e.g. step length. Nevertheless, the difference between the two sets of 
results and the low predictability shown in Table 6 might have been also influenced by the 
sensors’ accuracy and the experimental setup, for example, if the placement of the sensors 
was not exactly the same for all subjects. 

After looking at the improvements on the correlation coefficients using only one subject’s 
data, it was decided to use the NNs from the subject that scored higher correlation for the final 
trajectory generator. The reason of that decision is that it is preferred to present the therapists 
reference curves that fit better real curves, than curves ‘averaged’ for all subjects that have 
higher probabilities to be farther from natural patterns. The obtained trajectories will be based 
on the walking preferences of only one subject, but this drawback can be compensated by the 
possibility given to the therapist to adjust them to fit better the preferences of the patient. This 
problem would be anyway present if using the data from all subjects, as it was seen that the 
intra-subject walking preferences are significant. Nevertheless, the usage of NN trained only 
with the data of one subject presented high differences when compared to the experimental 
data from all the other subjects. This will be exposed ahead in this section and must be taken 
into account as a limitation of this selection. Future studies including more inputs (e.g. age 
and gender) might improve the correlation coefficients and allow a trajectory generation that 
fits better the patient’s characteristic.   

The data from the selected subject contained 628 cycles, and the ranges and mean values 
of normalized walking speed (in heights/s), cadence (in steps/min) and normalized step length 
(in heights) were [0.145, 1.21] (mean = 0.59), [34.97, 137.14] (mean = 85.62), [0.221, 0.601] 
(mean = 0.39), respectively. Table 7 shows the correlation coefficient from the neural 
networks that were trained with the selected data. Mean absolute error and root mean square 
error measurements are presented in Appendix D, where the estimated values are compared to 
the experimental data from the selected subject. The correlation coefficients are considerably 
better that the ones shown in Table 6. There still exist some low correlation values, though, 
mostly regarding the time values (tM3 and tM2 in hip, and tM1 and tM2 in knee). The 
improvements are also visible in the MAE and RMSE measurements in Appendix D when 
computed with respect to the selected subject’s data. 

  
Fig. 39  cad vs WSs,norm input values for curve generation using all subjects’ data  
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The one-subject-based neural networks were also evaluated with respect to the data from 
all the other subjects, i.e. the data that was not used for the training. The values of the 
characteristic knots were estimated for each gait cycle (based on the corresponding gait 
parameters of the cycle) and then evaluated by calculating the correlation coefficients, mean 
absolute errors (MAE) and root mean square errors (RMSE) between the estimated values and 
the experimental ones. As explained before, to avoid an ill estimation from the NNs, the 
values of the gait parameters used as inputs for the NNs were limited to a perimeter based on 
the input data used to train the NNs (Fig. 40). When the gait parameters from the 
experimental data from the other subjects lied outside these limits, the limit values were 
selected as the inputs for the estimators. Table 8 shows the correlation coefficients of this 
evaluation, whereas the MAE and RMSE measurements are presented in Appendix D. As 
expected, these results show low correlation coefficients, although comparing them with the 
ones obtained with the all-subjects-based NNs (Table 6) shows an average deterioration of 
only 0.1 in the coefficients.    

Table 7  Resulting correlation coefficients using the selected-subject NNs, calculated 
with respect to the selected subject’s experimental data 

 Correlation Coefficient ( R ) 
HIP KNEE 

tM1 θM1 tM2 θM2 tM3 θM3 tM4 θM4 tM1 θM1 tM2 θM2 tM3 θM3 tM4 θM4 
 0.80 0.93 0.88 0.94 0.55 0.88 0.66 0.87 0.70 0.88 0.41 0.93 0.77 0.80 0.82 0.80 

cad 0.81 0.90 0.89 0.91 0.50 0.86 0.66 0.81 0.71 0.86 0.42 0.90 0.76 0.79 0.81 0.81 

 0.78 0.94 0.84 0.94 0.54 0.89 0.65 0.88 0.67 0.84 0.37 0.92 0.74 0.78 0.77 0.80 
 & 

cad 0.81 0.95 0.88 0.95 0.50 0.92 0.66 0.92 0.69 0.86 0.41 0.93 0.77 0.80 0.83 0.82 

 & 
 0.82 0.95 0.88 0.94 0.63 0.91 0.68 0.92 0.69 0.87 0.41 0.93 0.78 0.79 0.83 0.82 

cad & 
 0.82 0.95 0.88 0.95 0.50 0.92 0.68 0.91 0.69 0.88 0.42 0.93 0.77 0.79 0.84 0.82 

  
Fig. 40  Inputs’ admissible area for WSs,norm&cad neural networks of the selected 

subject  
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Fig. 41 shows some examples of joint curves that were generated by interpolating the 
characteristic points predicted by the NNs and some shaping knots, as done before. The 
curves generated with the outputs from the NNs with only WSs,norm as input are shown in Fig. 
41 (a), whereas some curves generated with the combined input WSs,norm&cad are shown in 
Fig. 41 (b-d). The values of cadence depending on the normalized walking speed are depicted 
in Fig. 42. Note that the range of valid values for the second input given a specific first input 
is lower than before. Therefore, the differences between figures (a) to (d) are not as noticeable 
as when using the data from all subjects. For the final application, it is recommended that the 
combined inputs’ neural networks are used to estimate the characteristic points, although now 
the differences between the performance of 1I1O and 2I1O NN are much lower than before. 
In this case, the ones using WSs,norm&cad were selected for further explanation. The 
admissible area for the selected set of combined inputs lays inside the perimeter depicted in 
Fig. 40. It is important to understand that these are the input limits to make sure that the NNs 
will not generate undesired outputs due to extrapolation, but the limits that will be finally set 
for the therapist might be much stricter. For example, high velocities are not used for 
rehabilitation, therefore they would not be allowed. Anyway, the final admissible inputs’ area 
set for the therapy must not lie neither completely nor partially outside of the admissible area 
set for the good performance of the neural networks.   

4.3.3 Curve-shaping implementation 

As explained in section 4.2, the generation of hip and knee trajectories is based not only 
on the desired cadence and the characteristic points of the curves. To obtain a more healthy-
like shape of the trajectories, a set of shaping-knots is also introduced in the generation. The 
hip possesses four shaping-points, whereas the knee has six. The shaping-knots’ time and 
angle values are calculated relative to the surrounding characteristic points following (2), (3) 
and (4), based on some coefficients  and . As stated before, the selected set of inputs for 
the automatic generation of trajectories were the normalized walking speed and the cadence. 
Consequently, apart from one of the methods that uses reference curves from the literature, all 
the methods presented next are based on these two gait parameters. Same as with the 
characteristic points, the problem is basically divided in two steps: first, getting the shaping-
knots (or more specifically their α-coefficients) from the reference data; and second, 
developing an algorithm that delivers the estimated shaping-knots depending on the desired 
gait parameters. For the first step, several methods were designed and tested, whereas for the 
second step a simple mapping function was implemented.  

Table 8  Resulting correlation coefficients using the selected-subject NNs, calculated 
with respect to the other subjects’ experimental data 

 Correlation Coefficient ( R ) 
HIP KNEE 

tM1 θM1 tM2 θM2 tM3 θM3 tM4 θM4 tM1 θM1 tM2 θM2 tM3 θM3 tM4 θM4 
 0.33 0.57 0.68 0.59 0.24 0.58 0.18 0.52 0.29 0.13 0.18 0.67 0.39 0.18 0.60 0.49 

cad 0.27 0.39 0.78 0.43 0.06 0.44 0.09 0.36 0.27 0.13 0.18 0.52 0.40 0.19 0.55 0.46 

 0.35 0.64 0.43 0.68 0.21 0.66 0.25 0.60 0.24 0.02 0.08 0.66 0.22 0.09 0.47 0.42 
 & 

cad 0.29 0.54 0.71 0.56 0.40 0.55 0.15 0.51 0.31 0.17 0.19 0.63 0.38 0.15 0.58 0.44 

 & 
 0.25 0.57 0.69 0.59 0.32 0.60 0.10 0.54 0.28 0.18 0.18 0.60 0.37 0.15 0.54 0.47 

cad & 
 0.26 0.51 0.73 0.52 0.35 0.50 0.13 0.45 0.27 0.17 0.18 0.58 0.38 0.16 0.54 0.47 
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This section is divided in five sub-sections, where the first three sub-sections relate 
specifically to the first step, and the fourth sub-section to the second step. Initially, the search 
algorithms that were developed to be used by each one of the first-step methods are 
introduced. Second, an explanation of the type of curves that were used during the search 
process is presented. Next, all the methods are explained in detail, including their training 
results and initial evaluation. Subsequently, the mapping of input gait parameters into the 
corresponding shaping knots is presented. At the end of the section, an overview of all the 
methods is given, including evaluations, comparisons and limitations of each one of them.  

Search algorithms for shaping-knots coefficients   

Three search algorithms were developed during this study to obtain the shaping knots 
from the reference joint trajectories. The objective behind all three is to find suitable sets of 
shaping knots’ coefficients (  and  ) aiming to minimize a given cost function over all the 
samples of all the training reference curves that are fed to them. This way, the resulting 
shaping knots will be the ones that generate the trajectories that are closest to the reference 
curves.  

 
Fig. 41  Generation of hip and knee trajectories depending on WSs,norm (a) and 

WSs,norm&cad (b,c,d) for the selected subject  
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Full-Curve-Scanning Search Algorithm (FCSSA)   

The first algorithm that was developed was the Full-Curve-Scanning Search Algorithm 
(FCSSA). The FCSSA goes over each gap between two consecutive characteristic points of 
the curve where at least one shaping knot is located, calculating the cost over all samples of 
all the curves while changing the time and angular values of the shaping knot(s) located in the 
current gap, controlling that the time-value difference between two knots is not lower than 
20% of the time between the two characteristic points in each gap. The algorithm makes a 
complete scan of the possible values in each coefficient with a resolution of 0.01 (1%). In 
other words, it checks all the values in the range (0<α<1) with steps of 0.01, and selects the 
set of coefficients that fulfill the given constraints and that generate the lowest cost 
measurement. A simplified state diagram of the algorithm can be seen in Fig. 43. Note that for 
each shaping point, two values must be analyzed. This means that for each value of  being 
analyzed, 100 values of  must be checked. Moreover, notice that the search is performed 
gap by gap. In the cases where the gap has two shaping points, a total of 1004 different sets of 
those two points must be analyzed in that gap. With this in mind, a total of around 400 million 
sets of  were used at each iteration to search for the set that minimized the error. For this 
reason, the algorithm was designed for methods that use a very low number of training curves.  

Dynamic-Clustering Search Algorithm (DCSA) 

When the amount of curves used during the search increases, the time required by the 
FCSSA increases as well, due to the fact that this algorithm must perform a big amount of 
computations. A second search algorithm was developed in order to perform the search in a 
more time-efficient way: the Dynamic-Clustering Search Algorithm (DCSA). 

The main idea behind the DCSA is to calculate the error (cost-function) checking only 
some  values between 0 and 1, equidistant from each other, instead of checking the whole 

 
Fig. 42  cad vs WSs,norm input values for the generation of example curves using 

the selected subject’s data  
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range every 1%, as it was done before in the FCSSA. In this case, instead of working with 100 
 values, the algorithm works only with k values, distant Δd1=1/(k-1) from each other. The 

value that generates the lowest error is taken as cluster centroid (or pivot) c for the next 
iteration of the algorithm. At each iteration, k -values around the centroid are checked to 
search for the one that generates the lowest error. The range covered by the cluster is equal to 
the difference between working values from the last iteration (Δdi-1), and consequently, the  
values to be checked in the iteration range from ci-Δdi-1/2 to ci+Δdi-1/2. If k is even, k/2 values 
will be lower than c and k/2 values will be higher. If k is odd, (k-1)/2 values will lower than c, 
(k-1)/2 values will be higher than c, and one value will be equal to c. Note that the first 
iteration of the algorithm has a cluster range from 0 to 1, with a centroid in 0.5. For the final 
implementation of the algorithm a k = 6 was selected, and the number of iterations per 
coefficient was three. This way, the resolution in the final iteration is equal to 0.8%. Fig. 44 
shows how the algorithm works for one  value with one simple example. The first iteration 
starts with a centroid located in 0.5 in a cluster that ranges from 0 to 1. In this iteration, the 
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Fig. 43  Diagram of the error minimization in the FCSSA 

  
Fig. 44  Clustering and evaluation method for the DCSA 
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lowest error was obtained when using an . This value is taken as the centroid of the 
cluster in iteration 2. This cluster ranges from 0.1 to 0.3. In this second iteration, an  
generated the lowest error, therefore that value is selected as the centroid for the 3rth and last 
cluster. In the final iteration, an  generated the lowest error, thus it is taken as the 
final  value.  

As with the previous method, the search was done from gap to gap. With the selected k 
and number of iterations, 3·6=18 values were analyzed for each . In the gaps with two 
shaping points, 184 values were checked. Finally a total of around 420000 sets of  values are 
used in each search. Fig. 45 shows the diagram of the DCSA. During the calculations, the  
values from the gaps that had not been yet analyzed had to be set to some default initial 
values. In practice, these values were set to the resulting values of one of the methods that 
implemented the FCSSA (Method 1, presented in a subsequent section).  

As with the FCSSA, some limits were set to the shaping knots coefficients during the 
search. The angular values of the points in the gap had to be apart from each other at least 1% 
of the range of motion in the gap, whereas the time values had to be apart at least 15% of the 
time between the two characteristic knots surrounding the gap.  

  
Fig. 45  Diagram of the error minimization in the DCSA 
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Progressive-Refinement Search Algorithm (PRSA)  

Although the improvement in time-performance achieved with the DCSA was substantial 
compared to the FCSSA, it is not enough when a large amount of curves are utilized during 
the coefficients’ search. For this reason, a third search algorithm was developed to further 
improve the processing time required by the search process: the Progressive-Refinement 
Search Algorithm (PRSA).  

This search method is based on the concept that by adjusting progressively the actual 
shaping knots, the error between the reference and the reconstructed curves can be decreased. 
The idea is to set some initial α-values for all the shaping knots in the curve18 and then move 
the shaping knots one by one (by means of their coefficients) in the direction that decreases 
the error. The shaping knot that is being adjusted is referred as the working point PW, with 
coefficients . The algorithm checks what would be the error if the working point 
changed its coefficients in four different ways:  

 

(20) 

where Δt = Δθ = 0.001. The set of α-values that generates the lowest error is set to the 
corresponding working point and the operation is repeated. Once the working point cannot 
move to a state that generates an error lower than the actual one, the PRSA starts adjusting the 
next shaping point in the gap (if there is any). This procedure can be repeated several times 
per gap when there are more than one shaping points in it, starting again from the first point. 
The selected number of iterations in this case was five per gap. This process is done until all 
gaps have been analyzed. The constraints used in the DCSA regarding the closeness between 
the angle and time coefficient of two consecutive points was also applied in the PRSA.  

The general concept behind the PRSA is depicted in Fig. 46, where a trivial example 
shows how the adjustment of shaping knot PS1 decreases the difference between a reference 
curve (pale line) and the regenerated curve (dark line). In the example, the working point first 
moved upward (a), by increasing the angle-coefficient value by Δθ, and afterwards it moved 
to the right (b), by increasing the time-coefficient value by Δt, so that the final regenerated 
curve (c) fits better the reference one. The diagram of the PRSA is shown in Fig. 47. 

Reference curves used in the search process 

Two basic sets of references curves were used by the methods presented in the next sub-
section. The first one contains twenty healthy curves (for each joint) extracted from study 
results of several publications. Since the original measurements were not available, these 
curves were obtained from the figures of the publications and manually sampled every 1% of 
the gait cycle period. The curves include gait trajectories (mostly averaged) of adult subjects 
[24] [195] [196] [197] [198] [23] [199] [21] [200] [22] [25] walking at normal, fast and slow 
speed, and of children [201] [198] [37] [202] walking at normal speed.  

                                                
18 In our case, all the αt started with a value of 0.2, whereas all the αθ started with a value of 0.8 
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After conducting the experiment presented in section 4.3.1 it was decided to study the 
dependency of the shaping points’ coefficient values on the normalized walking speed and 
cadence of each cycle. To this end, a second set of reference curves was taken into account for 
the calculation of the α-values, corresponding to the segmented cycles gotten from the 
experimental data from the selected subject. These data were used to obtain the new sets of  
and  dependent on the aforementioned gait parameters. Because the objective is to get the 
coefficients based on the selected WSnorm and cad, it was necessary to group the reference set 
of curves based on their specific gait parameters and perform the search for each group 
separately. Two different grouping strategies were used: by exercise (Gr1), taking into 

  
Fig. 46  Progressive adjustment of shaping knots in the PRSA 

  
Fig. 47  Diagram of the Progressive Refinement Search Algorithm 
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account that it is expected that the walking speed and cadence throughout each exercise do not 
vary significantly; and by clustering the cycles based on their WSnorm and cad (Gr2). The first 
grouping is done in a straight forward manner: there exist 26 different groups, each one 
corresponding to one of the exercises done during the experiment. For the second grouping 
strategy, the cycles’ data were divided in 28 clusters19. Fig. 48 shows the map of normalized 
walking speed and cadence of all the processed cycles with the aforementioned clustering.  

Because of the big amount of available curves in the second set of reference trajectories, 
some of the methods were developed to use smaller sets of curves, obtained from each group, 
to feed the search algorithms. Two selection strategies were elaborated to this end: selection 
of the most representative curves in the group (p-MRep); and average curve (AvC).  

For the p-MRep strategy the p most representative curves of hip and knee joints were 
selected to be used in the search process. To obtain the most representative curves from each 
group, all the curves were subject to a weighted time-warping operation. This operation lined 
up in time some characteristic points (PM1, PM2 and PM3 in hip; PM2, PM3 and PM4 in knee) and 
resampled the angle values proportionally based on the time-warping and the original time 
and angular values of the samples of each curve. Besides the time-warping, all the curves’ 
angles were normalized with respect to the range of motion of each curve. Fig. 49 shows an 
example of the time-warping operation. The time-warping was not done randomly, but rather 
following some weighting rules. In the case of the hip, the sections of the curves between PM1 
and PM2, and PM2 and PM3 were resampled to cover 46% of the cycle period each, whereas the 
region between PM3 and PM1 covers only 8% of the cycle. For the knee curves, the sections 
between PM2 and PM3, and PM3 and PM4 were resampled to cover 40% of the cycle period 
each, whereas the region between PM4 and PM2 covers 20% of the cycle. This procedure was 
done to give more weight to the samples in the sections surrounding the global minimums of 
the curves, where the shaping knots influence the most the curve shape and the error between 
the original and the reconstructed curves.  

                                                
19 Not to be confused with the clusters from the DCSA 

 
Fig. 48  Map of normalized walking speed and cadence by cluster  
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Once all the curves were warped in time and resampled, the cross-correlation coefficients 
between the obtained curves were used to select the curve that represented better the 
trajectories from the group. As explained before, the correlation coefficient is given by 

  
(21) 

only that this time, the x and y values correspond to the normalized angular values from 100 
resampled points (each) from two different time-warped curves. The correlation coefficient 
was calculated for each curve against all the other curves in the group and was placed in a 
cross-correlation coefficients’ matrix similar to the one used in [171]: 

  
(22) 

where n is the number of trajectories in the group. Note that the autocorrelation coefficients 
are not taken into account because they are always equal to one. Afterwards, the correlation 
coefficients of each row were added up and the p rows that possessed the highest summed 
values were extracted. These rows correspond to the p most representative curves in the 
group. An example is depicted in Fig. 50, where the orange and green lines correspond to the 
knee trajectories from the left and right legs, respectively, from a specific exercise, and the 
blue lines correspond to the most representative curve in the group (i.e. p=1). The figure in 
the left shows the normalized curves before the time-warping, whereas the figure in the right 
shows the time-warped curves with the normalized angles shifted to appear between 0 and 1.  

For the AvC strategy the averaged normalized time-warped curve was the one used for the 
search process. To obtain this average trajectory, the angles of each curve were initially 

 
Fig. 49  Weighted time-warping operation 
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normalized with respect to its range of motion; afterwards, all the curves were shifted in the 
angle axis so that all their values lay between 0 and 1; and finally, the aforementioned time-
warping operation was applied to all trajectories. The resulting normalized time-warped 
curves were ultimately averaged, sample by sample, to obtain the desired mean curve, whose 
angle values are given by  

 
(23) 

where  is the angle of the average curve corresponding to the normalized (warped) time 
k,  is the normalized angle value of the ith resulting time-warped curve, and N is the 
number of curves in the group. An example of the average curve yielded by this operation is 
depicted in Fig. 51, where the original knee trajectories from cluster 13 are shown in the left 

  
Fig. 50  Example of most representative curve from an exercise 

 

Fig. 51  Example of cluster average curve 
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plots, and the normalized, shifted and time-warped curves are shown in the right plots, 
together with the average curve (blue line).  

Methods for shaping-knots coefficients’ obtainment 

Several methods were developed in the search for the best α-values obtainment procedure. 
Each one of the methods implements one of the aforementioned search algorithms, feeding it 
with specific sets of reference curves. This sub-section presents eight different methods with 
the corresponding initial evaluation. 

Method 1: Using reference trajectories from the literature and the FCSSA [Lit+FCSAA] 

This was the first developed method. Fifteen of the 20 reference curves obtained from the 
literature where randomly selected to feed the search algorithm, while the remaining five 
where used to test the results. This is the only method that uses the reference curves obtained 
from the literature and, hence, the only one that doesn’t take into account the input walking 
speed and cadence to calculate the shaping knots’ coefficients (i.e. the coefficients are fixed 
for all values of WSnorm and cad ). Because of the small amount of training curves, the FCSSA 
was used to obtain the sets of α-values, aiming to minimize the sum of normalized position 
squared errors over all the samples of all the training reference curves. The general 
formulation of the minimization problem is as follows 

  
(24) 

where  is the number of training reference curves,  is the number of 
samples per curve,  is the angular value of the reference curve  in the sample , 

 is the angular value calculated from the interpolation using the shaping knots 
described by a given set of , and  and  are the 
minimum and maximum angular values of the reference curve , respectively. Note that the 
errors are normalized with respect to the range of motion of each curve. 

The algorithm was run three times for each joint20. The resulting set of knots given by the 
first algorithm yielded a mean normalized position error (per sample) of 0.029 and 0.03 for 
the training set and the test set, respectively, for the hip joint, and 0.023 and 0.02 for the knee 
joint. The mean squared errors, standard deviations and mean absolute errors of the obtained 
results for the training and test sets can be seen in Table 9, as well as the overall results for the 
complete set of 20 reference curves. These results showed that with the given method it is 
possible to reconstruct joint trajectories by using the proposed number of characteristic and 
shaping knots. Fig. 52 shows an example comparing the hip and knee curves of a reference 
pattern (taken from the test set) and the curves generated with the results yielded by the 
FCSSA.  

                                                
20 No significant changes were reported between the results of the 2nd and 3rd runs, indicating that the algorithm 
had converged to a desired result. 
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Method 2: Using all the curves from each exercise with the DCSA [Gr1+All+DCSA] 

This method grouped the selected subject’s processed data by exercise. Afterwards, it fed 
all the curves from each exercise to the search algorithm to obtain the set of α-values that 
represented better each group. Due to the substantial increment in the training curves, the 
FCSSA was not an option because of the huge amount of time it would need to go over all the 
trajectories. At this point, the DCSA was developed and used by this method. As explained 
before, the initial (default) α-values in the DCSA were set to the resulting coefficients from 
Method 1. The formulation of the cost-minimization problem implemented in the DCSA for 
this method is defined as 

   

   

  (25) 

where  is the number of samples per curve,  is the number of curves in the 
exercise E,  and  are the position and velocity error measurements in sample j 

when comparing the regenerated curve and the ith curve of the exercise,  and  

 
Fig. 52  Example of hip and knee generated curves vs original curves using the 

FCSSA 

Table 9  Results of the FCSSA  
MNSE: Mean Normalized Squared Error (per sample). SD: Standard Deviation. MNAE: Mean 

Normalized Absolute Error (per sample) 
Training Test ALL 

H
IP

 MNSE 0.0008 0.0009 0.0008 
SD 0.0013 0.0007 0.0021 

MNAE 0.0283 0.03 0.0283 

K
N

EE
 MNSE 0.0005 0.0004 0.0005 

SD 0.0015 0.0008 0.0013 
MNAE 0.0224 0.02 0.0224 
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are the position and velocity values of the ith reference curve in the sample j,  
and are the position and velocity values calculated from the interpolation 
using the shaping knots described by a given set of  (specific to exercise E), and 

 is the weight of the velocity error in the cost function.  
Because all the curves are used for the coefficients’ search, the average normalized speed 

and average cadence of each exercise were selected as the reference pairs to be used by the 
radial-basis selection process during the input gait parameters mapping (explained in a 
forthcoming section). These reference pairs (WSnorm,E, cadE) will be referred as the centroids 
of the groups. The centroids are calculated by averaging the gait parameters of each group 

   

  (26) 

where nE is the number of curves in exercise E. Fig. 53 shows the map of normalized walking 
speed and cadence with the 26 reference pairs of the exercises.  

The results accomplished with this method can be seen in Table 10, where the Averaged 
Mean Absolute Errors (AMAE), Averaged Root Mean Squared Error (ARMSE) and Averaged 
Standard deviation of the Absolute Errors (ASDAE) calculated between all the original curves 
in each exercise, and the curves that were regenerated using the characteristic points of the 
corresponding original curve and the shaping knots calculated using the resulting coefficients 
of the exercise, are shown. These calculations were done by calculating the Mean Absolute 
Errors (MAE), Root Mean Squared Error (RMSE) and Standard deviation of the Absolute 

 
Fig. 53  Map of normalized walking speed and cadence with the exercises’ 

reference gait parameters’ pairs 
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Errors (SDAE) from each curve of an exercise and then averaging the resulting values, thus 
the values are averages per exercise. Table 10 also shows the corresponding reference WSnorm 
and cad for each group. Notice that the highest errors took place in the exercises with high 
walking speeds (e.g. P1-6 and P3-9) and low cadences (e.g. P3-2 and P3-3), whereas the best 
results were achieved for the exercises related to normal (desired) walking (e.g. P1-1 and P2-
4). An example of the generation using the resulting shaping-knots’ coefficients is depicted in 
Fig. 54, where the position and velocity of the most representative curve from exercise P3-2 
are compared to the ones from the reconstructed one. Although the results yielded by this 
method are good regarding the error-performance, the time spent by the DCSA to go through 
all the training curves was excessively high.  

Method 3: Using the most representative curve from each exercise with the DCSA 
[Gr1+1-MRep+DCSA] 

To reduce the amount of time needed by the DCSA to obtain suitable set of coefficients, it 
was decided to decrease the number of curves fed to the search algorithm. This method runs 
the DCSA only using one curve per exercise: the most representative (i.e. p_MRep with p=1). 
The curve fed to the DCSA is the original curve (the time-warped curves were only used to 
get the most representative one). The cost minimization formulation is similar to the one in 
(25), but with a reduction in the number of analyzed curves: 

   

   

  (27) 

 
Fig. 54  Original curve (most representative from exercise P3-2) vs regenerated 

curve using the calculated shaping-knots coefficients 
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Table 10  Results of Method 2 with respect to all the curves in the exercise  
AMAE: Averaged MAE. ARMSE: Averaged RMSE. AR: Averaged SD of the Absolute Errors. 

  
HIP KNEE 

Position Velocity Position Velocity 

Ex.  WS 
norm Cad 

AMAE  
(±SD) 
[deg] 

ASDAE 
(±SD) 
[deg] 

ARMSE  
(±SD) 
[deg] 

AMAE  
(±SD) 
[deg/s] 

ASDAE  
(±SD) 
[deg/s] 

ARMSE  
(±SD) 
[deg/s] 

AMAE  
(±SD) 
[deg] 

ASDAE  
(±SD) 
[deg] 

ARMSE  
(±SD) 
[deg] 

AMAE  
(±SD) 
[deg/s] 

ASDAE  
(±SD) 
[deg/s] 

ARMSE  
(±SD) 
[deg/s] 

P1-1 0.66 97.2 0.8 
(±0.26) 

0.79 
(±0.24) 

1.13 
(±0.34) 

14.43 
(±2.03) 

11.99 
(±1.81) 

18.76 
(±2.55) 

1.01 
(±0.34) 

1.01 
(±0.38) 

1.43 
 (±0.5) 

20.6 
(±3.78) 

19.88 
(±5.94) 

28.66 
(±6.75) 

P1-2 0.16 39.0 1.26 
(±0.34) 

1.07 
(±0.35) 

1.66 
(±0.46) 

6.58 
(±1.16) 

5.49 
(±1.19) 

8.58 
(±1.59) 

1.39 
(±0.5) 

1.5 
(±0.84) 

2.06 
(±0.95) 

9.54 
(±2.33) 

9.81 
(±4.02) 

13.71 
(±4.49) 

P1-3 0.41 72.8 0.87 
(±0.43) 

0.81 
(±0.45) 

1.19 
(±0.61) 

9.71 
(±1.93) 

8.11 
(±2.48) 

12.66 
(±3.05) 

1.18 
(±0.46) 

1.25 
(±0.53) 

1.73 
(±0.68) 

14.72 
(±2.83) 

13.59 
(±2.63) 

20.04 
(±3.67) 

P1-4 0.58 89.5 0.89 
(±0.26) 

0.85 
(±0.3) 

1.23 
(±0.39) 

13.35 
(±1.48) 

10.59 
(±1.59) 

17.04 
(±2.03) 

1.03 
(±0.36) 

1.04 
(±0.38) 

1.46 
(±0.52) 

19.92 
(±3.33) 

19.41 
(±4.34) 

27.82 
(±5.22) 

P1-5 0.93 116.3 1.29 
(±0.81) 

1.37 
(±0.94) 

1.88 
(±1.24) 

22.22 
(±5.12) 

18.34 
(±5.09) 

28.85 
(±6.93) 

1.56 
(±0.61) 

1.65 
(±0.79) 

2.27 
(±0.97) 

31.25 
(±9.63) 

31.39 
(±12.25) 

44.45 
(±14.91) 

P1-6 1.14 129.0 2.08 
(±0.52) 

2.04 
(±0.53) 

2.92  
(±0.7) 

29.63 
(±4.4) 

25.18 
(±4.88) 

38.9 
(±6.22) 

1.34 
(±0.45) 

1.18 
(±0.38) 

1.79 
(±0.58) 

30.7 
(±5.39) 

26.91 
(±5.97) 

40.85 
(±7.65) 

P1-7 0.62 92.6 0.84 
(±0.24) 

0.81 
(±0.25) 

1.17 
(±0.34) 

14.07 
(±1.43) 

11.01 
(±1.52) 

17.86 
(±1.95) 

1.14 
(±0.43) 

1.2 
(±0.51) 

1.66 
(±0.65) 

21.53 
(±5.3) 

20.73 
(±7.32) 

29.96 
(±8.67) 

P2-1 0.67 97.4 0.95 
(±0.31) 

0.9 
(±0.43) 

1.32 
(±0.52) 

16.44 
(±2.91) 

13.87 
(±5.02) 

21.59 
(±5.41) 

1.23 
(±0.39) 

1.28 
(±0.44) 

1.78 
(±0.57) 

25.2 
(±6.45) 

27.35 
(±9.01) 

37.29 
(±10.52) 

P2-2 0.25 63.9 1.18 
(±0.65) 

1.07 
(±0.61) 

1.59 
(±0.88) 

10.18 
(±3.05) 

8.68 
(±3.28) 

13.49 
(±4.06) 

1.05 
(±0.41) 

1.14 
(±0.53) 

1.55 
(±0.66) 

11.79 
(±2.53) 

11.24 
(±3.07) 

16.31 
(±3.78) 

P2-3 0.32 68.0 1.08 
(±0.46) 

0.97 
(±0.34) 

1.46 
(±0.55) 

9.63 
(±1.85) 

8.6 
(±1.98) 

12.92 
(±2.61) 

1.03 
(±0.54) 

1.07 
(±0.65) 

1.49 
(±0.83) 

13.21 
(±3.76) 

12 
(±3.65) 

17.85 
(±5.15) 

P2-4 0.46 79.2 0.76 
(±0.33) 

0.68 
(±0.3) 

1.02 
(±0.44) 

10.05 
(±2.36) 

8.13 
(±2.34) 

12.92 
(±3.29) 

1  
(±0.31) 

0.94 
(±0.29) 

1.38 
(±0.42) 

15.61 
(±2.08) 

14.28 
(±2.81) 

21.17 
(±3.23) 

P2-5 0.58 85.3 0.73 
(±0.16) 

0.71 
(±0.19) 

1.02 
(±0.24) 

11.08 
(±1.36) 

8.97 
(±1.28) 

14.27 
(±1.69) 

1.02 
(±0.23) 

1.01 
(±0.27) 

1.44 
(±0.34) 

18.01 
(±2.75) 

17.57 
(±3.5) 

25.16 
(±4.22) 

P2-6 0.72 94.1 1.15 
(±0.3) 

1.13 
(±0.35) 

1.62 
(±0.45) 

16.57 
(±3.14) 

13.94 
(±3.78) 

21.68 
(±4.72) 

1.1 
(±0.41) 

1.11 
(±0.4) 

1.56 
(±0.56) 

21.68 
(±5.15) 

21.55 
(±5.75) 

30.57 
(±7.56) 

P2-7 0.89 103.2 1.47 
(±0.92) 

1.52 
(±1.05) 

2.11 
(±1.38) 

20.24 
(±5.47) 

16.88 
(±4.93) 

26.36 
(±7.23) 

1.08 
(±0.3) 

1.07 
(±0.33) 

1.52 
(±0.43) 

24.2 
(±4.09) 

23.84 
(±6.73) 

34.05 
(±7.32) 

P2-8 1.05 109.8 1.8 
(±1.03) 

1.96 
(±1.3) 

2.66 
(±1.65) 

24.6 
(±6.22) 

19.86 
(±4.34) 

31.61 
(±7.45) 

1.36 
(±0.41) 

1.22 
(±0.43) 

1.83 
(±0.57) 

28.15 
(±5.71) 

26.11 
(±7.07) 

38.42 
(±8.76) 

P2-9 0.63 91.1 0.74 
(±0.25) 

0.75 
(±0.27) 

1.06 
(±0.37) 

12.9 
(±2.02) 

10.82 
(±2.05) 

16.84 
(±2.75) 

1.22 
(±0.48) 

1.26 
(±0.6) 

1.76 
(±0.76) 

21.27 
(±5.45) 

20.22 
(±6.4) 

29.37 
(±8.15) 

P3-1 0.67 94.9 0.84 
(±0.27) 

0.83 
(±0.23) 

1.18 
(±0.34) 

14.58 
(±1.94) 

12.43 
(±1.87) 

19.18 
(±2.33) 

1.29 
(±0.43) 

1.35 
(±0.46) 

1.87 
(±0.61) 

23.79 
(±3.73) 

25.03 
(±5.7) 

34.55 
(±6.46) 

P3-2 0.16 36.8 1.58 
(±0.62) 

1.37 
(±0.59) 

2.1  
(±0.84) 

6.81 
(±1.65) 

5.53 
(±1.68) 

8.77  
(±2.3) 

1.39 
(±0.37) 

1.32 
(±0.44) 

1.92 
(±0.56) 

9.22 
(±1.75) 

8.27 
(±1.93) 

12.4 
(±2.49) 

P3-3 0.21 48.3 1.55 
(±0.7) 

1.29 
(±0.57) 

2.02 
(±0.88) 

9.25 
(±2.27) 

8.01 
(±2.92) 

12.26 
(±3.55) 

1.4 
(±0.56) 

1.49 
(±0.68) 

2.05 
(±0.86) 

12.83 
(±4) 

13.18 
(±6.65) 

18.47 
(±7.49) 

P3-4 0.32 60.0 1.42 
(±0.77) 

1.32 
(±0.92) 

1.95 
(±1.19) 

10.87 
(±2.81) 

8.47 
(±2.22) 

13.79 
(±3.51) 

1.4 
(±0.55) 

1.51 
(±0.63) 

2.06 
(±0.82) 

15.23 
(±2.95) 

14.11 
(±2.81) 

20.77 
(±3.89) 

P3-5 0.42 72.1 0.95 
(±0.52) 

0.89 
(±0.49) 

1.3 
 (±0.71) 

11.04 
(±3.74) 

9.89 
(±4.64) 

14.85 
(±5.82) 

1.14 
(±0.45) 

1.22 
(±0.63) 

1.67 
(±0.76) 

16.46 
(±5.02) 

16.58 
(±8.04) 

23.43 
(±9.22) 

P3-6 0.54 84.3 0.88 
(±0.31) 

0.89 
(±0.26) 

1.25 
(±0.39) 

13.33 
(±2.73) 

12.48 
(±4.23) 

18.31 
(±4.73) 

1.17 
(±0.39) 

1.16 
(±0.41) 

1.65 
(±0.55) 

21.03 
(±5.2) 

21.94 
(±7.94) 

30.46 
(±9.11) 

P3-7 0.66 96.2 0.86 
(±0.43) 

0.87 
(±0.47) 

1.23 
(±0.63) 

16.52 
(±4.39) 

14.63 
(±5.91) 

22.12 
(±7.11) 

1.37 
(±0.49) 

1.46 
(±0.68) 

2.01 
(±0.82) 

26.29 
(±6.23) 

28.7 
(±8.72) 

38.99 
(±10.22) 

P3-8 0.78 108.2 1.08 
(±0.63) 

1.1 
(±0.62) 

1.55 
(±0.87) 

21.16 
(±5.74) 

18.92 
(±7.24) 

28.44 
(±8.96) 

1.49 
(±0.53) 

1.61 
(±0.79) 

2.21 
(±0.92) 

31.31 
(±7.82) 

32.4 
(±11.2) 

45.11 
(±13.23) 

P3-9 0.94 119.7 1.51 
(±0.81) 

1.59 
(±0.93) 

2.2 
 (±1.22) 

27.48 
(±7.82) 

25.56 
(±10.01) 

37.64 
(±12.22) 

1.61 
(±0.69) 

1.69 
(±0.74) 

2.34 
(±0.99) 

35.66 
(±10.24) 

36.87 
(±11.04) 

51.42 
(±14.36) 

P3 
-10 0.66 96.7 1.03 

(±0.45) 
1.09 

(±0.62) 
1.51 

(±0.75) 
18.61 

(±6.87) 
16.49 

(±7.16) 
24.91 

(±9.72) 
1.43 

(±0.45) 
1.51 

(±0.55) 
2.09 

(±0.69) 
29.19 

(±8.05) 
31.31 

(±11.06) 
42.86 

(±13.29) 
               

Average 1.14 
(±0.49) 

1.1 
(±0.52) 

1.59 
(±0.71) 

15.05 
(±3.3) 

12.8 
(±3.67) 

19.79 
(±4.76) 

1.25 
(±0.44) 

1.28 
(±0.53) 

1.79 
(±0.68) 

21.09 
(±4.83) 

20.93 
(±6.37) 

29.77 
(±7.68) 
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where  and  are the errors in angular position and angular velocity, respectively, 
between the most representative curve in the exercise and the regenerated curve in the sample 
,  and  are the position and velocity values of the reference curve in the sample , 

and n, ,  and wv=0.02 have the same definitions as in 
(25). In this method, the reference pair of gait parameters to be used by the radial-basis 
selection corresponds to the WSnorm and cad of each most-representative curve. 

The results achieved from this method can be seen in Table 11 and Table 12. Table 11 
shows the position and velocity Mean Absolute Errors (MAE) and the Standard Deviation of 
the Absolute Errors (SDAE) between the most representative curves in each exercise and the 
curves regenerated with the corresponding set of characteristic and shaping knots. It also 
shows the corresponding WSnorm and cad of each one of the representative curves, which are 
taken as the reference gait parameters’ pairs of each group. Note that the representative curves 
for hip and knee joints for a specific exercise do not necessarily belong to the same cycle. On 
the other hand, Table 12 shows the AMAE, ARMSE and ASDAE calculated comparing all 
the original curves in each exercise and the curves that were regenerated using the 
characteristic points of the corresponding original curve and the shaping knots calculated 
using the resulting coefficients in each exercise. A visible deterioration in the error- 
performance in hip and knee joints can be seen which, although it might not be too big, could 
be considerable taking into account the range of motion of the curves dealt with in the study. 
In general, the regeneration yielded good looking curves, as the one presented in Fig. 55, 
where a hip and a knee trajectory from exercise P2-6 are compared with the corresponding 
regenerated curve. In this case, the MAE and SDAE were equal to 1.78° and 1.54°, 
respectively, for the hip, and 1.61° and 1.67° for the knee. However, some of the regenerated 
curves yielded rather undesirable curves, like the one depicted in left plot of Fig. 56, which 
corresponds to a curve from exercise P1-2. The reconstruction produced a MAE of 2.9° and a 
SDAE of 2.68°. It is possible to compare the ill results from this method looking at the plot in 
the right, where the same curve was regenerated with the coefficients obtained in Method 2, 
where the MAE was 1.43° and the SDAE was 1.19°. One possible cause of this behavior is 
the usage of only one curve for the training when, despite the efforts, the selected curve is not 
very representative of some of the other curves in the group, caused probably by high 
differences between the trajectories in the group.  

 
Fig. 55  Example of regenerated curves with Method 3 
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Fig. 56  Comparison of a hip curve from P1-2 with the generated curves 

obtained by Method 3 (left) and Method 2 (right) 

 

Table 11  Results of Method 3 with respect to the most representative curves  
MAE: Mean Absolute Error. SDAE: Standard Deviation of the Absolute Errors.  

  HIP KNEE 

Exercise  WSnorm Cad 
MAE 
(pos) 
[deg] 

SDAE 
(pos) 
[deg] 

MAE 
(vel) 

[deg/s] 

SDAE 
(vel) 

[deg/s] 
WSnorm Cad 

MAE 
(pos) 
[deg] 

SDAE 
(pos) 
[deg] 

MAE 
(vel) 

[deg/s] 

SDAE 
(vel) 

[deg/s] 
P1-1 98.68 0.70 0.47 0.51 13.60 11.98 0.70 98.68 0.33 0.29 11.65 8.95 
P1-2 38.10 0.15 0.41 0.35 4.06 3.36 0.15 38.10 0.39 0.54 5.47 6.65 
P1-3 73.98 0.42 0.43 0.34 9.32 8.34 0.42 73.98 0.30 0.28 10.80 11.70 
P1-4 89.42 0.59 0.37 0.47 9.98 9.18 0.59 89.42 0.29 0.28 10.97 11.24 
P1-5 112.99 0.91 0.45 0.61 18.14 17.81 0.91 112.99 0.28 0.24 13.81 10.91 
P1-6 128.21 1.11 0.59 0.54 19.70 16.90 1.11 128.21 0.32 0.34 19.04 20.37 
P1-7 93.90 0.65 0.38 0.43 10.90 9.76 0.65 93.90 0.27 0.29 12.17 13.32 
P2-1 96.15 0.68 0.46 0.59 13.25 15.09 0.68 96.15 0.30 0.38 13.65 25.05 
P2-2 62.08 0.25 0.27 0.29 5.52 5.44 0.25 62.08 0.38 0.56 9.36 11.41 
P2-3 67.38 0.34 0.21 0.25 6.53 9.45 0.34 67.38 0.25 0.38 6.67 7.92 
P2-4 78.48 0.43 0.20 0.17 6.95 5.55 0.43 78.48 0.23 0.20 9.09 8.78 
P2-5 87.27 0.59 0.35 0.45 11.00 9.05 0.59 87.27 0.32 0.33 12.81 10.78 
P2-6 93.97 0.72 0.39 0.43 12.00 10.72 0.72 93.97 0.30 0.34 12.43 13.36 
P2-7 103.72 0.90 0.45 0.59 12.55 13.42 0.90 103.72 0.37 0.35 15.58 12.31 
P2-8 109.59 1.10 0.51 0.68 15.47 17.89 1.10 109.59 0.24 0.26 14.37 12.81 
P2-9 89.29 0.63 0.31 0.40 9.40 8.90 0.63 89.29 0.48 0.39 16.04 14.60 
P3-1 94.04 0.65 0.46 0.58 12.11 12.29 0.65 94.04 0.29 0.36 14.73 18.43 
P3-2 35.93 0.15 0.60 0.62 4.13 2.98 0.15 35.93 0.36 0.38 5.41 4.16 
P3-3 51.97 0.23 0.33 0.37 4.84 4.02 0.23 51.97 0.24 0.33 4.74 4.55 
P3-4 60.12 0.31 0.47 0.48 7.82 6.49 0.31 60.12 0.33 0.40 9.84 9.59 
P3-5 72.55 0.42 0.25 0.21 5.95 4.59 0.42 72.55 0.29 0.33 10.27 9.99 
P3-6 85.47 0.57 0.26 0.32 6.34 6.41 0.57 85.47 0.26 0.30 9.54 9.60 
P3-7 96.23 0.68 0.43 0.42 13.05 12.59 0.68 96.23 0.30 0.28 13.32 15.54 
P3-8 112.89 0.83 0.42 0.44 13.23 11.62 0.83 112.89 0.24 0.28 16.70 20.68 
P3-9 120.12 0.87 0.46 0.46 14.30 13.59 0.87 120.12 0.30 0.29 17.86 20.21 
P3-10 96.39 0.65 0.42 0.44 13.76 9.59 0.65 96.39 0.48 0.48 17.12 14.86 

             
Average 0.40 0.44 10.53 9.89  0.31 0.34 12.06 12.61 
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Table 12  Results of Method 3 with respect to all the curves in the exercise 

  
HIP KNEE 

Position Velocity Position Velocity 

Exercise  
AMAE  
(±SD) 
[deg] 

ASDAE 
(±SD) 
[deg] 

ARMSE  
(±SD) 
[deg] 

AMAE  
(±SD) 
[deg/s] 

ASDAE  
(±SD) 
[deg/s] 

ARMSE  
(±SD) 
[deg/s] 

AMAE  
(±SD) 
[deg] 

ASDAE 
(±SD) 
[deg] 

ARMSE  
(±SD) 
[deg] 

AMAE  
(±SD) 
[deg/s] 

ASDAE  
(±SD) 
[deg/s] 

ARMSE  
(±SD) 
[deg/s] 

P1-1 0.89 
(±0.27) 

0.91 
(±0.31) 

1.28 
(±0.4) 

15.37 
(±2.44) 

12.5 
(±2.71) 

19.83 
(±3.39) 

1.05 
(±0.35) 

1.04 
(±0.41) 

1.48 
(±0.53) 

21.6 
(±4.63) 

20.61 
(±6.4) 

29.87 
(±7.7) 

P1-2 1.8 
 (±0.9) 

1.68 
(±0.86) 

2.47 
(±1.23) 

7.48 
(±2.01) 

5.83 
(±1.24) 

9.49 
(±2.3) 

1.56 
(±0.61) 

1.65 
(±0.84) 

2.28 
(±1.01) 

10.93 
(±2.8) 

11.17 
(±3.63) 

15.65 
(±4.44) 

P1-3 1.04 
(±0.84) 

0.96 
(±0.88) 

1.42 
(±1.21) 

10.6 
(±2.47) 

8.54 
(±2.7) 

13.63 
(±3.56) 

1.45 
(±0.54) 

1.33 
(±0.5) 

1.97 
(±0.72) 

18.63 
(±4.29) 

17.37 
(±3.51) 

25.51 
(±5.19) 

P1-4 0.98 
(±0.35) 

0.91 
(±0.32) 

1.34 
(±0.47) 

13.96 
(±2.11) 

11.21 
(±1.83) 

17.9 
(±2.69) 

1.18 
(±0.36) 

1.14 
(±0.41) 

1.65 
(±0.53) 

22.79 
(±4.29) 

22.84 
(±5.43) 

32.29 
(±6.58) 

P1-5 1.43 
(±0.87) 

1.44 
(±0.85) 

2.03 
(±1.21) 

22.72 
(±5.41) 

19.14 
(±5.19) 

29.75 
(±7.22) 

1.62 
(±0.64) 

1.71 
(±0.81) 

2.35 
(±1.02) 

32.64 
(±10.36) 

32.99 
(±12.4) 

46.5 
(±15.68) 

P1-6 2.2 
(±0.82) 

2.26 
(±0.87) 

3.16 
(±1.17) 

31.2 
(±5.06) 

25.12 
(±4.34) 

40.06 
(±6.44) 

1.52 
(±0.52) 

1.41 
(±0.45) 

2.08 
(±0.67) 

40.45 
(±7.85) 

35.98 
(±6.98) 

54.15 
(±10.13) 

P1-7 0.92 
(±0.31) 

0.84 
(±0.27) 

1.25 
(±0.41) 

14.72 
(±1.7) 

12.04 
(±1.52) 

19.01 
(±2.19) 

1.22 
(±0.47) 

1.32 
(±0.62) 

1.8 
(±0.76) 

22.65 
(±5.91) 

21.59 
(±7.37) 

31.34 
(±9.13) 

P2-1 1.06 
(±0.4) 

1.06 
(±0.45) 

1.5 
 (±0.6) 

17.22 
(±3.42) 

15.02 
(±4.92) 

22.89 
(±5.7) 

1.44 
(±0.6) 

1.65 
(±0.64) 

2.19 
(±0.84) 

31.96 
(±9.35) 

43.1 
(±11.15) 

53.83 
(±13.5) 

P2-2 1.44 
(±0.68) 

1.29 
(±0.6) 

1.93 
(±0.9) 

10.47 
(±2.82) 

8.07 
(±3.19) 

13.36 
(±3.71) 

1.28 
(±0.46) 

1.28 
(±0.52) 

1.81 
(±0.68) 

14.01 
(±2.67) 

13.71 
(±2.76) 

19.63 
(±3.57) 

P2-3 1.67 
(±0.97) 

1.49 
(±0.79) 

2.24 
(±1.24) 

11.49 
(±2.5) 

9.78 
(±2.12) 

15.1 
(±3.14) 

1.14 
(±0.61) 

1.11 
(±0.64) 

1.59 
(±0.88) 

14.04 
(±4.35) 

12.66 
(±3.92) 

18.92 
(±5.72) 

P2-4 0.82 
(±0.44) 

0.71 
(±0.38) 

1.09 
(±0.57) 

10.42 
(±3.38) 

8.73 
(±3.27) 

13.59 
(±4.66) 

1.09 
(±0.39) 

0.99 
(±0.31) 

1.47 
(±0.48) 

17.14 
(±3.21) 

15.97 
(±3.37) 

23.46 
(±4.33) 

P2-5 0.76 
(±0.19) 

0.74 
(±0.19) 

1.06 
(±0.26) 

11.57 
(±1.54) 

9.45 
(±1.35) 

14.94 
(±1.91) 

1.17 
(±0.34) 

1.13 
(±0.33) 

1.63 
(±0.46) 

19.89 
(±4.18) 

18.85 
(±3.98) 

27.4 
(±5.62) 

P2-6 1.26 
(±0.35) 

1.18 
(±0.38) 

1.73 
(±0.5) 

16.86 
(±3.33) 

13.78 
(±3.74) 

21.79 
(±4.85) 

1.23 
(±0.47) 

1.19 
(±0.44) 

1.71 
(±0.63) 

24.89 
(±6.46) 

24.66 
(±7.76) 

35.1 
(±9.66) 

P2-7 1.56 
(±0.85) 

1.62 
(±0.89) 

2.25 
(±1.22) 

20.75 
(±4.83) 

17.85 
(±4.23) 

27.38 
(±6.26) 

1.21 
(±0.29) 

1.12 
(±0.29) 

1.65 
(±0.4) 

26.46 
(±4.01) 

25.31 
(±5.37) 

36.62 
(±6.39) 

P2-8 1.94 
(±1.13) 

2.03 
(±1.32) 

2.81 
(±1.73) 

24.52 
(±7.06) 

19.63 
(±4.89) 

31.44 
(±8.34) 

1.55 
(±0.53) 

1.4 
(±0.5) 

2.09 
(±0.71) 

31.7 
(±7.32) 

27.02 
(±7.25) 

41.65 
(±10.09) 

P2-9 0.77 
(±0.29) 

0.76 
(±0.3) 

1.08 
(±0.41) 

12.78 
(±1.89) 

10.42 
(±1.49) 

16.49 
(±2.24) 

1.3 
(±0.51) 

1.37 
(±0.64) 

1.89 
(±0.8) 

23.87 
(±5.53) 

24.66 
(±6.74) 

34.36 
(±8.36) 

P3-1 0.84 
(±0.27) 

0.83 
(±0.22) 

1.18 
(±0.33) 

14.42 
(±1.94) 

12.4 
(±1.76) 

19.04 
(±2.25) 

1.42 
(±0.46) 

1.43 
(±0.51) 

2.02 
(±0.67) 

26.41 
(±4.14) 

28.89 
(±6.2) 

39.24 
(±6.57) 

P3-2 1.66 
(±0.73) 

1.42 
(±0.65) 

2.19 
(±0.96) 

6.62 
(±1.65) 

5.38 
(±1.6) 

8.54 
(±2.24) 

1.57 
(±0.5) 

1.61 
(±0.54) 

2.25 
(±0.7) 

9.53 
(±1.92) 

8.74 
(±2.17) 

12.95 
(±2.77) 

P3-3 1.88 
(±0.79) 

1.49 
(±0.64) 

2.4 
 (±1) 

10.64 
(±2.9) 

8.87 
(±3.07) 

13.91 
(±3.97) 

1.59 
(±0.59) 

1.64 
(±0.72) 

2.3 
 (±0.9) 

13.89 
(±3.83) 

13.75 
(±6.51) 

19.62 
(±7.25) 

P3-4 1.79 
(±0.89) 

1.82 
(±1.07) 

2.56 
(±1.38) 

12.65 
(±3.07) 

9.98 
(±2.04) 

16.12 
(±3.59) 

1.52 
(±0.55) 

1.51 
(±0.59) 

2.15 
(±0.79) 

16.88 
(±3.29) 

15.13 
(±2.8) 

22.67 
(±4.18) 

P3-5 1.24 
(±0.91) 

1.1 
(±0.69) 

1.67 
(±1.13) 

11.88 
(±4.19) 

10.27 
(±5.24) 

15.73 
(±6.59) 

1.3 
(±0.45) 

1.34 
(±0.63) 

1.87 
(±0.76) 

18.5 
(±4.54) 

18.4 
(±7.54) 

26.15 
(±8.5) 

P3-6 1.13 
(±0.4) 

1.09 
(±0.36) 

1.58 
(±0.52) 

14.48 
(±3.14) 

13.25 
(±4.07) 

19.68 
(±4.82) 

1.25 
(±0.46) 

1.24 
(±0.49) 

1.77 
(±0.66) 

21.42 
(±5.78) 

22.12 
(±9.08) 

30.88 
(±10.36) 

P3-7 0.97 
(±0.49) 

0.89 
(±0.56) 

1.32 
(±0.73) 

17.26 
(±4.92) 

14.47  
(±6) 

22.58 
(±7.49) 

1.58 
(±0.59) 

1.63 
(±0.65) 

2.27 
(±0.86) 

30.19 
(±7.79) 

32.62 
(±8.44) 

44.46 
(±11.18) 

P3-8 1.15 
(±0.62) 

1.17 
(±0.61) 

1.64 
(±0.86) 

22.37 
(±6.18) 

20.52 
(±7.72) 

30.42 
(±9.55) 

1.55 
(±0.63) 

1.64 
(±0.81) 

2.27  
(±1) 

32.99 
(±10.06) 

34.13 
(±11.74) 

47.53 
(±15.04) 

P3-9 1.56 
(±0.79) 

1.64 
(±0.93) 

2.26 
(±1.21) 

27.32 
(±7.89) 

26.47 
(±9.96) 

38.12 
(±12.28) 

1.9 
(±0.77) 

1.95 
(±0.75) 

2.73 
(±1.05) 

40.77 
(±9.83) 

40.57 
(±10.17) 

57.6 
(±13.43) 

P3-10 1.09 
(±0.41) 

1.13 
(±0.56) 

1.57 
(±0.68) 

18.99 
(±5.91) 

16.21 
(±6.4) 

25.01 
(±8.5) 

1.51 
(±0.49) 

1.53 
(±0.54) 

2.16 
(±0.71) 

30.27 
(±6.95) 

32.18 
(±10.73) 

44.25 
(±12.31) 

             

Average 1.3 
(±0.61) 

1.25 
(±0.61) 

1.81 
(±0.86) 

15.72 
(±3.61) 

13.27 
(±3.72) 

20.61  
(±5) 

1.39 
(±0.51) 

1.4 
(±0.56) 

1.98 
(±0.74) 

23.64 
(±5.59) 

23.65 
(±6.67) 

33.52 
(±8.37) 
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Method 4: Using the averaged curve from each cluster with the DCSA 
[Gr2+AvC+DCSA] 

A second method feeding only one curve per group to the DCSA was developed expecting 
to get a better error-performance. This time, the clustering was done based on the WSnorm and 
cad of each processed cycle (Gr2), and instead of feeding the most representative curve to the 
algorithm, the average curve was used. Unlike the previous method, the curves fed to the 
search algorithm are now time-warped and normalized in angle, which means that any 
velocity measurements done to the fed curve are corrupted by the warping; therefore a new 
cost function must be introduced. The new formulation of the cost-minimization problem is 

  (28) 

where  is the number of samples per curve, is the (normalized) angle value of 
the average time-warped curve from cluster C in the sample , and  is angle 
value calculated from the interpolation using the shaping knots described by a given set of 

, specific to cluster C. Similarly as in Method 2, because all the curves from the 
cluster are used for the obtainment of the average curve, the average normalized speed and 
average cadence of each cluster were selected as the reference pairs to be used by the radial-
basis selection process during the input gait parameters mapping. 

The results accomplished by this method can be seen in Table 13 and Table 14. Table 13 
shows the normalized-position Mean Absolute Errors (MAE), the Standard Deviation of the 
Absolute Errors (SDAE), and the Root Mean Squared Error (RMSE) between the average 
curves in each cluster and the curves regenerated with the corresponding set of characteristic 
and shaping knots. It also shows the WSnorm and cad corresponding to the centroids of each 
cluster. Note that the error measurements are not measured neither in degrees nor Radians, but 
in normalized ranges of motion (RoM = 1). On the other hand, Table 14 shows the AMAE, 
ARMSE and AR calculated between all the original curves in each cluster and the curves that 
were regenerated using the characteristic points of the corresponding original curve and the 
shaping knots calculated using the resulting coefficients in each cluster. Comparing these 
results with the ones from the previous method (shown in Table 12) no visible improvement 
can be seen: this method brings a small improvement in the knee joint errors, but deterioration 
in similar magnitude in the hip joint. Apparently, some problems regarding the usage of only 
one curve appeared in this method, similar to the one explained in Method 3. An example of 
the generally good behavior of the regeneration is shown in Fig. 57, where the original hip 
and knee curves were selected from cluster 24. The hip trajectory reconstruction yielded a 
MAE and SDAE of 2.09° and 2.07°, respectively, whereas the knee trajectory yielded 1.74° 
and 1.5°. Note how the hip trajectory has a healthy-like form even if the MAE is relatively 
high. Fig. 58 shows an example of a possibly-undesired regeneration of a hip trajectory using 
this method. The original curve was taken from cluster 4, and the reconstruction yielded a 
MAE and SDAE of 1.8° and 1.7°, respectively. Notice how the MAE error in this generated 
curve is lower than the one from the curve in Fig. 57, and yet the shape of the latter is 
relatively closer to the original. The reason of this behavior is that normally the ranges of 
motion of the joint movements increase with the speed, causing higher errors in higher speeds 
(Cluster 4 has a lower walking speed than cluster 24).  
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Table 13  Results of Method 4 with respect to the (normalized and time-warped) 
average curves of each cluster 

  HIP KNEE 

Cluster  WSnorm Cad 
MAE  

(norm pos) 
[RoM] 

SDAE  
(norm pos) 

[RoM] 

RMSE 
(norm pos) 

[RoM] 

MAE  
(norm pos) 

[RoM] 

SDAE  
(norm pos) 

[RoM] 

RMSE 
(norm pos) 

[RoM] 
1 0.16 37.75 0.0083 0.0089 0.0121 0.0031 0.0032 0.0045 
2 0.21 48.32 0.0074 0.0072 0.0103 0.0041 0.0042 0.0058 
3 0.25 63.73 0.0047 0.0043 0.0064 0.0041 0.0049 0.0064 
4 0.32 59.81 0.0059 0.0043 0.0073 0.0042 0.0043 0.0060 
5 0.32 65.29 0.0054 0.0058 0.0079 0.0038 0.0036 0.0052 
6 0.33 69.66 0.0056 0.0061 0.0082 0.0037 0.0042 0.0056 
7 0.41 71.65 0.0043 0.0035 0.0055 0.0039 0.0044 0.0058 
8 0.44 76.89 0.0045 0.0038 0.0059 0.0033 0.0027 0.0043 
9 0.43 72.83 0.0042 0.0044 0.0060 0.0041 0.0066 0.0077 
10 0.46 79.41 0.0041 0.0043 0.0060 0.0042 0.0041 0.0058 
11 0.54 82.46 0.0056 0.0072 0.0091 0.0033 0.0031 0.0045 
12 0.58 88.08 0.0072 0.0071 0.0100 0.0040 0.0036 0.0053 
13 0.63 92.28 0.0064 0.0076 0.0099 0.0041 0.0031 0.0051 
14 0.64 96.41 0.0066 0.0068 0.0095 0.0035 0.0027 0.0045 
15 0.67 93.33 0.0066 0.0086 0.0108 0.0033 0.0032 0.0046 
16 0.68 97.20 0.0076 0.0069 0.0102 0.0045 0.0032 0.0055 
17 0.72 94.87 0.0071 0.0095 0.0119 0.0035 0.0034 0.0049 
18 0.73 103.05 0.0077 0.0086 0.0115 0.0035 0.0031 0.0047 
19 0.78 107.61 0.0074 0.0080 0.0109 0.0038 0.0029 0.0048 
20 0.89 102.79 0.0066 0.0060 0.0089 0.0045 0.0044 0.0063 
21 0.82 109.88 0.0086 0.0094 0.0127 0.0035 0.0036 0.0051 
22 0.90 111.33 0.0061 0.0061 0.0086 0.0038 0.0043 0.0057 
23 0.92 117.65 0.0082 0.0086 0.0119 0.0031 0.0026 0.0040 
24 1.03 109.04 0.0069 0.0058 0.0090 0.0035 0.0032 0.0047 
25 0.97 120.49 0.0075 0.0086 0.0114 0.0030 0.0027 0.0041 
26 1.08 110.98 0.0061 0.0059 0.0084 0.0042 0.0032 0.0053 
27 1.11 128.61 0.0062 0.0047 0.0078 0.0027 0.0025 0.0036 
28 1.18 129.53 0.0078 0.0075 0.0108 0.0031 0.0033 0.0045 
         

Average 0.0064 0.0066 0.0093 0.0037 0.0036 0.0052 
 

 

 
Fig. 57  Example of regenerated curves with Method 4 
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Table 14  Results of Method 4 with respect to all the curves in the cluster  
  HIP KNEE 
 Position Velocity Position Velocity 

Cluster  
AMAE  
(±SD) 
[deg] 

ASDAE  
(±SD) 
[deg] 

ARMSE  
(±SD) 
[deg] 

AMAE  
(±SD) 
[deg/s] 

ASDAE  
(±SD) 
[deg/s] 

ARMSE  
(±SD) 
[deg/s] 

AMAE  
(±SD) 
[deg] 

ASDAE  
(±SD) 
[deg] 

ARMSE  
(±SD) 
[deg] 

AMAE  
(±SD) 
[deg/s] 

ASDAE  
(±SD) 
[deg/s] 

ARMSE  
(±SD) 
[deg/s] 

1 2.31 
(±0.57) 

2.15 
(±0.64) 

3.16 
(±0.84) 

9.81  
(±1.5) 

7.65 
(±1.04) 

12.44 
(±1.69) 

1.59 
(±0.47) 

1.63 
(±0.59) 

2.28 
(±0.72) 

10.09 
(±2.08) 

9.53 
 (±2.79) 

13.89 
(±3.34) 

2 1.96 
(±0.92) 

1.73 
(±0.75) 

2.62 
(±1.16) 

11.22 
(±3.38) 

9.59 
(±2.77) 

14.81 
(±4.13) 

1.45 
(±0.54) 

1.5  
(±0.68) 

2.1 
 (±0.84) 

13.15 
(±3.91) 

13.3 
 (±6.74) 

18.79 
(±7.49) 

3 1.78 
(±0.71) 

1.62 
(±0.68) 

2.41 
(±0.97) 

11.11 
(±2.89) 

9.1 
 (±3.13) 

14.47 
(±3.77) 

1.09 
(±0.42) 

1.13 
(±0.49) 

1.57 
(±0.64) 

12.64 
(±2.17) 

12.15 
(±2.72) 

17.54 
(±3.29) 

4 2.29 
(±0.6) 

2.16  
(±0.7) 

3.16 
 (±0.9) 

14.3 
(±2.54) 

10.24 
(±1.62) 

17.58 
(±2.96) 

1.46 
(±0.56) 

1.53 
(±0.62) 

2.12 
(±0.82) 

15.7 
 (±3.01) 

14.43 
(±2.74) 

21.32 
(±3.92) 

5 1.76 
(±0.54) 

1.56 
(±0.63) 

2.36 
(±0.81) 

12.04 
(±2.14) 

9.41 
(±1.73) 

15.28 
(±2.64) 

1.11 
(±0.58) 

1.08 
(±0.62) 

1.55 
(±0.85) 

13.38 
(±3.54) 

11.55 
(±3.33) 

17.68 
(±4.79) 

6 1.36 
(±0.37) 

1.21 
(±0.36) 

1.82 
 (±0.5) 

10.83 
(±1.89) 

8.47 
(±1.57) 

13.74 
(±2.43) 

1.02 
(±0.46) 

1.08 
(±0.59) 

1.49 
(±0.74) 

13.52 
(±3.01) 

12.92 
(±3.18) 

18.69 
(±4.3) 

7 1.05 
(±0.49) 

0.99 
(±0.56) 

1.45 
(±0.74) 

11.07 
(±3.19) 

9.33 
(±4.04) 

14.52 
(±4.98) 

1.22 
(±0.37) 

1.3 
 (±0.42) 

1.78 
(±0.55) 

16.72 
(±4.12) 

16.61 
(±5.21) 

23.57 
(±6.49) 

8 0.9 
(±0.31) 

0.82 
(±0.23) 

1.22 
(±0.37) 

10.18 
(±2.19) 

8.11 
(±1.81) 

13.01 
(±2.8) 

0.9 
(±0.27) 

0.87 
(±0.25) 

1.25 
(±0.36) 

14.12 
(±1.83) 

12.73 
(±1.96) 

19.01 
(±2.47) 

9 1.01 
(±0.27) 

0.95 
(±0.23) 

1.38 
(±0.35) 

12.05 
(±2.6) 

10.56 
(±3.73) 

16.04 
(±4.38) 

1.09 
(±0.54) 

1.15 
(±0.85) 

1.59 
(±0.99) 

15.1 
 (±4.41) 

15.24  
(±9.2) 

21.6 
(±9.77) 

10 0.74 
(±0.22) 

0.69 
(±0.27) 

1.02 
(±0.34) 

10.3 
(±1.22) 

8.16 
(±1.02) 

13.13 
(±1.47) 

1.03 
(±0.26) 

0.98 
(±0.29) 

1.42 
(±0.37) 

16.36 
(±2.03) 

15.17 
(±2.65) 

22.3 
(±3.21) 

11 0.88 
(±0.31) 

0.88 
(±0.31) 

1.24 
(±0.42) 

12.54 
(±3.1) 

11.45 
(±4.26) 

17.02 
(±5.06) 

1.2  
(±0.4) 

1.12 
(±0.33) 

1.65 
 (±0.5) 

19.85 
(±5.04) 

19.81 
(±6.92) 

28.11 
(±8.21) 

12 0.93 
(±0.32) 

0.9 
 (±0.32) 

1.3  
(±0.44) 

13.7 
(±1.88) 

10.87 
(±2.09) 

17.5 
(±2.61) 

1.11 
(±0.37) 

1.13 
(±0.41) 

1.59 
(±0.54) 

21.01 
(±4.61) 

22.21 
 (±6.7) 

30.62 
(±7.78) 

13 0.9 
(±0.28) 

0.88 
(±0.31) 

1.26 
(±0.41) 

14.74 
(±2.57) 

12.31 
(±3.7) 

19.24 
(±4.29) 

1.24 
(±0.46) 

1.29 
(±0.58) 

1.79 
(±0.72) 

23.42 
(±6.24) 

24.53 
(±8.98) 

33.97 
(±10.59) 

14 0.97 
(±0.4) 

0.98 
(±0.43) 

1.38 
(±0.58) 

16.27 
(±4.1) 

13.46 
(±4.88) 

21.13 
(±6.25) 

1.12 
(±0.34) 

1.17 
(±0.46) 

1.63 
(±0.56) 

24.61 
(±5.46) 

27.19 
(±9.99) 

36.76 
(±10.89) 

15 0.88 
(±0.28) 

0.92 
 (±0.3) 

1.27 
 (±0.4) 

15.15 
(±3.95) 

13.32 
(±4.78) 

20.2 
(±6.03) 

1.34 
(±0.51) 

1.41 
(±0.55) 

1.95 
(±0.74) 

25.73  
(±6.5) 

27.74 
(±8.11) 

37.84 
(±10.16) 

16 0.89 
(±0.27) 

0.86 
(±0.31) 

1.24 
 (±0.4) 

16.93 
(±2.79) 

13.98 
(±4.42) 

22.02 
(±4.87) 

1.26 
(±0.42) 

1.25 
(±0.44) 

1.77 
 (±0.6) 

26.51 
(±5.43) 

28.42 
(±8.56) 

38.97 
(±9.49) 

17 1.18 
(±0.25) 

1.16 
(±0.27) 

1.65 
(±0.36) 

17.44 
(±3.33) 

14.6 
(±3.06) 

22.75 
(±4.34) 

1.21 
(±0.47) 

1.18 
(±0.46) 

1.69 
(±0.65) 

24.12 
(±5.93) 

23.7 
 (±6.34) 

33.84 
(±8.41) 

18 1.19 
(±0.48) 

1.31 
(±0.65) 

1.77 
(±0.79) 

23.19 
(±7.53) 

19.93 
(±6.59) 

30.59 
(±9.84) 

1.37 
(±0.46) 

1.46 
(±0.63) 

2.02 
(±0.73) 

32 
 (±8.95) 

35.47 
(±12.59) 

47.91 
(±14.72) 

19 1.19 
(±0.71) 

1.21 
(±0.66) 

1.7 
 (±0.97) 

22.64 
(±5.53) 

20.16 
(±6.49) 

30.34 
(±8.31) 

1.6 
(±0.55) 

1.68 
(±0.87) 

2.33 
(±0.99) 

33.61 
(±8.03) 

34.52 
(±10.83) 

48.2 
(±13.13) 

20 1.54 
(±0.85) 

1.58 
(±0.92) 

2.21 
(±1.24) 

20.66 
(±4.61) 

16.79 
(±4.14) 

26.65 
(±5.94) 

1.1  
(±0.3) 

1.07 
(±0.33) 

1.53 
(±0.44) 

25.11 
(±3.63) 

25.33 
(±5.98) 

35.73 
(±6.42) 

21 0.93 
(±0.2) 

0.93 
(±0.21) 

1.31 
(±0.28) 

22.29 
(±5.37) 

20.87 
(±8.09) 

30.62 
(±9.24) 

1.62 
(±0.59) 

1.61 
(±0.73) 

2.29 
(±0.93) 

35.44 
(±7.05) 

39.66 
(±9.27) 

53.17 
(±11.32) 

22 1.07 
(±0.16) 

1.09 
(±0.25) 

1.53 
(±0.29) 

22.24 
(±2.79) 

19.37 
(±4.4) 

29.56 
(±4.54) 

1.63 
(±0.55) 

1.83 
(±0.63) 

2.45 
(±0.84) 

33.47 
(±6.58) 

39.17 
(±7.48) 

51.49 
(±9.7) 

23 1.67 
(±0.91) 

1.77 
(±1.03) 

2.43 
(±1.37) 

26.32 
(±6.38) 

23.48 
(±7.99) 

35.29 
(±9.97) 

1.58 
(±0.66) 

1.61 
(±0.72) 

2.25 
(±0.96) 

33.92 
(±11.09) 

33.48 
(±11.4) 

47.75 
(±15.41) 

24 2.03 
(±0.99) 

2.06 
(±1.06) 

2.89 
(±1.44) 

24.8 
(±5.07) 

20.56 
(±3.61) 

32.2 
(±6.09) 

1.2 
(±0.35) 

1.15 
(±0.36) 

1.66 
(±0.49) 

26.92 
 (±5.7) 

24.06 
(±6.53) 

36.14 
(±8.34) 

25 1.23 
(±0.37) 

1.31 
(±0.47) 

1.79 
(±0.58) 

26.9 
(±5.74) 

25.02 
(±9.25) 

36.85 
(±10.3) 

1.54 
(±0.43) 

1.53  
(±0.4) 

2.18 
(±0.56) 

33.52 
(±8.78) 

35.25 
(±12.11) 

48.81 
(±14.13) 

26 1.27 
(±0.52) 

1.24 
(±0.57) 

1.78 
(±0.76) 

22.73 
(±3.24) 

17.77 
(±2.49) 

28.87 
(±3.7) 

1.68 
(±0.36) 

1.52 
(±0.52) 

2.28 
(±0.59) 

33.91 
 (±6.2) 

35.64 
(±8.95) 

49.2 
(±10.5) 

27 2.09 
(±0.43) 

1.97 
(±0.66) 

2.88 
(±0.71) 

26.87 
(±6.2) 

22.49 
(±6.1) 

35.02 
(±8.58) 

1.44 
(±0.42) 

1.24 
 (±0.4) 

1.91 
(±0.56) 

32.63 
(±6.38) 

29.5 
 (±7.55) 

44 
 (±9.54) 

28 1.7 
(±1.03) 

1.73 
(±1.24) 

2.43 
(±1.61) 

28.45 
(±5.6) 

22.69 
(±5.29) 

36.38 
(±7.6) 

1.1 
(±0.28) 

0.92 
(±0.28) 

1.44 
(±0.38) 

28.25 
(±3.21) 

25.48 
(±3.27) 

38.08 
(±3.77) 

             

Average 1.35 
(±0.49) 

1.31 
(±0.54) 

1.88 
(±0.72) 

17.38 
(±3.69) 

14.63 
(±4.08) 

22.76 
(±5.31) 

1.3 
(±0.44) 

1.3 
(±0.52) 

1.84 
(±0.67) 

23.39 
(±5.17) 

23.74 
(±6.86) 

33.39 
(±8.27) 
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Fig. 58  Example of a possibly undesired generation of hip trajectory with 

Method 4 

Method 5: Using the averaged curve from each cluster with the PRSA 
[Gr2+AvC+PRSA] 

This method has the same settings as the previous one, except for the search algorithm. In 
this case, the PRSA was used in order to check its capabilities in both time- and error- 
performance. The results from this method are available in Table 15 and Table 16, and are 
comparable to the ones from Method 4 shown in Table 13 and Table 14. Again, no significant 
changes in the error-performance can be noted (only a slight deterioration in the knee joint). 
Nevertheless, a considerable reduction in the processing time was achieved. An example of 
the generally good behavior of the regeneration is shown in Fig. 59, where the original hip 
and knee curves were selected from cluster 20. The hip trajectory reconstruction yielded a 
MAE and SDAE of 1.59° and 1.48°, respectively, whereas the knee trajectory yielded 0.98° 
and 1.03°. Fig. 60 shows the reconstruction of the same curve from cluster 4 showed in Fig. 
58. Note how the undesired shape persists with this method, although the MAE and SDAE 
scored relatively low (1.49° and 1.41°, respectively). 

 
Fig. 59  Example of regenerated curves with Method 5 
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Fig. 60  Example of a possibly undesired generation of hip trajectory with 
Method 5 (left) and Method 4 (right) 

 

Table 15  Results of Method 5 with respect to the (normalized and time-warped) average 
curves of each cluster 

  HIP KNEE 

Cluster  WSnorm Cad 
MAE  

(norm pos) 
[RoM] 

SDAE  
(norm pos) 

[RoM] 

RMSE 
(norm pos) 

[RoM] 

MAE  
(norm pos) 

[RoM] 

SDAE  
(norm pos) 

[RoM] 

RMSE 
(norm pos) 

[RoM] 
1 0.16 37.75 0.009 0.008 0.012 0.006 0.010 0.012 
2 0.21 48.32 0.010 0.008 0.013 0.010 0.009 0.013 
3 0.25 63.73 0.006 0.005 0.008 0.007 0.006 0.009 
4 0.32 59.81 0.008 0.007 0.011 0.007 0.006 0.009 
5 0.32 65.29 0.007 0.006 0.009 0.007 0.007 0.010 
6 0.33 69.66 0.007 0.006 0.009 0.006 0.005 0.008 
7 0.41 71.65 0.007 0.004 0.008 0.007 0.007 0.010 
8 0.44 76.89 0.008 0.005 0.009 0.007 0.006 0.009 
9 0.43 72.83 0.007 0.007 0.010 0.006 0.005 0.008 
10 0.46 79.41 0.006 0.006 0.009 0.006 0.006 0.008 
11 0.54 82.46 0.008 0.007 0.011 0.007 0.008 0.011 
12 0.58 88.08 0.009 0.010 0.013 0.009 0.009 0.012 
13 0.63 92.28 0.010 0.011 0.015 0.009 0.009 0.012 
14 0.64 96.41 0.011 0.012 0.016 0.011 0.009 0.015 
15 0.67 93.33 0.011 0.011 0.016 0.010 0.009 0.013 
16 0.68 97.20 0.011 0.011 0.015 0.009 0.008 0.012 
17 0.72 94.87 0.012 0.012 0.017 0.010 0.009 0.013 
18 0.73 103.05 0.011 0.010 0.015 0.011 0.010 0.015 
19 0.78 107.61 0.012 0.010 0.015 0.008 0.007 0.011 
20 0.89 102.79 0.011 0.011 0.016 0.013 0.010 0.017 
21 0.82 109.88 0.011 0.011 0.015 0.008 0.008 0.011 
22 0.90 111.33 0.011 0.010 0.014 0.012 0.009 0.015 
23 0.92 117.65 0.012 0.009 0.014 0.009 0.008 0.012 
24 1.03 109.04 0.008 0.008 0.011 0.010 0.007 0.013 
25 0.97 120.49 0.011 0.011 0.015 0.010 0.008 0.013 
26 1.08 110.98 0.010 0.008 0.013 0.011 0.008 0.014 
27 1.11 128.61 0.007 0.005 0.009 0.009 0.007 0.012 
28 1.18 129.53 0.008 0.006 0.011 0.011 0.009 0.014 
         

Average 0.009 0.008 0.013 0.009 0.008 0.012 
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Table 16  Results of Method 5 with respect to all the curves in the cluster  
  HIP KNEE 
 Position Velocity Position Velocity 

Cluster  
AMAE  
(±SD) 
[deg] 

ASDAE  
(±SD) 
[deg] 

ARMSE  
(±SD) 
[deg] 

AMAE  
(±SD) 
[deg/s] 

ASDAE  
(±SD) 
[deg/s] 

ARMSE  
(±SD) 
[deg/s] 

AMAE  
(±SD) 
[deg] 

ASDAE  
(±SD) 
[deg] 

ARMSE  
(±SD) 
[deg] 

AMAE  
(±SD) 
[deg/s] 

ASDAE  
(±SD) 
[deg/s] 

ARMSE  
(±SD) 
[deg/s] 

1 2.19 
(±0.53) 

2.03 
(±0.61) 

2.99 
(±0.78) 

9.83 
(±1.46) 

7.61 
 (±1) 

12.43 
(±1.65) 

1.69 
(±0.5) 

1.63 
(±0.56) 

2.35 
(±0.72) 

11.07  
(±2) 

11.2 
 (±2.32) 

15.75 
(±2.92) 

2 2.36 
(±0.56) 

2.03 
(±0.49) 

3.11 
(±0.72) 

13.46 
(±2.21) 

10.1 
 (±2) 

16.85 
(±2.78) 

1.58 
(±0.54) 

1.6 
 (±0.7) 

2.26 
(±0.84) 

14.51 
(±3.86) 

14.65 
(±6.75) 

20.7 
(±7.45) 

3 1.59 
(±0.62) 

1.43 
(±0.58) 

2.14 
(±0.83) 

11.7 
(±3.18) 

9.4  
(±3.19) 

15.12 
(±4.01) 

1.12 
(±0.39) 

1.16 
(±0.49) 

1.61 
(±0.62) 

13.17  
(±2.5) 

11.89 
(±3.01) 

17.78 
(±3.63) 

4 2.01 
(±0.46) 

1.79 
(±0.63) 

2.69 
(±0.74) 

15.45 
(±2.35) 

11.45 
(±1.95) 

19.23 
(±2.96) 

1.49 
(±0.47) 

1.54 
(±0.65) 

2.15 
(±0.78) 

15.94 
(±2.99) 

14.75 
(±2.96) 

21.72 
(±4.05) 

5 1.6 
(±0.41) 

1.44 
(±0.41) 

2.15 
(±0.55) 

12.35 
(±2.38) 

9.93 
(±2.13) 

15.84 
(±3.12) 

1.21 
(±0.55) 

1.09 
(±0.64) 

1.63 
(±0.83) 

14.81 
(±3.48) 

12.62 
(±3.86) 

19.48 
 (±5) 

6 1.25 
(±0.26) 

1.11 
(±0.26) 

1.67 
(±0.36) 

10.75 
(±1.68) 

8.42 
(±1.42) 

13.65 
(±2.16) 

1.07 
(±0.46) 

1.06 
(±0.57) 

1.51 
(±0.72) 

13.96 
(±3.04) 

12.66 
(±2.95) 

18.85 
(±4.1) 

7 1.18 
(±0.77) 

1.02 
(±0.61) 

1.57 
(±0.97) 

11.73 
(±3.77) 

9.87 
(±4.03) 

15.34 
(±5.42) 

1.28 
(±0.38) 

1.3  
(±0.45) 

1.83 
(±0.57) 

16.84 
(±4.16) 

16.6 
 (±5.7) 

23.67 
(±6.87) 

8 0.88 
(±0.38) 

0.82 
(±0.29) 

1.2 
 (±0.46) 

11.01 
(±3.5) 

9.13 
(±2.68) 

14.3 
(±4.36) 

0.99 
(±0.3) 

0.86 
(±0.28) 

1.32 
 (±0.4) 

15.42 
(±2.26) 

13.44 
(±2.52) 

20.46 
(±3.21) 

9 0.98 
(±0.31) 

0.87 
 (±0.3) 

1.31 
(±0.43) 

11.84 
(±2.56) 

10.84 
(±4.12) 

16.09 
(±4.63) 

1.12 
(±0.49) 

1.16 
(±0.78) 

1.62  
(±0.9) 

16.1 
 (±4.11) 

15.46 
(±7.16) 

22.4 
(±7.92) 

10 0.72 
(±0.19) 

0.67 
(±0.24) 

0.98 
 (±0.3) 

10.26 
 (±1) 

8.35 
(±0.87) 

13.22 
(±1.21) 

1.07 
(±0.27) 

0.99 
(±0.29) 

1.46 
(±0.39) 

17.07 
(±2.39) 

15.57 
(±2.99) 

23.13 
(±3.52) 

11 0.83 
(±0.27) 

0.85 
(±0.27) 

1.19 
(±0.37) 

13.14 
(±3.12) 

12.4 
(±4.55) 

18.11 
(±5.3) 

1.3 
(±0.43) 

1.13 
(±0.31) 

1.73 
 (±0.5) 

21.18 
(±4.78) 

20.36 
(±7.66) 

29.47 
(±8.57) 

12 0.89 
(±0.28) 

0.87 
(±0.27) 

1.24 
(±0.38) 

13.85 
 (±2) 

11.72 
(±2.23) 

18.14 
(±2.84) 

1.25 
(±0.36) 

1.19 
(±0.39) 

1.73 
(±0.52) 

23.44 
(±4.32) 

21.74 
 (±5.4) 

31.97 
(±6.68) 

13 0.93 
(±0.29) 

0.89 
(±0.31) 

1.29 
(±0.42) 

15.46 
(±2.78) 

13.27 
(±3.61) 

20.39 
(±4.35) 

1.36 
(±0.45) 

1.36 
(±0.55) 

1.93 
(±0.69) 

26.17 
(±6.06) 

25.22 
(±7.76) 

36.38 
(±9.53) 

14 1.03 
(±0.43) 

1.02 
(±0.44) 

1.45 
(±0.61) 

17.26 
(±4.43) 

14.65 
(±4.96) 

22.65 
(±6.51) 

1.29 
(±0.3) 

1.27 
(±0.47) 

1.82 
(±0.52) 

29.24 
(±4.24) 

30.11 
(±8.76) 

42.05 
(±9.11) 

15 0.92 
(±0.31) 

0.96 
(±0.36) 

1.33 
(±0.46) 

16.49 
(±4.37) 

14.56 
(±5.43) 

22.01 
(±6.82) 

1.48 
(±0.49) 

1.45 
(±0.54) 

2.08 
(±0.71) 

28.87 
(±6.78) 

29.37 
 (±8.3) 

41.23 
(±10.3) 

16 0.93 
(±0.28) 

0.91 
(±0.27) 

1.3 
 (±0.38) 

17.42 
(±2.92) 

14.91 
(±4.21) 

22.96 
(±4.83) 

1.36 
(±0.41) 

1.29 
(±0.41) 

1.88 
(±0.56) 

28.05 
(±4.75) 

27.96 
(±6.37) 

39.64 
(±7.5) 

17 1.19 
(±0.27) 

1.2 
 (±0.29) 

1.69 
(±0.38) 

18.89 
(±3.48) 

15.96 
(±2.94) 

24.74 
(±4.34) 

1.36 
(±0.49) 

1.26 
(±0.39) 

1.86 
(±0.61) 

26.99 
 (±6.1) 

25.17 
(±6.22) 

36.92 
(±8.43) 

18 1.24 
(±0.45) 

1.32 
(±0.65) 

1.81 
(±0.78) 

23.62 
(±6.86) 

19.75 
(±6.39) 

30.8 
(±9.19) 

1.47 
(±0.45) 

1.48 
(±0.67) 

2.11 
(±0.75) 

35.01 
(±9.25) 

37.47 
(±15.17) 

51.4 
(±17.12) 

19 1.2 
(±0.68) 

1.25 
(±0.67) 

1.73 
(±0.94) 

23.25 
(±6.22) 

20.57 
(±6.85) 

31.06 
(±9.05) 

1.64 
(±0.55) 

1.7  
(±0.88) 

2.38  
(±1) 

35.25 
(±9.08) 

34.76 
(±11.15) 

49.54 
(±14) 

20 1.6 
(±0.76) 

1.71 
(±0.86) 

2.34 
(±1.14) 

23 
 (±4.45) 

20.75 
(±3.67) 

30.98 
(±5.59) 

1.2 
 (±0.3) 

1.21 
(±0.29) 

1.71 
 (±0.4) 

30.31 
(±3.82) 

29.35 
(±4.38) 

42.21 
(±5.21) 

21 0.97 
(±0.22) 

0.99 
(±0.36) 

1.38 
(±0.41) 

23.13 
(±5.81) 

21.03 
(±7.78) 

31.28 
(±9.49) 

1.71 
(±0.61) 

1.64 
(±0.72) 

2.37 
(±0.93) 

38.22 
(±5.92) 

39.36 
(±7.18) 

54.87 
(±8.73) 

22 1.07 
(±0.22) 

1.11 
(±0.29) 

1.54 
(±0.34) 

22.33 
(±3.53) 

20.17 
(±5.12) 

30.14 
(±5.7) 

1.72 
(±0.52) 

1.81 
(±0.62) 

2.49 
 (±0.8) 

37.68 
(±4.52) 

39.4 
 (±8.6) 

54.59 
(±8.74) 

23 1.64 
(±0.86) 

1.72 
(±0.98) 

2.38  
(±1.3) 

26.94 
(±7.07) 

22.86 
(±7.84) 

35.36 
(±10.28) 

1.6 
(±0.65) 

1.63 
(±0.74) 

2.29 
(±0.96) 

35.4 
 (±10.1) 

35.02 
 (±13) 

49.95 
(±15.75) 

24 2.05 
 (±1) 

2.09 
(±1.06) 

2.93 
(±1.45) 

25.71 
(±5.39) 

21.67 
(±3.52) 

33.63 
(±6.23) 

1.28 
(±0.33) 

1.16 
(±0.31) 

1.72 
(±0.44) 

29.33 
(±5.03) 

25.78 
(±4.25) 

39.06 
(±6.27) 

25 1.24 
(±0.3) 

1.35 
(±0.38) 

1.83 
(±0.48) 

27.72 
(±5.58) 

25.91 
(±8.68) 

38.02 
(±9.82) 

1.6 
(±0.38) 

1.6  
(±0.37) 

2.26 
(±0.51) 

38.63  
(±6.6) 

38.99 
(±7.13) 

54.93 
(±8.97) 

26 1.27 
(±0.52) 

1.26 
(±0.57) 

1.78 
(±0.76) 

22.34 
(±3.29) 

17.8 
(±2.47) 

28.57 
(±3.77) 

1.61 
(±0.27) 

1.45 
(±0.38) 

2.17 
(±0.43) 

35.08 
(±5.69) 

32.63 
(±10.13) 

48.06 
(±10.59) 

27 2.06 
(±0.42) 

1.99 
 (±0.7) 

2.87 
(±0.74) 

28.28 
(±6.43) 

23.18 
(±6.52) 

36.55 
(±9.03) 

1.46 
(±0.4) 

1.38 
(±0.39) 

2 
 (±0.55) 

37.21 
(±4.68) 

34.85 
(±7.27) 

51.03 
(±7.94) 

28 1.71 
(±0.98) 

1.76 
(±1.18) 

2.46 
(±1.52) 

29.83 
(±5.35) 

23.55 
(±5.18) 

38.02 
(±7.13) 

1.19 
(±0.22) 

1.03 
(±0.26) 

1.58 
(±0.33) 

35.17 
 (±2.4) 

30.02 
(±4.29) 

46.25 
(±4.16) 

             

Average 1.34 
(±0.47) 

1.3 
(±0.51) 

1.87 
(±0.68) 

18.11 
(±3.83) 

15.35 
(±4.12) 

23.77 
(±5.45) 

1.38 
(±0.43) 

1.34 
(±0.5) 

1.92 
(±0.64) 

25.72 
(±4.82) 

24.87 
(±6.54) 

35.84 
(±7.72) 
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Method 6: Using all the curves from the exercise with the PRSA [Gr1+All+PRSA] 

Because of the good time-related results achieved with the PRSA in Method 5, it was 
decided to run the algorithm feeding it with all the curves after they were grouped by exercise 
(Gr1). In other words, the settings of this method are the same as the ones from Method 2 
with the difference of the search algorithm. The results from this method are shown in Table 
17. Comparing these results with the ones in Table 10, it can be seen that the performance of 
the DCSA is slightly better than the one from the PRSA, although the improvement in 
processing time accomplished with the PRSA is significantly higher than the worsening in the 
results. An example of the generation using the resulting shaping-knots’ coefficients is 
depicted in Fig. 61, where the position and velocity of the most representative curve from 
exercise P3-2 are compared to the ones from the reconstructed one, as it was done for Method 
2. Likewise, Fig. 62 shows the regeneration of the curve from exercise P1-2 previously 
depicted in Fig. 56, using Method 6, Method 2 and Method 3. In the case of Method 6 the 
MAE and SDAE were 2.35° and 2.01°, respectively. In both Fig. 61 and Fig. 62 a small 
deterioration in the shape produced by this method can be seen compared to Method 2. 

  
Fig. 61  Original curve (most representative from exercise P3-2) vs regenerated 

curve using the calculated shaping-knots coefficients 

 
Fig. 62  Comparison of a curve from P1-2 with the generated curves obtained by 

Method 6 (left), Method 2 (center) and Method 3 (right) 
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Table 17  Results of Method 6 with respect to all the curves in the exercise  

  
HIP KNEE 

Position Velocity Position Velocity 

Ex.  WS 
norm Cad 

AMAE  
(±SD) 
[deg] 

ASDAE 
(±SD) 
[deg] 

ARMSE  
(±SD) 
[deg] 

AMAE  
(±SD) 
[deg/s] 

ASDAE  
(±SD) 
[deg/s] 

ARMSE  
(±SD) 
[deg/s] 

AMAE  
(±SD) 
[deg] 

ASDAE  
(±SD) 
[deg] 

ARMSE  
(±SD) 
[deg] 

AMAE  
(±SD) 
[deg/s] 

ASDAE  
(±SD) 
[deg/s] 

ARMSE  
(±SD) 
[deg/s] 

P1-1 0.66 97.2 0.84 
(±0.23) 

0.87 
(±0.22) 

1.21 
(±0.31) 

15.21 
(±1.83) 

12.72 
(±1.71) 

19.83 
(±2.38) 

1.12 
(±0.3) 

1.05 
(±0.34) 

1.54 
(±0.44) 

24.44 
(±4.08) 

23.35 
(±5.05) 

33.83 
(±6.14) 

P1-2 0.16 39.0 1.61 
(±0.63) 

1.34 
(±0.48) 

2.1 
(±0.78) 

6.77 
(±1.27) 

5.72 
(±1.39) 

8.87 
(±1.79) 

1.63 
(±0.56) 

1.78 
(±0.71) 

2.42 
(±0.87) 

13.25 
(±2.15) 

15.83 
(±2.67) 

20.66 
(±3.11) 

P1-3 0.41 72.8 0.9 
(±0.47) 

0.79 
(±0.42) 

1.19 
(±0.63) 

9.95 
(±1.76) 

8.22 
(±2.37) 

12.92 
(±2.84) 

1.22 
(±0.42) 

1.25 
(±0.54) 

1.75 
(±0.65) 

15.66 
(±3.15) 

14.28 
(±3.64) 

21.21 
(±4.64) 

P1-4 0.58 89.5 0.91 
(±0.27) 

0.88 
(±0.31) 

1.27 
(±0.39) 

13.66 
(±1.55) 

11.02 
(±1.8) 

17.56 
(±2.2) 

1.06 
(±0.34) 

1.06 
(±0.36) 

1.5 
(±0.49) 

21.08 
(±2.91) 

21.91 
(±4.3) 

30.42 
(±4.83) 

P1-5 0.93 116.3 1.31 
(±0.71) 

1.39 
(±0.85) 

1.91 
(±1.1) 

22.59 
(±4.65) 

19.41 
(±4.78) 

29.81 
(±6.38) 

1.64 
(±0.58) 

1.7 
(±0.77) 

2.37 
(±0.94) 

34.63 
(±7.45) 

36.67 
(±12.86) 

50.7 
(±13.63) 

P1-6 1.14 129.0 2.19 
(±0.49) 

2.21 
(±0.56) 

3.12 
(±0.7) 

34.39 
(±5.09) 

26.96 
(±5.7) 

43.7 
(±7.34) 

1.38 
(±0.41) 

1.25 
(±0.36) 

1.86 
(±0.53) 

33.65 
(±4.43) 

28.32 
(±5.72) 

44.01 
(±6.76) 

P1-7 0.62 92.6 0.89 
(±0.27) 

0.86 
(±0.32) 

1.24 
(±0.41) 

14.23 
(±1.68) 

11.61 
(±1.57) 

18.37 
(±2.14) 

1.16 
(±0.42) 

1.21 
(±0.49) 

1.68 
(±0.62) 

22.98 
(±5.05) 

22.95 
(±7.05) 

32.53 
(±8.27) 

P2-1 0.67 97.4 1.02 
(±0.34) 

1.01 
(±0.45) 

1.44 
(±0.56) 

17.35 
(±3.2) 

15.43 
(±5.16) 

23.26 
(±5.76) 

1.31 
(±0.37) 

1.33 
(±0.45) 

1.87 
(±0.57) 

28.24 
(±5.92) 

30.18 
(±7.78) 

41.38 
(±9.3) 

P2-2 0.25 63.9 1.46 
(±0.7) 

1.31 
(±0.64) 

1.96 
(±0.94) 

9.97 
(±2.65) 

8.44 
(±3.37) 

13.14 
(±3.98) 

1.08 
(±0.4) 

1.17 
(±0.53) 

1.6 
(±0.65) 

12.91 
(±2.48) 

12.12 
(±3.14) 

17.74 
(±3.78) 

P2-3 0.32 68.0 1.12 
(±0.49) 

0.99 
(±0.37) 

1.5  
(±0.6) 

10.21 
(±2.08) 

8.86 
(±2.08) 

13.52 
(±2.85) 

1.06 
(±0.53) 

1.08 
(±0.65) 

1.51 
(±0.83) 

13.66 
(±3.85) 

12.25 
(±3.9) 

18.36 
(±5.36) 

P2-4 0.46 79.2 0.78 
(±0.39) 

0.71 
(±0.31) 

1.06 
(±0.49) 

10.52 
(±2.29) 

8.67 
(±2.42) 

13.64 
(±3.25) 

1.03 
(±0.3) 

0.94 
(±0.3) 

1.4 
(±0.41) 

15.95 
(±2.5) 

14.47 
(±3.07) 

21.57 
(±3.63) 

P2-5 0.58 85.3 0.76 
(±0.14) 

0.75 
(±0.18) 

1.07 
(±0.21) 

11.41 
(±1.37) 

9.24 
(±1.36) 

14.68 
(±1.8) 

1.03 
(±0.21) 

1.06 
(±0.3) 

1.48 
(±0.35) 

18.88 
(±2.49) 

18.4 
(±3.89) 

26.38 
(±4.29) 

P2-6 0.72 94.1 1.19 
(±0.31) 

1.19 
(±0.33) 

1.69 
(±0.44) 

17.38 
(±3.38) 

14.97 
(±3.9) 

22.95 
(±4.96) 

1.13 
(±0.41) 

1.12 
(±0.38) 

1.59 
(±0.54) 

22.61 
(±5.12) 

22.96 
(±5.84) 

32.24 
(±7.51) 

P2-7 0.89 103.2 1.47 
(±0.92) 

1.56 
(±1.03) 

2.14 
(±1.37) 

20.66 
(±4.81) 

17.54 
(±4.91) 

27.12 
(±6.66) 

1.1 
(±0.29) 

1.07 
(±0.31) 

1.54 
(±0.41) 

24.72 
(±3.68) 

24.24 
(±5.32) 

34.68 
(±5.83) 

P2-8 1.05 109.8 1.78 
(±1.15) 

1.97 
(±1.32) 

2.66 
(±1.74) 

24.1 
(±6.68) 

20.15 
(±4.65) 

31.44 
(±7.9) 

1.39 
(±0.4) 

1.24 
(±0.44) 

1.87 
(±0.58) 

30.67 
(±5.75) 

27.1 
(±7.49) 

40.97 
(±9.02) 

P2-9 0.63 91.1 0.79 
(±0.25) 

0.81 
(±0.25) 

1.13 
(±0.33) 

13.36 
(±2) 

11.13 
(±1.76) 

17.39 
(±2.51) 

1.24 
(±0.46) 

1.32 
(±0.59) 

1.81 
(±0.73) 

23.07 
(±5.52) 

23.47 
(±6.18) 

32.92 
(±8.02) 

P3-1 0.67 94.9 0.88 
(±0.29) 

0.88 
(±0.26) 

1.24 
(±0.36) 

15.03 
(±2.25) 

13.26 
(±1.99) 

20.06 
(±2.7) 

1.38 
(±0.38) 

1.41 
(±0.46) 

1.98 
(±0.57) 

27.17 
(±3.65) 

28.23 
(±5.52) 

39.25 
(±5.81) 

P3-2 0.16 36.8 1.76 
(±0.77) 

1.52 
(±0.72) 

2.33 
(±1.03) 

7.21 
(±1.76) 

5.98 
(±2.1) 

9.38 
(±2.65) 

1.63 
(±0.39) 

1.6 
(±0.45) 

2.29 
(±0.56) 

11.03 
(±1.62) 

10.96 
(±2.66) 

15.59 
(±2.79) 

P3-3 0.21 48.3 1.84 
(±0.86) 

1.48 
(±0.58) 

2.37 
(±1.02) 

10.2 
(±2.23) 

8.55 
(±2.8) 

13.33 
(±3.42) 

1.48 
(±0.56) 

1.56 
(±0.74) 

2.16 
(±0.89) 

13.66 
(±3.91) 

14.11 
(±6.52) 

19.7 
(±7.35) 

P3-4 0.32 60.0 1.77 
(±0.82) 

1.62 
 (±1) 

2.4 
(±1.27) 

13.16 
(±2.99) 

9.97 
(±2.08) 

16.51 
(±3.57) 

1.43 
(±0.51) 

1.49 
(±0.66) 

2.07 
(±0.82) 

15.5 
(±3.05) 

13.83 
(±3.08) 

20.78 
(±4.17) 

P3-5 0.42 72.1 0.99 
(±0.59) 

0.91 
(±0.54) 

1.34 
(±0.79) 

11.5 
(±4.07) 

10.51 
(±5.52) 

15.63 
(±6.67) 

1.2 
(±0.43) 

1.22 
(±0.63) 

1.71 
(±0.74) 

16.89 
(±4.57) 

16.82 
(±7.25) 

23.89 
(±8.33) 

P3-6 0.54 84.3 0.89 
(±0.3) 

0.91 
(±0.26) 

1.28 
(±0.38) 

13.84 
(±2.67) 

12.59 
(±3.84) 

18.75 
(±4.39) 

1.18 
(±0.39) 

1.19 
(±0.43) 

1.68 
(±0.56) 

21.83 
(±5.07) 

22.52 
(±7.91) 

31.42 
(±9.04) 

P3-7 0.66 96.2 0.89 
(±0.45) 

0.89 
(±0.46) 

1.26 
(±0.63) 

16.71 
(±4.8) 

15.22 
(±6.16) 

22.65 
(±7.58) 

1.43 
(±0.46) 

1.54 
(±0.67) 

2.11 
(±0.79) 

30.12 
(±5.35) 

33.64 
(±8.67) 

45.22 
(±9.53) 

P3-8 0.78 108.2 1.14 
(±0.61) 

1.19 
(±0.61) 

1.65 
(±0.85) 

22.47 
(±5.65) 

20.12 
(±7.27) 

30.24 
(±8.77) 

1.55 
(±0.56) 

1.65 
(±0.83) 

2.27 
(±0.97) 

33.84 
(±8.2) 

34.92 
(±11.02) 

48.67 
(±13.31) 

P3-9 0.94 119.7 1.54 
(±0.76) 

1.66 
(±0.9) 

2.27 
(±1.17) 

28.75 
(±7.56) 

27.18 
(±10.33) 

39.67 
(±12.26) 

1.64 
(±0.67) 

1.73 
(±0.74) 

2.39 
(±0.98) 

38.44 
(±10.22) 

39.56 
(±13.1) 

55.3 
(±15.82) 

P3 
-10 0.66 96.7 1.06 

(±0.4) 
1.13 

(±0.61) 
1.56 

(±0.71) 
19.25 

(±6.83) 
17.25 

(±7.31) 
25.89 

(±9.79) 
1.49 

(±0.41) 
1.6 

(±0.51) 
2.19 

(±0.63) 
32.2 

(±7.39) 
34.49 

(±11.83) 
47.24 

(±13.48) 
               

Average 1.22 
(±0.52) 

1.18 
(±0.54) 

1.71 
(±0.74) 

15.76 
(±3.35) 

13.49 
(±3.78) 

20.78 
(±4.87) 

1.31 
(±0.43) 

1.33 
(±0.52) 

1.87 
(±0.66) 

22.97 
(±4.6) 

22.98 
(±6.36) 

32.56 
(±7.45) 
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Method 7: Using all the curves from the clusters with the PRSA [Gr2+All+PRSA] 

The PRSA was also run feeding it with all the processed cycles after they were clustered 
based on its normalized walking speed and the cadence (Gr2). The search algorithm was 
executed using the following cost-minimization formulation:  

   

   

  (29) 

where  is the number of samples per curve,  is the number of curves in the cluster,  
and  are the position and velocity error measurements in sample j when comparing the 
regenerated curve and the ith curve of the cluster,  and  are the position and 
velocity values of the ith reference curve in sample j,  and  are 
the position and velocity values calculated from the interpolation using the shaping knots 
described by a given set of  (specific to cluster C), and  is the weight of 
the velocity error in the cost function. 

Table 18 shows the results accomplished with this method, including the WSnorm and cad 
corresponding to each cluster centroid, and the AMAE, ARMSE and AR calculated between 
all the original curves in each cluster and the corresponding regenerated curve. Comparing 
Table 18 and Table 17, no significant differences in the performance can be spotted. This 
doesn’t mean that both grouping methods are equally suited for the final application, just that 
they have to be evaluated and compared with different data to get a better insight. An example 
of the generally good behavior of the regeneration is shown in Fig. 63, where the depicted 
original hip and knee curves are the same as the ones shown in Fig. 59. The hip trajectory 
reconstruction yielded a MAE and SDAE of 1.35° and 1.42°, respectively, whereas the knee 
trajectory yielded 0.76° and 0.79°. Likewise, Fig. 64 shows the regeneration of the curve from 
cluster 4 previously depicted in Fig. 60, using Method 7, Method 5 and Method 4. In the case 
of Method 7 the MAE and SDAE were 0.95° and 0.85°, respectively. A clear improvement 
can be seen in the shape of the reconstructed curve using this method in comparison to 
Method 4 and Method 5. 
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Table 18  Results of Method 7 with respect to all the curves in the cluster 
 HIP KNEE 

   Position Velocity Position Velocity 

Cl. WS 
norm Cad 

AMAE  
(±SD) 
[deg] 

ASDAE  
(±SD) 
[deg] 

ARMSE  
(±SD) 
[deg] 

AMAE  
(±SD) 
[deg/s] 

ASDAE  
(±SD) 
[deg/s] 

ARMSE  
(±SD) 
[deg/s] 

AMAE  
(±SD) 
[deg] 

ASDAE  
(±SD) 
[deg] 

ARMSE  
(±SD) 
[deg] 

AMAE  
(±SD) 
[deg/s] 

ASDAE  
(±SD) 
[deg/s] 

ARMSE  
(±SD) 
[deg/s] 

1 0.16 37.75 1.81 
(±0.76) 

1.48 
(±0.65) 

2.34 
(±0.98) 

7.03 
(±1.7) 

5.84 
(±1.72) 

9.15 
(±2.36) 

1.65 
(±0.46) 

1.69 
(±0.55) 

2.37 
(±0.68) 

11.81 
(±1.98) 

12.44 
(±2.96) 

17.19 
(±3.26) 

2 0.21 48.32 1.84 
(±0.86) 

1.48 
(±0.58) 

2.37 
(±1.02) 

10.2 
(±2.23) 

8.55 
(±2.8) 

13.33 
(±3.42) 

1.48 
(±0.56) 

1.56 
(±0.74) 

2.16 
(±0.89) 

13.66 
(±3.91) 

14.11 
(±6.52) 

19.7 
(±7.35) 

3 0.25 63.73 1.44 
(±0.68) 

1.28 
(±0.64) 

1.93 
(±0.92) 

9.94 
(±2.61) 

8.33 
(±3.3) 

13.06 
(±3.85) 

1.04 
(±0.37) 

1.12 
(±0.49) 

1.53 
 (±0.6) 

12.18 
(±2.23) 

11.48 
(±3) 

16.77 
(±3.47) 

4 0.32 59.81 1.82 
(±0.8) 

1.68 
 (±1) 

2.49 
(±1.26) 

13.41 
(±3) 

10.08 
(±2.02) 

16.77 
(±3.56) 

1.47 
(±0.49) 

1.54 
(±0.66) 

2.13  
(±0.8) 

15.79 
(±2.98) 

14.22 
(±3.09) 

21.26 
(±4.12) 

5 0.32 65.29 1.23 
(±0.47) 

1.13 
(±0.33) 

1.67 
(±0.54) 

11.07 
(±2.43) 

9.33 
(±2.01) 

14.48 
(±3.03) 

1.12 
(±0.57) 

1.1 
(±0.68) 

1.58 
(±0.87) 

13.99 
(±4.35) 

11.88 
(±4.52) 

18.37 
(±6.17) 

6 0.33 69.66 0.98 
(±0.41) 

0.88 
(±0.36) 

1.33 
(±0.53) 

9.67 
(±1.9) 

8.4 
(±1.84) 

12.8  
(±2.6) 

1.04 
(±0.47) 

1.1 
(±0.56) 

1.52 
(±0.72) 

13.67 
(±2.96) 

12.6 
(±2.99) 

18.61 
 (±4) 

7 0.41 71.65 0.96 
(±0.57) 

0.91 
(±0.6) 

1.32 
(±0.82) 

10.99 
(±3.62) 

9.63 
(±4.62) 

14.65 
(±5.72) 

1.26 
(±0.39) 

1.3 
(±0.45) 

1.82 
(±0.57) 

16.71 
(±4.26) 

16.4 
(±5.67) 

23.42 
(±6.94) 

8 0.44 76.89 0.85 
(±0.42) 

0.78 
(±0.3) 

1.15 
 (±0.5) 

10.29 
(±2.85) 

8.35 
(±2.91) 

13.25 
(±4.03) 

0.88 
(±0.31) 

0.88 
(±0.34) 

1.25 
(±0.45) 

14.11 
(±1.76) 

13.07 
(±1.79) 

19.25 
(±2.17) 

9 0.43 72.83 0.94 
(±0.26) 

0.88 
(±0.3) 

1.29 
(±0.39) 

11.27 
(±3.13) 

10.26 
(±5.74) 

15.33 
(±6.23) 

1.09 
(±0.54) 

1.17 
(±0.85) 

1.61 
(±0.98) 

15.48 
(±4.69) 

15.01 
(±8) 

21.66 
(±8.92) 

10 0.46 79.41 0.73 
(±0.22) 

0.69 
(±0.26) 

1  
(±0.34) 

10.36 
(±1.32) 

8.46 
(±1.14) 

13.37 
(±1.65) 

1.03 
(±0.27) 

0.98 
(±0.3) 

1.42  
(±0.4) 

16.19 
(±2.38) 

14.68 
(±3.4) 

21.88 
(±3.84) 

11 0.54 82.46 0.81 
(±0.27) 

0.85 
(±0.28) 

1.18 
(±0.37) 

12.84 
(±2.84) 

11.87 
(±4.24) 

17.53 
(±4.86) 

1.11 
(±0.37) 

1.13 
(±0.35) 

1.59 
(±0.49) 

19.78 
(±4.4) 

20.27 
(±7.53) 

28.4 
 (±8.3) 

12 0.58 88.08 0.87 
(±0.27) 

0.83 
(±0.29) 

1.2  
(±0.38) 

13.06 
(±1.9) 

10.57 
(±2.02) 

16.8 
(±2.63) 

1.12 
(±0.37) 

1.14 
(±0.42) 

1.6 
 (±0.55) 

21.29 
(±4.24) 

21.82 
(±5.35) 

30.5 
(±6.59) 

13 0.63 92.28 0.92 
(±0.29) 

0.88 
(±0.33) 

1.28 
(±0.43) 

14.66 
(±2.98) 

12.34 
(±4.04) 

19.19 
(±4.82) 

1.25 
(±0.44) 

1.31 
(±0.56) 

1.82 
(±0.69) 

23.93 
(±5.87) 

24.63 
(±7.87) 

34.39 
(±9.47) 

14 0.64 96.41 0.96 
(±0.42) 

1.02 
(±0.47) 

1.4  
(±0.62) 

15.75 
(±4.44) 

13.8 
(±4.42) 

20.94 
(±6.19) 

1.21 
(±0.35) 

1.23 
(±0.58) 

1.73 
(±0.65) 

28.16 
(±5.41) 

29.5 
(±10.14) 

40.87 
(±10.94) 

15 0.67 93.33 0.9 
(±0.27) 

0.96 
(±0.37) 

1.32 
(±0.44) 

15.47 
(±4.28) 

13.84 
(±4.82) 

20.77 
(±6.31) 

1.41 
(±0.47) 

1.44 
(±0.6) 

2.02 
(±0.74) 

27.65 
(±6.18) 

29.16 
(±8.77) 

40.28 
(±10.11) 

16 0.68 97.20 0.9 
(±0.29) 

0.89 
(±0.3) 

1.27 
 (±0.4) 

16.31 
(±2.86) 

14.33 
(±4.1) 

21.75 
(±4.75) 

1.31 
(±0.39) 

1.29 
(±0.43) 

1.84 
(±0.57) 

27.46 
(±4.74) 

28.53 
(±6.66) 

39.63 
(±7.72) 

17 0.72 94.87 1.2 
(±0.38) 

1.19 
(±0.39) 

1.69 
(±0.54) 

18 
(±3.33) 

15.52 
(±3.4) 

23.79 
(±4.47) 

1.3 
(±0.52) 

1.25 
(±0.42) 

1.81 
(±0.65) 

26 
 (±6.3) 

25.36 
(±6.93) 

36.33 
(±9.13) 

18 0.73 103.05 1.22 
(±0.46) 

1.33 
(±0.76) 

1.81 
(±0.88) 

23.04 
(±7.67) 

19.99 
(±7.93) 

30.51 
(±10.89) 

1.42 
(±0.46) 

1.53 
(±0.78) 

2.1 
 (±0.86) 

35.02 
(±9.34) 

37.49 
(±15.97) 

51.42 
(±17.86) 

19 0.78 107.61 1.18 
(±0.71) 

1.28 
(±0.71) 

1.74 
(±0.98) 

22.58 
(±5.97) 

20.29 
(±7.07) 

30.43 
(±8.85) 

1.53 
(±0.55) 

1.72 
(±0.96) 

2.31 
(±1.08) 

34.28 
(±9.55) 

35.71 
(±13.05) 

49.6 
(±15.6) 

20 0.89 102.79 1.53 
(±0.93) 

1.62 
(±1.05) 

2.23 
 (±1.4) 

21.07 
(±4.88) 

17.97 
(±4.96) 

27.72 
(±6.72) 

1.12 
(±0.28) 

1.12 
(±0.29) 

1.58 
(±0.39) 

26.62 
(±3.28) 

26.7 
(±4.75) 

37.74 
(±5.16) 

21 0.82 109.88 0.91 
(±0.21) 

0.95 
(±0.34) 

1.32 
(±0.38) 

22.4 
(±5.96) 

21.06 
(±8.8) 

30.79 
(±10.31) 

1.61 
(±0.68) 

1.72 
(±0.73) 

2.35 
(±0.99) 

37.5 
(±5.18) 

39.39 
(±6.18) 

54.38 
(±7.48) 

22 0.90 111.33 1.03 
(±0.17) 

1.08 
(±0.22) 

1.49 
(±0.25) 

21.03 
(±4.04) 

19.64 
(±5.59) 

28.82 
(±6.46) 

1.51 
(±0.78) 

1.85 
(±0.95) 

2.39 
(±1.21) 

33.35 
(±10.08) 

41.98 
(±19.15) 

53.87 
(±20.6) 

23 0.92 117.65 1.62 
(±0.88) 

1.73 
(±1.03) 

2.37 
(±1.34) 

26.63 
(±6.98) 

23.32 
(±8.41) 

35.44 
(±10.66) 

1.62 
(±0.67) 

1.63 
(±0.71) 

2.3  
(±0.96) 

35.43 
(±10.58) 

35 
(±13.18) 

49.99 
(±16.08) 

24 1.03 109.04 1.98 
(±1.36) 

2.14 
(±1.49) 

2.91 
(±2.01) 

24.55 
(±8.15) 

20.86 
(±4.94) 

32.25 
(±9.29) 

1.22 
(±0.34) 

1.14 
(±0.35) 

1.67 
(±0.48) 

27.75 
(±4.9) 

23.79 
(±5.19) 

36.54 
(±6.99) 

25 0.97 120.49 1.2 
(±0.38) 

1.33 
(±0.51) 

1.79 
(±0.62) 

26.96 
(±7.02) 

26.22 
(±10.53) 

37.75 
(±12.02) 

1.56 
(±0.4) 

1.59 
(±0.37) 

2.23 
(±0.52) 

36.8 
(±6.44) 

38.32 
(±6.66) 

53.23 
(±8.12) 

26 1.08 110.98 1.23 
(±0.52) 

1.21 
(±0.55) 

1.73 
(±0.75) 

21.85 
(±3.01) 

17.08 
(±1.89) 

27.74 
(±3.23) 

1.58 
(±0.26) 

1.43 
(±0.52) 

2.14 
(±0.52) 

34.7 
(±6.21) 

32.94 
(±11.32) 

48 
 (±11.97) 

27 1.11 128.61 1.94 
(±0.74) 

2.12 
(±1.17) 

2.88 
(±1.35) 

32 
(±9.06) 

27.08 
(±9.76) 

41.93 
(±13.1) 

1.41 
(±0.42) 

1.4 
(±0.41) 

1.99 
(±0.58) 

36.81 
(±4.84) 

35.03 
(±7.22) 

50.86 
(±7.96) 

28 1.18 129.53 1.7 
(±0.94) 

1.78 
(±1.17) 

2.46 
(±1.49) 

30.11 
(±6.03) 

23.69 
(±5.09) 

38.3 
(±7.73) 

1.09 
(±0.37) 

0.99 
(±0.33) 

1.47 
(±0.49) 

32.88 
(±4.87) 

26.9 
(±4.84) 

42.47 
(±6.58) 

               

Average 1.24 
(±0.53) 

1.23 
(±0.59) 

1.75 
(±0.78) 

17.23 
(±4.15) 

14.88 
(±4.65) 

22.81 
(±6.06) 

1.3 
(±0.45) 

1.33 
(±0.55) 

1.87 
(±0.69) 

24.61 
(±5.14) 

24.59 
(±7.24) 

34.88 
(±8.46) 
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Fig. 63  Example of regenerated curves with Method 7 

 

 

Fig. 64  Comparison of a hip curve from cluster 4 with the generated curves 
obtained by Method 7 (left), Method 5 (center) and Method 4 (right) 

Method 8: Using the 5 more representative curves from each cluster with the PRSA 
[Gr2+5-MRep+PRSA] 

Finally, based on the experience gathered from the previous methods, it was decided to 
run the PRSA feeding it not with all the curves of each cluster, but with the p=5 most 
representative ones based on the cross-correlation coefficients’ matrix. This way, a significant 
reduction in the processing time needed by the PRSA to go over all the clusters is 
accomplished compared to Method 7. The cost minimization problem will be defined as in 
(29), with the difference that  is the number of most representative curves in the 
cluster. 

The results achieved from this method can be seen in Table 19 and Table 20. Table 19 
shows position and velocity MAE and SDAE between the regenerated and the p most 
representative curves in the clusters. Table 20 shows AMAE, ARMSE and ASDAE between 
the reconstructed curves and all the curves in each cluster. Comparing the results with the 
ones in Table 18, it can be seen that a considerable reduction in the number of curves fed to 
the algorithm, although it reduced the processing time, led to a slight deterioration in the error 
performance in both joints. An example of the generally good behavior of the regeneration is 
shown in Fig. 65, where the depicted original hip and knee curves are the same as the ones 
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shown in Fig. 59 and Fig. 63. The hip trajectory reconstruction yielded a MAE and SDAE of 
1.39° and 1.64°, respectively, whereas the knee trajectory yielded 0.85° and 0.77°. Likewise, 
Fig. 66 shows the regeneration of the curve from cluster 4 previously depicted in Fig. 60, 
using Method 8, Method 7and Method 5. In the case of Method 8 the MAE and SDAE were 
1.16° and 1.12°, respectively. An improvement can be seen in the shape of the reconstructed 
curve using this method in comparison to Method 5, but a visible deterioration took place with 
respect to Method 7. This suggests that the more curves are used by the search algorithm, the 
better resulting shapes are achieved after regeneration.  

Table 19  Results Method 8 with respect to the cluster’s most representative curves  
  HIP KNEE 

Cluster  WSnorm Cad 
MAE 
(pos) 
[deg] 

SDAE 
(pos) 
[deg] 

MAE 
(vel) 

[deg/s] 

SDAE 
(vel) 

[deg/s] 
WSnorm Cad 

MAE 
(pos) 
[deg] 

SDAE 
(pos) 
[deg] 

MAE 
(vel) 

[deg/s] 

SDAE 
(vel) 

[deg/s] 
1 0.163 38.82 1.27 0.22 6.25 0.69 0.163 37.40 1.27 0.40 8.02 1.43 
2 0.212 48.84 1.70 1.08 8.92 2.30 0.210 48.24 1.19 0.43 12.28 4.65 
3 0.249 64.16 1.03 0.54 9.73 2.27 0.245 63.07 1.16 0.33 13.94 2.54 
4 0.317 60.09 1.59 0.33 12.70 1.92 0.321 59.90 1.53 1.01 15.92 5.61 
5 0.317 65.86 1.31 0.52 10.93 1.47 0.323 65.16 0.81 0.52 11.40 2.21 
6 0.324 68.96 0.91 0.28 10.00 1.66 0.327 68.68 0.97 0.49 12.36 2.35 
7 0.419 71.48 0.53 0.13 8.97 0.99 0.418 72.31 1.10 0.38 14.08 2.47 
8 0.441 77.38 0.77 0.56 10.63 2.81 0.445 77.97 0.90 0.43 14.74 2.67 
9 0.428 72.81 0.73 0.36 9.47 1.89 0.430 73.40 0.93 0.57 13.77 3.33 
10 0.462 79.07 0.54 0.17 9.76 1.77 0.468 80.46 0.72 0.31 15.06 3.29 
11 0.549 82.90 0.65 0.18 10.83 1.61 0.549 82.87 0.79 0.29 17.49 4.21 
12 0.583 88.64 0.75 0.23 13.24 1.47 0.580 88.30 0.92 0.14 22.79 4.62 
13 0.632 91.57 0.66 0.16 13.12 2.07 0.627 91.51 1.40 0.71 25.56 3.78 
14 0.644 96.12 0.70 0.19 13.65 1.65 0.643 96.11 1.11 0.36 27.95 6.28 
15 0.670 93.74 0.67 0.07 14.70 0.62 0.665 93.75 0.98 0.15 25.20 1.23 
16 0.669 96.12 0.60 0.11 13.36 1.76 0.667 96.66 1.23 0.26 25.52 3.46 
17 0.728 94.78 0.85 0.49 15.96 3.41 0.736 94.74 1.03 0.35 24.15 4.04 
18 0.728 102.31 1.03 0.19 19.02 3.13 0.729 104.02 1.06 0.27 27.18 5.02 
19 0.782 108.09 0.71 0.20 17.55 1.81 0.775 107.50 1.33 0.44 29.80 8.09 
20 0.897 103.32 0.74 0.21 15.44 1.32 0.901 103.82 1.08 0.12 29.58 4.46 
21 0.817 109.28 0.96 0.15 23.28 6.20 0.817 109.28 1.63 0.81 37.05 5.55 
22 0.896 111.91 0.97 0.24 22.26 5.04 0.896 111.91 1.52 1.15 34.32 14.94 
23 0.920 116.55 1.11 0.39 21.47 3.43 0.919 117.39 0.90 0.34 27.88 4.09 
24 1.015 108.62 1.34 1.11 21.18 6.60 1.020 107.97 1.01 0.33 24.74 7.09 
25 0.975 119.47 0.87 0.32 21.53 2.60 0.974 120.22 1.25 0.24 30.14 5.22 
26 1.087 110.61 1.16 0.41 21.69 2.79 1.086 111.15 1.53 0.37 33.59 6.34 
27 1.112 129.03 1.95 0.54 31.22 5.19 1.117 128.20 1.14 0.21 34.65 4.07 
28 1.179 128.21 1.42 0.90 32.82 5.92 1.185 129.11 0.78 0.18 30.30 1.46 
             

Average 0.98 0.37 15.70 2.66  1.12 0.41 22.84 4.45 
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Table 20  Results of Method 8 with respect to all the curves in the cluster  
  HIP KNEE 
 Position Velocity Position Velocity 

Cluster  
AMAE  
(±SD) 
[deg] 

ASDAE  
(±SD) 
[deg] 

ARMSE  
(±SD) 
[deg] 

AMAE  
(±SD) 
[deg/s] 

ASDAE  
(±SD) 
[deg/s] 

ARMSE  
(±SD) 
[deg/s] 

AMAE  
(±SD) 
[deg] 

ASDAE  
(±SD) 
[deg] 

ARMSE  
(±SD) 
[deg] 

AMAE  
(±SD) 
[deg/s] 

ASDAE  
(±SD) 
[deg/s] 

ARMSE  
(±SD) 
[deg/s] 

1 1.75 
(±0.65) 

1.46 
(±0.53) 

2.29 
(±0.82) 

7.28  
(±1.4) 

5.94 
(±1.51) 

9.4  
(±1.98) 

1.75 
(±0.56) 

1.76 
 (±0.6) 

2.48 
(±0.79) 

10.95 
(±2.48) 

10.32 
(±2.35) 

15.05 
(±3.29) 

2 1.85 
(±0.94) 

1.5 
 (±0.69) 

2.38 
(±1.15) 

10.33 
(±2.36) 

8.82 
(±2.79) 

13.61 
(±3.51) 

1.71 
(±0.62) 

1.84 
(±0.87) 

2.52 
(±1.03) 

14.09 
(±4.42) 

14.65 
(±7.94) 

20.42 
(±8.78) 

3 1.39 
(±0.68) 

1.26 
(±0.74) 

1.88 
(±0.99) 

11.13 
(±3.27) 

9.15 
(±3.37) 

14.53 
(±4.24) 

1.23 
(±0.45) 

1.34 
(±0.58) 

1.82 
(±0.73) 

14.32 
(±3.05) 

13.62 
(±3.15) 

19.78 
(±4.22) 

4 2.29 
(±1.09) 

2.1 
 (±1.16) 

3.11 
(±1.57) 

14.6 
(±3.57) 

10.87 
(±2.17) 

18.2 
 (±4.1) 

1.81 
(±0.65) 

1.99 
(±0.82) 

2.69 
(±1.02) 

18.27 
(±4.07) 

17.32 
(±3.98) 

25.18 
(±5.52) 

5 1.39 
(±0.37) 

1.16  
(±0.2) 

1.81 
(±0.41) 

11.03 
(±1.87) 

9.04 
(±1.83) 

14.26 
(±2.54) 

1.12 
(±0.59) 

1.13 
(±0.68) 

1.59 
(±0.89) 

14.25 
(±4.28) 

12.27 
(±4.38) 

18.82  
(±6) 

6 1.11 
(±0.68) 

1.01 
(±0.67) 

1.5 
 (±0.95) 

10.08 
(±1.93) 

8.65 
(±1.83) 

13.28 
(±2.62) 

1.11 
(±0.54) 

1.12 
(±0.65) 

1.58 
(±0.84) 

13.73 
(±3.25) 

12.38 
(±3.59) 

18.5 
(±4.68) 

7 1.17 
(±1.13) 

0.95 
(±0.79) 

1.51 
(±1.37) 

11.35 
(±4.84) 

9.85 
(±5.26) 

15.05 
(±7.06) 

1.31 
(±0.38) 

1.4 
 (±0.59) 

1.93 
(±0.66) 

17.31 
(±4.54) 

16.79 
(±6.27) 

24.14 
(±7.55) 

8 1.04 
(±0.51) 

0.9  
(±0.48) 

1.37 
 (±0.7) 

10.88 
(±1.88) 

9.05 
(±2.59) 

14.16 
(±3.07) 

1.02 
(±0.34) 

0.97 
(±0.38) 

1.41 
 (±0.5) 

16.32 
 (±3.1) 

14.7  
(±3.06) 

21.99 
(±4.09) 

9 1.03 
(±0.44) 

0.95 
(±0.43) 

1.4 
 (±0.59) 

11.67 
(±3.66) 

10.55 
(±5.61) 

15.79 
(±6.47) 

1.1 
(±0.54) 

1.18 
(±0.85) 

1.63 
(±0.98) 

15.68 
(±4.38) 

15.76 
(±7.38) 

22.31 
(±8.26) 

10 0.8 
(±0.32) 

0.77 
(±0.35) 

1.11 
(±0.47) 

10.8 
 (±1.6) 

8.68 
(±1.32) 

13.86 
(±1.99) 

1.07 
(±0.36) 

1.01 
(±0.35) 

1.47 
 (±0.5) 

17.19 
 (±3.1) 

15.84 
(±3.96) 

23.38 
(±4.82) 

11 0.81 
(±0.27) 

0.85 
(±0.29) 

1.18 
(±0.38) 

12.65 
(±2.87) 

11.82 
(±4.3) 

17.35 
(±4.94) 

1.14 
(±0.38) 

1.16 
(±0.35) 

1.63 
(±0.49) 

20.47  
(±4.5) 

20.7 
 (±7.7) 

29.2 
(±8.44) 

12 0.91 
(±0.32) 

0.87  
(±0.3) 

1.26 
(±0.43) 

13.05 
(±1.92) 

10.57 
(±2.02) 

16.8 
(±2.62) 

1.27 
(±0.37) 

1.27 
(±0.41) 

1.79 
(±0.54) 

25.63 
(±4.39) 

25.92 
(±5.87) 

36.46 
(±7.03) 

13 0.93 
(±0.29) 

0.9  
(±0.33) 

1.29 
(±0.43) 

14.95 
(±2.99) 

12.44 
(±4.04) 

19.48 
(±4.82) 

1.5 
(±0.57) 

1.51 
 (±0.6) 

2.13 
(±0.81) 

26.77 
(±5.55) 

28.46 
(±6.76) 

39.11 
(±8.3) 

14 1.03 
(±0.45) 

1.1 
 (±0.53) 

1.5  
(±0.69) 

15.88 
(±4.4) 

14.05 
(±4.34) 

21.19 
(±6.13) 

1.29 
(±0.35) 

1.33 
(±0.53) 

1.86 
(±0.61) 

29.62 
(±6.18) 

32.5 
 (±9.79) 

44.01 
(±11.13) 

15 1  
(±0.37) 

1.04 
(±0.45) 

1.45 
(±0.57) 

16.89 
(±4.68) 

15.34 
(±5.44) 

22.82 
(±7.06) 

1.47 
(±0.55) 

1.47 
(±0.58) 

2.08 
(±0.78) 

28.76 
(±5.14) 

32.07 
(±8.89) 

43.16 
(±9.59) 

16 0.92 
(±0.28) 

0.92 
 (±0.3) 

1.31 
 (±0.4) 

16.51 
(±2.92) 

14.41 
(±4.07) 

21.95 
(±4.74) 

1.44 
(±0.42) 

1.48 
(±0.49) 

2.07 
(±0.63) 

29.66 
(±5.07) 

30.09 
(±5.98) 

42.27 
(±7.38) 

17 1.26 
(±0.55) 

1.28 
(±0.53) 

1.79 
(±0.77) 

18.52 
(±3.87) 

15.82 
(±3.43) 

24.37 
(±4.97) 

1.31 
(±0.64) 

1.31 
(±0.54) 

1.85 
(±0.82) 

25.87 
(±7.31) 

26.71 
(±8.04) 

37.18 
(±10.7) 

18 1.24 
(±0.55) 

1.36 
(±0.87) 

1.85 
(±1.01) 

23.31 
(±8.33) 

20.11 
(±8.31) 

30.8 
(±11.62) 

1.4 
 (±0.5) 

1.55 
(±0.72) 

2.1 
 (±0.84) 

34.09 
(±11.19) 

36.44 
(±17.22) 

50.04 
(±19.93) 

19 1.19 
(±0.73) 

1.27  
(±0.7) 

1.75  
(±1) 

22.7 
(±6.06) 

20.33 
(±7.04) 

30.55 
(±8.88) 

1.66 
(±0.6) 

1.83 
(±0.88) 

2.48 
(±1.04) 

37.01 
(±11.08) 

38.82 
(±13.56) 

53.79 
(±16.73) 

20 1.6 
(±1.14) 

1.65 
(±1.29) 

2.3 
 (±1.71) 

21.08 
(±6.51) 

17.61 
(±5.83) 

27.46 
(±8.65) 

1.15 
(±0.29) 

1.15 
(±0.27) 

1.63 
(±0.39) 

28.45 
(±3.54) 

26.95 
(±4.26) 

39.22 
(±4.84) 

21 0.92 
(±0.17) 

0.95 
(±0.32) 

1.32 
(±0.33) 

22.37 
(±5.98) 

21.04 
(±8.74) 

30.75 
(±10.31) 

1.6 
(±0.73) 

1.71  
(±0.8) 

2.34 
(±1.08) 

36.31 
(±5.29) 

38.34 
(±7.22) 

52.83 
(±8.2) 

22 1.01 
(±0.23) 

1.08 
(±0.39) 

1.49 
(±0.44) 

21.52 
(±4.74) 

19.98 
(±5.98) 

29.42 
(±7.21) 

1.53 
(±0.96) 

1.87 
(±1.14) 

2.43 
(±1.46) 

35.66 
(±12.91) 

43.66 
(±22.13) 

56.74 
(±24.39) 

23 1.76 
(±0.92) 

1.84 
(±0.95) 

2.55 
(±1.31) 

28.2 
(±7.44) 

23.92 
(±8.66) 

37.02 
(±11.12) 

1.76 
(±0.8) 

1.82 
(±0.77) 

2.54 
(±1.09) 

38.2 
(±11.59) 

36.68 
(±12.36) 

53.14 
(±16.09) 

24 2.03 
(±1.41) 

2.16 
(±1.49) 

2.97 
(±2.05) 

25.35 
(±7.98) 

21.92  
(±5) 

33.54 
(±9.18) 

1.36 
(±0.51) 

1.26 
(±0.46) 

1.86 
(±0.67) 

28.8  
(±7.11) 

24.25 
 (±7) 

37.66 
(±9.75) 

25 1.2 
(±0.43) 

1.31 
(±0.55) 

1.77 
(±0.68) 

26.08 
(±6.98) 

25.48 
(±10.44) 

36.6 
(±11.94) 

1.66 
(±0.44) 

1.64 
(±0.36) 

2.34 
(±0.53) 

37.11 
(±8.34) 

40.23 
(±8.49) 

54.9 
(±10.65) 

26 1.3 
(±0.63) 

1.24 
(±0.58) 

1.79 
(±0.85) 

21.98 
(±3.31) 

17.18 
(±2.32) 

27.9 
(±3.84) 

1.62 
(±0.42) 

1.46 
(±0.54) 

2.18 
(±0.66) 

34.59 
(±8.01) 

33.87 
(±12.44) 

48.51 
(±14.19) 

27 2  
(±0.58) 

2.13 
(±0.91) 

2.93 
(±1.03) 

31.32 
(±8.1) 

26.32 
(±7.56) 

40.89 
(±10.99) 

1.46 
(±0.51) 

1.46 
(±0.49) 

2.06  
(±0.7) 

37.41  
(±5.5) 

34.74 
(±6.99) 

51.12 
(±8.06) 

28 1.84 
(±0.93) 

1.83 
(±1.01) 

2.6  
(±1.36) 

34.23 
(±5.33) 

26.28 
(±4.17) 

43.13 
(±6.6) 

1.15 
(±0.51) 

1.05 
(±0.47) 

1.55 
(±0.68) 

34.23 
(±6.32) 

28.72 
(±5.58) 

44.66 
(±8.27) 

             

Average 1.31 
(±0.61) 

1.28 
(±0.64) 

1.84 
(±0.87) 

17.71 
(±4.31) 

15.19 
(±4.64) 

23.36 
(±6.19) 

1.39 
(±0.52) 

1.43 
 (±0.6) 

2 
 (±0.78) 

25.74 
(±5.92) 

25.81 
(±7.73) 

36.56 
(±9.32) 
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Fig. 65  Example of regenerated curves with Method 8 

 
Fig. 66  Comparison of a hip curve from cluster 4 with the generated curves 

obtained by Method 8 (left), Method 7 (center) and Method 5 (right) 

Mapping of input gait parameters into the corresponding shaping knots 

When a method implements cycles’ grouping (Gr1 or Gr2), each one of the groups will 
possess a pair of reference normalized walking speed and cadence values that represents it  
(referred also as centroids of the group). To evaluate which shaping knots’ coefficients should 
be used for a given pair of input gait parameters WSnorm,in and Cadin, a radial basis selection 
was implemented, which calculates a 2-dimensional distance between the input pair and each 
one of the groups’ reference pair, and finally selects the shaping knots’ coefficients from the 
group with the reference gait parameters that generated the lowest distance. The selection 
process has the following formulation: 

   

  (30) 

where d(...) is the distance function, WSnorm,in and Cadin are the input pair of gait parameters, 
WSnorm,G and CadG are the reference pair of gait parameters from group G, and 
max({WSnorm,G}) and max({CadG}) are the maximum normalized walking speed and cadence 
from all the reference pairs of the joint, respectively.  
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Fig. 67 shows an example of the selection when grouping following strategy Gr2, most 
specifically for Method 4. The figure shows the centroids of each cluster as well as two 
examples of input gait parameter pairs. The cluster centroid selection for each one of the input 
pairs is shown with the shaded area. Note that the selected centroid for a given pair of inputs 
does not necessarily belong to the cluster where the input pair is located. Take into account 
that the clustering was made only to train the algorithms and get the centroid, but not for the 
cluster selection itself.  

Overview on the shaping parameters’ acquisition methods 

First, let us make a summary of the error-performances gotten from each one of the 
methods. Table 21 shows the overall average results of the seven methods that grouped their 
training data, depicting the error measurement obtained with respect to all the curves in the 
respective group. Note that Method 1 is not included in the table because it was not trained 
with the data obtained from the experiment. At first glance the best method appears to be 
Method 2, delivering the lowest position errors in both hip and knee joints. The methods that 
used the (normalized time-warped) average curves to train the algorithm showed the worst 
results in the hip joint. In the case of the knee, besides Method 2 all the methods performed 
similarly. It can also be noted that the DCSA delivered better results than the PRSA. 

Next, a detailed analysis about the searching algorithms used to obtain the most 
appropriate sets of shaping knots coefficients is done. Three algorithms were presented: the 
Full-Curve-Scanning Search Algorithm (FCSSA), the Dynamic-Clustering Search Algorithm 
(DCSA) and the Progressive-Refinement Search Algorithm (PRSA). Regarding the best 
performance errorwise, it is clear that the FCSSA is the best, because it performs a full 
scanning in each one of the gaps, checking all possible values of  of the shaping 
knots in the gap, with a real resolution of 0.01 (1%). This algorithm will surely deliver the set 
of knots that correspond to the global minimum error in the gap.  

The performance of the DCSA is highly dependent on the behavior of the errors 

 
Fig. 67  Map of normalized walking speed and cadence by cluster with the 

respective cluster centroids 
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throughout the α-values’ ranges, i.e. to the amount and location of the local and global 
minimums of the cost function. The algorithm will have a good performance if the selected 
centroids lay in the vicinity of the values that generate the global minimum error. But it must 
be clear that the DCSA cannot ensure that the obtained shaping knots’ coefficients correspond 
to a global minimum. It is possible that the α-value that generates the global minimum error 
measurement is inconveniently close to values that generate relatively high errors. If, for 
example, α=0.72 generate the minimum error, but α=0.2 generates a lower error than α=0.8, 
the algorithm will search for the best coefficient value in the vicinity of 0.2, never checking 
0.72. This problem arises mostly during the first iteration. Increasing the number of working 
values per iteration will also increase the chances to end up with the global minimum error, 
but the processing time will also increase significantly.  

The PRSA possesses similar problems regarding local minimum errors and it is entirely 
dependent on the initial set of α-values chosen to run the algorithm. In general, the PRSA has 
a probability of having poor performance when applied only over one curve, because the 
chances of getting stuck in a local minimum that generates high errors are higher than when 
calculating the errors over more than one curve. If several curves are used, when a specific 
curve achieves a poor local minimum with some set of parameters, the error produced in the 
other curves might make the parameters change until the process leaves that specific local-
minimum region in that curve. At the end, although it is likely that the final parameters will 
generate an error different from the global minimum, it is unlikely that they generate high 
errors and undesired curve shapes. After comparing the results between the PRSA and the 
DCSA in similar conditions, relatively low differences were spotted between the error 
performances of both algorithms, which suggests that the concept behind the PRSA is not far 
from being truth, i.e. the curves can be adjusted to fit better a given reference curve just by 
slightly moving the shaping-knots.  

Regarding the time performance of the algorithms, the differences are much more evident 
and significant. Method 2 and Method 6 were both implemented in MATLAB and had all the 
same settings except for the used search algorithm, so it is suitable to make a comparison. 
While the method running the DCSA needed more than 12 hours per exercise, the one 
running the PRSA needed 16 hours to complete the whole set of 26 exercises. It is expected 
that if the methods are implemented in other programing language (e.g. C++) the process will 
be done faster, but the big differences between the two algorithms will persist. Regarding the 

Table 21  Overall average results of the methods that grouped the training data, with 
respect to all the curves in the respective group  

  HIP KNEE 
 Position Velocity Position Velocity 

Method  
AMAE  
(±SD) 
[deg] 

ASDAE  
(±SD) 
[deg] 

ARMSE  
(±SD) 
[deg] 

AMAE  
(±SD) 
[deg/s] 

ASDAE  
(±SD) 
[deg/s] 

ARMSE  
(±SD) 
[deg/s] 

AMAE  
(±SD) 
[deg] 

ASDAE  
(±SD) 
[deg] 

ARMSE  
(±SD) 
[deg] 

AMAE  
(±SD) 
[deg/s] 

ASDAE  
(±SD) 
[deg/s] 

ARMSE  
(±SD) 
[deg/s] 

2 1.14 
(±0.49) 

1.1 
(±0.52) 

1.59 
(±0.71) 

15.05 
(±3.3) 

12.8 
(±3.67) 

19.79 
(±4.76) 

1.25 
(±0.44) 

1.28 
(±0.53) 

1.79 
(±0.68) 

21.09 
(±4.83) 

20.93 
(±6.37) 

29.77 
(±7.68) 

3 1.3 
(±0.61) 

1.25 
(±0.61) 

1.81 
(±0.86) 

15.72 
(±3.61) 

13.27 
(±3.72) 

20.61  
(±5) 

1.39 
(±0.51) 

1.4 
(±0.56) 

1.98 
(±0.74) 

23.64 
(±5.59) 

23.65 
(±6.67) 

33.52 
(±8.37) 

4 1.35 
(±0.49) 

1.31 
(±0.54) 

1.88 
(±0.72) 

17.38 
(±3.69) 

14.63 
(±4.08) 

22.76 
(±5.31) 

1.3 
(±0.44) 

1.3 
(±0.52) 

1.84 
(±0.67) 

23.39 
(±5.17) 

23.74 
(±6.86) 

33.39 
(±8.27) 

5 1.34 
(±0.47) 

1.3 
(±0.51) 

1.87 
(±0.68) 

18.11 
(±3.83) 

15.35 
(±4.12) 

23.77 
(±5.45) 

1.38 
(±0.43) 

1.34 
(±0.5) 

1.92 
(±0.64) 

25.72 
(±4.82) 

24.87 
(±6.54) 

35.84 
(±7.72) 

6 1.22 
(±0.52) 

1.18 
(±0.54) 

1.71 
(±0.74) 

15.76 
(±3.35) 

13.49 
(±3.78) 

20.78 
(±4.87) 

1.31 
(±0.43) 

1.33 
(±0.52) 

1.87 
(±0.66) 

22.97 
(±4.6) 

22.98 
(±6.36) 

32.56 
(±7.45) 

7 1.24 
(±0.53) 

1.23 
(±0.59) 

1.75 
(±0.78) 

17.23 
(±4.15) 

14.88 
(±4.65) 

22.81 
(±6.06) 

1.3 
(±0.45) 

1.33 
(±0.55) 

1.87 
(±0.69) 

24.61 
(±5.14) 

24.59 
(±7.24) 

34.88 
(±8.46) 

8 1.31 
(±0.61) 

1.28 
(±0.64) 

1.84 
(±0.87) 

17.71 
(±4.31) 

15.19 
(±4.64) 

23.36 
(±6.19) 

1.39 
(±0.52) 

1.43 
 (±0.6) 

2 
 (±0.78) 

25.74 
(±5.92) 

25.81 
(±7.73) 

36.56 
(±9.32) 
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FCSSA, because it revises the error for a much higher amount of α-values than the DCSA, it 
is evident that the difference in the processing time between the two of them is also extremely 
high, making the FCSSA completely inconvenient when the amount of curves to be analyzed 
increases. With this in mind, it is clearer that, although the DCSA delivers slightly better 
results than the PRSA, they are not very significant compared to the improvements in 
processing time brought by the PRSA. Table 22 shows a simple summary regarding the 
difference between the search algorithms. 

 

Although the error-performance of the PRSA was good, the time needed by the algorithm 
is still relatively high, thus there is still some room for improvement in this regard. The 
reduction of the number of curves fed to the search algorithm done in Method 8 resulted in a 
reduction of the overall processing time, but also affected slightly the performance of the 
algorithm. Additionally, if the number of clusters increases, the processing time needed to go 
through all of them will become again an issue. Model-based cost-minimization algorithms 
could be an option, but because of the difficulty to obtain the complete model and the 
complexity of the model itself (mostly related to the piece-wise manner of interpolation of the 
points and the complexity of the interpolation method) the solution would be far from trivial 
and difficult to formulate and implement.  

Evaluation with familiar data 

All the previously presented methods were evaluated again with respect to the data of the 
selected subject, but this time the gait parameters of each one of the cycles were taken as 
input pairs for the radial-basis selection of reference gait parameters (WSnorm and cad), which 
ultimately decides which set of α-values should be used in each shaping knot. This differs 
from the previous evaluations, where the performance was done by comparing the curves 
inside their groups, and not by mapping the respective walking speed and cadence to obtain 
the corresponding set of shaping knots coefficients utilizing the radial-basis selection. Since 
this section is related only to the shaping knots’ calculation, the original characteristic points 
of the subject’s curves were used for the regeneration of the trajectories that are utilized to 
compute the error measurements and correlation between reference and reconstructed curves. 
Table 23 shows the average values of MAE, SDAE, RMSE and correlation coefficients (R) 
for each one of the methods:  

As expected, the best results were achieved with the methods that fed all the curves to the 
search algorithms, whereas the worst ones were gotten from the method that used the 
reference curves from the literature. Surprisingly, the method using the averaged time-warped 
curves with the DCSA had one of the best performances in the knee joint. From the methods 
that used the experimental data, the one that presented the worst results (in both joints) was 
Method 3, differing from the initial results shown in Table 21. It is also important to compare 
the results from Method 6 and Method 7, which, although only slightly, presented a better 
performance for the method that grouped the cycles by walking speed and cadence. This 

Table 22  Comparison between search algorithms 
Search  

algorithm  
Amount of  

checked α-values 
Processing 

 time 
Error- 

performance 
FCSSA +++++++++++   
DCSA +++   
PRSA + **   

** The number of values checked by the algorithm is dependent on the curves and the initial α-
values, but the resulting processing times suggest that it is much lower than the one from DCSA 
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appears to be a more natural selection for grouping than the one that does it by exercise.  
Fig. 68 shows the plots of the position MAE in both joints with respect to the normalized 

walking speed for three of the methods. It can be seen that, in all cases, the highest errors for 
the hip joint were located in the high and low walking speeds, with most of the errors from the 
medium velocities located below the average errors. However, it must be taken into 
consideration that the ranges of motion normally increase with the walking speed, hence 
higher errors are expected in high speeds even if the generated trajectories are relatively close 
to the original ones. With this in mind, higher errors in low speeds imply higher differences 
between the original and the reconstructed curves with respect to the range of motion than in 
medium and high speeds. In the case of the knee, the errors seem to be more evenly 
distributed throughout all the walking speed range. Fig. 69 shows the position and velocity 
MAE histograms of the method that scored better in error-performance (Method 2).  

Table 23  Shaping-knots evaluation comparing the generated curves yielded by all the 
methods with respect to the selected subject’s original curves 

1 0.994 
(±0.007) 

2.1 
(±1.05) 

1.5 
(±0.75) 

1.46 
(±0.76) 

0.994 
(±0.007) 

24.52 
(±11.4) 

18.57 
(±8.6) 

15.95 
(±7.73) 

2 0.996 
(±0.006) 

1.62 
(±0.92) 

1.17 
(±0.64) 

1.12 
(±0.68) 

0.996 
(±0.006) 

19.58 
(±9.64) 

15.05 
(±7.13) 

12.48 
(±6.67) 

3 0.994 
(±0.009) 

1.88 
(±1.1) 

1.36 
(±0.78) 

1.3 
(±0.79) 

0.994 
(±0.009) 

20.46 
(±9.76) 

15.76 
(±7.22) 

12.99 
(±6.78) 

4 0.994 
(±0.01) 

1.87 
(±1.03) 

1.35 
(±0.73) 

1.29 
(±0.74) 

0.994 
(±0.01) 

20.59 
(±8.82) 

15.93 
(±6.44) 

12.99 
(±6.23) 

5 0.994 
(±0.009) 

1.86 
(±0.97) 

1.34 
(±0.7) 

1.28 
(±0.69) 

0.994 
(±0.009) 

21.6 
(±9.04) 

16.62 
(±6.67) 

13.74 
(±6.31) 

6 0.995 
(±0.008) 

1.74 
(±0.99) 

1.25 
(±0.71) 

1.2 
(±0.72) 

0.995 
(±0.008) 

20.49 
(±10.12) 

15.7 
(±7.51) 

13.11 
(±6.97) 

7 0.995 
(±0.008) 

1.71 
(±0.99) 

1.23 
(±0.7) 

1.18 
(±0.72) 

0.995 
(±0.008) 

20.34 
(±10) 

15.53 
(±7.3) 

13.07 
(±7.02) 

8 0.995 
(±0.008) 

1.79 
(±1.06) 

1.3 
(±0.77) 

1.23 
(±0.75) 

0.995 
(±0.008) 

20.77 
(±10.08) 

15.91 
(±7.45) 

13.3 
(±6.98) 

1 0.989 
(±0.007) 

3.44 
(±1.01) 

2.42 
(±0.68) 

2.43 
(±0.8) 

0.989 
(±0.007) 

41.25 
(±14.65) 

32.11 
(±11.63) 

25.81 
(±9.37) 

2 0.996 
(±0.003) 

1.83 
(±0.76) 

1.29 
(±0.51) 

1.3 
(±0.59) 

0.996 
(±0.003) 

29.38 
(±13.25) 

21.23 
(±9.25) 

20.21 
(±9.81) 

3 0.996 
(±0.004) 

2.04 
(±0.83) 

1.45 
(±0.57) 

1.43 
(±0.63) 

0.996 
(±0.004) 

33.6 
(±15.06) 

24.02 
(±10.59) 

23.34 
(±11.17) 

4 0.996 
(±0.003) 

1.84 
(±0.72) 

1.3 
(±0.49) 

1.29 
(±0.56) 

0.996 
(±0.003) 

30.22 
(±13.18) 

21.69 
(±9.05) 

20.97 
(±9.89) 

5 0.996 
(±0.003) 

1.93 
(±0.7) 

1.39 
(±0.48) 

1.33 
(±0.55) 

0.996 
(±0.003) 

32.09 
(±13.47) 

23.66 
(±9.56) 

21.6 
(±9.81) 

6 0.996 
(±0.004) 

1.91 
(±0.76) 

1.35 
(±0.51) 

1.35 
(±0.6) 

0.996 
(±0.004) 

31.42 
(±13.46) 

22.77 
(±9.41) 

21.54 
(±10.01) 

7 0.996 
(±0.003) 

1.88 
(±0.73) 

1.32 
(±0.48) 

1.33 
(±0.57) 

0.996 
(±0.003) 

31.26 
(±13.45) 

22.65 
(±9.34) 

21.44 
(±10.04) 

8 0.995 
(±0.004) 

2.05 
(±0.82) 

1.44 
(±0.55) 

1.45 
(±0.63) 

0.995 
(±0.004) 

33.42 
(±14.3) 

24.15 
(±9.98) 

23 
(±10.62) 
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Fig. 68  MAE vs normalized walking speed: comparing the shaping knots’ 

performance with respect to the selected subject’s data 

  
Fig. 69  MAE histogram for Method 2: comparing the shaping knots’ 

performance with respect to the selected subject data 

Evaluation with unfamiliar data 

The same evaluation was done using the processed gait cycles from all the subjects that 
participated in the experiment (different from the selected one). This second evaluation gives 
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some insight on the inter-subject behavior of the trajectories’ shape governed by the shaping 
points. Table 24 shows the performance of each method in this evaluation.  

As expected, deterioration in the performance can be seen compared to Table 23, due to 
the fact that the previous evaluation was done using the curves that were used, to some extent, 
during the training process of the methods. In this case, not only the data were not used during 
the training, but also they belong to different subjects. One important fact to remark is the 
improvement of Method 1 with respect to the other methods. As before, the best results for 
both joints were accomplished with Method 2. 

The plots of the position MAE in both joints with respect to the normalized walking speed 
for three of the methods are depicted in Fig. 70. Although the highest errors for the hip joint 
are again located in the high and low walking speeds, the distribution of errors is more even 
than before. In the case of the knee, on the other hand, the highest errors are evidently present 
in the lowest walking speed for all methods, unlike the previous results. Again, the position 
and velocity MAE histograms of Method 2 are shown in Fig. 71. 

Table 24  Shaping-knots evaluation comparing the generated curves yielded by all the 
methods with respect to original curves of all subjects 

1 0.987 
(±0.016) 

2.7 
(±1.55) 

1.97 
(±1.13) 

1.83 
(±1.09) 

0.987 
(±0.016) 

24.36 
(±11.9) 

18.75 
(±9.09) 

15.45 
(±7.94) 

2 0.987 
(±0.016) 

2.66 
(±1.49) 

1.96 
(±1.09) 

1.8 
(±1.04) 

0.987 
(±0.016) 

24.05 
(±11.26) 

18.62 
(±8.61) 

15.12 
(±7.55) 

3 0.986 
(±0.018) 

2.76 
(±1.54) 

2.02 
(±1.13) 

1.87 
(±1.09) 

0.986 
(±0.018) 

24.72 
(±11.33) 

19.22 
(±8.78) 

15.45 
(±7.49) 

4 0.984 
(±0.02) 

2.85 
(±1.59) 

2.07 
(±1.16) 

1.95 
(±1.12) 

0.984 
(±0.02) 

24.82 
(±10.46) 

19.26 
(±7.95) 

15.56 
(±7.13) 

5 0.984 
(±0.019) 

2.81 
(±1.51) 

2.06 
(±1.11) 

1.89 
(±1.05) 

0.984 
(±0.019) 

25.24 
(±10.36) 

19.64 
(±7.9) 

15.76 
(±7.04) 

6 0.986 
(±0.017) 

2.7 
(±1.5) 

2.01 
(±1.12) 

1.8 
(±1.02) 

0.986 
(±0.017) 

24.02 
(±11.16) 

18.59 
(±8.51) 

15.1 
(±7.52) 

7 0.986 
(±0.018) 

2.72 
(±1.53) 

2.02 
(±1.14) 

1.81 
(±1.05) 

0.986 
(±0.018) 

24.1 
(±11.29) 

18.65 
(±8.57) 

15.16 
(±7.64) 

8 0.986 
(±0.019) 

2.77 
(±1.6) 

2.06 
(±1.2) 

1.84 
(±1.09) 

0.986 
(±0.019) 

24.46 
(±11.68) 

18.92 
(±8.97) 

15.39 
(±7.79) 

1 0.989 
(±0.016) 

3.08 
(±1.92) 

2.05 
(±1.19) 

2.29 
(±1.54) 

0.989 
(±0.016) 

35.92 
(±14.23) 

26.6 
(±10.06) 

23.98 
(±10.6) 

2 0.989 
(±0.014) 

2.97 
(±1.53) 

2.04 
(±0.94) 

2.15 
(±1.25) 

0.989 
(±0.014) 

38.23 
(±15.14) 

28.67 
(±11.17) 

25.11 
(±10.82) 

3 0.988 
(±0.017) 

3.12 
(±1.6) 

2.15 
(±0.97) 

2.24 
(±1.3) 

0.988 
(±0.017) 

42.05 
(±17.58) 

31.23 
(±12.49) 

27.97 
(±13) 

4 0.989 
(±0.014) 

3 
 (±1.54) 

2.05 
(±0.93) 

2.17 
(±1.27) 

0.989 
(±0.014) 

40.22 
(±16.71) 

29.66 
(±11.61) 

26.98 
(±12.6) 

5 0.988 
(±0.015) 

3.06 
(±1.56) 

2.13 
(±0.96) 

2.18 
(±1.27) 

0.988 
(±0.015) 

39.97 
(±15.58) 

30.17 
(±11.58) 

26.05 
(±11.01) 

6 0.989 
(±0.015) 

3.01 
(±1.55) 

2.08 
(±0.95) 

2.15 
(±1.26) 

0.989 
(±0.015) 

39.1 
(±15.34) 

29.45 
(±11.25) 

25.54 
(±11.04) 

7 0.989 
(±0.014) 

3.02 
(±1.57) 

2.09 
(±0.96) 

2.17 
(±1.28) 

0.989 
(±0.014) 

39.65 
(±15.71) 

29.75 
(±11.54) 

26.04 
(±11.25) 

8 0.988 
(±0.015) 

3.11 
(±1.57) 

2.16 
(±0.97) 

2.22 
(±1.28) 

0.988 
(±0.015) 

40.93 
(±16.31) 

30.77 
(±12.05) 

26.82 
(±11.59) 
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Fig. 70  MAE vs normalized walking speed: comparing the shaping knots’ 

performance with respect to the data from all the subjects 

  
Fig. 71  MAE histogram for Method 2: comparing the shaping knots’ 

performance with respect to the data from all the subjects 
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4.3.4 Evaluation of the trajectory generation process 

This final evaluation combines the results of the automatic estimation of characteristic 
points and the calculation of the shaping knot’s coefficients presented in the previous 
sections. The last evaluations presented in section 4.3.3 were done using the original 
characteristic knots from the processed cycles. Now, the curves will be generated with the 
characteristic points delivered by the neural networks (trained with the data of the selected 
subject), using the original gait parameters of each cycle as inputs for the NNs and for the 
radial-basis selector used to get the α-values of the shaping points. As explained previously, to 
avoid an ill behavior of the NNs, the inputs must lay inside the perimeter depicted in Fig. 40. 
In this case, many of the original gait parameters from the processed cycles lay outside this 
perimeter. For this evaluation, if the original WSnorm and/or cad are higher/lower than the 
limit, they will be replaced by the closest limit values before being used as inputs for the 
estimation process.  

As it was done before, the evaluation is divided in two: using only the data from the 
selected subject and using the data from all the other subjects. For completeness, all the 
methods developed for the acquisition of the shaping-knots’ coefficients were taken into 
account for the evaluation. Table 25 shows the results obtained after comparing the generated 
curves and the original curves from the selected subject. The method with better performance 
was again Method 2 for both joints. The worst results in knee were seen again with Method 1, 
but surprisingly its performance for the hip joint was very close to the methods that didn’t use 
all the curves during the training. Regarding Method 2, although a worsening in the results 
can be seen with respect to Table 23, the performance of the overall generation (characteristic 
and shaping knots) is still very good for the hip joint, with an average MAE of 1.67°. In the 
case of the knee, a more visible deterioration in the performance can be spotted, with an 
average MAE of 2.39°. Taking into account the results from the previous section, it is evident 
that the cause of such worsening is the characteristic points’ predictability issues in this joint. 

To have a better insight of the performance of Method 2 using the estimated characteristic 
knots, the reference gait parameters of this method (centroids) were used to regenerate some 
sample curves (left plot in Fig. 72). All the trajectories, in both joints, had a healthy-like 
appearance except for two in the hip joint, which corresponded to exercises P2-2 and P2-3 
(black and magenta curves in the figure, respectively). Because of this, it was decided to make 
an adjustment to the method in the region corresponding to these two exercises. The methods 
that reported better performance in the previous evaluations (namely Method 6 and Method 7) 
were analyzed in this region. In the case of P2-2, the resulting curve using the coefficients 
from Method 6 yielded a healthy-like curve; hence the hip α-values from Method 2 for this 
exercise were replaced by the ones from Method 6. For exercise P2-3, both Method 6 and 
Method 7 yielded similar undesired curve shapes. Therefore, it was decided to avoid these 
coefficients from the generation, i.e. the centroid from exercise P2-3 was removed from the 
radial-basis selection. Finally, the resulting adjusted method, referred as Method 2*, was also 
evaluated. The right plot in Fig. 72 shows the curves generated with Method 2*, depicting 
with a black and magenta lines the curves corresponding to the centroids from exercises P2-2 
and P2-3. An improvement in the trajectories’ shapes with respect to the left plot is evident. 
Table 25 also shows the results after using Method 2*. 

Fig. 73 shows the plots of the position MAE in both joints with respect to the normalized 
walking speed for three of the methods. Although the hip error distribution shows a higher 
contribution from the low and high walking speeds, the difference is not very visible as in the 
previous section’s evaluation. The knee, on the other hand, keeps showing a more even 
distribution of errors throughout the walking speed, although the high speeds report slightly 
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lower errors than the low and medium speeds. Fig. 74 shows the position and velocity MAE 
histograms of the method that scored better in error-performance (Method 2*). 

Table 26 presents the results after comparing the generated curves with the curves from all 
the other participants. As expected, due to the inter-subject variability, a considerable 
worsening in the performance can be seen, mostly caused by the prediction of the 
characteristic points. Surprisingly, Method 1 yielded the best results in the knee joint; in the 
hip joint all the methods scored similarly. These results also sustain the decision of using the 
curves of only one subject with high predictability to train the estimators of the curve points’ 
parameters. They bring also one discussion to the table: the correlation coefficients calculated 
from the samples of two curves should not be used to evaluate the performance of trajectory 

Table 25  Trajectory generation evaluation comparing the generated curves yielded by all 
the methods with respect to the selected subject’s original curves 

1 0.994 
(±0.006) 

2.34 
(±0.89) 

1.88 
(±0.74) 

1.37 
(±0.56) 

0.994 
(±0.006) 

25.19 
(±10.66) 

19.49 
(±8.17) 

15.87 
(±7.14) 

2 0.996 
(±0.004) 

2.02 
(±0.83) 

1.67 
(±0.72) 

1.12 
(±0.48) 

0.996 
(±0.004) 

20.43 
(±8.91) 

16.12 
(±6.84) 

12.5 
(±5.89) 

3 0.994 
(±0.008) 

2.24 
 (±1) 

1.82 
(±0.81) 

1.28 
(±0.65) 

0.994 
(±0.008) 

21.03 
(±8.6) 

16.56 
(±6.41) 

12.91 
(±5.96) 

4 0.992 
(±0.01) 

2.35 
(±1.01) 

1.9 
(±0.81) 

1.36 
(±0.65) 

0.992 
(±0.01) 

21.83 
(±8.14) 

17.34 
(±6.19) 

13.21 
(±5.51) 

5 0.993 
(±0.008) 

2.27 
(±0.92) 

1.84 
(±0.74) 

1.3 
(±0.6) 

0.993 
(±0.008) 

22.45 
(±8.46) 

17.62 
(±6.43) 

13.86 
(±5.73) 

6 0.996 
(±0.005) 

2.1 
(±0.82) 

1.73 
(±0.71) 

1.17 
(±0.49) 

0.996 
(±0.005) 

20.99 
(±9.29) 

16.52 
(±7.13) 

12.88 
(±6.17) 

7 0.995 
(±0.005) 

2.13 
(±0.84) 

1.75 
(±0.72) 

1.18 
(±0.52) 

0.995 
(±0.005) 

21.11 
(±9.53) 

16.57 
(±7.27) 

13.02 
(±6.37) 

8 0.995 
(±0.006) 

2.21 
(±0.91) 

1.81 
(±0.77) 

1.24 
(±0.56) 

0.995 
(±0.006) 

21.62 
(±9.42) 

16.98 
(±7.21) 

13.34 
(±6.28) 

2* 0.996 
(±0.004) 

2.01 
(±0.83) 

1.66 
(±0.72) 

1.11 
(±0.48) 

0.975 
(±0.016) 

20.17 
(±9.04) 

15.93 
(±6.95) 

12.34 
(±5.96) 

1 0.987 
(±0.01) 

4.11 
(±1.26) 

3.25 
 (±1) 

2.49 
(±0.87) 

0.987 
(±0.01) 

43.98 
(±15.58) 

34.5 
(±12.46) 

27.16 
(±9.88) 

2 0.993 
(±0.008) 

2.94 
(±1.11) 

2.39 
(±0.91) 

1.68 
(±0.73) 

0.993 
(±0.008) 

32.54 
(±14.03) 

24.04 
(±10.1) 

21.82 
(±10.13) 

3 0.992 
(±0.008) 

3.09 
(±1.12) 

2.5 
(±0.91) 

1.78 
(±0.75) 

0.992 
(±0.008) 

36.71 
(±15.72) 

26.78 
(±11.22) 

24.96 
(±11.51) 

4 0.993 
(±0.008) 

2.95 
(±1.1) 

2.4 
(±0.9) 

1.69 
(±0.72) 

0.993 
(±0.008) 

33.51 
(±14.35) 

24.57 
(±10.3) 

22.68 
(±10.4) 

5 0.993 
(±0.008) 

3.01 
(±1.09) 

2.44 
(±0.89) 

1.73 
(±0.71) 

0.993 
(±0.008) 

34.91 
(±14.36) 

25.97 
(±10.44) 

23.22 
(±10.29) 

6 0.993 
(±0.008) 

2.98 
(±1.1) 

2.41 
(±0.9) 

1.71 
(±0.72) 

0.993 
(±0.008) 

34.25 
(±14.12) 

25.17 
(±10.09) 

23.11 
(±10.31) 

7 0.993 
(±0.008) 

2.99 
(±1.09) 

2.43 
(±0.9) 

1.72 
(±0.72) 

0.993 
(±0.008) 

34.55 
(±14.47) 

25.43 
(±10.37) 

23.26 
(±10.52) 

8 0.992 
(±0.008) 

3.09 
(±1.14) 

2.49 
(±0.92) 

1.79 
(±0.76) 

0.992 
(±0.008) 

36.38 
(±15.32) 

26.75 
(±11.15) 

24.52 
(±10.95) 

2* 0.993 
(±0.008) 

2.95 
(±1.11) 

2.39 
(±0.91) 

1.69 
(±0.73) 

0.977 
(±0.022) 

32.6 
 (±14) 

24.1 
(±10.08) 

21.85 
(±10.11) 
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generation. Note that high values of R were accomplished in all cases, even when the error 
measurements were considerably high.  

Fig. 75 shows the plots of the position MAE in both joints with respect to the normalized 
walking speed for three of the methods. The error distribution is even throughout the range of 
walking speed for the hip and knee joints, except for Method 1 that shows an evident 
distribution of high errors for the low velocities. The similarity in the scattering of the errors 
in all plots also exhibits that the highest contribution of errors is made by the characteristic 

 
Fig. 72  Generation of trajectories using the centroids of Method 2 as input gait 

parameters for the characteristic point’s estimation and shaping knots’ 
coefficients calculation using Method 2 and Method 2*. 

 
Fig. 73  MAE vs normalized walking speed: comparing the trajectory generator 

performance with respect to the selected subject’s data 
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knots estimation, and not by the shaping-knots coefficients calculation, mostly in the medium 
and high walking speeds. Fig. 76 shows the position and velocity MAE histograms of Method 
2*. 

 

Table 26  Trajectory generation evaluation comparing the generated curves yielded by all 
the methods with respect to original curves of all subjects 

1 0.98 
(±0.027) 

6.76 
(±2.65) 

5.85 
(±2.47) 

3.31 
(±1.23) 

0.98 
(±0.027) 

32.47 
(±11.62) 

26.58 
(±9.83) 

18.51 
(±6.78) 

2 0.98 
(±0.026) 

6.71 
(±2.63) 

5.81 
(±2.43) 

3.28 
(±1.25) 

0.98 
(±0.026) 

32.18 
(±11.5) 

26.23 
(±9.68) 

18.53 
(±6.71) 

3 0.979 
(±0.028) 

6.79 
(±2.65) 

5.87 
(±2.44) 

3.34 
(±1.27) 

0.979 
(±0.028) 

32.72 
(±11.53) 

26.69 
(±9.72) 

18.81 
(±6.72) 

4 0.975 
(±0.031) 

6.99 
(±2.7) 

6.06 
(±2.49) 

3.41 
(±1.29) 

0.975 
(±0.031) 

33.21 
(±10.96) 

27.06 
(±9.05) 

19.14 
(±6.69) 

5 0.977 
(±0.029) 

6.89 
(±2.69) 

5.95 
(±2.49) 

3.39 
(±1.29) 

0.977 
(±0.029) 

32.59 
(±10.48) 

26.55 
(±8.63) 

18.79 
(±6.42) 

6 0.98 
(±0.027) 

6.72 
(±2.63) 

5.81 
(±2.43) 

3.3 
(±1.25) 

0.98 
(±0.027) 

32.04 
(±11.49) 

26.16 
(±9.73) 

18.35 
(±6.66) 

7 0.98 
(±0.027) 

6.73 
(±2.64) 

5.82 
(±2.45) 

3.31 
(±1.25) 

0.98 
(±0.027) 

32.14 
(±11.61) 

26.22 
(±9.78) 

18.46 
(±6.8) 

8 0.98 
(±0.027) 

6.7 
(±2.64) 

5.79 
(±2.44) 

3.3 
(±1.25) 

0.98 
(±0.027) 

32.38 
(±11.53) 

26.39 
(±9.72) 

18.64 
(±6.74) 

2* 0.98 
(±0.027) 

6.73 
(±2.63) 

5.83 
(±2.43) 

3.3 
(±1.26) 

0.944 
(±0.042) 

32.04 
(±11.62) 

26.1 
(±9.77) 

18.45 
(±6.77) 

1 0.97 
(±0.028) 

8.12 
(±3.07) 

6.69 
(±2.65) 

4.52 
(±1.8) 

0.97 
(±0.028) 

55.74 
(±19.46) 

44.26 
(±15.75) 

33.69 
(±12.27) 

2 0.962 
(±0.034) 

8.49 
(±2.88) 

7.06 
(±2.49) 

4.65 
(±1.7) 

0.962 
(±0.034) 

61.16 
(±22.25) 

47.03 
(±17.62) 

38.9 
(±14.41) 

3 0.96 
(±0.034) 

8.61 
(±2.91) 

7.18 
(±2.52) 

4.69 
(±1.7) 

0.96 
(±0.034) 

64.66 
(±23.84) 

48.94 
(±18.19) 

42.02 
(±16.35) 

4 0.961 
(±0.034) 

8.51 
(±2.89) 

7.07 
(±2.49) 

4.66 
(±1.7) 

0.961 
(±0.034) 

63.14 
(±23.13) 

47.83 
(±17.8) 

41 
(±15.66) 

5 0.96 
(±0.035) 

8.58 
(±2.86) 

7.13 
(±2.47) 

4.7 
(±1.69) 

0.96 
(±0.035) 

62.11 
(±22.55) 

48.39 
(±18.09) 

38.76 
(±14.29) 

6 0.961 
(±0.034) 

8.52 
(±2.89) 

7.09 
(±2.49) 

4.66 
(±1.7) 

0.961 
(±0.034) 

60.48 
(±21.8) 

46.91 
(±17.49) 

37.99 
(±13.82) 

7 0.961 
(±0.034) 

8.49 
(±2.88) 

7.06 
(±2.48) 

4.65 
(±1.7) 

0.961 
(±0.034) 

60.81 
(±21.97) 

47.05 
(±17.55) 

38.34 
(±14.04) 

8 0.96 
(±0.035) 

8.58 
(±2.9) 

7.13 
(±2.5) 

4.7 
(±1.71) 

0.96 
(±0.035) 

62.2 
(±22.67) 

48.15 
(±18.14) 

39.19 
(±14.39) 

2* 0.962 
(±0.034) 

8.49 
(±2.88) 

7.06 
(±2.49) 

4.65 
(±1.7) 

0.935 
(±0.062) 

61.2 
(±22.23) 

47.06 
(±17.61) 

38.94 
(±14.39) 
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Fig. 74  MAE histogram for Method 2*: comparing the trajectory generator 

performance with respect to the selected subject’s data 

 

 
Fig. 75  MAE vs normalized walking speed: comparing the trajectory generator 

performance with respect to the data from all the subjects 
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Fig. 76  MAE histogram for Method 2*: comparing the shaping knots’ 

performance with respect to the data from all the subjects 

 
All in all, it is evident that the best method to calculate the coefficients of the shaping 

points throughout all the evaluations was Method 2*. Hence, the resulting α-values from this 
method are the ones used in the final version of the trajectory generator, although the option 
to change this selection if preferred could be also given. Fig. 77 shows some examples of 
curves that were generated using the characteristic points predicted by the NNs and the 
resulting shaping knots’ coefficients from Method 2*. The inputs pairs for the generator were 
sets of WSnorm and cad that, although lying inside the perimeter shown in Fig. 40 (section 
4.3.2), are located in a region where no training data were present, in order to evaluate the 
behavior of the trajectory generator in such circumstances. Likewise, a comparison between 
some examples of regenerated curves and some original curves from the selected subject, as 
well as from the other subjects, are depicted in Fig. 78 (hip) and Fig. 79 (knee). For these 
examples, 12 different sets of input gait parameters were selected to generate the trajectories. 
Two original curves, one extracted from the processed data of the selected subject and the 
other one from the data of the other subjects, with approximately the same values of WSnorm 
and cad are also shown in each one of the plots. Table 27 shows the information related to 
each one of the original trajectories depicted in the figure, including the exercise, leg, WSnorm 
and cad. Table 28 shows the MAE, SDAE, RMSE and correlation coefficients computed 
between the original curves and the generated ones.  
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Fig. 77  Examples of generation of trajectories using the NNs for the 

characteristic point’s estimation and the resulting α-values from Method 2*  
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Fig. 78  Examples of regenerated and original hip trajectories for different set of 

input gait parameters  
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Fig. 79  Examples of regenerated and original knee trajectories for different set 

of input gait parameters  
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Table 27  Gait parameters of the original trajectories in Fig. 78 and Fig. 79 

Fig Subject Ex. Leg Cycle 
Period [s] 

Cadence 
[steps/min] 

Step  
Length[m] 

Normalized 
Step Length 

[heights] 

Walking  
speed[m/s] 

Normalized 
walking speed  

[heights/s] 

(a) 
selected P3-2 left 3.4 35.29 0.467 0.27 0.27 0.158 

1 P3-2 left 3.4 35.29 0.440 0.27 0.26 0.157 

(b) 
selected P3-3 right 2.43 49.32 0.476 0.27 0.39 0.225 

1 P3-3 left 2.434 49.3 0.450 0.27 0.37 0.222 

(c) 
selected P2-2 right 1.93 62.08 0.415 0.24 0.43 0.247 

12 P3-4 right 1.935 62.02 0.360 0.24 0.38 0.248 

(d) 
selected P2-3 right 1.84 65.15 0.483 0.28 0.52 0.301 

13 P3-4 right 1.841 65.18 0.510 0.29 0.56 0.314 

(e) 
selected P1-3 right 1.68 71.26 0.581 0.33 0.69 0.397 

10 P3-5 right 1.685 71.22 0.610 0.34 0.73 0.403 

(f) 
selected P3-6 left 1.5 80.16 0.650 0.37 0.87 0.499 

9 P3-6 left 1.498 80.11 0.750 0.39 1.00 0.525 

(g) 
selected P3-1 left 1.28 93.75 0.698 0.4 1.09 0.627 

14 P2-6 left 1.28 93.75 0.790 0.44 1.24 0.684 

(h) 
selected P3-8 right 1.12 106.76 0.704 0.4 1.25 0.720 

8 P1-5 right 1.123 106.86 0.830 0.45 1.48 0.793 

(i) 
selected P2-7 right 1.16 103.9 0.823 0.47 1.42 0.819 

9 P2-8 right 1.155 103.9 0.990 0.52 1.71 0.896 

(j) 
selected P3-9 right 1.00 120.24 0.872 0.5 1.75 1.005 

13 P1-6 right 0.999 120.12 0.840 0.47 1.67 0.941 

(k) 
selected P2-8 left 1.09 109.99 0.910 0.52 1.67 0.959 

14 P2-8 right 1.092 109.89 1.070 0.59 1.96 1.082 

(l) 
selected P1-6 right 0.94 128.07 0.800 0.46 1.71 0.982 

11 P3-8 left 1.09 110.09 0.760 0.41 1.40 0.754 

 

Table 28  Comparison between the generated and original trajectories in Fig. 78 and 
Fig. 79 

  HIP KNEE 

Fig Sub.  R  R 

(a) 
sel. 3.47 2.16 4.08 0.987 3.64 4.71 5.93 0.944 
1 9.22 4.92 10.44 0.961 13.49 5.24 14.47 0.967 

(b) 
sel. 1.04 0.88 1.36 0.996 2.01 1.47 2.48 0.991 
1 9.33 3.20 9.86 0.987 11.33 4.7 12.26 0.971 

(c) 
sel. 1.70 0.93 1.93 0.995 2.09 1.2 2.41 0.993 
12 5.02 2.93 5.81 0.989 4.86 3.42 5.93 0.975 

(d) 
sel. 2.06 1.42 2.50 0.989 2.09 1.73 2.70 0.992 
13 11.54 5.31 12.69 0.956 12.6 8.62 15.25 0.904 

(e) 
sel. 1.46 0.78 1.66 0.997 1.87 1.31 2.28 0.995 
10 7.63 3.38 8.34 0.992 6.89 7.06 9.84 0.936 

(f) 
sel. 0.61 0.52 0.8 0.999 0.99 1.07 1.45 0.998 
9 4.18 3.08 5.18 0.98 7.79 6.39 10.05 0.951 

(g) 
sel. 0.62 0.45 0.76 0.999 1.91 1.24 2.28 0.998 
14 4.86 3.00 5.70 0.993 3.54 2.78 4.49 0.985 

(h) 
sel. 2.18 1.37 2.57 0.998 1.82 1.02 2.09 0.996 
8 4.64 2.88 5.46 0.995 5.53 4.75 7.27 0.986 

(i) 
sel. 1.86 1.29 2.27 0.997 3.16 2.34 3.93 0.987 
9 6.37 3.97 7.49 0.989 7.75 5.00 9.21 0.977 

(j) 
sel. 1.30 1.00 1.64 0.998 3.11 3.84 4.93 0.978 
13 11.87 4.71 12.76 0.996 11.04 7.43 13.29 0.956 

(k) 
sel. 2.31 1.86 2.96 0.994 1.82 1.32 2.24 0.996 
14 5.47 3.36 6.41 0.973 7.14 5.09 8.76 0.968 

(l) 
sel. 3.38 2.42 4.15 0.994 4.22 2.61 4.95 0.979 
11 2.15 1.50 2.62 0.994 3.45 2.91 4.51 0.994 
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Finally, a comparison between the input (desired) gait parameters and the ones resulting 
from the generated joint trajectories was done. Twenty-five equidistant values of normalized 
walking speed between the input limits were selected to feed the generator. For each one of 
these values, five corresponding equidistant values of cadence, also inside the limiting 
perimeter, were also selected. Therefore, a total of 125 input pairs were used to generate the 
hip and knee trajectories for the analysis. Subsequently, the walking speed resulting from 
these trajectories was calculated using the anthropometric features of all the participants 
following (12) and (13), in order to evaluate the relation between the desired walking speed 
and the output one, given a desired cadence. Two different calculations were done: using the 

 of each subject with the corresponding subject’s height and leg segments’ lengths; and 
using the  from the selected subject (which is the default in the final application) together 
with the anthropometric features of each one of the subjects. Table 29 shows the 
anthropometric measurements of each one of the subjects, as well as the correlation 
coefficients between the input and output walking speeds using the individual fs of each 
subject and the default fs. It also shows the coefficients of the 1st degree polynomials that 
relate the input and output speeds, given as  

 , (31) 

where WSO is the walking speed resulting from the generated trajectories, WSI is the input 
walking speed, and β0 and β1are the polynomial coefficients. Ideally, β0=0 and β1=1. Fig. 80 
depicts some examples of the relation between the input and output speeds. In these examples, 
the default fS was used, and the upper right and lower plots correspond to the subjects with the 
minimum, median and maximum height from the set of participants.  

4.3.5 Limitations 

The experiment and data processing are not free of limitations that affect the results 
obtained from them. First of all, the recording setup based on IMUs may introduce some 

Table 29  Comparison between the input and output walking speeds 
 Individual fs(FD) Default fs(FD) 

Sub. Height 
[m] 

Upper-leg 
Length [m] 

Lower-leg 
Length [m]   

sel. 1.74 0.4 0.48 0.9961 -0.0007 1.0002 0.9961 -0.0007 1.0002 
1 1.67 0.38 0.5 0.9961 0.0540 0.9920 0.9964 0.0017 1.0569 
2 1.74 0.42 0.48 0.9925 -0.1388 1.2747 0.9960 -0.0101 1.0398 
3 1.92 0.465 0.555 0.9962 0.0270 1.0379 0.9954 -0.0791 1.2466 
4 1.73 0.415 0.505 0.9963 0.0098 1.0566 0.9960 -0.0195 1.1057 
5 1.65 0.42 0.49 0.9962 0.0460 0.9324 0.9960 -0.0149 1.1255 
6 1.72 0.48 0.55 0.9939 -0.0244 1.0645 0.9953 -0.0859 1.4133 
7 1.68 0.47 0.48 0.9960 0.0227 1.0956 0.9957 -0.0344 1.1871 
8 1.86 0.46 0.58 0.9962 0.0374 1.0543 0.9954 -0.0925 1.3587 
9 1.91 0.47 0.57 0.9961 0.0447 1.0431 0.9953 -0.0930 1.3141 
10 1.8 0.425 0.535 0.9961 0.0475 0.9913 0.9959 -0.0405 1.1712 
11 1.86 0.41 0.545 0.9961 -0.0012 1.0030 0.9961 -0.0357 1.1308 
12 1.52 0.37 0.445 0.9961 0.0318 1.0091 0.9963 0.0248 0.9844 
13 1.78 0.41 0.525 0.9958 -0.0352 1.1773 0.9961 -0.0262 1.1215 
14 1.81 0.445 0.52 0.9945 0.0041 1.0178 0.9957 -0.0443 1.1638 
15 1.72 0.43 0.52 0.9963 0.0004 1.1120 0.9959 -0.0355 1.1901 
16 1.68 0.37 0.495 0.9963 0.0394 0.9961 0.9964 0.0088 1.0171 
17 1.65 0.385 0.505 0.9961 0.0543 1.0217 0.9963 -0.0030 1.0944 

          
Average 0.9957 0.0122 1.0489 0.9959 -0.0322 1.1512 
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measurement errors. Some of the problems that arise from the usage of the selected IMUs 
include drifting and relatively low accuracy. Other issues concern the location of the sensors 
in the legs. For intra-subject experiment consistency, the placement of the sensors must be the 
same for all subjects. Moreover, to obtain the correct angle measurements, the axis of rotation 
of the sensors must be parallel to the joint axis of rotation. Bearing these two facts in mind, 
the impossibility of manually placing the sensor in the perfect position will introduce some 
errors to the measurements. It must be noticed as well that this experiment didn’t take into 
account the rotation of the trunk during walking, due to the fact that the needed measurement 
of the hip angles where with respect to the transverse plane and not to the trunk segment. 
Other applications could need these measurements, thus for these cases, the inclination of the 
trunk must be included in the measurement process. The aforementioned problems can be 
reduced by using more sophisticated motion sensor systems (e.g. commercial marker-based 
motion systems), although this would increase considerably the complexity of the 
experimental setup and the costs of the study.  

Other limitations are related to number of subjects that participated in the study. 
Increasing the number of participants, as well as their diversity regarding personal and 
anthropometric characteristics, will lead to more significant results. The inclusion of subjects 
that cover a higher spectrum of heights, weights and ages will give better insights on the 
prediction problem (mostly regarding ages, due to the fact that most of the target patients are 
elderly people). Similarly, a second limitation in the study concept is associated with the 
selected gait parameters used for the predictors. As explained at the beginning of this section 

 
Fig. 80  Examples of output walking speed vs input walking speed  
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(4.3), there exist other personal parameters that have shown a degree of influence in the 
motion of the hip and knee joints during walking, namely gender and age. Including these two 
features as input parameters for the study and generation process might increase the 
predictability scores.  

The data processing is also not free of limitations. Several assumptions were taken during 
the cycles’ segmentation and the extraction of gait parameters and characteristic knots. The 
first one is regarding the step length of each cycle, or more specifically, the estimation of the 
step length for each one of the subjects. It was assumed that the relation between the covered 
distance by the foot and the actual step length, obtained from Ex2, is the same for all 
exercises. Additionally, the cycle segmentation was done based on the horizontal 
displacement of the foot and not on the foot contact with the floor. Using the exact moment of 
heel contact to segment the cycles might improve the predictability of the time parameters of 
the characteristic points. The drifting correction might have also introduced some errors in the 
angular processed values. This correction was done with the assumption that the gait patterns 
does not change considerably during an exercise. In the cases where the subjects made 
adjustments in their pattern during the execution of one exercise, the drifting correction 
process will compensate for inexistent drifting. This issue is not very crucial in this case due 
to the fact that the trajectories that (seemingly) presented high drifting were not included in 
the study’s data processing and the correction in the remaining curves was minimal, but it 
must be taken into account during the evaluation of the prediction. Another cause of errors is 
the inexact measurement of the body segments, which is used in the computation of the step 
lengths and, consequently, affects all the prediction process. Finally, the study and prediction 
process is very susceptible to the extraction of the characteristic knots from the experimental 
data. An ill selection of these points, or the presence of unexpected behavior in the joints 
motion (as seen with the knee joints), will introduce a noisy data set for the training 
algorithms and will directly affect the prediction, not only of the parameters of the 
characteristic points, but also the calculation of the shaping knots’ coefficients, which are 
strongly associated with the characteristic points surrounding the shaping points. One 
example of the bad effects of the wrong selection of characteristic points on the α-values’ 
calculations can be observed in the example curve from Fig. 60, where undesired curve 
shapes were obtained from Method 4 and Method 5. 

The curve shaping though the shaping points is also not free of limitations. Due to the 
proposed parametrization of the angular and temporal values of the shaping points, and 
because the search of the shaping points’ coefficients is based on the minimization of position 
and velocity errors (mostly position), the mapping of the desired gait parameters into α-values 
had to be done in a discrete manner. Moreover, the search process to obtain these α-values 
resulted to be challenging and very time consuming. Setting the temporal parameters of the 
shaping points to fixed values could allow the implementation of continues mapping 
strategies (i.e. regression methods or neural networks) and would reduce significantly the 
complexity and time-consumption of the angular coefficients search. However, that would 
yield higher discrepancies between the experimental and regenerated curves. Increasing the 
number of shaping points would decrease the difference between reference and regenerated 
curves, although this would increase the complexity of a possible manual adjustment of the 
shaping points. However, despite these limitations, the current approach resulted in the 
generation of healthy-like curves as desired. 

At last, it is vital to remark that, because of the bad inter-subject predictability of the 
characteristic points’ parameters, only the data from one subject was used in the final 
implementation of the generator. This was done to avoid the generation of ‘averaged’ curves 
lying between walking patterns, or in other words, the generation of curves that minimized the 
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errors, but might not be really close to real patterns or simply do not reflect properly the 
walking characteristics of the people that participated in the experiment. However, this 
decision leads to the usage of reference trajectories that fit a specific person. So, although we 
make sure these patterns are very close to real healthy patterns, they might differ, 
considerably or not, from the patient’s walking preferences (e.g. the pre-stroke patterns). 
Nevertheless, this would be an issue, to some extent, even if the data from all the subjects 
would have been taken into account. 
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5 Motion control for robot-based gait rehabilitation 

This chapter will present the motion control strategies proposed for the MOPASS system, 
which in principle could be partially implemented in other over-ground and treadmill-based 
rehabilitation devices. Specifically, it will present the motion control of the active joints 
offered by the MOPASS system, namely the hip, knee and pelvis joints, and the platform 
wheels. The hip and knee are the main joints in the rehabilitation process, hence different 
control strategies can be implemented on them depending on the mechanical components at 
hand (e.g. sensors) and the desired therapy strategies and goals. In this case, two approaches 
are proposed: one for joint reference position tracking and another one for ‘assist as needed’ 
therapy. On the other hand, the obtainment and further control of the motion profiles of the 
mobile platform and pelvis modules must be carried out depending on the motion of the hip 
and knee joints. Thanks to the rather simple motion profiles of the wheels’ and pelvis 
modules, some straight forward position and velocity controllers were designed. 

The motion control of all active joints in MOPASS was designed taking into account the 
built-in controllers from the motor drives, which include all or some of the following 
operation modes: profiled position, interpolated position, profiled velocity and profiled torque 
(current). These will be referred to as the low-level controllers, and their explanation is not 
included in this manuscript. For detailed explanations on the different operation modes and 
built-in controllers refer to [203] [204] (Elmo servo drives) and [162] (Schunk drives). 
Because of the access to the already-designed or automatically-designed built-in controllers of 
the used drives and the impossibility to properly design own controllers inside the drives (e.g. 
own hard real-time position controllers using the torque/current controllers of the drives), it 
was decided to design the corresponding motion controllers of MOPASS to work together 
with the drives’ built-in controllers in the cases where the latter ones were not sufficient to 
fulfill the control goals of the therapy. 

First, the control strategies proposed for the hip and knee joints, which include position 
and impedance controllers, are presented, followed by the controllers handling of the motion 
and control of the mobile platform. Next, the obtainment and control of the motion profiles of 
the pelvis modules are introduced. Finally, some methods to deal with synchronization 
between the reference gait patterns and the actual patterns from the patient are presented. 

5.1 Therapy control strategies for hip and knee joints 

This segment will present two different approaches for control to be used during robot-
based gait rehabilitation. The first one is the position control used in the MOPASS system 
during the trials with healthy and impaired subjects. The second approach is an impedance 
controller developed thinking in an ‘assist as needed’ and ‘patient cooperative’ strategy. 
Although the latter approach was not tested with MOPASS due to the lack of a reliable 
feedback of the user’s intention (e.g. torque sensors), it is presented as a ‘next step’ for the 
system, backed up by simulations that show the potential performance of the control strategy 
in real conditions.  

5.1.1 Position control 

Several approaches for motion control in robotic gait rehabilitation systems possess a stiff 
position controller in order to make the device track the given reference trajectories with 
minimal deviations, and therefore assist completely the movement of the patients, as it is the 
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case of the first version of the LOKOMAT system. In the case of the MOPASS system, for the 
hip and knee joints, an impedance-based control scheme was used in combination with the 
built-in position and velocity controllers of the drives, running in the corresponding Elmo 
Orocos component in the system. The controller models each one of the joints as a mass-
spring-damper system following Newton’s second law of motion, yielding the following 
equation 

 , (32) 

where  is the torque present in the joint,  is the virtual inertia of the link connected to the 
joint,  is the angular acceleration of the link,  and  are the position and velocity errors, 
respectively, and ,  and  are the spring, damper and integral coefficients of the system. 
The influence of  is very small, hence it could be neglected leaving a pure mass-spring-
damper virtual system. An inertia  was defined for the virtual system. 
Replacing this value in (32) and integrating the angular acceleration one can obtain the link’s 
angular velocity  

  (33) 

The diagram of the impedance controller of the virtual mass-spring-damper system is 
shown in Fig. 81. The output of this controller can be now used as the input of the profile 
velocity controller in the Elmo drives. The selected coefficient values for the controller were 
K = 5, B = 20 and i = 0.1. The open-loop virtual model in Laplace domain is given by 

 
 

 (34) 

 
where  is the actual joint position and  is the position error. The closed loop 
transfer function would be given by 

 
 

 (35) 

with poles in (-19.7471), (-0. 2310) and (-0. 0219), and zeros in (-0. 2281) and (-0.0219). As it 
can be seen, the real part of the poles are negative, therefore the virtual model is stable. The 
plot of the zeros and poles of the closed-loop system and the step response are shown in Fig. 
82 and Fig. 83, respectively. 

This approach is useful for lower range of reference trajectories’ velocities, which is the 
particular case in our rehabilitation application. However, due to the nature of the controller 
and current limits in the motors, the performance of the controller with non-compliant patients 
and high speed reference trajectories decreases. For this reason a combination of the virtual 
impedance-based controller with the profiled position controller of the Elmo drives was done. 
The profiled position controller tries to achieve a given position using some specified 
acceleration/deceleration and maximum profile velocities; therefore it is a combination of 
velocity and position control working at a much higher sample frequency than the impedance-
based controller running in the MOPASS computer. When the impedance-based controller 
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starts presenting (absolute) position errors higher than a given tolerance, the control switches 
to the profile position scheme. Once the error returns to lie within the given tolerance, the 
control switches back to the impedance-based approach.  

  
Fig. 81  Diagram of the impedance-based controller 

  
Fig. 82  Poles/Zeros map of the closed loop system 

  
Fig. 83  Step response of the closed loop system 
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To improve the tracking capabilities of the impedance-based controller, a velocity feed-
forward was added to the control scheme. A diagram of the implemented operation is shown 
in Fig. 84. Note that the controller component supplies the target position and velocity values 
to the hip and knee joint components (Elmo components), which are in charge of the control 
process. The reason the profiled position controller is not used always is that it is meant to 
achieve the target positions with a start-stop operation, causing undesired motions in the 
joints.  

The position control was tested with a compliant healthy subject, i.e. the subject followed 
the reference trajectories without exerting significant opposition forces to the system that 
would cause the current limits to be reached. Fig. 85 shows the performance of the position 
controller using three different values of Kvfw, namely 0 (no velocity feed-forward), 0.2 and 
0.5. Although the differences between the three plots are not evident, it can be seen that there 
exists a slight improvement in the tracking, regarding the lag of the actual trajectory with 
respect to the reference one, with higher velocity feed-forward contributions. However, the 
higher the feed-forward is, the more susceptible the controller is to the behavior of the 
velocity of the reference gait patterns, even reaching the point in which the controller barely 
tries to compensate for the position error and acts more as an open-loop velocity controller, 
which could result in undesired behaviors leading to poor tracking. Hence, high values of Kvfw 
are not recommended. After several tests, values between 0 and 0.2 yielded good results.  

The controller was also tested during the clinical trials of the system with impaired 
patients. For these trials, no velocity feed-forward was introduced. Fig. 86 shows the 
performance of the controller with a compliant patient. Although the controller managed to 
track the trajectories successfully when the patients were capable to follow the reference 
walking patterns, patients with higher impairment levels often exerted forces into the system 
higher than the ones the joint motors were able to compensate, resulting in the motors 
working with the current limits unable to fulfill the low-level controller targets. This problem 
also happened during tests with healthy subjects that forced their personal walking pattern 
instead of following the suggested one. Even though this is not a problem of the controller but 
of the power limitations of the joint motors, it resulted in poor tracking, uncomfortable 
walking and desynchronization between reference and actual gait patterns. More details about 
this problem will be exposed in section 5.4. 

 
Fig. 84  Position control scheme for hip and knee joints 
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Fig. 85  Performance of the MOPASS position controller with a compliant 

healthy subject 

 
Fig. 86  Performance of the MOPASS position controller with a compliant 

patient during clinical trials 

5.1.2 Impedance control 

The mechanical impedance defines how a system reacts to an imposed motion. The notion 
of impedance control was first introduced by Hogan [205] to design control strategies 
comprising interaction between robots and the environment. Hogan argued that, commonly, 
the environment behaves as an admittance (i.e. it accepts force inputs and determines 
corresponding motion in response to them), and because of that, to ensure physical 
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compatibility, the robotic system must behave as an impedance in interaction tasks with such 
environments, implementing functions that specify the force produced by the mechanism in 
response to the motion imposed to it by the environment. These functions could be linear, 
non-linear, dynamic, or even discontinuous. Hence, when the task at hand includes reference 
trajectories to be followed by the robotic system, as it is the case in gait rehabilitation, the 
impedance controller will define the relationship between the force exerted by the robot and 
the deviation of the actual position from the reference one.  

Impedance controllers have been normally implemented with non-linear control laws, 
often associated with stability problems, or by control schemes that combine an inner-loop for 
position control and an outer-loop for force-based compensations [52] [206] [207]. Other 
implementations use simpler schemes with controllers using linear relationships defined as 
zero or higher order functions of the position deviation (and its derivatives), although 
typically the implemented functions are of order zero (stiffness), one or two.  

Impedance control has had a great reception in rehabilitation robotics because of its 
simple and natural concept, and because of its stability when interacting with stiff 
environments [66]. The upper-limbs rehabilitation system MIT-MANUS [208], for instance, 
started using impedance-control schemes long time ago to help the patient track some 
trajectories with their hands/arms during goal-directed therapy. In gait rehabilitation, 
including impedance controllers instead of stiff position controllers allows a variable 
deviation from the reference trajectories instead of imposing a rigid gait pattern, and these 
deviations will be dependent on the active efforts and participation of the patients. Because of 
their nature, impedance controllers present themselves as a basic, easy to understand ‘assist as 
needed’ strategy that aims to encourage the active participation of the patients in the therapy. 
Several state of the art devices and research groups implement impedance-control-based 
strategies. Researchers using LOKOMAT implement different impedance control schemes 
based on fixed reference trajectories [209] or adaptive ones [52]. In [132], the STRING-MAN 
system is designed with a second-order impedance controller included in a control scheme 
with an inner-loop impedance-based position control and an outer-loop that includes an 
admittance module used to shape the relation between the contact forces and the 
corresponding modifications of the reference position. The ANdROS system implements a 
first-order (spring–damper) impedance controller for the calculation of knee joint support 
torques [66]. Other devices also implement control strategies similar to or based on the 
impedance concept. The LOPES device realizes different virtual physical models (VM), such 
as springs and dampers, to define physical interactions of the robot with the subject [55], 
which can be activated or de-activated in different moments of the gait cycle. These VM are 
not restricted to linear models, and they can be a function not only of the position but also of 
the time. The ALEX system also uses some non-linear relations between the support-force 
field and the position deviation, and works in world space instead of joint space [172]. It also 
includes the concept of virtual wall, which behaves as a haptic tunnel, normal to the ankle’s 
trajectory, where the component of the force field normal to the ankle reference trajectory is 
zero (no normal forces are exerted by the system to the patient). The force-field applied by 
ALEX to the patient’s ankle has three components: a normal force, which is proportional to 
the square of the position error (with respect to the virtual wall) normal to the ankle’s 
reference trajectory; a tangential force, which is applied only when the ankle’s position 
normal to the trajectory is close to the reference position, and is stronger the lower the 
distance between these two positions is; and a damping force proportional to the linear 
velocity of the ankle.  

Impedance control, in principle, also helps to tackle some problems specific to gait 
rehabilitation. In optimal therapy, the behavior of the robotic system must depend on the level 
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of impairment of the patients. Patients suffering of severe impairments need a system with 
high impedance that assists them to track the reference trajectories. The lower the impairment 
is, the more compliant the behavior of the system is desired. This way, patients with minor to 
moderate motor deficits who still have some motion capabilities are able to train the walking 
actively influencing the motion of the device, whilst the robot exerts correction forces just 
when needed. Hence, it is normally desired to have a system able to switch from high 
impedance (full support) to low impedance (low or no support) and vice versa [58]. However, 
the mechanic and power limitations of the device might hindrance this goal. On the other 
hand, implementing impedance controllers separately for each joint (or leg) with different 
levels of compliance might suit very well in therapy with hemiplegic patients because of the 
possibility of treating the impaired leg with different impedance values than the sound (or less 
impaired) leg [209]. However, these impedance controllers must be complemented with 
appropriate control modules to handle, for instance, the synchronization between the legs. 

Even though the concept of impedance control was thought for interaction tasks, it not 
only provides a reliable unified approach for controlling robotic systems whilst in contact 
with the environment, but also during free-space operation [206]. However, it possesses an 
important drawback regarding its inability to control interaction forces when the environment 
is not in contact with the robot and its location and parameters are unknown by the system. In 
the case of gait rehabilitation, it is assumed that the patient will be always attached to the 
system whilst in impedance control operation and there won’t be cases of free-space 
(contactless) operation, hence the aforementioned problems are not present in this specific 
implementation. However, it is important to understand that contactless situation would affect 
significantly the performance of the controller. If, for example, the overall control scheme is 
designed to control interaction forces, the controller would move the device aiming to reach a 
desired interaction force, but actually that interaction force is always zero21, causing even 
instability. Moreover, in case the system manages to contact the environment, the transition 
from free-space-to-contact could introduce some undesired reaction of the control efforts. 

The impedance control scheme proposed here combines a simple spring-damper 
impedance model with a haptic tunnel based on the virtual wall proposed by the ALEX group 
[172], all applied in joint space. Similar to the ALEX’s approach, the haptic tunnel refers to a 
tolerance area around the desired position at a certain time where the system doesn’t exert 
assistive forces to the patient (i.e. the patient moves freely). Once the patient leaves this area, 
a support torque is exerted to help the patient’s joint to return to the desired path. This torque 
is a function of the position error (with respect to the haptic tunnel wall and not to the desired 
trajectory) and the velocity error. The support torque calculated by the system for a certain 
joint would be therefore  

 
 

, (36) 

where KIC and BIC are the spring and damper coefficients,  is the radius of the haptic 
tunnel,  and   are the reference position and velocity given by the trajectory generator, 
and  and  are the actual position and velocity in the joint. The general concept of the 

                                                
21 Assuming a perfect sensing or estimation of the interaction force. In practice, that might not be the case due to 
errors in the model compensation or simply noise in the measured data. 
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proposed impedance controller can be better understood with Fig. 87. For this proposal, it is 
advised that the damper coefficient BIC is not too high if using high tunnel radius and high 
reference velocities, due to the fact that high contributions caused by velocity errors and the 
usage of the haptic tunnel generate discontinuities in the resulting support force. Even though 
these discontinuities are, to some extent, filtered by the dynamics of the subsequent torque 
controllers, the forces caused by high values of BIC might be uncomfortable to the patient and 
are hence undesired.  

To have a better idea of the potential of the proposed impedance controller, take a look to 
the simulation results depicted in Fig. 88. Initially, a pathological trajectory was set to the 
knee joint and then simulated using a human model in Adams [210] to obtain the torque 
necessary to track it. Afterwards, the same model was simulated, but this time the torque 
exerted in the joint was the sum of the previously calculated torque (original torque) and the 
support torque computed by the impedance controller using a healthy-like trajectory as 
reference. The upper plot in Fig. 88 shows the knee joint angles of the pathological trajectory 
(dark dashed line), the healthy-like reference trajectory (pale dashed line) and the resulting 
trajectories after applying the support torque with three different impedance and haptic tunnel 
parameters22 (solid lines): KIC=5, BIC =5, rHT =2°; KIC =50, BIC =5, rHT =2°; and KIC =300, 
BIC=15, rHT =0°. The latter set of parameters corresponds to a stiff behavior of the system 
aiming to a close tracking of the reference trajectory, whereas the first set corresponds to a 
more compliant behavior. The left lower plot in Fig. 88 shows the torques necessary to move 
the knee with the pathological and the reference trajectories. The lower right plot shows the 
support torques exerted with each one of the sets of impedance controller parameters. 
Although this is only a simulation and during real interaction with patients it is expected that 
the patients react to the support torques differently (e.g. resisting the support or complying to 
it) meaning that the torque applied by the patient during supportive therapy is different from 
the originally calculated one, we can observe how, depending on the selected controller 
parameters, the impedance controller can compute support torques aiming for a closer 
tracking of the reference trajectories. 

As stated before, in gait rehabilitation it is desired to be able to set different levels of 
impedance separately for each joint. Moreover, it could be beneficial to set different 
impedance levels in different stages of the gait cycle (variable impedance throughout the 
cycle). This could be achieved by computing continuous and periodic profiles of impedance 

                                                
22 With the inputs to the impedance controller being in Radians and Radians/s. 

  
Fig. 87  Concept of the impedance controller  
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and haptic tunnel parameters throughout the gait cycle. For instance, the system could have a 
stiff behavior in the vicinity of the moment of initial contact and be more compliant in the rest 
of the cycle to ensure that the patient keeps a desired cadence but allowing him/her to deviate 
from the reference gait pattern. Take a look to Fig. 89, where the simulation results of such 
case are depicted. For this example, a stiffness level profile (lower plots) was used to obtain 
the impedance controller parameters (proportional to the stiffness level) and the radius of the 
haptic tunnel (inversely proportional to the stiffness level). The left upper plot in Fig. 89 
shows the reference trajectory (dashed lines) and the resulting trajectories gotten when using 
the stiffness level profiles (bright solid lines) and fixed highly-compliant impedance and 
haptic tunnel parameters (dark solid lines). The right upper plot shows the corresponding 
support torques. Note how when using the stiffness level profile, in the vicinity of the initial 
contact the actual trajectory is very close to the reference, whereas in the rest of the cycle it is 
deviated due to the compliant behavior of the system. The specific implementation of this 
variable support level through a graphical user interface can be seen later in section 6.3.  

The complete control scheme implementing the impedance controller with haptic tunnel is 
shown in Fig. 90. This scheme is based on the usage of an interaction torque controller, 
although other implementation approaches can be used. This controller will compute control 
efforts u (e.g. motor current or voltage) in order to match the desired interaction torque (i.e. 
the support torque) with the actual one, which normally must be estimated because of the 
difficulty to decouple it from the rest of the toque measurements. The interaction torque 

  
Fig. 88  Example of the impedance controller in the knee joint using different 

impedance and haptic tunnel values 
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estimator is dependent on the available measurements. In the presented scheme, it is assumed 
that the system possesses torque sensors able to reliably measure the torques present in the 
joints. With these torques and the position and velocity measurements, it is possible to 
estimate the interaction torques using the dynamic model of the system (presented in 
Appendix B). Although the complete dynamic model is governed by the equations of motion 
(refer to equations (78) and (71) in Appendix B), a simplified model could be used in practice 
taking into account the low values of some of the generalized positions, velocities and 
accelerations that contribute minimally to the forces in the system. In some cases, it might be 
enough to use the dynamic models of the legs separately disregarding the contributions related 
to the motion of the platform (e.g. when the motion of the platform is very smooth and its 
rotations about the longitudinal axis are not significant). Moreover, the contributions made by 
the Coriolis and centripetal forces can often be neglected. In many applications it is enough to 
estimate the gravitational forces and to neglect the remaining ones. The interaction torque 
controller could implement commonly used approaches such as PI control, as well as model 
based control with system dynamics’ compensation. As before, this compensation could 
disregard some of the elements of the system’s dynamic model.  

  
Fig. 90  Scheme of the proposed impedance controller with haptic tunnel 

 
Fig. 89  Example of the impedance controller in the knee joint using variable 

stiffness levels. 
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Other control schemes different from the one in Fig. 90 can be used together with the 
impedance controller. If the dynamic model of the system is well known, the scheme shown 
in Fig. 91 can be another option. In this case, the computed support torque is supplied to a 
torque controller together with the model-based compensation torques τcomp (i.e. the torques 
that the system needs to generate in order to achieve the current positions, velocities and 
accelerations, and is calculated using the system’s equation of motion (refer to equation (78) 
in Appendix B). Another option could be a control scheme based on pressure sensors located 
between the robotic structure and the patient limbs. This scheme would have a similar design 
as the one shown in in Fig. 90, but instead of controlling the interaction torques, the controller 
would control the pressure between robot and patient, and consequently, the impedance 
controller would not deliver support torque values, but rather pressure set-points following the 
same principle. This scheme is shown in Fig. 92, where P is a vector containing the 
measurements of all the pressure sensors used for the corresponding joint calculations. These 
values are used by the ‘data fusion’ block to deliver a single pressure value for the 
corresponding joint used for the control.  

5.2 Mobile platform motion  

In the case of the platform, its motion is completely governed by the desired walking 
speed of the therapy. This speed is obtained from the estimated value of the step lengths of the 

  
Fig. 91  Another scheme of the proposed impedance controller with haptic tunnel 

 
Fig. 92  Yet another scheme of the proposed impedance controller with haptic 

tunnel – based on pressure feedback 
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right and left legs, based on the horizontal displacement of the feet corresponding to the 
current reference trajectories, where the speed is equal to the addition of both step lengths 
divided by the reference gait cycle period. The proposed estimation of the step length is given 
by  

 , (37) 

where FD is the foot horizontal displacement and KSL is a proportional multiplier. Initially, 
KSL was obtained following the equation (12) used during the data processing of the 
experimental data for hip and knee joints’ trajectory generation ( KSL = fs(FD) ). However, 
during the practical tests with the MOPASS system at low speeds it was seen that these values 
generated a speed lower than the desired, resulting in a lagging behavior from the platform. 
Because of this, it was decided to test the platform speed performance with constant values of 
KSL. After some tests, a KSL = 0.85 resulted in a comfortable platform motion. However, the 
value of KSL can be offered to the therapists as a selectable value (Kmin <= KSL <= 1) so that 
they can choose the proportion multiplier that feels better to each patient. 

Once the estimated step length is obtained, the corresponding wheels’ velocity can be 
calculated and set as the reference velocity for the low-level velocity controllers. This will 
lead to a forward motion of the platform equal to the estimated walking speed of the reference 
walking patterns. However, the therapists are also offered the option to introduce turning of 
the platform. During therapy, this turning will be minimal (and limited) and is meant to make 
corrections in the direction of movement of the platform that are necessary, for instance, when 
there is slipping of one of the wheels and the platform deviates slightly from the initial path. It 
can also be used when it is desired to practice higher-level turning, in case there exists an 
appropriate hip and knee trajectory generation for turning to complement it. Moreover, the 
therapist can use the turning feature to move the platform when no patient is using the system, 
or to adjust the direction of walking before starting the walking exercises with the patients. 
Taking this into account, the reference wheel velocities given to the low-level controllers are  

  
(38) 

where i = {R: right wheel, L: left wheel}, ω is the desired angular velocity of the wheel which 
is set as the input of the low level profiled velocity controllers of the motors’ drives, Tref is the 
reference gait cycle period, r is the radius of the wheels, and φi corresponds to the turning 
deviation applied to each wheel, which is proportional to the desired turning set by the 
therapist. In practice, φL = -φR. Note that in (38) it is assumed that the hip and knee periodic 
trajectories are equal for both legs (with a phase of 50% of the gait cycle), hence SLR = SLL. A 
simple diagram of the procedure is shown in Fig. 93, where the low level control process 
carried out by the Elmo servo-drives is not depicted for simplicity.  

 
Fig. 93  Diagram of the mobile platform motion control 



139 
 

5.3 Pelvis modules’ motion 

As stated in section 3.2.1, a novel pelvis mechanism was designed for the MOPASS 
system by one of the technical partners with the objective of assisting the patient pelvis with 
movements constrained to circular motions in the sagittal plane. The initial intended 
movement of these active modules was a synchronized motion between the right and left 
modules during the periodic walking, maintaining the same velocity in each module but 
keeping an angular phase of 180° between them. A process to synchronize these movements 
with the periodic hip and knee trajectories was implemented to be done automatically by the 
Controller component. Additionally, a transition between the initial position and the periodic 
trajectories during the first step was also implemented. Such overall synchronization can be 
seen in Fig. 94 and Fig. 95.  

The pelvis position control follows the same basis of the hip and knee position control 
scheme. There are only four basic differences: 1) the drives used are Schunk drives instead of 
Elmo drives, but they possess profiled position and velocity controllers as well; 2) the 
problem with current limits and position errors was not present in these joints, hence only the 
impedance-based control scheme was used; 3) no velocity feed-forward was used; 4) the 
control process was done in the controller component and not in the pelvis SMP components, 
which were only used as a bypass-interface between the controller component and the Schunk 
drives. The control scheme is shown in Fig. 96, whereas an example of its performance is 
shown in Fig. 97. 

  
Fig. 94  Synchronization of the pelvis joints with the initial step and periodic 

trajectories of the hip and knee joints (main leg) 
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Fig. 95  Synchronization of the pelvis joints with the initial step and periodic 

trajectories of the hip and knee joints (secondary leg) 

 
Fig. 96  Position control scheme for trunk/pelvis joints 

Even though the implementation of the desired motion profiles was done and controlled 
successfully, initial tests with healthy subjects and further studies of the pelvis movement in 
the sagittal plane during walking showed that this particular motion doesn’t reflect a general 
pattern throughout the population. Instead, the pelvis movements in this plane show great 
variability inter- and intra-subject. Thus, it was decided not to include this pelvic motion in 
the clinical trials and further development of the MOPASS system, and the active pelvis 
modules were set to a fixed position. 

5.4 Robot-patient synchronization  

Gait rehabilitation systems that possess some level of compliance, either because of its 
mechanical and electrical characteristics or the control strategies implemented in it, such as 
impedance controllers without high stiffness, are susceptible to have problems regarding the 
synchronization between the therapy reference trajectories and the actual gait patterns of the 
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patient. When a system is compliant, it allows the patient to influence the motion of the robot 
and to deviate from the reference patterns, hence allowing the patient to walk at speeds 
different from the one set by the therapist. Ultimately, this issue causes that the system applies 
corrective forces corresponding to a walking phase that is different from the actual walking 
phase of the patient, exerting forces that obstruct the patient’s gait in a unfavorable manner 
rather that a supportive one. In other words, the patient will feel that the system is a source of 
impediment instead of assistance. Two different cases are present during desynchronization: 
the reference pattern is ahead of the patient (phase lead) and the patient pattern is ahead of the 
reference (phase lag). It is important here not to confuse the term ‘phase’ with the gait phases 
and sub-phases. In this context, phase refers to the normalized time and phase error refers to 
the difference in time between two periodic signals, or more specifically, the difference 
between the current relative times (with respect to the gait cycle period) between two walking 
patterns. If, for example, we say that the reference has a phase-lag of 40% (or 0.4), it means 
that while the patient is already making the initial contact of the foot with the ground, the 
reference is in the area of the pre-swing gait phase.  

As stated before, during the initial clinical trials with MOPASS, this sort of 
synchronization issues arose during the therapy of some patients who had a high level of 
impairment and were not able to follow the trajectories suggested by the system. Because of 
the power limits of the joint motors, the system was unable to ensure a close tracking of the 
joint reference trajectories, resulting in an undesired compliant behavior of the system. 
Consequently, shorter/longer steps and changes in the walking speed and cadence from these 
patients caused the system to apply obstructive torques to them in some parts of the therapy, 
forcing the patients to resynchronize with the robot in a rather unpleasant way. An example of 
such behavior can be seen in Fig. 98, where the position tracking of the hip trajectory is 
shown, together with the current used by the motor while trying to fulfill the controller 
demands. The joint drives had a peak current limit of (+/-) 5 Amp, and a stall current limit 
(triggered when the drive has been in the peak current limit for some specific time) of 3.2 
Amp. In this specific case, it can be observed that the patient was walking with a cadence 
higher than the reference one and sometimes with shorter step lengths (as seen in the 5th 
cycle) exerting high torques to the joint motor, making it reach the current limits and being 
unable to perform a close reference tracking, causing a case of phase lag (patient ahead) 
desynchronization. While the system was applying torques corresponding to the area 

 
Fig. 97  Performance of the pelvis position controllers 
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surrounding the terminal swing and initial contact, the patient was already in stance phase 
moving his/her foot backwards. After some point, the patient had to do an abnormal step in 
order to resynchronize with the device, caused by the obstructive forces being applied by the 
system and the discomfort consequence of them. 

Aoyagi et al. have openly referred to the synchronization problem and have presented two 
methods to overcome it. In [211], a synchronization strategy based on the cyclic adaptation of 
the playback speed of the reference trajectories is implemented in the PAM device. By using 
foot switches, the system recognizes the moment of heel contact in the actual pattern. This 
way, it is possible to measure the actual gait cycle period and therefore the real gait 
frequency. With this value and the value of the reference frequency, the system compensates 
for the frequency error and speeds up or down the walking speed to come close to or match 
the actual one. Additionally, it also compensates for the phase error between reference and 
actual patterns using the information gotten from the foot switches. Therefore, every time the 
system recognizes a heel strike from the patient, it measures the time elapsed between the 
current and the last heel strike to obtain the actual gait cycle period, and analyzes if the patient 
is ahead of the reference. If the patient is ahead, it compensates by further increasing the 
replay speed of the reference trajectories. In case the reference gait pattern has reached the 
moment of heel strike but the signal from the foot switches hasn’t indicated an actual heel 
contact (reference ahead), the system holds the reference in its current state to wait for the 
patient to catch up with the device. The synchronization method is governed by 

  
(39) 

where mod refers to de modulus operand, fref = 1/Tref  is the original frequency of the reference 
trajectory which has a gait cycle period of Tref, fact = 1/Tact is the actual frequency 
corresponding to the measured gait cycle period Tact, K1 < 0 (usually K1 = -1) is the feedback 
gain, Δfph is a constant value (e.g. 0.1) corresponding to the compensation for the phase lag 

 
Fig. 98  Example of hip trajectory tracking during therapy with a non-compliant 

patient  
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error, and tref = [0, 1) is the input to the look-up table in charge of yielding the reference 
trajectories. Note that, in this case, the convention for normalized time between 0 and 1 is 
different from the one used in this manuscript (from 0 to 100%). Even though the frequency 
compensation manages to follow the actual walking speed present in the therapy, the way of 
implementing the phase lag compensation might not tackle the problem is a correct manner 
due to the fact that the value of Δfph should be dependent of the phase error instead of being 
constant. If the Δfph is too low, the system might never be able to correct the phase difference; 
if Δfph is too high, the reference would surpass the patient pattern passing from a phase lag to 
a phase lead. 

The second synchronization method from Aoyagi et al. was presented in [60], this time 
applied to both PAM and POGO devices. Unlike the previous method that performed the 
synchronization efforts every heel strike, this strategy makes a continuous change in the 
playback speed of the reference throughout all the gait cycle. The algorithm consists of an 
actual phase estimator and a proportional phase controller. For the phase estimator, the system 
makes use of the current position and velocity of nine DoF of PAM-POGO. It obtains the 18 
actual measured values and compares them to the positions and velocities of the reference 
trajectories in several moments of the gait cycle, obtaining the relative time where the actual 
and reference trajectories are closest (i.e. the estimated actual phase). To this end, they 
propose a cost function C of the form 

 , (40) 

where Xact is the matrix of actual states composed by the measured positions and velocities in 
the nine DoF, Xref is the matrix composed by positions and velocities of the reference 
trajectories in a given relative time (phase) ti, and WT is the transpose of the matrix of error 
weights. Note that Xact, Xref and W are matrices with dimensions 18×1. By calculating the cost 
using several values of ti it is possible to obtain the ti that generates the minimum cost value, 
which ultimately is taken as the value of the estimated actual phase (tact). Once the estimated 
phase is obtained, the phase error between the reference and the actual patterns can be 
calculated and fed to the proportional controller. The output of this controller is finally 
integrated to obtain the phase-error compensation. The input of the reference trajectories’ 
look-up table is therefore acquired following  

 , (41) 

where K2 = 2.5 is the proportional coefficient of the phase controller. Synchronization 
algorithms based on this method have been implemented in other systems such as the robotic 
devices presented in [64] and [66].  

Jezernik et al. deal also the synchronization problems in [52], although not exclusively. 
Their ‘patient-cooperative’ therapy strategies implemented in the LOKOMAT system adapt 
the period, amplitude and angular off-set of the original joint reference trajectories based on 
the interaction forces between the device and the patient. This way, the period of the reference 
trajectories (and therefore the walking speed) is influenced by the patient’s movements and 
efforts, hence tackling the synchronization problem. However, this approach is highly 
dependent on their therapy control strategy and hence is difficult to implement in other 
systems. 

Other popular approaches have included adaptive oscillators to adjust the intrinsic 
frequency of the periodic reference trajectories (and therefore the reference cadence) towards 
the actual frequency of the patient’s gait, as well as to eliminate the phase difference between 
actual and reference patterns. The first ones to implement adaptive oscillators in gait 
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rehabilitation were Ronsse et al. in the LOPES system [212] [213]. Their synchronization 
method is based on an estimated hip trajectory expressed as a Fourier series and a set of 
oscillators corresponding to different harmonics in the estimated hip trajectory. Their 
adaptation algorithm progressively adjusts the frequency of the reference pattern and 
eliminates phase errors depending on the difference between the (estimated) reference and 
actual angles, while adjusting the Fourier amplitude parameters of the estimated hip 
trajectory. Additionally, this method includes a non-linear filter based on Gaussian-like kernel 
functions which is applied to the Fourier-based estimated trajectory to obtain the final filtered 
estimated trajectory. This way, the system allows the patient to adapt the reference pattern’s 
frequency through the adaptive oscillators, and the reference trajectory’s shape through the 
estimation and filtering process.  

Chen et al. have also implemented an adaptive oscillator in a knee-ankle-foot robotic 
device for rehabilitation purposes [214]. Their algorithm detects the gait sub-phases (or more 
specifically, the events that mark the gait phase transitions) by means of a hidden Markov 
model, and utilizes one or more of the detected events (e.g. initial contact and tibia vertical) to 
obtain the frequency of the actual trajectories and to compute the phase error between the 
reference and actual gait patterns. With this information, the algorithm adjusts the frequency 
of the reference patterns towards the actual gait pattern’s frequency eliminating the phase 
error on the way. Unlike the previous method used in LOPES, this method only adapts the 
reference frequency to achieve synchronization and does not adjust the shape of the 
trajectories in order to keep healthy-like curves as references. Another example of 
synchronization by means of an adaptive oscillator is mentioned in [215], in this case using 
the ALEX II system, where the oscillator is combined with foot pressure sensor signals (used 
to detect the initial contact and toe-off events) to estimate the cadence and phase of the actual 
pattern. Rather than to adapt reference angular trajectories, these values are used to estimate 
the assistance torque that should be provided in the hip joint based on nominal torque profiles.  

The state-of-the-art approaches for synchronization, and generally for reference pattern 
adaptation, can be classified depending on the degree to which the patient is allowed to adapt 
the reference gait pattern with his/her movements. In the case of the methods presented by 
Jezernik [52] and Ronsse [212] [213], the patient is able to adapt the shape (angular 
properties) of the reference trajectories and the cadence. Chen’s method [214] allows the 
patient to adapt only the cadence. Aoyagi’s first method [211] makes cyclic frequency 
compensation by setting a new reference frequency at every initial contact of the foot with the 
ground, which is kept for the subsequent gait cycle. Hence it ultimately also allows the patient 
to adapt the cadence. In the case of Aoyagi’s second method [60], although the reference 
cadence is not directly adapted, the continuous compensation applied to the playback speed 
allows the patient to impose, to some extent, his/her desired cadence. Neither of Aoyagi’s 
methods allows the patient to influence the shape of the trajectories.  

The synchronization methods presented hereafter were designed intending to provide a 
low level of adaptability of the reference gait pattern. First, it is not desired that reference 
trajectories are adapted based on the patient’s motion. When this is allowed, not only the 
walking preferences of the patients are part of the adaptation process, but also any 
pathological movements present in the current state of the patient. Hence, the system would 
be learning potentially undesired patterns which are ultimately used to assist the patient. A 
similar consideration was also stated by Chen et al. [214]. Methods allowing the adaptation of 
the reference trajectories should be able to filter the patient’s pathologies not to include them 
in the adaptation process. This filtering is not a trivial task and, to the author’s knowledge, is 
not addressed in the methods that include a reference pattern adaptation. However, the author 
found it necessary to implement an online hip trajectory adaptation in order to further 
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decrease obstructive forces applied by the system to the patient during the initial part of the 
stance phase and so to improve the synergy between the robot and the patient. Regarding the 
adaptation of the cadence (or reference frequency) two different approaches are contemplated: 
the first one intends to impose the reference cadence on the patient’s gait allowing only 
minimal changes in the time-related behavior of the trajectory generation in order to tackle the 
synchronization problems; the second one allows the patient to influence the replay speed of 
the reference gait pattern, following the concept of Aoyagi’s second method [60].    

In the next sub-sections, three synchronization methods implemented in the MOPASS 
system are presented, which include novel approaches, extensions and improvements to the 
strategies proposed by Aoyagi et al., as well as the aforementioned hip trajectory adaptation. 

5.4.1 Cyclic synchronization with hip-trajectory adaptation (CSHTA) 

The first method was designed to synchronize the reference and actual patient’s gait 
pattern every time an initial contact (IC) is recognized, either on the reference or on the actual 
gait pattern. The IC marks the transition of a leg from swing to stance phase. In the presented 
implementation, the moment of IC is approximated by the moment the patient’s foot (or 
“virtual” foot, in the case of the reference gait patterns), reaches its maximum horizontal 
displacement (FMHD) along the sagittal axis. When the system identifies an IC in any of the 
walking motion profiles, it is able to recognize if there exist a phase-lag or phase-lead and 
perform the respective compensations either by speeding up or slowing down the reference 
trajectory. To this end, a gait phase detector was developed, capable of recognizing the 
moment in which the foot reached the FMHD, using some elements such as time- and angle-
based thresholds to avoid false positives.  

Contrary to Aoyagi’s procedure, this method interacts directly with the time fed to the 
trajectory generator, instead of dealing with the frequencies to later integrate them. When no 
synchronization efforts are included in the reference trajectory generation process, the input 
time value for the generator would be equal to the real time that has elapsed since the 
beginning of the exercise. Since we are dealing with a discrete controller component that 
works at a certain frequency fc, the time in a moment k can be calculated from the time at 
moment k-1 

 , (42) 

where Δt = 1/ fc is the time elapsed between the two intervals and t[k] corresponds to the input 
given to the trajectory generator. By inserting a third element Δtcomp in (42), it is possible to 
manipulate the playback speed of the reference trajectories and, consequently, the walking 
speed. Therefore, a new equation for the input of the generator is yielded:  

 , (43) 

where the term Δtcomp corresponds to the time compensation element. Note that a Δtcomp = -Δt 
would hold the reference positions to the values from the last iteration; a Δtcomp = (-Δt,0) will 
slow down the normal playback speed, a Δtcomp > 0 will speed up the normal playback speed, 
a Δtcomp = 0 will keep the normal playback speed; and a Δtcomp < -Δt, would generate a 
‘backwards- walking’ situation, which in practice is avoided. 

As stated before, there are two cases during desynchronization: phase-lead (reference 
ahead) and phase-lag (patient ahead). When the system recognizes a phase lead in leg i, it 
slows down the playback speed of the reference generation by setting Δtcomp,i to -0.9·Δt. Thus, 
the reference is able to wait for the patient to catch-up without completely pausing the 
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reference playback speed. In the case of phase lag, the system is able to calculate the lag-time 
Δtlag, i.e. the time that the reference needs to reach the moment of IC in leg i. The time 
compensation in this case would be defined by 

 , (44) 

where t – tHS is the time elapsed since the IC from the actual trajectory and υTC = 25 is the time 
compensation rate. This way the system will increase de value of Δtcomp smoothly with a rate 
υTC until the total amount of compensated time is equal to the calculated phase error. Once this 
happens, the value of Δtcomp is reset to zero. It is important to clarify that, because the phase 
error analysis is done for each leg, there will be two different time compensations: Δtcomp,L and 
Δtcomp,R. In situations where the phase error is not very high, these two values do not overlap 
(i.e. the complete time compensation of one leg will be achieved before the other leg reaches 
the IC). However, there might be occasions in which each leg will contribute with a non-zero 
compensation value (e.g. when the phase error is higher than 50% of the gait cycle period). 
The final value will be therefore equal to the sum of the two single compensations:  

  (45) 

Fig. 99 shows two simple examples of the time compensation done during phase lead (A) 
and phase lag (B). In the phase lead example, the actual trajectory is the same as the reference 
one, but with a period 1.15 times lower. It is possible to observe how the reference trajectory 
almost holds its positions until the actual trajectory reaches the moment of IC, not only for the 
leg been analyzed, but also for the other leg. Similarly, in the phase lag example, both 
trajectories are the same, except for the period which is 1.15 times higher for the reference 
trajectory. In this case, it can be observed that the reference speeds up to compensate for the 
measured phase error in both legs. In the lower plot of Fig. 99(B), the total compensated time 
is shown for every phase-lag occurrence in the leg under scope. In this case, Δtlag is 
approximately equal to 0.27 seconds (approx. 7.5% of the reference gait period). Note how in 
both (A) and (B) cases, the compensations correspondent to the contralateral leg also 
contribute to the overall time-compensation, and therefore also affect the motion profile of the 
joint trajectories of the leg under consideration, as shown in Fig. 99. 

Additional to the time compensation used to synchronize the walking patterns, this 
method offers a complementary adaptation to the hip trajectories to deal with the cases where 
the actual step length differs from the reference one in a way that benefits the training process. 
From the kinematic point of view, the step length during walking is mostly dependent on the 
hip range of motion, namely the hip maximum flexion and extension. This adaptation was 
designed based on the following conception: once the patient has done the IC and has started 
the stance phase, it is counterproductive to force him/her to achieve the step length governed 
by the original reference pattern. Take as an example the fifth cycle shown in Fig. 98, where 
the actual step length of the patient was significantly shorter than the reference one (the actual 
maximum hip flexion was lower than the reference one). In this case, the device was forcing 
the patient to achieve a higher hip flexion, and therefore trying to move the patient’s foot 
forward, while the patient had already his/her foot on the ground. Although applying the 
aforementioned time compensation would speed up the reference trajectory and decrease the 
time in which the system is applying this obstructive forces, it would be still trying to make 
the patient achieve a position that can’t be reached unless he/she makes a very unnatural 
movement. 

To tackle this problem, a cyclic adaptation of the reference hip trajectories based on the 
actual hip motion was developed. The basic idea is that, every time the system recognizes an 



147 
 

IC from the actual walking pattern, it will check which was the actual hip flexion angle in that 
specific moment and will compare it with the hip flexion angle in the moment of IC from the 
reference trajectories in order to perform a smooth adaptation of the hip reference trajectory 
that will reduce the difference between these two flexion angles. Such adaptation is governed 
by the following equation 

 

 

 

 

 (46) 

where  is the adjusted hip reference angle,  is the original hip reference angle, 
 is the hip angle of the reference trajectory in the moment of FMHD (i.e. IC), 

 is the minimum hip angle from the reference trajectory (angle of maximum 
extension), and  is the value of hip angle of the adjusted reference trajectory in the 
moment of FMHD. To have a better understanding of this adaptation refer to Fig. 100 where a 
simple example is depicted. Notice how the original trajectory is proportionally adjusted 

 
Fig. 99  Examples of time compensation during CSHTA synchronization 
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based on the difference between the original and the target angular value during the IC. 
Notice as well that, the more the phase (normalized time) approaches the moment of global 
minimum, the more the adaptation level decreases, until reaching a level of no-adjustment in 
that global minimum moment. This means that the adaptation affects the maximum flexion 
but not the maximum extension. 

So, once the system recognized an IC it measures the actual hip angle in the moment of 
FMHD ( ) and sets it as the new adaptation target θtarget. It subsequently adapts the 
reference hip trajectory so that the hip angle in the moment of FMDF of the adjusted 
reference trajectory matches θtarget. However, this matching is not done instantly, but rather in 
a smooth manner. The angular adjustments in an instant k are done following (46) and 

  
(47) 

where υHA =50[deg/s] is the rate (velocity) of angular adjustment and kdir={1,-1} corresponds 
to the direction of the angular adjustment (positive or negative)  determined every time a new 
θtarget is set, following 

  (48) 

Once the reference hip trajectory reaches the moment of maximum extension, the 
adjustment is reset ( ) and the reference trajectory returns to its original 
profile. Note that the value of θtarget is set (if necessary) every time an actual IC or reset 
command happens. The system will smoothly change the value of  until it reaches the 
current θtarget and then it will maintain that value until θtarget is set again. An example of hip 
trajectory adaptation and subsequent reset of the θtarget is shown in Fig. 101, where the hip 
angle in the actual IC ( ) is higher than the reference angle . Notice how, 
despite the adaptations, the hip and knee reference trajectories remain continues. 

Taking into account the time compensation and the hip trajectory adaptation, the diagram 
of the complete procedure is depicted in Fig. 102. For simplicity, the diagram only shows the 

 
Fig. 100  Cyclic trajectory adaptation during synchronization process 
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hip and knee angles of one leg. In reality, the phase detection, hip trajectory calibration and 
hip adaptation function are applied separately to each leg. However, as explained before, the 
time compensator works together with the results of both legs. 

To assess the behavior of the synchronization method, several simulations were run which 
include different cases of desynchronization (phase lag and lead) and hip trajectory 
adaptation. Table 30 contains the details of each one of the simulation cases whereas the 
simulation results are shown in Fig. 103. The ‘TrajGen_0.35’ trajectory corresponds to the 
joint trajectories yielded by the generator from section 4.3 with the following inputs: 
lengthLowerLeg = 0.48 m, lengthUpperLeg = 0.40 m, height = 1.74 m, WS = 0.35 m/s, Cad = 47 
steps/min, and gait period = 2.55 s. The ‘Lit_GN’ trajectory corresponds to the gait patterns 
obtained from [24], with a period proportional to the period of the ‘TrajGen_0.35’ trajectory 
(see table).The simulations also include a predefined initial phase difference between the 
reference and the actual (simulated) patterns (see table). Note that, besides the reference and 
actual hip and knee trajectories, Fig. 103 shows the synchronization state of the leg under 
scope (green lines) with the following values: 0 if they are in-synch; 10 if there is a case of 
phase lag (patient ahead); and 20 if there is a case of phase lead (reference ahead). However, 
these states should not be considered as the real synchronization states. In this specific 
scenario, it is considered that the walking patterns are again in-synch when they are both in 
stance phase, although in reality there could be a phase error and therefore they could be still 
out-of-synch. Moreover, because the synchronization analysis is done only in between the 
moments of IC from the reference and actual trajectories, the real synchronization state 
throughout the rest of the gait cycle is unknown and therefore not represented by the states 
shown in Fig. 103. The depicted states are only used as a reference for the time compensator 
and hip trajectory calibrator to know when and how to make their compensations and 
adjustments.  

 
Fig. 101  Example of cyclic trajectory adaptation during synchronization 

process 
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Fig. 102  Diagram of the cyclic synchronization algorithm with hip-

trajectory adaptation 

 

Table 30  Simulation cases for assessment of the synchronization methods 
Case Reference trajectory (Simulated) Actual trajectory Walking periods Initial phase error 
A TrajGen_0.35 TrajGen_0.35 Tact = Tref Phase-lag = 15% (patient ahead) 
B TrajGen_0.35 TrajGen_0.35 Tact = 0.85·Tref In phase (no error) 
C TrajGen_0.35 TrajGen_0.35 Tact = 1.15·Tref In phase (no error) 
D TrajGen_0.35 Lit_GN Tact = Tref Phase-lag = 15% (patient ahead) 
E TrajGen_0.35 Lit_GN Tact = 0.85·Tref In phase (no error) 
F TrajGen_0.35 Lit_GN Tact = 1.15·Tref In phase (no error) 
G TrajGen_0.35 Lit_GN Tact = Tref In phase (no error) 
H Lit_GN TrajGen_0.35 Tact = Tref Phase-lag = 15% (patient ahead) 
I Lit_GN TrajGen_0.35 Tact = 0.85·Tref In phase (no error) 
J Lit_GN TrajGen_0.35 Tact = 1.15·Tref In phase (no error) 
K Lit_GN TrajGen_0.35 Tact = Tref In phase (no error) 
L TrajGen_0.35 Lit_GN Tact = 0.45·Tref In phase (no error) 
 

The simulation results show that the method manages to deal with the synchronization 
issues in a proper manner, although it is limited by the time compensation rate υTC. If the 
difference between reference and actual walking speeds is too high, the method will struggle 
to catch up with the actual patterns (as seen in case L). Increasing υTC would help in these 
circumstances, but will affect the smoothness of the reference walking patterns. However, 
such high differences in walking speeds are not expected during therapy. If they actually 
happen, it means that the reference speed is not appropriate for the specific patient and must 
be adjusted by the therapist. On the other hand, the hip trajectory adaptation behaved as 
expected, helping the reference patterns to come closer to the actual ones when necessary, 
decreasing the interference of the reference trajectories during the beginning of the stance 
phase.  
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Additional to the simulations, the synchronization method was tested with a healthy 
subject using the powered orthosis of the MOPASS system together with a treadmill. For these 
tests, the current limits of the joint drives were set to 1 Amp to allow a more compliant 
behavior of the system and more mobility freedom to the subject. The reference trajectory was 
set to ‘TrajGen_0.35’. Three exercises were carried out: in the first exercise (A) the subject 
was asked to walk very slow at the beginning and then increase considerably the speed; for 
the second exercise (B), the subject was asked to walk simulating lack of strength in the lower 
limbs; and for the last exercise (C), the subject was asked to walk simulating limping. The 
results of these exercises are depicted in Fig. 104, showing the proposed method managed to 
stay in-synch in all three cases, even when the actual gait patterns had abnormal trajectories. 

 
 Fig. 103 Simulation results of the cyclic synchronization algorithm with hip-trajectory 

adaptation 
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Regarding the hip trajectory adaptation, it also shown good results, mostly when the phase-lag 
error was high and the system had enough time to adjust timely the hip maximum extension 
angles. 

Adjustment of platform speed 

In the methods proposed by Aoyagi et al. it is not explicitly expressed how the adjustment 
in the treadmill speed is done, which leads to the assumption that such adjustment is governed 
directly by the resulting frequency and phase compensations. In their first method [211], it is 
assumed that the adjustments in the playback speed are implemented directly to the treadmill 
speed with changes every IC, whereas for the second method [60] the adjustments would be 
applied instantly (continuously) proportionally to the phase error. Whether filters are applied 
or not to the resulting treadmill speed to avoid undesired oscillations (which might appear as 
an inherited problem mostly in their second method) is, to our knowledge, not mentioned.  

In this subsection, four different methods to adjust the platform velocity based on the 
compensations and adjustments done during the synchronization process are presented. These 
methods were developed aiming to obtain a smooth, yet timely adaptation of the speed of the 

 
Fig. 104  Results of the cyclic synchronization algorithm with hip-

trajectory adaptation using MOPASS and a treadmill 
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platform, trying to avoid lag feelings (the platforms is staying behind), pushing feelings (the 
platform is pushing forward faster than it is supposed to), and uncomfortable speed 
oscillations.  

Method 1: 
The first method gets the time compensation Δtcomp in each iteration of the synchronization 

component, calculates the corresponding platform speed compensation and applies a simple 
Butterworth low-pass filter to reduce the oscillations in the speed. The diagram of this method 
is depicted in Fig. 105, where WSref is the original walking speed (i.e. platform speed) of the 
reference pattern, r is the radius of the wheels, and KWSC is the compensation constant. To get 
a full influence of the time compensations in the platform speed compensation, a KWSC = 1 
was selected. Note that the turning feature presented previously was neglected for a better 
understanding. 

Method 2: 
The second method adds a second low pass filter to work together with the Butterworth 

low-pass filter of Method 1 (Fig. 106). This second filter is a simple ‘average’ filter used to 
further reduce the oscillations of the resulting platform speed: it takes the last n values of the 
compensated speed and calculates the average, before feeding it to the Butterworth filter. In 
this case, n corresponds to the amount of iterations happening during 75% of a gait cycle 
period:  

  (49) 

Method 3:  
The third method includes a cyclic average filter to complement the two other filters of 

Method 2. Contrary to Method 2, the n from the initial average filter corresponds to the 
amount of iterations happening during 30% of a gait cycle period. The cyclic average filter 
works together with the gait phases’ detector, and supplies the average compensated platform 
speed from the whole last gait cycle (calculated every time the reference trajectory of the 
main leg reaches a moment of FMHD) to the initial average filter. The cyclic average filter 

  
Fig. 105  Method 1 for adjustment of platform speed during 

synchronization 

 
Fig. 106  Method 2 for adjustment of platform speed during 

synchronization 
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keeps its output unchanged until the next moment of FMHD in the main leg happens. The 
diagram of this method is depicted in Fig. 107.  

Method 4: 
The fourth method intends to recalculate the walking speed taking into account the time 

compensations and hip angular adjustments done during the synchronization process, and 
based on that, to calculate the compensation value of the platform speed. The initial average 
and Butterworth filters from Method 3 are kept, whereas the cyclic average filter is replaced 
by a ‘flip-flop’-like component which bypasses the input value to the output when the 
moment of FMHD in the main leg happens and, similar to the cyclic average filter, retains the 
last fed value in its output until the next main leg’s FMHD occurrence. The diagram of this 
method is depicted in Fig. 108. As it can be observed, the platform speed compensation in this 
method is governed by the multiplier  

 

 

 

 (50) 

where SLref and Tref are the calculated step length and period of the original reference patterns, 
respectively,  is the time elapsed between the previous and the current moment of FMHD 
in the main leg (i.e. the reference gait period after applying the time compensations 
throughout the last cycle), and  is the calculated step length taking into account the hip 
trajectory adaptations. As with the previous methods, a KWSC = 1 was selected to get a full 
influence of the time compensations and trajectory adaptations in the platform speed 
compensation calculations. Note that with this value of KWSC, after multiplying by the 
original , the resulting compensated speed (before filters) is equal to 
the new measured reference speed ( ). Because the method needs to calculate the 
adjusted period and step lengths from both legs, it only starts operating after a complete gait 
cycle is recognized, disregarding the initial step.  

 
Fig. 107  Method 3 for adjustment of platform speed during 

synchronization 
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Assessment of the methods 
An initial revision of the behavior of the four methods was carried out by running the 

same simulations exposed in Table 30 and observing how the platform speed compensation 
reacted in each situation. The simulation results are depicted in Fig. 109. The first thing to 
note is that, in the cases where the actual gait cycle period is different from the reference one, 
the time compensation causes the output of Method 1 to oscillate considerably. Lower 
oscillations are observed with Method 2, although the remaining ones could still be 
uncomfortable for the patient. These fluctuations do not affect methods 3 and 4, which appear 
to have very smooth changes. The second thing to notice is how the platform speeds delivered 
by Method 4 are very different from the ones from the other three methods which, 
disregarding the oscillations, tend to settle in similar values. These differences are caused by 
the inclusion of the angular adjustments in the hip trajectory and recalculation of the walking 
speed. A final assessment on the reaction time of each method can be done. As expected, 
Method 1 is the one that reacts the fastest followed by methods 2, 3 and 4. Regarding Method 
4, it can be observed how, in some cases (D, H and K), its response is considerably slow 
compared to Method 3.  

A second assessment was done with a healthy subject using the MOPASS system during 
over-ground walking. As before, the current limits of the hip and knee joints were set to 1 
Amp to increase the compliance of the device and the reference trajectory was set to 
‘TrajGen_0.35’. The subject was asked to walk naturally changing the speed in between the 
exercise. The results of these exercises can be seen in Fig. 110. When using Method 1, the 
subject felt that the platform speed was increasing and decreasing constantly during a gait 
cycle in an unpleasant manner. These drastic speed changes were significantly reduced with 
Method 2, leading to a more pleasant adjustment. Nevertheless, the subject felt that the 
platform was slightly pushing when he was walking at very low speed. Method 3 presented no 
speed oscillations, as expected. Compared to the previous two methods, Method 3 gave less 
freedom to the subject to influence the velocity of the platform, trying to make him maintain 
the velocity from his last gait cycle. This was also the case using Method 4, but in a higher 

 
Fig. 108  Method 4 for adjustment of platform speed during 

synchronization 
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degree; moreover, the subject felt that the platform was slightly lagging and not keeping up 
with his speed changes. At the end, methods 2 and 3 got the best feedback from the 
participant. Whether it is desired if the patient has more or less freedom to influence the 
platform speed during training can be judged by the therapist depending on the patient and the 
objectives at hand.  

 

 Fig. 109  Simulation results for adjustment of platform speed using the cyclic 
synchronization algorithm with hip-trajectory adaptation 
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5.4.2 Phase-control synchronization (PCS) 

The phase-control synchronization (PCS) was the second method that was developed to 
tackle the synchronization issues. The PCS is based on concept of Aoyagi’s second method 
[60]. The algorithm is composed basically of two components: the trajectory comparator and 
a phase controller. The trajectory comparator, which is actually a service offered by the same 
trajectory generator component, takes the actual joint angles and compares them with the 
reference ones in order to obtain the estimated actual phase (again, not to be confused with the 
gait phase). To this end, a cost function is introduced 

 
Fig. 110  Results for adjustment of platform speed using the cyclic 

synchronization algorithm with hip-trajectory adaptation during experiments 
with MOPASS system 
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 (51) 

where n = 4 is the number of joints, θj,act is the actual position of joint j, θj,ref (ti) is the 
reference position of joint j at a given normalized time (phase) ti, hp,act and dp,act are the actual 
vertical and horizontal positions of the foot from the leg p = {L:left, R:right} with respect to 
the hip joint calculated from the actual joint angles, hp,ref (ti) and dp,ref (ti) are the vertical and 
horizontal positions of the foot from the leg p calculated from the reference joint angles at a 
given normalized time ti, tn is the normalized time value corresponding to the current input of 
the generator, tn*[k-1] is the estimated normalized time (phase) from the previous iteration 
and WCP is the vector of weights. In the cases of et1 and et2, special considerations must be 
taken during the error calculations due to the fact that we are dealing with periodic 
trajectories. The errors correspond to the minimum distance between the values under scope 
taking into consideration the period which, after normalization, is equal to 100%. If, for 
example, tn = 90% and ti = 10%, the value of et1 will be 20% and not 80%. 

The task of the phase comparator is to check several values of ti (in practice, 200 values 
are checked) and find the one that minimizes the cost function. This value will be taken as the 
estimated phase (tn*) of the actual walking pattern. Note that, unlike Aoyagi’s cost function, 
CPC includes phase- (time-) based error measurements, meant to give more stability and 
robustness to the phase comparator. 

The phase controller component, on the other hand, is the one in charge of speeding up 
and slowing down the playback speed of the reference pattern to synchronize it with the actual 
walking pattern. It receives the phase error calculated from the generator’s current phase and 
the estimated phase and yields a normalized-time rate compensation value. The controller is 
designed as a PI-controller of the form 

  (52) 

where ePC = tn*- tn is the phase error, υnt-comp is the normalized-time compensation rate, and 
KP-PC = 2 and KI-PC = 0.02 are the PI coefficients. After computing the normalized-time 
compensation rate, it can be saturated to avoid undesired high changes in the playback speed. 
In this case, the saturation limits were set to ±100. Note that the trajectory comparator, the 
phase controller and the saturator work with normalized time values, and because of this, 
normalization and de-normalization operations with respect to the reference gait cycle period 
must be performed to handle the normal and normalized values. Following this idea, υnt-comp 
must be de-normalized to obtain the time compensation rate  

  (53) 
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which is finally used to calculate the compensation time following 

  (54) 

A second saturation is applied to the time compensation value to avoid negative playback 
speeds. In this case, the lower saturation value is equal to –Δt. The higher saturation can be set 
to a desired maximum compensation value, although the first compensation rate saturator 
should be designed in a way that there is no further need for a positive saturation of Δtcomp. 
Once Δtcomp is obtained, it is used to get the input value of the generator following (43). 

The complete diagram of the phase-control synchronization method is depicted in Fig. 
111. Again, for simplicity, only the trajectories corresponding to one leg are included in the 
diagram. However, as explained before, the trajectory comparator uses the angles of the joints 
of both legs.  

The same procedure used to assess the previous synchronization method was carried out 
for the PCS method. Initially, the simulation cases exposed in Table 30 were analyzed. The 
simulation results are shown in Fig. 112. It can be seen that the phase controller manages to 
maintain the simulated and reference patterns in-synch, within the limitations given by the 
controller PI coefficients and the first saturator. If the actual walking speed is much higher 
that the reference one, the control efforts will not be enough to keep the reference pattern 
close to the actual one, as shown by case L. Moreover, if the actual walking speed is even 
much higher, the controller might end up causing unreliable changes in the reference 
trajectories. Nevertheless, as stated previously, these cases should not occur during training. 
Comparing with the results from the CSHTA method, the reference was able to follow the 
simulated patterns in a closer manner, due to the fact that the PCS is compensating for the 
phase difference continuously throughout the complete period, instead of doing it every IC. 
This does not directly mean that this method is better or worse than the CSHTA, only that it 
gives more freedom to the patient to influence the walking speed (and indirectly the reference 
trajectories), whereas the cyclic method intends to force more the patient into following the 
reference parameters and only perform the synchronization actions when strictly necessary. 
This difference can be seen more clearly when comparing the support torques that would be 

  
Fig. 111  Diagram of the phase-control synchronization method 
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yielded when using an impedance controller in each of the simulation cases. This comparison 
is done in a forthcoming subsection.  

The second analysis to the synchronization method was done using the MOPASS system 
with a treadmill where a healthy subject was asked to do the same three exercises as with the 
CSHTA method: (A) natural walking starting very slow and then increasing the speed; (B) 
simulation of lack of strength in the lower limbs; and (C) simulation of limping. The results of 
these exercises are depicted in Fig. 113. As with the CSHTA method, this method managed to 
stay in-synch in all three cases, although it sometimes struggled to follow the actual pattern 
during the initial step. It also showed a good performance when the actual gait patterns had 
abnormal trajectories, even though, at first glance, the results gotten from CSHTA method 

 
Fig. 112  Simulation results of the phase-control synchronization method 
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(Fig. 104) seem slightly better. Because of the practical nature of these tests, a proper 
comparison between the methods cannot be carried out in this context because of the 
impossibility of the participant to exactly repeat the motion efforts during the tests.  

Adjustment of platform speed 

Because the time compensation follows also (43), the same principles for the adaptation of 
the platform speed from the CSHTA method apply for the PCS method. Hence, the four 
adaptation methods presented in section 5.4.1 were also implemented and tested with the 
phase-controller synchronization strategy. The results concerning the platform speed from the 
simulation cases exposed in Table 30 are shown in Fig. 114. Similar conclusions to the ones 
from the CSHTA method about the performance of each of the speed adjustment methods can 
be drawn. However, the differences in the time compensation strategies from both 
synchronization methods are reflected in the behavior of the platform speed. In some cases the 
CSHTA method presented stronger oscillations in the speed, whereas in other cases the 
stronger oscillations belonged to the PCS method. 

A second set of practical tests was also carried out with the healthy subject walking over- 
ground with the MOPASS system and changing the walking speed during the exercises, same 
as with the previous synchronization method. The results of these tests are depicted in Fig. 
115. The feedback gotten from the participant about how each of the speed adjustment 

 
Fig. 113  Results of the phase-control synchronization using MOPASS and 

a treadmill 
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methods felt was the same as for the CSHTA method: drastic and uncomfortable changes in 
the speed with Method 1, a platform-lag feeling with Method 4, and good outcomes with 
methods 2 and 3. The only difference in the perception from the test subject was that the 
platform didn’t present the ‘pushing’ behavior at very low speed when using Method 3 that 
occurred with the CSHTA method.  

  
Fig. 114  Simulation results for adjustment of platform speed using the 

phase-control synchronization method 
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5.4.3 Phase-control with hip-trajectory adaptation (PCHTA) 

A third synchronization algorithm was designed by combining the PCS and the CSHTA 
methods. Simply put, the method possesses continuous time compensation, governed by the 
trajectory comparator and the phase controller, and a cyclic adaptation of the hip trajectory. 
The diagram of such combination is shown in Fig. 116.  

The results from the simulation and practical tests of the PCHTA method are shown in 
Fig. 117 and Fig. 118, respectively. The method managed to maintain the reference 
trajectories in-synch with the actual walking pattern in all simulation cases (except for case L) 
and most of the practical ones. However, notice how this time the trajectory comparator had 
some struggle identifying correctly the actual phase during the exercise C of practical tests 
with the MOPASS system. This was caused by the highly unnatural curves in the walking 

  
Fig. 115  Results for adjustment of platform speed using the phase-control 

synchronization method during experiments with the MOPASS system 
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patterns. Here we can see one of the drawbacks from the phase controller-based time 
compensation: the trajectory comparator assumes that the actual walking pattern is close to a 
healthy pattern (or, more precisely, to the reference pattern). Highly unnatural patterns lead to 
ill estimations of the current phase. However, such unnatural patterns are only expected 
during therapy with highly impaired patients where therapy strategies based on low system 
compliance are implemented. Therefore, this type of patients is meant to be assisted with high 
torques in order to ensure a good tracking of the reference trajectories and, consequently, 
wouldn’t have enough freedom to deviate from them. On the other hand, the cyclic hip 
trajectory adaptation worked as expected as with the CSHTA method, adapting the step 
lengths even when the time compensator had struggles synchronizing the gait patterns.  

Adjustment of platform speed 

As before, the methods for platform speed adjustment introduced in section 5.4.1 were 
implemented and tested using the new synchronization method. The simulation and practical 
results are shown in Fig. 119 and Fig. 120, respectively. Because of the nature of this 
synchronization method, only differences in the platform speed using Method 4 can be 
observed in the simulation results compared to the results gotten with the PCS method, 
although in most of the cases the differences are very low or inexistent. Nevertheless, it is 
interesting to see how the recalculation of walking speed behaves when complementing the 
PCS with the hip trajectory adaptation. Because of the same reason, the feedback from the test 
subject about how the speed adjustments felt with methods 1, 2 and 3 was the same as with 
the PCS strategy, as expected. Moreover, no significant differences were felt with Method 4 
when using the PCS with and without the hip trajectory adaptation: a platform-lag feeling is 
still present.   

 

 
Fig. 116  Diagram of the phase-control synchronization method with hip 

trajectory adaptation 
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Fig. 117  Simulation results of the phase-control synchronization method 

with hip trajectory adaptation 
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Fig. 118  Results of the phase-control synchronization with hip trajectory 

adaptation using MOPASS and a treadmill 



167 
 

  
Fig. 119  Simulation results for adjustment of platform speed using the 

phase-control synchronization method with hip trajectory adaptation 
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Fig. 120  Results for adjustment of platform speed using the phase-control 
synchronization method with hip trajectory adaptation during experiments with 

the MOPASS system 

5.4.4 Comparison between the synchronization methods 

The comparison between the synchronization strategies can be done from two distinct 
outlooks: the behavior of the trajectory generator and its dependencies when using the two 
different time compensation approaches (cyclic and phase control), and the behavior with and 
without the hip trajectory adaptation.  

Regarding the time compensation, from the theoretical point of view, the phase-control 
approach gives more freedom to the patient to influence the walking speed during the therapy, 
leading to a closer phase-tracking. This higher freedom translates indirectly into higher 
changes in the instant reference joint angles perceived by the patient, which results in a 
decrement of the overall angular errors throughout all the gait cycle. The cyclic time 
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compensation, on the other hand, intends to reduce the phase error every cycle, but only 
enough to avoid considerable synchronization issues. Once the corresponding cyclic 
compensation is done, it returns to the original reference playback speed with the objective of 
inducing the patient to synchronize with the reference pattern in a natural way (i.e. speeding 
up or slowing down rather than performing unnatural steps). The selection between the two 
time compensation approaches is dependent on the objectives of the therapy. If the patient 
doesn’t have a high impairment and the therapy goals invite to a compliant system behavior, 
including letting the patient influence freely the therapy cadence, the continues compensation 
delivered by the PCS might feel more comfortable to the patient. In the cases where a 
compliant system behavior is wanted but it is desired that the patient walks with a selected 
cadence, the cyclic time compensation might be better suited to achieve the therapy goals.  

However, both time compensation strategies have their limitations. The cyclic approach is 
highly dependent on a proper identification of the moment of initial contact (IC). In this 
implementation, it is based solely on the hip and knee trajectories; hence, in cases where the 
actual patterns possess an unnatural motion, the inputs may appear insufficient to perform a 
proper and prompt identification avoiding false positive IC detections. The addition of other 
sensor inputs, such as foot-switches, can help to overcome this limitation and achieve a more 
robust and timely identification. On the other hand, the PCS is highly dependent on the proper 
estimation of the actual phase and, consequently, on how natural is the current walking 
pattern of the patient. If the estimation is not stable, the time compensation might end up 
having a random-like behavior, affecting the outcomes of the therapy.  

Regarding the hip trajectory adjustment, the methods that implement it and complement it 
with a proper synchronization algorithm will deliver more meaningful reference trajectories to 
the therapy, mostly when the phase-error and the difference between step lengths are high. 
However, the trajectory adjustment algorithm possesses the same limitation from the cyclic 
time compensation: it is highly dependent on the proper and timely detection of the moment 
of IC.   

Another aspect to take into account for the comparison of the methods is the effect that the 
time compensation and the direct and indirect reference trajectory adaptations would have on 
an impedance controller in charge of delivering the support torques during ‘assist as needed’ 
therapy. As explained in a previous section, this impedance controller calculates the assistive 
torques from the difference between the reference and actual positions and velocities, and 
because of that it is directly affected by any changes applied to the reference patterns. To 
analyze this specific scenario, an impedance controller with haptic tunnel was designed and 
fed with the result values obtained from the simulations that were carried out for each one of 
the synchronization strategies (Table 30). The coefficients of the controller selected for the 
simulation were KIC = 50 and BIC = 1, whereas the radius of the haptic tunnel was rHT = 2°. 
The resulting support torques for the hip and knee joints can be seen in Fig. 121 and Fig. 122. 
Table 31 shows the absolute mean values of the support toques for each of the cases, where 
the average was calculated over the first six seconds of simulation.  

Two main conclusions can be drawn from these results. First, in most of the cases, 
CHSTA yielded significantly higher torques that the other two methods. This is caused by the 
non-continues time compensation performed by the method and the fact that the phase 
controller tries to make the reference phase come close to a value where the position errors 
between reference and actual trajectories is lower (i.e. the estimated phase). These 
measurements corroborate the statements presented above: the cyclic time compensation 
keeps the reference pattern synchronized with the actual one while intending to influence the 
patient into following the reference cadence, giving the patient less freedom to train at a self-
selected step frequency.   
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The second conclusion can be reached by comparing the PCS and the PCHTA methods. 
The hip support torques in the simulation cases where two different trajectories were taken as 
reference and actual (cases D to K)23 where significantly lower when using the PCHTA 
method. These lower values correspond to the reduction in the obstructive torques generated 
in the vicinity of swing-to-stance transition, achieved thanks to the hip trajectory adaptation 
strategy. Notice that there are no differences between the support torques yielded by these two 
                                                
23 In case L, the trajectory adaptation was so low that there were no visible differences between the two methods.  

 
Fig. 121  Hip joint support torques of an impedance controller using the 

three synchronization methods during simulated therapy  
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methods for the knee joint. This is because no adaptation of the knee trajectory is done and 
the time compensation is the same for both of them. Note as well that in the cases A to C the 
same trajectory was used as reference and actual, hence no trajectory adaptation resulted from 
the CSHTA and the PCHTA methods, and therefore there were no difference in the support 
torques between the methods using phase control. 
 

  
Fig. 122  Knee joint support torques of an impedance controller using the 

three synchronization methods during simulated therapy  
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Table 31  Mean values of joint support torques of an impedance controller using the three 
synchronization methods during simulated therapy 

 
Absolute mean support torque [Nm] 

HIP 
Absolute mean support torque [Nm] 

KNEE 
Sim. case CSHTA Phase cont. PCHTA CSHTA Phase cont. PCHTA 

A 2.20 0.88 0.88 2.75 1.10 1.10 

B 2.12 0.41 0.41 4.04 1.24 1.24 

C 1.21 0.17 0.18 2.63 0.72 0.72 

D 4.85 4.37 3.69 10.78 6.14 6.14 

E 6.03 4.19 3.68 9.96 5.81 5.81 

F 4.58 5.78 5.30 5.40 3.61 3.61 

G 4.43 4.84 4.10 6.76 4.01 3.96 

H 7.56 6.90 5.26 9.84 5.61 5.61 

I 4.00 6.84 4.92 5.55 4.61 4.60 

J 6.17 4.95 3.54 9.57 5.65 5.65 

K 4.74 5.52 3.93 7.03 4.51 4.51 

L 16.40 12.92 12.92 17.30 17.78 17.75 

 
As stated before, the CSHTA method was designed to let the system influence the cadence 

of the patient (and not the other way around) while decreasing the synchronization issues 
brought by the compliance of the system. In case it is desired to let the patient influence the 
reference cadence in a higher degree, it is possible to complement this method with an 
adaptation of the reference cadence, e.g. by means of a simple adaptive oscillator. However, 
this adaptation must be accompanied by the corresponding adjustment of the reference 
trajectories in case the trajectories are dependent on the cadence, as it is the case in MOPASS. 
Such an adaptation can follow the same procedure presented in section 6.4. 

  



173 
 

6 Graphical User Interface  

This chapter is dedicated to the design of the therapist/doctor graphical user interface 
(GUI) and to the implementation of some features that are offered to the therapists through the 
interface to enhance the therapy outcome, namely the online adaptation of gait parameters 
(and corresponding automatic adjustment of the gait patterns), the advanced options for curve 
shaping and the adjustment of support control parameters. 

6.1 Prototype design 

The first version of the MOPASS therapist GUI was developed by the Institute of 
Automation (IAT) of the University of Bremen for the initial clinical trials. It included a basic 
trajectory generator that allowed the selection of characteristic points, together with an 
advanced option to manually adjust the curve-shaping points of the hip and knee trajectories, 
following the concept of trajectory generation presented in section 4.2. It also included an 
online display of the heart-rate and foot pressure sensors used by the therapist for assessment, 
additional to the handling of personal and therapy-related data (e.g. patient-specific 
characteristic points) of each patient. After the clinical trials, several new features were 
developed to improve the user experience and the rehabilitation outcomes, including the 
aforementioned estimator of healthy-like gait patterns, the handling of online adaptation of the 
gait parameters of the therapy, some extra advanced options for hip and knee trajectory 
generation, and handling of support-control parameters. A prototype GUI was designed to 
implement all these new features and carry out their proof of concept. An overview of the 
design and usability of the new GUI (from now referred only as GUI) is presented next. 

The GUI is basically divided in five sections, each one dedicated to specific features 
offered by the interface, namely patient’s data and system modules’ monitoring, trajectory 
generation, gait pattern motion simulation, support level setting, and therapy setting and 
monitoring. The first section dedicated to the patient’s personal data handling and monitoring 
of the system modules and devices is shown in Fig. 123. Here, the therapist can introduce the 
personal data of the patient into the system (A), as well as save it to or retrieve it from the data 
base of MOPASS (B). Additionally, it is possible for the therapist to monitor the connection 
state of each one of the software components of the system, as well as monitor the current 
state of the controller state machine (C).  

The section for trajectory generation and adaptation is shown in Fig. 124. In the right (A) 
there are two plots to display the hip and knee trajectories together with their characteristic 
and shaping points. These points can be easily moved by the therapist in a graphical way by 
dragging them with the finger (touchscreen) or mouse. Fig. 124(A) shows the basic graphical 
trajectory adaptation mode, where the therapist can adjust only the characteristic points. 
Notice how, in the GUI, the knee flexion angles are treated as positive, contrary to the 
convention used so far. The reason for this depiction is that it comes more natural and 
understandable to the medical personnel. The healthy-like trajectories’ estimator is offered in 
(B), where the therapist can decide which type of estimation to use (i.e. which sets of one-
input or two-input neural networks, and which inputs to use)24. In this case, the set of neural 
networks with walking speed and cadence as inputs is utilized. Note that the values of 
                                                
24 In a final version it is recommended to fix ‘normalized walking speed and cadence’ as the only available input 
set.  
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walking speed and step lengths handled by the therapist are not normalized. The 
corresponding normalization is done transparently by the GUI based on the patient's 
anthropometric data. The selection of gait cycle period or cadence to be used during the 
therapy is offered in (C). The generation and adaptation of the initial steps is done through 
(D). If activated (Fig. 125), this feature allows the therapist to see the initial step trajectories 
and their characteristic and shaping points. It also allows him/her to adapt the knee curve of 
the main leg and the duration of the first step by moving these points. The advanced options 
for curve shaping are given in (E). The details on this feature are given in the next subsection. 
The therapist is also offered the option to save current patterns in the data base or retrieve 
previously saved ones (F). The GUI also makes an estimation of the gait parameters 
associated to the current joint trajectories and patient’s anthropometric data (G), namely 
walking speed, step length and heel clearance (step height). Finally, once the therapist has 
finished setting the desired reference trajectories, he/she can download them to the controller 
PC (H). 

  
Fig. 123  GUI: patient’s data and system modules’ monitoring 

  
Fig. 124  GUI: trajectory generation and adaptation 
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The third section of the GUI, depicted in Fig. 126, is reserved for the motion simulation of 
the gait patterns that were set in the previous GUI section. This way, the therapist is able to 
observe the motion generated by the joint trajectories before starting the therapy and do the 
corresponding changes if needed or desired. This section offers again the display and 
graphical adaptation of the joint trajectories (A) so that the therapist sees directly how the 
changes in the trajectories affect the final gait pattern. Two different simulations are offered in 
(B): the legs’ motion (as depicted in Fig. 126) and the heel trajectory (Fig. 127). The therapist 
can select between the two of them via (C). Additionally, the plots in (A) depict a couple of 
diamond-shaped markers (D) corresponding to the simulation time so that the therapists can 
relate the temporal parameters of the trajectories and the resulting motions, and hence perform 
adequate adaptations. 

  
Fig. 125  GUI: initial step trajectories 

 

  
Fig. 126  GUI: gait pattern simulation 
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The Fourth section includes the tools to set adaptive patient support parameters, namely 
impedance parameters and size of the haptic wall. As stated before, these features were not 
tested in the actual MOPASS system. Details on these tools are given in a forthcoming section.  

Finally, the last GUI section contains the tools for carrying out the exercises with the 
device and to display online the corresponding measurements. This section is shown in Fig. 
128. The therapist is able to activate/deactivate the different active modules from the device 
(A) in case, for example, he/she wants to include the trunk/pelvis support or wants to 
deactivate the wheels to do the therapy using a treadmill. This feature can also be used in the 
future when only one of the orthotic legs is attached to the system. This would give the 
opportunity to offer assistive rehabilitation specifically for hemiplegic patients, with 
unconstrained movement in the sound leg. However, it would be imperative to include 
external motion sensors in the system, and to design and implement appropriate high- and 
medium-level control strategies (such as synchronization algorithms) to work together with 
this one-leg version of the system. Once the active modules have been selected, the system 
can be commanded to make the proper initialization of the modules (B) by the controller PC. 
The therapist can also select with what leg to perform the first step (C) (before the exercise 
starts). The selection of the operation mode is done through (D), where the therapist can 
choose between, for instance, therapy with position control, ‘assist as needed’ therapy 
(impedance control), ‘follow-up’ mode, platform free driving and platform in-site turning. 
The states of the controller can also be selected (respecting the allowed state changes of the 
controller state-machine) via (E), allowing the therapist to start the exercise, stop the exercise 
and send the device to the home position. Once the device is running (and depending on the 
selected operation mode), the therapist can variate online the exercise’s reference cadence (F) 
and the level of platform turning (G). Details on the online adaptation of the cadence and the 
corresponding adjustments of the reference trajectories are given in a forthcoming section. 
The measurements obtained during the exercises are also depicted in the GUI. The reference 
and actual hip and knee trajectories are shown in the central plots (H), whereas the left plot (I) 
can be reserved for assessment measurements such as blood pressure, actual step length of 
both legs and foot-pressure. Finally, the therapist can execute an emergency stop of the device 
(J) and turn-off the controller PC once the therapy is over (K). 

  
Fig. 127  GUI: simulation – heel trajectory 
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Fig. 128  GUI: therapy 

 

6.2 Trajectory generation advanced options 

In the basic mode of trajectory generation and adaptation, the therapist is able to adjust 
only the characteristic points of the hip and knee trajectories, whereas the shaping points are 
automatically calculated following the concept presented in section 4.2 and the methods 
presented in section 4.3.3. However, in the advanced mode, the therapist is able also to adjust 
the shaping points to further adapt the joint trajectories towards a desired curve shape, as 
shown in Fig. 129. The system offers three different options of this advanced feature, namely 
Option 1 (keep shape in the given area), Option 2 (keep shape always), and Option 3 (force 
shaping points).  

Option 1 allows the therapist to select the desired shaping points for a given operation area 
(i.e. a given pair of walking speed and cadence, and its surrounding area). This way the 
shaping points coefficients (α-values) corresponding to the actual pair of normalized walking 
speed and cadence will be used in the vicinity of the pair, outranking the mapping process 
previously presented in section 4.3.3 in this specific area. Outside the area, the selection of 
coefficients will return to the mapping method. The idea behind Option 1 is depicted in Fig. 
130, where the current pair of normalized walking speed and cadence is shown as a new 
centroid together with the area where the selected shaping coefficients will be used. In the 
case of Option 2, the α-values corresponding to the selected shaping points will be used over 
all the operation area disregarding the walking speed or cadence, completely avoiding the 
previously mentioned mapping process. Finally, Option 3 fixes the time and angle values of 
the shaping knots, eliminating their relative relation with respect to the characteristic points. 
In other words, the shaping points will not use the α-values to calculate their time and angle 
parameters, and will not depend on the time and angle parameters of the characteristic points. 
This option is only recommended if it is desired to adjust the characteristic points whilst in 
advanced mode without moving the selected shaping points. Once the adjustments are 
finished, it is recommended to set either Option 1 or Option 2. 
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Fig. 130  Operation area of shaping-points’ parameters selection during 

advanced mode for trajectories’ shaping using Option 125 

6.3 Adjustable impedance and haptic tunnel 
In section 5.1.2, a method for ‘assist as needed’ therapy based on an impedance controller 

with a haptic tunnel was presented. In this method, high values of the spring and damper 
coefficients in (36) and low radius (size) of haptic tunnels around the reference trajectories 
will increase the stiffness of the device and hence lead to the exertion of high support forces 
                                                
25 Although the area is presented as a circle for simplicity, it might not be the case in the real application where 
normalized values of cadence and walking speed are used during the mapping. Hence, an oval would fit better 
the real selection process. 

  
Fig. 129  GUI: trajectory generation and adaptation – advanced mode 
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aiming to help the patient to stay closer to the desired pattern. Low impedance parameters and 
high haptic tunnel sizes, on the other hand, will result in a more compliant behavior of the 
device with respect to the patients movements, letting him/her deviate from the reference 
trajectories without exerting high correction forces. A stiff behavior is commonly needed 
when the level of impairment of the patient is high as well as the level of assistance he/she 
needs to walk, whereas a compliant behavior is utilized when the patients have some level of 
movement autonomy and the target of the therapy is to correct, in a low or medium degree, 
their movements. Hence, it is necessary to give the therapists the tools to easily set these 
parameters depending on the patient needs. Moreover, it might be desired that the system acts 
compliant in some phases of the gait cycle, whilst stiff in the others. Thus, different 
impedance and haptic wall parameters are used in the same exercise depending on the actual 
phase. 

The GUI offers an easy adjustment tool for this purpose, presenting two different options 
to set the impedance and haptic wall parameters. The first option allows the therapist to set 
these parameters as continuous profiles throughout the gait cycle dependent on the 
characteristic points of each of the joints. The therapist will select the levels of compliance 
and tunnel size for each one of the characteristic points and the system will create smooth 
profiles containing these values. These support profiles are generated following the same 
principle of the joint trajectories, where the ‘characteristic points’ of the compliance and 
tunnel size profiles can be expressed also as the ordered pairs 

   (55) 

and 

  (56) 

respectively, where 

  (57) 

are the time parameters and are equal to the time parameters of the characteristic points tM,i, 
are the compliance level values, are tunnel radius values and i = [1,4]. By 

interpolating these points using the BVSIS fitting method together with extra shaping points 
with the same α-values of the joint trajectories, the resulting compliance and tunnel radius 
profiles will possess the same shape and extrema moments as the corresponding joint motion 
profile. To have a better understanding take a look to Fig. 131 and Fig. 132, where the 
compliance and tunnel radius profiles, respectively, are shown in the right plots together with 
the reference joint trajectories (dark green lines), and the sliders used to set the corresponding 
values are located in the left. In these example figures, the support parameters were set so that 
the system has a stiff behavior near the maximum flexion points of the hip and knee reference 
profiles, and a compliant behavior near the minimum flexion / maximum extension points.  

Note how the therapist can select directly the radius of the haptic tunnel, setting the values 
in degrees. In the case of the impedance controller coefficients, however, the adjustment is 
done in an indirect manner. The therapist can select the compliance level of the system, which 
is translated in a proportional (inverse) way to the impedance parameters KIC and BIC. The 
proposed method to obtain the desired impedance parameters at a certain moment t follows 

 
  

 (58) 
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where c(t) =[0,1] is the compliance value set by the therapist, Kmax and Bmax are the maximum 
spring and damper coefficients’ values, respectively, and Kmin and Bmin are the minimum 
spring and damper coefficients’ values, respectively. The minimum and maximum values are 
set a priory.  

For the second adjustment option the time values of the characteristic points of the support 
profiles are independent of the joint trajectories’ characteristic points. This way, the therapist 
has the freedom to select the moments in which the extrema of the support profiles are 
located. Moreover, the interpolation to obtain the profiles is done without adding extra 
shaping points. An example of this adjustment option is shown in Fig. 133 and Fig. 134, 
where the compliance and tunnel radius values were selected so that the system has a stiff 
behavior in the vicinity of the initial contact (IC) to ensure that the patient will follow the 
desired cadence, whereas in the rest of the gait cycle the system has a compliant behavior. For 
this second option, a set of (diamond-shaped) markers were added to the plots in order to 

  
Fig. 131  GUI: compliance profile – type I 

 
Fig. 132  GUI: haptic wall radius profile – type I 
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allow the therapist to set the time values of the support profiles’ characteristic points in a 
graphical manner by dragging them and moving them horizontally.  

This method for adjustable support levels is presented as a potentially beneficial tool for 
patient-tailored therapy. For instance, it could be used to train the joints affected by secondary 
abnormalities avoiding the complementary actions (tertiary abnormalities) that the patient has 
been using to cope with the primary and secondary deviations. For instance, inadequate knee 
flexion could be compensated by the patient with abnormal movements in the hip and in the 
contralateral limb, as explained in section 2.2. Two possible therapy scenarios could be 
contemplated here using adaptable support profiles. In the first scenario, the knee would be 
assisted to follow a healthy pattern whereas the hip and contralateral leg move more freely, 
which would induce the patient to eliminate the compensatory movements while training the 
affected joint. In the second scenario, the therapist could set a higher support in the hip joint 
and contralateral limb joints to prevent them to do the compensatory movement, whereas a 

  
Fig. 133  GUI: compliance profile – type II 

  
Fig. 134  GUI: haptic wall radius profile – type II 
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little bit more compliant behavior would be set in the affected knee. This way, the system 
would persuade the patient to train more rigorously the affected joint whilst impeding the 
coping patterns that he/she has relied on so far to walk. Moreover, because it is possible to set 
the support level profiles throughout the cycle, the joints can be addressed specifically in the 
moments where they have deficits.  

6.4 Online adaptation of gait parameters 

As stated before, the system allows the therapist to change the cadence of the gait pattern 
(and consequently the walking speed) while performing the walking exercise. As it was 
discussed in section 4.3, the changes in the cadence and walking speed are reflected in the 
joint curves, thus when the therapist carry out these changes, the joint trajectories must be 
adapted correspondingly. To this end, the results gotten from section 4.3 were used to perform 
the corresponding automatic adjustments to the joint curves depending on the commanded 
cadence changes. Moreover, because the reference trajectories set by the therapist might differ 
from the ones estimated by the healthy-like trajectories’ estimator for the initially set of 
walking speed and cadence (i.e. the therapist manually adjusted the curves), these automatic 
adjustments must also be dependent on the initially set reference trajectories and gait 
parameters.  

The proposed way to tackle this problem is to analyze the difference in the characteristic 
points’ parameters estimated by the neural networks (NN) for the original26 and adjusted gait 
parameters, and use them to apply similar changes to the parameters of the characteristic 
points of the current reference trajectories set by the therapist. Let us introduce a trivial 
example to have a better understanding of the problem at hand. Imagine that the knee 
maximum flexion point was set by the therapist to have an angular value of -50° with some 
initial gait parameters WS1 and cad1. However, the NN estimated that value to be -60°. The 
therapist executes a change in the gait parameters resulting in new values WS2 and cad2. For 
these new parameters, the NN estimated an angular value of -30°. One way to adjust the angle 
value given this change in the estimated characteristic point is to apply to it the same relative 
increment/reduction that the estimated values underwent. In this specific case, the estimated 
angle parameters underwent a reduction of 50%, hence the adjusted reference angle would be 
equal to -25° after applying the same reduction. Other adjustment options for the angular 
parameters are presented afterwards. In the case of the characteristic points’ time parameters, 
the changes in the estimated time values are applied directly to the time values set by the 
therapist. If the therapist had set a time value equal to 80(%) to the characteristic point in the 
example at (WS1, cad1), and the values estimated by the NN for (WS1, cad1) and (WS2, cad2) 
were 85(%) and 80(%), respectively, the -5(%) difference would be applied to the original 
value resulting in a new value equal to 75(%).  

A general scheme of the procedure is shown in Fig. 135, where (WSO, CadO) and (WSnew, 
Cadnew) are the original and the new (adjusted) gait parameters (walking speed and cadence), 
respectively;  and  are the time and angle values of a given characteristic point set by the 
therapist before starting the exercise; , ,  and  are the time and angle 
values estimated by the NN for the original and new gait parameters; and  and  are 
the new time and angle values of the characteristic point used to generate the adjusted joint 

                                                
26 From this point, the reference joint trajectories and gait parameters set by the therapist before the exercise 
starts are referred to as original. 
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trajectories correspondent to the changes in cadence commanded by the therapist. Different 
functions fθ can be used to obtain the new angular values. Three functions are proposed here: 

 
 

 
 

  
(59) 

All three functions have advantages and disadvantages. fθ1 maintains a fixed difference 
between the estimated and the adjusted values, correspondent to the original difference 
between the value θO set by the therapist and the estimated one θO,est. This constant difference 
avoids high adjustment changes that might be undesired, but disregards the variable influence 
of the changes in the gait parameters on the angular parameters of the curves. fθ2 intends to 
compute the new angle values taking into account this variable influence in the form of a 
proportional relation. However, values in the vicinity of 0° will generate high multipliers even 
if the difference between θO,est and θnew,est is just a couple of degrees. To overcome this issue, 
fθ3 includes a new term θr, which is a reference value with which θO,est and θnew,est are 
compared to obtain the multiplier. Note that fθ2 = fθ3 when θr = 0. The adjustment level is 
directly influenced by the selection of θr. A wrong selection of θr will result in a poor 
performance of the adjustment module. Moreover, values in the vicinity of θr might cause the 
same undesired behavior as when using fθ2. Two θr are proposed here. One, equal to the 
middle value of the estimated joint trajectory in (WSO, CadO):  

  (60) 

  
Fig. 135  Scheme for trajectory adjustment due to online adaptation of the 

cadence 
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where  and  are the minimum and maximum angular values of the trajectory that 
was generated with the characteristic points estimated using (WSO, CadO) as inputs of the set 
of NN. For the second option it is proposed to use the angle value of the estimated 
characteristic point that is the farthest away (in the angular dimension) from the point being 
adjusted. In other words,  

  
(61) 

Two adjustment blocks are also presented in the scheme. The first one, present only in the 
time values calculation, is introduced to ensure that the resulting values lie in the range 
[0%,100%). So, if the value is, for instance, equal to -7(%), the final adjusted value will be 
93(%). The second adjustment block is more complex, and is inserted to ensure that the inputs 
of the NN have valid values, based on the admissible application region from Fig. 40. First of 
all, take into account that the reference walking speed and cadence selected by the therapist27 
may lie outside the admissible region since he/she is not restricted by it. Hence, the first task 
of this adjustments’ block is to check the validity of the input pair and, if it lies outside of the 
limit region, it selects an appropriate value of walking speed that fulfills this requirement. 
Second, note that the therapist is only able to change the cadence of the gait pattern, i.e. only 
one of the two inputs of the NN. Thus, the second task of the block is to estimate the new 
value of walking speed to be supplied to the estimators based on the original gait parameters 
and, of course, lying inside the admissible inputs’ area. Additionally, the block will make the 
corresponding normalization operations which will not be included in the explanations for 
simplicity.  

Let us analyze the first task. Based on the admissible inputs’ area for the set of NN shown 
in Fig. 40, it can be seen that for every value of cadence Cadi inside the range there exist a 
valid range of walking speeds limited by [WSi,min, WSi,max]. If the original value of walking 
speed is outside this valid range, then a new walking speed WSO* must be selected to be 
supplied to the NN. In these cases, the value inside the range that is closest to the original 
values is selected. If the original value lies in the admissible range, then it can be directly 
supplied to the NN. There exist a third special case, when it is desired not to use the original 
walking speed in the calculations; here the value in the middle of the admissible range is 
selected to be the NN input. All three cases yield  

  

(62) 

For the second task, the values of WSO
* and Cadnew are used to estimate the new value of 

walking speed WSnew that will be used as input of the NN. It is important to understand that 
this value is a mere approximation of the new walking speed and it is calculated only to obtain 
the new characteristic points, and its value will very likely differ from the resulting speed 
calculated after the new trajectories are generated. As before, Cadnew will have a valid range 
of walking speed values [WSnew,min, WSnew,max] associated with it. The idea is that the new 

                                                
27 Actually, the therapist only selects the reference cadence, and the reference walking speed is calculated based 
on that cadence, the selected joint trajectories and the length of the patient’s legs. Hence, the therapist selects the 
reference walking speed in an indirect manner. 
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value of walking speed possesses the same relation with the limits of the corresponding valid 
range as the original value WSO

* had with its corresponding limits. This proportional relation 
can be expressed as 

  
(63) 

To observe the performance of the complete adjustment procedure take a look at the 
example depicted in Fig. 136, where fθ2 was selected as the function used to compute the 
adjusted angle values. Fig. 136 shows the reference trajectories (red lines), i.e. the ones 
corresponding to the original points set by the therapist (‘before’ side) and the ones resulting 
from the adjustments done due to a change in the cadence (‘after’ side). Additionally, it also 
shows the corresponding estimated trajectories, i.e. the trajectories that the estimator suggests 
as healthy-like trajectories using the same gait parameters as inputs. Two noticeable 
differences exist between the reference trajectories set by the therapist and the estimated ones 
before changing the cadence: one, the hip maximum flexion of the reference trajectories is 
much higher and sooner that the one suggested by the estimator; and two, the maximum knee 
flexion angle of the reference trajectories is lower and later that the one suggested by the 
estimator. The specific gait parameters used in this example were: CadO = 45 [steps/min], 
WSO = 0.196 [heights/s], Cadnew = 70 [steps/min], and WSnew = 0.38 [heights/s] 28. Note how, 
in the case of the maximum knee flexion, the adjustments done to the original reference 
trajectory showed small, seemingly appropriate changes in the corresponding characteristic 
point influenced by both, the initial selection done by the therapist and the estimated change 
in the curve parameters due to the change in the cadence. In the case of the maximum hip 
extension, however, the changes in the angle value seem higher than desired. This happened 
because the estimated angle value for this characteristic point before the changes was too 
close to zero, and a small change in the estimated angular value of this point resulted in a high 
adjustment multiplier. This shows the potential improvements brought by fθ3 over fθ2 using a 
reference angle θr ≠ 0. To corroborate this statement, refer to Fig. 137, where the results in the 
hip joint from the previous example are shown, with the difference that this time fθ3 was 
utilized with θr = θr1. Note that now the changes in the maximum hip extension are not as 
abrupt as before. 

                                                
28 The values of walking speed are normalized values 
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Fig. 136  Example of trajectory adjustment due to adaptation of the 

cadence 

  
Fig. 137  Example of hip trajectory adjustment due to adaptation of the 

cadence using fθ3 
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7 Conclusions 

This dissertation presented a novel approach for hip and knee joints trajectory generation 
for robot-assisted gait rehabilitation, which was implemented and tested with the MOPASS 
system. First of all, a generator component was developed to estimate healthy-like trajectories 
based on the height of the patient and the desired walking speed and cadence. This estimation 
process was divided into the estimation of the characteristic points of the curves (i.e. the 
points that affect the most the shape and behavior of the curve) and the shaping points (i.e. the 
points used to shape the curve between the characteristic points). Although it was intended to 
make the estimation taking into account the data from several subjects with different ages and 
physical characteristics, it was decided to train the estimators with the data of only one 
subject: the person who presented the best correlation coefficients between the estimated and 
experimental characteristic points. This decision was taken due to the high inter-subject 
variability seen after training the characteristic points’ estimators. Although the low 
predictability might have been caused by the many limitations of the experimental study 
conducted to train the estimators, low predictability has been also reported by other 
researchers. Artificial Neural Networks were selected as estimators for the characteristic 
points, whereas search algorithms and a radial-basis mapping method were developed for the 
shaping points. At the end, the developed generator component was able to reconstruct 
healthy-like trajectories as desired. However, these trajectories were generated based on the 
walking pattern of only one (carefully selected) subject, which raises the following questions. 
Given the high inter-subject variability in the walking patterns, are state of the art approaches 
failing in our search for tailoring the trajectories to the specific characteristics of the patient 
by trying to generalize the key kinematic and spatiotemporal parameters disregarding the 
variability in the walking preferences of the population? Should data from several subjects be 
used to generate the healthy-like trajectories or only data from one (or perhaps more than one) 
subject with very high predictability? 

The generator is complemented with the possibility of manually adapting the trajectories 
in an easy and graphical way, thanks to the novel concept for parametrization and 
reconstruction of the curves. This not just enables the therapist to search for gait patterns that 
fit better the preferences of a patient (counteracting, to some extent, the effects of using only 
one subject for the estimator’s training), but also to set reference joint trajectories that can 
tackle in a more effective way the individual deficiencies and abnormalities (e.g. by training 
compensatory patterns that might lead to independent walking, even if they are not considered 
to be normal). As it was seen in chapter 2, there exist sundry kinematic abnormalities in 
pathological gait that can affect distinctly the patients, which can be addressed in a more 
efficient way if the therapist has direct access to the generation of the reference trajectories.  

The proposed generation process also presents some methods to include the adaptations 
made by the therapists in further generation and adaptation of the curves. One example is the 
automatic trajectories’ adjustment done when the therapist changes online the cadence of the 
exercise whilst the patient is walking assisted by the device, taking into account the changes 
in the gait parameters and the initially selected reference trajectories. The other example is the 
inclusion of advanced curve shaping tools that allow the therapist to adapt the trajectories in a 
higher degree, and take the changes into account for the selection of shaping points in 
different parts of the spectrum of walking speed and cadence. However, the effectiveness of 
the generation and adaptation process proposed here is subject to the well understanding of 
the gait principles by the therapists, together with the willingness to step outside the current 
paradigms of traditional therapy and learn how to properly make use of the emerging 
technologies.  
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This thesis also presented a set of improved methods to synchronize the reference gait 
patterns with the actual pattern of the patient. Desynchronization between these two patterns 
is a common problem when the system’s behavior is not stiff enough to guaranty a close 
tracking of the reference trajectories, leading to a compliant behavior that allows the patient to 
deviate from the reference patterns and impose, to some extent, his/her walking pattern. The 
methods are based on previously presented synchronization strategies that have been used in 
other devices with success, but include other approaches to current solutions and are 
complemented by a novel hip trajectory adjustment method to improve the synergy between 
the device and the patient during training. Moreover, it presents some methods for 
adjustments of the reference walking speed (i.e. treadmill or mobile platform speed) in order 
to cope with the synchronization efforts in a smooth and timely manner. The proposed 
methods were tested in a simulation environment as well as practically with a healthy subject 
using the MOPASS system, showing promising results and exhibiting an upgrade with respect 
to the previous methods.  

A graphical user interface (GUI) was also developed during the course of this research, 
which includes the several functionalities brought by the presented trajectory generation 
methods. The GUI also includes a tool to manually adjust the assistance levels (or in other 
words, the compliance level of the device) throughout the gait cycle. This adjustment tool is 
based on a proposed ‘assist as needed’ control strategy that involves an impedance-based 
controller and a haptic tunnel, strategies used successfully in other state of the art systems. 
This way, the therapist can not only individualize the reference trajectories targeting the needs 
of each patient, but also the stiffness of the system and the support given by the device to the 
patient. 

In summary, with the proposed trajectory generator and the proposed method for 
adjustable support level profiles, the patient-specific secondary and tertiary deviations can be 
treated in a more optimal manner. Letting the therapist adjust the joint trajectories can help 
the patients improve or acquire complementary movements to achieve better walking 
performances. On the other hand, different levels of assistance for each joint throughout the 
gait cycle allow training only where and when is needed, for example, by assisting the joints 
affected by secondary abnormalities depending on the moments when their deficits are high, 
while avoiding the usage of complementary actions in the sounder joints. 

Although the overall outcome of this work is promising, there exist a significant number 
of limitations that affected the effectiveness and functionalities of the proposed methods, 
mostly regarding the trajectory estimation and generation. Other limitations resulted in the 
impossibility to properly tests the presented approaches for trajectory generation and motion 
control, and therefore to reach conclusive results about their clinical effectiveness. One of the 
hindrances was the power, mechanical and sensory limitations in the MOPASS system which, 
for instance, prevented the practical test of the proposed ‘assist as needed’ approach. A 
second limitation, perhaps being the most significant, was the difficulty to test the proposed 
methods with actual patients. Although many of the concepts were tested in initial clinical 
trials with the MOPASS system, the improvements that resulted from that experience were 
only tested in simulations and with healthy subjects.   
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8 Open topics for future work 

There exists a wide area for improvement of the proposed methods and continuation of 
the related research. Only a few topics will be presented next, which to the eyes of the author 
are mostly related to this work and might enhance the proposed methods and improve the 
outcomes. These topics will include possible improvements to tackle specific limitations of 
the methods as well as next steps towards a better rehabilitation experience. 

First of all, it is necessary to test the presented methods in a clinical environment with 
patients with different symptoms and impairment levels, as well as with therapists willing to 
follow the new trends of technology. This not only would be used to evaluate the 
effectiveness of the methods, but would also give valuable feedback to target the research 
efforts to the right direction and make the adjustments and enhancements necessary to come 
closer to understand the optimal way to use robotic systems in gait rehabilitation. 

Let us continue with the estimation of healthy-like walking patterns. As it was seen, the 
low predictability of the characteristic points when utilizing data from several subjects for the 
training of the neural networks was one of the limitations faced during the estimation of 
healthy-like hip and knee joint trajectories. A possible way to improve this with the current 
experimental setup is to estimate the time and angle values of the characteristic points relative 
to a specific point of the trajectory (e.g. the point of maximum extension in hip and the point 
of maximum flexion in knee), instead of doing it with respect to the estimated moment of 
initial contact of the foot with the ground (for the time values) and the 0° position (for the 
angle values). The selected reference points would be estimated as it was proposed in section 
4.3.2, whereas new neural networks would be trained for the remaining characteristic points 
with the time and angle values relative to the reference points. It is expected that this would 
decrease the errors caused by offsets on the angular measurements and increase the 
predictability of these relative values.  

However, many other limitations would remain, mostly related to the methods of data 
collection. To obtain more reliable results, it is necessary to utilize specialized tools for gait 
analysis, such as 3D marker-based gait analysis systems. The data collected with these tools 
could be further used to retrain the estimators presented in this work and obtain better 
estimation results. Moreover, the inclusion of a much wider spectrum of experimental 
subjects with different ranges of age, height, weight, fitness condition, etc. could give a better 
insight on the dependency and variability of the kinematic and spatiotemporal gait parameters. 
However, this is not an easy task because of the difficulty to set up this kind of experiments 
with such a high number of participants, organization- and cost-wise. 

Regarding the obtainment of the shaping knots of the curves, it would be desired to 
improve the time consumption of the presented methods without compromising the error 
performance of the searches. It would be recommended to study the efficiency of setting fixed 
values to the temporal parameters of the shaping knots to reduce considerably the time-
consumption and complexity of the α-values’ search. Moreover, depending on the behavior of 
the obtained angular coefficients following the aforementioned modification, it would be 
beneficial to implement continues mapping (fitting) methods (such as regression or neural 
networks) to obtain the angular coefficients of the shaping points depending on the desired 
gait parameters.  

An addition that can be made to the trajectory estimation process is the inclusion of 
turning. Most state of the art systems are mechanically designed exclusively for straight 
walking (mostly if using a treadmill), and others that have the potential to be used to train 
non-straight walking, such as mobile robots, do not possess the methods to appropriately 
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generate reference trajectories for this task. Studies on how the parameters of the 
characteristic and shaping points change during turning with respect to straight walking can 
help in a further implementation of an estimation component capable of estimating the point’s 
parameters of each leg (separately) depending on the straight-walking reference trajectories’ 
parameters and on the desired degree of turn. This would lead to task-oriented training not yet 
seen in robot-based gait rehabilitation. 

There exist some other enhancements related to the generation of trajectories. As it was 
seen in chapter 2, one of the common symptoms seen in pathological walking is hemiparesis. 
In these cases, the patients experience impairment in only one of the legs, whilst the other 
remains sound or almost unaffected. Some research efforts have been put into obtaining 
reference joint trajectories for the paretic leg based on the motion patterns of the unaffected 
one. The author proposes the design and implementation of a synergy method based on the 
same principle. Specifically, it is proposed that the system implements two different 
compliance profiles for each leg. The therapy would be characterized by a stiff system’s 
behavior in the paretic side, whereas in the unaffected side the system will be more compliant 
to the movements of the patient. The therapy would start with a healthy reference trajectory. 
This way, the unaffected side will not be influenced by the paretic side impairments, 
preventing compensatory movements in the sound leg. With time, the reference trajectory will 
automatically adapt and progressively come closer to the preferred trajectories in the sound 
side, following a trajectory adaptation algorithm like the ones presented in [52]. This way, the 
walking preferences seen in the sound leg can be replicated in the affected leg in a seemingly 
optimal manner.  

Additionally, it is proposed that further efforts are put into the development of ‘assist as 
needed’ strategies that involve the proposed trajectory generation concept. Furthermore, a 
proposal involving the setting of two different reference trajectories for each joint is hereby 
given. The idea behind this proposal is to have an optimal reference trajectory and a temporal, 
variable reference trajectory. The former refers to the ultimate target gait pattern that the 
therapist wants to achieve with the patient, but is out of the reach in the patient’s current state. 
The latter corresponds to the actual reference trajectory delivered to the motion controllers, 
and hence the one that will be used in the exercises. If the selection of this trajectories is 
complemented with some algorithms able to measure the level of assistance and/or deviation 
between actual and reference patterns, it would be possible to automatically adjust the actual 
reference trajectories towards the optimal trajectories in a progressive manner when it has 
been recognized that the patient has achieved a certain level of performance (e.g. if the 
average support torque and/or the average position error in the last cycles is lower that a 
certain threshold). This adaptation towards the optimal trajectory would be easily 
implemented thanks to the proposed concept of trajectory parametrization and generation, 
where the characteristic points of the variable reference trajectories can be moved 
progressively closer to the ones from the optimal trajectories following the same principle of 
manual adaptation.   

Other enhancements are related to the usage of the graphical user interface (GUI). Future 
research can make use of the easy and intuitive handling of the GUI-based trajectory 
generation and adaptation and use it as a tool to learn from the experienced therapists. This 
means, to utilize the manual adjustments done by the therapist for specific patients as datasets 
for learning algorithms whose objective will be to suggest appropriate trajectory adjustments 
based on the therapists experience. This way, the system could be able to automatically infer 
and suggest which could be the adjustments that an experienced therapist would do for a 
certain subject based on changes done previously with one or more patients that had similar 
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limitations and pathological patterns. This ‘learning from the therapist’ approach could 
benefit greatly the process of patient-tailored therapy.  

Additionally, other tools can be added to the GUI. For example, the inclusion of a gait 
(sub) phases’ estimator would improve the interaction experience of the therapist with the 
system, for instance, when setting the reference trajectories. Such tool can also be of great 
benefit during the assessment of the actual patient gait patterns. The inclusion of other 
feedback signals and evaluation measurements would also facilitate the assessment process. 

These are only some ideas for future work related to this dissertation, corresponding to a 
small part of a very large research topic called rehabilitation robotics, which has many areas 
yet to be investigated. 
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List of abbreviations 
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Appendix A: Assessment of robot-based gait 
rehabilitation: a summary 

This appendix presents a very superficial summary of the findings of some of the clinical 
studies that have been carried out with robotic gait rehabilitation systems (RGRS). Table 32 
shows some studies that reviewed the differences of walking with and without a RGRS, or the 
performance of the users before and after using the devices. Table 33, on the other hand, 
shows some findings of studies that compared robot-based rehabilitation with traditional 
physiotherapy by analyzing some gait related measurements. Studies that showed 
disadvantages of robotic rehabilitation are located at the end of the tables. 

Table 32  Clinical trials assessing robotic gait rehabilitation 
Reference Subjects Results 

Swinnen, 
et.al (2014) 

[141] 

9 studies were 
included (7 true 
experimental and 2 
pre-experimental) 

Significant improvements in balance scores measured with the Berg Balance Scale, the Tinetti test, 
postural sway tests, and the 'Timed Up and Go' test. 

Fleerkotte, 
et.al (2014) 

[142] 

10 individuals with 
chronic incomplete 
SCI 

Improvements in walking speed, distance, TUG (Timed Up and Go ), LEMS (Lower Extremity 
Motor Scores) and WISCI (Walking Index for Spinal Cord Injury). 
Participants kept the improvements at the eight-week follow-up.  
Slower walkers benefit the most from the training protocol. 

Chernikova, 
et.al (2014) 

[143] 

141 patients with 
post-stroke 
hemiparesis 

Improvement of kinematic gait parameters (hip flexion/extension and hip abduction/adduction 
amplitudes, hip abduction/ adduction and knee flexion/extension torque amplitudes). 
Improvement of inter- and intra-joint dynamic interactions.  
Decrease of step asymmetry. 

Varoqui, 
et.al (2014) 

[144] 

15 chronic 
incomplete SCI 
subjects 

Improvement in the voluntary-movement related active range of motion, maximal velocity and 
movement smoothness in ankle joint. 
Improvement in the maximal voluntary contraction in ankle dorsi- and plantar-flexor muscles. 
Improvement in the mobility and over-ground gait velocity. 

Niu, et.al 
(2014) 
[216] 

40 SCI subjects 
with spastic 
hypertonia at their 
ankles 

Significant improvements in speed and functional mobility in subjects with initial high walking 
capacity, but no significant change in endurance. 
No significant improvement in subjects with low walking capacity. 

Nardo, et.al 
(2014) 
[217] 

9 patients with 
Parkinson's Disease 

Improvements on spatio-temporal gait parameters. 
Improvements on the Unified Parkinson's Disease Rating Scale motor score. 
Kinematic and kinetic gait parameters did not show significant improvements. 

Mirbagheri, 
et.al (2011) 

[218] 

12 incomplete SCI 
subjects with 
different degrees of 
spasticity 

Significant improvement in reflex stiffness and intrinsic (muscular) stiffness. 
Increased isometric maximum voluntary contraction (MVC) of ankle extensor and flexor muscles. 
 

Mirbagheri, 
et.al (2012) 

[219] 

12 incomplete SCI 
subjects with 
spasticity at their 
ankles 

Improvement in patients with a higher reflex stiffness slope and intercept (Class 1). 
Improvement in reflex stiffness parameters in subjects who had lower baseline stiffness. 
Significant decrease in intrinsic intercept. 
No significant changes in intrinsic slope. 

Calabro, 
et.al (2014) 

[220] 

54-year-old female 
stroke survivor (3 
years) with  
hemiparesis and 
spastic hypertonia 

Moderate improvement in gait and balance.  
Significant increase in the patient’s force regarding hip extension. 
Significant improvement both in functional and psychological and cognitive status. 

Schueck, 
et.al (2013) 

[221] 

Two individuals 
with chronic 
incomplete spinal 
cord injury and two 
with chronic stroke 

Significant and relevant increase of gait speed in one subject (no significant changes shown by the 
other subjects). 
The subjects trained more actively and with more physiological muscle activity when using 
cooperative control. 
 

Lo, et.al 
(2010) 
[222] 

4 individuals with 
Parkinson's disease 
and freezing of gait 
(FOG) symptoms 

Reduction in FOG (by self-report and clinician-rated scoring). 
Improvements in gait velocity, stride length, rhythmicity, and coordination. 

del Ama, 
et.al (2015) 

[223] 

18 chronic stroke 
survivors with 
hemiplegia 

Improvements in knee and hip sagittal muscle balance scores. 
Decreased in ankle extensor balance score. 
 

van Nunen, 
et.al (2014) 

[154] 

30 first-ever stroke 
patients 

Significant increase in walking speed, other walking- and mobility related tests, and strength of the 
paretic knee extensors relative to baseline at all assessments. 
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Reference Subjects Results 

Krishnan, 
et.al (2013) 

[224] 

6 young adults and 
3 male chronic 
stroke survivors 

Increased EMG activity of several lower extremity muscles (the participants were more actively 
engaged). 
Improvement in target-tracking task and performance with practice (in sound and impaired 
participants). 

Krishnan, 
et.al (2012) 

[225] 

52-year-old male 
stroke survivor  

Considerable improvement in tracking accuracy and reduction in the kinematic variability of ankle 
trajectory. 
Improvements in muscle coordination. 
Substantial improvements in several standard clinical and functional parameters. 

Stoller, et.al 
(2014) 
[226] 

20 stroke survivors 
(<6 month) with 
severe motor 
limitations 

Good to excellent test-retest reliability and appropriate repeatability for the most important peak 
cardiopulmonary performance parameters. 

Westlake, 
et.al (2009) 

[153] 

16 stroke survivors 
with chronic 
hemiparetic gait 

Improvement of self-selected walk speed, paretic step length ratio, and four out of  six secondary 
measures. 

Wu, et.al 
(2014) 
[227] 

30 chronic  stroke 
survivors 

Significant increase in walking speed. 
Resistance training was not superior to assistance training. 
Significant improvement in distance and balance for the assistance group but not for the resistance 
group. 

Chisari, 
et.al (2014) 

[228] 

15 patients with 
post-stroke 
hemiparesis 

Increase of duration and covered distance. 
Decrease of body weight support and guidance force on the paretic side. 
No increase of force. 
Significant increase of firing rate of Vastus Medialis during asometric knee extension. 

Borggraefe, 
et.al (2010) 
  [229] 

20 young patients  
with cerebral palsy 

Significant improvements in dimension D (standing) and dimension E (walking). 

van 
Kammen, 

et.al (2014) 
[145] 

10 healthy 
participants 

The temporal structure of the stepping pattern was altered when walking with robotic system (relative 
duration of the double support phase decreased as the single support phase increased). 
The differences between robot- and non-robot-assisted were most prominent at low walking speeds. 

Hidler, et.al 
(2005) 
[230] 

7 healthy people Significant differences in the spatial and temporal muscle activation patterns. 
Significantly higher activity in the quadriceps and hamstrings during the swing phase while robot-
assisted walking. 
Reduction of the activity in the ankle flexor and extensor muscles during robot-assisted walking. 

Lapitskaya, 
et.al (2011) 

[147] 

12 traumatic brain 
injury patients and 
14 healthy controls 

Reduction of the DAR (global delta-alpha EEG power ratio) in healthy subjects but not in patients. 
No changes in P300 latencies in neither group. 
 

Neckel, 
et.al (2008) 

[148] 

10 chronic hemi-
paretic stroke 
subjects and 5 
controls with 
matching age 

Abnormal asymmetric joint torque patterns were generated. 
Kinematic patterns of the stroke subjects were similar to those of the control subjects. 

 

 
Table 33  Clinical trials comparing robotic gait rehabilitation with conventional 

therapy 
Reference Subjects Results 

Shin, et.al 
(2014) 
[149] 

60 incomplete SCI 
patients 

Significant improvement in LEMS (lower extremity motor score), AMI (ambulatory motor index), 
SCIM3-M (Spinal Cord Independence Measure III mobility section), and WISCI-II (walking index 
for spinal cord injury version II) in both groups. 
Significant improvement for the robotic-assisted gait training group based on WISCI-II  (no 
difference in the remaining variables). 

Schwarz, 
et.al (2009) 

[150] 

67 stroke survivors 
(mostly < 3 
months) 

Higher gains in ability to walk independently (functional ambulatory capacity score) and neurological 
status according to NIHSS (National Institutes of Health Stroke Scale) for robot-assisted group. 
No significant differences between groups after checking the participants who achieved independent 
walking based on secondary outcome measures of gait parameters. 

Schwartz, 
et.al (2011) 

[231] 

56 subacute SCI 
patients 

Significant improvement in both the FAC (Functional Ambulation Category scale) score and the 
WISCI (Walking Index for SCI) score for both groups. 
Higher improvements in functional abilities (according to the SCIM score) in robot-assisted group. 

Schwarz, 
et.al (2012) 

[232] 

32 Multiple 
Sclerosis patients 

No difference in improvements between the groups. 
Significant post-treatment improvements in FIM (Functional Independence Measure) and EDSS 
(Expanded Disability Status Scale) scores for both groups. 

Tong, et.al 
(2006) 
[151] 

46 stroke survivors 
(<6 weeks) 

Significantly higher improvement in the 5-m walking speed test, Motricity Index, EMS (Elderly 
Mobility Scale), and FAC (Functional Ambulatory Category) for the robot-assisted group. 
Relative duration of stance and swing phase differed between patients and controls, and between 
robot-assisted and treadmill walking groups. 

Dundar, 
et.al (2014) 

[152] 

107 cases of new 
cerebral stroke 

Significant improvements for all parameters (except lower extremity MASS scores) in both groups. 
Higher improvements in FIM, MMSE, all subparts of SF-36, and lower extremity categories in the 
BRS in the robot-assisted group. 



223 
 

Reference Subjects Results 

Mayr, et.al 
(2007) 
[233] 

16 stroke survivors 
(mostly < 3 
months) 

Significantly higher improvement for robot-assisted therapy based on EU-Walking Scale, Rivermead 
Motor Assessment Scale, 6-minute timed walking distance, Medical Research Council Scale, and 
Ashworth Scale. 

Drużbicki, 
et.al (2010) 

[234] 

6 to 14 years old 
children with 
cerebral palsy 

Statistically significant improvement of balance in robot-assisted group, whereas improvement with 
no statistical significance in control group. 
Significantly higher improvement in robot-assisted group. 

Alcobendas-
Maestro, 

et.al (2012) 
[235] 

80 incomplete SCI 
patients (3 to 6 
months) 

Walking speed in both groups did not differ. 
Better WISCI II (Walking Index for Spinal Cord Injury) in robot-assisted group. 
Better results in the 6-minute walk test and LEMS (Lower Extremity Motor Score) in robot-assisted 
group. 

Calabro, 
et.al (2014) 

[220] 

54-year-old female 
stroke survivor (3 
years) with  
hemiparesis and 
spastic hypertonia 

Improvements regarding mood, cognitive status and coping strategies compared other female patients 
with chronic stroke undergoing traditional rehabilitation. 

Picelli, et.al 
(2012) 
[236] 

41 patients with PD 
(Parkinson disease) 

No statistical differences between groups based on baseline measures. 
Significant higher improvement in walking speed and distance in robot-assisted group. 

Beer, et.al 
(2008) 
[237] 

35 stable Multiple 
Sclerosis patients 

Increase in walking velocity, walking distance and knee-extensor strength for robot-assisted group, 
whereas only in walking velocity in control group. 
Outcome values returned to baseline at follow-up after six months for both groups. 

Husemann, 
et.al (2007) 

[238] 

30 acute stroke 
survivors 

Improvements in the walking ability in both groups. 
No significant difference in gain of functional ambulation category parameters between the groups. 
Significantly longer single stance phase on the paretic leg during over-ground walking for the robot-
assisted group. 
The robot-assisted group lost fat mass and increased muscle mass, whereas the control group 
increased the body weight. 

Gandolfi, 
et.al (2014) 

[239] 

22 patients with MS 
(Multiple sclerosis) 

No significant differences on primary and secondary outcome measures between groups. 
Significant improvements in both groups on the Berg Balance Scale. 
Changes approaching significance were found on gait speed (only) for robot-assisted group. 
Significant changes in balance task-related domains during standing and walking conditions for the 
control group. 

Vaney, et.al 
(2011) 
[240] 

67 patients with 
Multiple Sclerosis 

Nonsignificant higher improvements of gait speed and quality of life in the walking group with 
respect to the robot-assisted group. 

Fischer, 
et.al (2011) 

[68] 

20 hemiparetic 
stroke patients 

Significant improvement in 8-m walk test, a 3-minute walk test, and the Tinetti balance assessment in 
both groups. 

Westlake, 
et.al (2009) 

[153] 

16 stroke survivors 
with chronic 
hemiparetic gait 

No significant differences in primary outcomes. 

van Nunen, 
et.al (2015) 

[154] 

30 first-ever stroke 
patients 

No significant differences in improvements between groups. 

Kelley, et.al 
(2013) 
[155] 

20 adults with 
chronic stroke 

No significant differences between groups. 
Improvements over time of lower extremity motor function and physical functional levels within both 
groups. 

Wirz, et.al 
(2011) 
[156] 

48 ambulatory 
chronic stroke 
survivors 

Higher improvements in speed and single limb stance time on the impaired leg in subjects under 
therapist-assisted therapy. 
Improvement in perceived rating of the effects of physical limitations on quality of life only in 
subjects with severe gait deficits undergoing therapist-assisted therapy. 

Hidler, et.al 
(2008) 
[146] 

63 stroke survivors 
(<6 months) 

Higher gains in walking speed and distance in conventional therapy. 
Secondary measures were not different between the two groups. 

The diversity of conventional gait training appears to be better for subacute stroke patients with 
moderate to severe gait impairments. 
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Appendix B: Dynamic model of the MOPASS system 

The dynamic models are often used to develop model-based strategies for control and 
design. Dynamic models play an essential role in many linear and non-linear control systems 
methodologies, including model-based robust control and Lyapunov-based controller designs. 
Even though these model-based approaches present controller performance problems (such as 
robustness) if there exist significant un-modeled dynamics, when the model is accurate it 
allows the design of model-based controllers with strong capabilities [241]. The procedure to 
obtain the dynamic model of the MOPASS system is presented next.  

The dynamic models are obtained based on all the DoF present in a system, both active 
and passive. In the case of MOPASS, the passive DoF have small ranges of motion, hence 
they were not taken into account in the dynamic model to avoid equations with much higher 
complexity. Similarly, the caster wheels are assumed to be self-aligning wheels that do not 
introduce non-holonomic constraints to the system; therefore they are also not part of the 
modeling process. To have a clearer understanding of the modeling process, a simplified 
model of MOPASS is shown in Fig. 138 with the frames O of all the joints that will be taken 
into account for the modeling.  

To model this system, the Euler-Lagrange formulation [242] [243] was selected. The 
Lagrangian analysis is based on the energy properties of mechanical systems. The equations 
of motion of these systems are given by the Lagrange equation 

  (64) 

where  is the vector of generalized coordinates, is the vector of generalized forces 
associated to the coordinates, and L is the Lagrangian defined as the difference between the 
kinetic (T) and the potential (U) energies 

  (65) 

The equation of motion given in (64) can be rewritten in the general form 

  
Fig. 138  Simplified model of MOPASS with its joint frames.  
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  (66) 

which represents the joint space dynamic model. In (66), M is the symmetric positive definite 
inertia matrix, C is the Coriolis/centripetal matrix, g is the gravity vector, and was divided 
into the actuation torques τ, the viscous friction torques , the static friction torques 

, and the torques τe resulting from the interaction with the environment. M and C can 
be calculated in a straight forward way through the rotation and Jacobian matrices obtained 
from the kinematic analysis of the mechanical system 

 
 

  , (67) 

where n is the number of links (bodies),  and  are the mases of the link i (li) and motor 
rotor i (mi), respectively, Ri and  are the rotation matrices from the frames of li and mi to 
the base frame,  is the inertia (constant) tensor of li referred to the link frame,  is the 
inertia (constant) tensor of mi referred to the mi frame, and JP and JO are the position and 
orientation Jacobian matrices relative to the joint velocities and are taken into account from 
the link at the beginning of the kinematic chain until the link being currently analyzed (i.e. 
from l1 to li).  

Matrix C, on the other hand, can be calculated from M following 

 
 

 
(68) 

where cxy and bxy are the elements of matrices C and M, respectively, in row x and column y, 
and cijk are Christoffel symbols of the first type. 

The potential energy U can also be calculated using the kinematic relations following  

  
(69) 

where go is the gravity acceleration vector with respect to the base frame, and  and  are 
the position vectors of li and mi also with respect to the base frame. Finally, it is possible to 
get the components of the gravity vector from U following 

  (70) 

To have a more detailed explanation about the obtainment of matrices M, C and g refer to 
[242]. For the modelling of MOPASS system, it must be taken into account that there exist 
two kinematic chains (one per leg) when calculating the Jacobians and, subsequently, the 
model matrices.  

In the specific case of MOPASS, the vector of generalized coordinates has 13 items:  
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  (71) 

where the sub-indexes 1, 2, 3, 4, R and L correspond to pelvis active joint, pelvis passive joint, 
hip, knee, right and left, respectively;  is the position of the chassis frame in the 
transverse plane with respect to the inertial frame (OO),  is the angle of rotation of the 
chassis about the longitudinal axis, and  and  are the wheels’ rotation angles. For a better 
understanding please refer to Fig. 138 and Fig. 139.  

Although the computation of (66) is straightforward, two important facts must be taken 
into account: 1) the actuation and interaction torques associated with , and  have no 
physical meaning and therefore are equal to zero; and 2) the mobile platform possesses non-
holonomic (kinematic) constraints [244] of the form 

 . (72) 

These constraints refer to two basic assumptions introduced by the rolling properties of 
the driving wheels: 1) the velocity of the chassis frame must be in the direction of the axis of 
symmetry (i.e. the platform does not move sideward)  

  (73) 

and 2) the wheels do not slip 

 
    

 (74) 

where  is the radius of the driving wheels,  is the distance between the wheels and the axis 
of symmetry, and is the distance between the chassis frame and the wheels’ rotation 
axis. The kinematic constrains introduce a new term in the dynamic model in (66):  

 , (75) 

  
Fig. 139  Simplified model of MOPASS (upper view).  
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where  is the kinematic constraint matrix,  is the vector of Lagrange multipliers, and  is 
the term related to the constraint forces. Now, it is possible to introduce a matrix  that 
satisfies :  

  
(76) 

  

(77) 

where and stand for  and , respectively,  is an identity matrix and  is a 
null matrix. Noticing that  and , pre-multiplying both sides of (75) 
by  yields 

 . (78) 

This way, the vector of Lagrange multipliers is eliminated. Moreover, it is possible to 
obtain the kinematic (velocity) relation between , and  and the generalized coordinates 

 and  subject to these constraints [245]:  

   , 

(79) 

where  can be gotten by integrating  in time and setting the initial value :  

 . (80) 

From above explanations, it can be seen that the final model possesses several parameters 
dependent on the mechanical design and construction, namely masses, inertia tensors, 
locations of the centers of mass and locations of the link frames. In practice, one might not be 
able to measure some (or all) of these values, nor to obtain them from the manufacturers. 
Hence, a parameter identification process is needed to complete the model. An overview of 
this process is shown in Fig. 140. 

The Least Square estimation is the most commonly used method in robotic system 
identification. It makes use of the inverse dynamic model and estimates the unknown 
parameter set by minimizing the square error between measured and predicted torques. The 
dynamic model given in (78) must first be rewritten in the linear regression form 

  , (81) 

where p is the parameter vector which contains combinations of the unknown parameters and 
 is the regression matrix which contains the known parameters and the joint variables (i.e. 

positions, velocities and accelerations). In (75), the τe is disregarded since, for the 
identification, there won’t be any interaction torques acting on the system (τe = 0). By using 
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measured motion data, the parameter set can be estimated from the overdetermined linearized 
system:  

  , (82) 

where  is the accumulation matrix,  is the observation matrix and  is the vector of residual 
errors between the predicted and actual input torques. Now, the parameter vector can be 
obtained [246]:  

   (83) 

The selection of the parameter vector  can have a big influence on the identification result. 
In fact, only the minimum parameter vector that is sufficient to describe the dynamic model, 
known as the Base Parameter Set, can form reliable and accurate identification results. 
Moreover, a selection on optimal exciting trajectories (i.e. the trajectories that the robot will 
follow helped with a non-model-based position controller to obtain the experimental data) 
must be also done to obtain good identification results. A proper trajectory for identification 
must ‘excite’ the dynamics of the system as much as possible while maintaining the motion 
constraints in all joints. Once the experimental data is obtained and filtered, the estimated 
elements of the parameter vector can be calculated with (83). To have a more detailed 
explanation on system identification, including the selection of the parameter vector and the 
exciting trajectories, refer to [246] [247] [248] [249] [250]. 
  

 
Fig. 140  Overview of the dynamic model’s parameter identification 

process  
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Appendix C: Step-by-step procedure for automatic 
extraction of characteristic points 

This appendix contains a detailed explanation of the procedure of the characteristic knots 
extraction for hip and knee joints, based on the concept for trajectory generation explained in 
section 4.2, including the selection conditions and thresholds. These are the steps taken after 
the resampling of the filtered data and the calculation of the normalized time values, the time 
factor (TF), the range of motion (ROM) and the ROM factor (ROMF). 

Steps for the hip joint 

1. Extraction of all local and global extrema points. 
1.1. Select the global minimum as the hip characteristic point PM2 
1.2. Select the global maximum as one of the remaining three hip characteristic points, 

namely PM1, PM3 and PM4. Only until the end of the procedure it will be possible to 
know to which of the three the global maximum will correspond (step 9). 

2. If there is more than one local maximum, go to step 3; if not, go to step 5. 
3. Select the couple of local extrema (Pmin2 and Pmax2), different from the global extrema Pmin 

and Pmax, that are more apart from each other and that fulfill the following conditions: 
a. The angular difference, normalized with respect to the ROM, between Pmax2 and Pmin 

is higher than a threshold : 

  (84) 

 This ensures that the selected points are in the higher part of the curve, avoiding noisy 
local extrema in the lower part.  

b. The absolute normalized time difference between Pmax2 and Pmax is higher than a 
threshold  and lower than a threshold : 

  (85) 

 This ensures that the selected points are in the vicinity of the global maximum, but not 
to near in order to avoid noisy local extrema. The subscript m is used to indicate that 

 corresponds to the minimum time difference between the two points, 
taking into account that the curve is periodic. This must be borne in mind also for the 
next conditions. 

c. The absolute normalized time difference between Pmax2 and Pmin2 is higher than a 
threshold : 

  (86) 

where  and  
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  (87) 

where  is a (normalized) velocity threshold,  is the AND operand,  
is the Exclusive OR operand, and  

  (88) 

4. If a set of local extrema was not found in step 3, go to step 5; if a set was found, set the 
two local extrema from the set as the two remaining characteristic points and proceed to 
step 9. 

5. Get the cycle samples Pi where the angular difference, normalized with respect to the 
ROM, between Pi and Pmin is higher than a threshold  

  (89) 

where   

  (90) 

6. From the subset of samples gotten in step 5, obtain all couple of samples (Pi, Pj) that 
fulfill the following conditions: 

  (91) 

  (92) 

  (93) 

  (94) 

where , , , and 

  (95) 

  
(96) 

  
(97) 
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The subscript * is used to indicate that the time difference  must be calculated in 
the interval between tx and ty where there are no global extrema in between. If, for 
instance,  ,  would correspond to  and not to 

. 
7. If no samples were obtained from step 6, go to step 8; if a set of samples was gotten, 

obtain the couple of samples (Pinf1, Pinf2) from that set that minimizes the cost function 
 and set them as the two remaining hip characteristic points. The 

objective behind steps 6 and 7 is to obtain the points in the high part of the hip curves that 
cause higher bending in the curve’s form.  

8. If the procedure achieves this step, it means that the hip curve being analyzed has only one 
set of (significant) extrema (the global minimum and maximum points), without any other 
prominent change of shape. Therefore, the remaining two characteristic points will 
correspond to the two samples with time values ti=tmax-1/TF and ti=tmax-2/TF. Finally, 
proceed to step 9. 

9. Organize, based on the time values, the obtained characteristic points so that they match 
the points’ order introduced in section 4.2. The time value of the resulting points is the 
one normalized with respect to the cycle period. 

Steps for the knee joint 

1. Extraction of all local extrema points and the global minimum point. 
1.1. Select the global minimum as the knee characteristic point PM3 

2. Get the first sample to the left of the global minimum (PM3) that fulfills the following 
conditions: 
a. The absolute value of the velocity in the sample is lower that a threshold KTHv1 = 0.1 

[Rad/s]: 

  (98) 

b. A lower-resolution velocity in the nth sample ahead is higher than a threshold KTHv2 = 
-0.2 [Rad/s]: 

  (99) 

c. The sample is at least 0.15·TC away from the global minimum 

  (100) 

d. The angular difference between the sample and the global maximum, normalized to 
the ROM of the cycle, is lower than a threshold KTHθ1 = 25: 

  (101) 
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The objective of the previous conditions is to find the first point in which the knee 
curve changes drastically its shape after the maximum flexion point happened. 

3. If no sample fulfilled the conditions in step 2, go to step 6; if a sample was found proceed 
with step 4. 

4. Obtain the local/global maximum point to the left of the sample gotten in step 2 (Pstep2)  
that is the closest to Pstep2 and fulfills the following condition 
a. The normalized time difference between the extrema and Pstep2 is lower than a 

threshold : 

  (102) 

5. If no maximum was found in step 4, set the sample obtained in step 2 as the knee 
characteristic point PM2; if there was a maximum fulfilling all conditions of step 4, set it as 
the knee characteristic point PM2. Proceed to step 7.  

6. Obtain the local/global maximum point to the left of the global minimum that is closest to 
the global minimum and fulfills the conditions c and d from step 2, and set it as the knee 
characteristic point PM2.   

7. Get the first sample to the right of the global minimum (PM3) that fulfills the following 
conditions: 
a. The absolute value of the velocity in the sample is lower than a threshold KTHv1 = 0.1 

[Rad/s]: 

  (103) 

b. A lower-resolution velocity in the nth sample ahead is lower than a threshold KTHv3 = 
0.2 [Rad/s]: 

  (104) 

c. The sample is at least 0.15·TC away from the global minimum 

  (105) 

The objective of the previous conditions is to find the first point in which the knee 
curve changes drastically its shape after the maximum flexion point happened.29 

8. If no sample fulfilled the conditions in step 7, go to step 11; if a sample was found 
proceed with step 9. 

9. Obtain the local/global maximum point to the right of the sample gotten in step 7 (Pstep7)  
that is the closest to Pstep7 and fulfills the following condition 
a. The normalized time difference between the extrema and Pstep7 is lower than a 

threshold : 

                                                
29 Conditions a. and b. are not considered when the cycle’s boundary comes in between the samples taken for the 
formulations, e.g. when i = 0 in condition a., or when i < 50 in condition b. 
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  (106) 

10. If no maximum was found in step 9, set the sample obtained in step 7 as the knee 
characteristic point PM4; if there was a maximum fulfilling all conditions of step 9, set it as 
the knee characteristic point PM4. Proceed to step 12.  

11. Obtain the local/global maximum point to the right of the global minimum that is closest 
to the global minimum and fulfills the condition c from step 2, and set it as the knee 
characteristic point PM4. Continue with step 12.  

12. Obtain the local minimum that lays in between PM2 and PM4 (in the region where PM3 is 
not located) that possesses the lowest angular value and that fulfills the following 
conditions:  
a. Either the absolute value of the angular difference, normalized with respect to the 

ROM, between the minimum point and PM4 is higher that a threshold KTHθ2 =5: 

  (107) 

or the difference in normalized time between the minimum point and PM4 is higher 
than a threshold KTHt2 =10: 

  (108) 

b. Either the absolute value of the angular difference, normalized with respect to the 
ROM, between the minimum point and PM2 is higher that a threshold KTHθ2 =5: 

  (109) 

or the difference in normalized time between the minimum point and PM2 is higher 
than a threshold KTHt2 =10: 

  (110) 

13. If no local minimum was located in step 12, proceed to step 14; it there was a local 
minimum fulfilling the conditions from step 12, set the selected minimum as the knee 
characteristic point PM1. Proceed to step 15. 

14. Set the sample that is located in the middle of PM2 and PM4. Proceed to step 15. 
15. Organize, based on the time values, the obtained characteristic points so that they match 

the points’ order introduced in section 4.2. The time value of the resulting points is the 
one normalized with respect to the cycle period. 
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Appendix D: Error measurements between fitted and 
measured characteristic points  

This appendix contains the tables with the measurements of the mean absolute errors 
(MAE), standard deviation of the absolute errors and root mean square errors (RMSE) 
calculated from the experimental data and the estimated values obtained with the neural 
networks from section 4.3.2. It contains the error measurements from the neural networks 
trained with the data from all the subjects, as well as the one trained with the data from the 
selected subject who scored the highest correlation coefficients. The error measurements for 
the one-subject-based neural networks were computed with respect to the experimental data 
of the selected subject, as well as to the data of the other subjects.  

Training the NN using data from all the subjects 
 

Table 34  Mean absolute errors (MAE) training the NNs with all processed data 
 MAE 

HIP KNEE 
tM1 θM1 tM2 θM2 tM3 θM3 tM4 θM4 tM1 θM1 tM2 θM2 tM3 θM3 tM4 θM4 

 5.99 3.76 1.84 2.72 3.79 3.29 4.55 3.67 1.77 4.08 3.33 5.61 3.55 3.62 1.48 5.49 

cad 6.29 4.24 1.61 3.13 3.88 3.68 4.75 4.08 1.74 4.09 3.34 6.39 3.50 3.60 1.53 5.56 

 6.00 3.48 2.35 2.58 3.87 3.17 4.48 3.48 1.85 4.12 3.38 5.51 3.75 3.66 1.60 5.72 

 & 
cad 5.80 3.41 1.62 2.54 3.47 3.11 4.44 3.38 1.75 3.96 3.31 5.27 3.48 3.52 1.45 5.41 

 & 
 5.82 3.41 1.61 2.54 3.48 3.10 4.43 3.39 1.73 3.94 3.30 5.30 3.49 3.52 1.46 5.39 

cad & 
 5.82 3.40 1.60 2.54 3.47 3.10 4.42 3.39 1.73 3.94 3.30 5.28 3.47 3.50 1.45 5.44 

 
Table 35  Standard deviation of the absolute errors training the NNs with all 

processed data 
 SD absolute error 

HIP KNEE 
tM1 θM1 tM2 θM2 tM3 θM3 tM4 θM4 tM1 θM1 tM2 θM2 tM3 θM3 tM4 θM4 

 4.24 2.67 1.57 2.22 3.28 2.45 3.29 2.57 3.19 2.77 4.01 4.08 3.58 2.72 1.23 3.89 

cad 4.34 3.11 1.43 2.58 3.47 2.79 3.41 2.93 3.27 2.79 4.03 4.76 3.66 2.72 1.25 3.93 

 4.16 2.49 2.05 1.99 3.22 2.26 3.19 2.43 3.16 2.85 4.08 4.16 3.94 2.72 1.39 4.15 

 & 
cad 4.20 2.45 1.43 1.94 2.92 2.22 3.05 2.38 3.09 2.76 3.98 3.98 3.59 2.66 1.20 3.84 

 & 
 4.25 2.45 1.43 1.95 2.93 2.23 3.07 2.37 3.11 2.76 3.97 3.98 3.59 2.68 1.21 3.84 

cad & 
 4.23 2.44 1.43 1.96 2.94 2.23 3.05 2.37 3.09 2.76 3.96 3.95 3.59 2.65 1.20 3.84 
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Table 36  Root mean square errors (RMSE) training the NNs with all processed data 
 RMSE 

HIP KNEE 
tM1 θM1 tM2 θM2 tM3 θM3 tM4 θM4 tM1 θM1 tM2 θM2 tM3 θM3 tM4 θM4 

 7.34 4.61 2.42 3.51 5.02 4.10 5.61 4.48 3.65 4.93 5.21 6.94 5.04 4.53 1.93 6.73 

cad 7.64 5.26 2.15 4.06 5.21 4.62 5.85 5.02 3.70 4.95 5.23 7.97 5.07 4.51 1.98 6.80 

 7.31 4.28 3.12 3.26 5.03 3.89 5.50 4.24 3.66 5.01 5.29 6.90 5.44 4.56 2.13 7.06 

 & 
cad 7.16 4.20 2.16 3.20 4.53 3.82 5.38 4.14 3.55 4.82 5.17 6.60 5.00 4.41 1.88 6.64 

 & 
 7.21 4.20 2.15 3.20 4.55 3.82 5.39 4.14 3.56 4.81 5.16 6.63 5.00 4.43 1.90 6.61 

cad & 
 7.19 4.19 2.14 3.20 4.55 3.81 5.38 4.13 3.54 4.81 5.15 6.60 4.99 4.40 1.89 6.66 

 
 

Training the NN using data from the selected subject  
 

Table 37  Mean absolute errors (MAE) using the selected-subject NNs, calculated with 
respect to the selected subject’s experimental data 

 MAE 
HIP KNEE 

tM1 θM1 tM2 θM2 tM3 θM3 tM4 θM4 tM1 θM1 tM2 θM2 tM3 θM3 tM4 θM4 
 2.28 1.49 1.08 1.27 1.66 1.55 2.15 1.45 1.00 1.31 2.40 2.11 1.56 1.60 1.04 2.25 

cad 2.30 1.69 1.01 1.48 1.72 1.71 2.17 1.79 1.00 1.44 2.42 2.41 1.59 1.67 1.10 2.27 

 2.39 1.42 1.23 1.22 1.66 1.45 2.18 1.42 1.05 1.50 2.40 2.20 1.65 1.68 1.15 2.27 

 & 
cad 2.18 1.28 1.04 1.11 1.74 1.30 2.08 1.31 1.01 1.40 2.39 2.08 1.56 1.60 1.04 2.14 

 & 
 2.24 1.25 1.01 1.16 1.60 1.30 2.19 1.21 1.01 1.30 2.38 2.07 1.56 1.65 1.04 2.17 

cad & 
 2.21 1.31 1.04 1.17 1.77 1.29 2.17 1.22 1.03 1.41 2.36 2.05 1.55 1.58 1.03 2.15 

 
Table 38  Standard deviation of the absolute using the selected-subject NNs, 

calculated with respect to the selected subject’s experimental data 
 SD absolute errors 

HIP KNEE 
tM1 θM1 tM2 θM2 tM3 θM3 tM4 θM4 tM1 θM1 tM2 θM2 tM3 θM3 tM4 θM4 

 2.63 1.16 0.85 1.01 1.87 1.16 1.76 1.25 0.83 1.10 2.72 1.61 1.45 1.22 0.85 1.60 

cad 2.58 1.36 0.85 1.15 1.93 1.25 1.74 1.43 0.82 1.09 2.70 1.88 1.47 1.19 0.83 1.54 

 2.74 1.09 0.96 0.97 1.88 1.15 1.77 1.20 0.86 1.22 2.81 1.66 1.52 1.27 0.92 1.54 

 & 
cad 2.57 0.97 0.83 0.89 1.91 0.99 1.71 1.06 0.85 1.06 2.71 1.60 1.43 1.22 0.81 1.51 

 & 
 2.57 0.93 0.85 0.93 1.73 1.02 1.76 1.00 0.82 1.06 2.72 1.59 1.43 1.24 0.81 1.51 

cad & 
 2.55 0.95 0.84 0.94 1.89 1.02 1.73 1.01 0.83 1.07 2.72 1.60 1.42 1.19 0.81 1.50 
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Table 39  Root mean square errors (RMSE) using the selected-subject NNs, calculated 
with respect to the selected subject’s experimental data 

 RMSE 
HIP KNEE 

tM1 θM1 tM2 θM2 tM3 θM3 tM4 θM4 tM1 θM1 tM2 θM2 tM3 θM3 tM4 θM4 
 3.48 1.89 1.37 1.62 2.50 1.93 2.78 1.92 1.30 1.71 3.63 2.65 2.13 2.01 1.34 2.76 

cad 3.46 2.17 1.32 1.87 2.58 2.11 2.78 2.29 1.29 1.81 3.62 3.06 2.16 2.05 1.37 2.74 

 3.63 1.79 1.56 1.56 2.51 1.85 2.80 1.86 1.35 1.93 3.69 2.76 2.24 2.10 1.48 2.74 

 & 
cad 3.37 1.61 1.34 1.42 2.58 1.63 2.69 1.69 1.32 1.75 3.62 2.62 2.12 2.01 1.31 2.62 

 & 
 3.41 1.56 1.32 1.48 2.35 1.66 2.80 1.57 1.30 1.68 3.61 2.61 2.12 2.07 1.32 2.64 

cad & 
 3.37 1.62 1.34 1.50 2.58 1.64 2.77 1.59 1.32 1.77 3.60 2.60 2.10 1.98 1.31 2.62 

Table 40  Mean absolute errors (MAE) using the selected-subject NNs, calculated with 
respect to the other subjects’ experimental data 

 MAE 
HIP KNEE 

tM1 θM1 tM2 θM2 tM3 θM3 tM4 θM4 tM1 θM1 tM2 θM2 tM3 θM3 tM4 θM4 
 6.08 7.02 2.21 3.13 4.26 7.04 4.73 6.13 1.84 5.44 3.50 8.19 3.65 3.79 1.60 8.85 

cad 6.39 8.98 1.76 3.74 4.68 8.42 4.87 7.56 1.90 5.45 3.49 10.38 3.65 3.87 1.66 9.61 

 6.24 5.88 2.95 3.12 4.24 6.18 4.74 5.52 1.96 5.64 3.87 7.20 4.02 3.95 1.97 8.16 

 & 
cad 6.29 8.64 1.76 4.07 3.80 8.69 5.72 8.10 1.86 5.73 3.61 8.13 3.70 3.80 1.84 10.33 

 & 
 6.74 7.60 1.75 3.33 4.95 7.74 4.85 7.30 1.77 5.14 3.97 8.44 3.69 3.86 1.78 9.09 

cad & 
 6.32 7.86 1.74 3.75 3.81 8.97 4.66 8.39 1.87 5.61 3.78 8.50 3.68 3.90 1.85 8.98 

 
Table 41  Standard deviation of the absolute errors using the selected-subject NNs, 

calculated with respect to the other subjects’ experimental data 
 SD absolute errors 

HIP KNEE 
tM1 θM1 tM2 θM2 tM3 θM3 tM4 θM4 tM1 θM1 tM2 θM2 tM3 θM3 tM4 θM4 

 5.91 4.27 1.82 2.53 3.34 3.80 4.36 3.96 3.50 3.74 4.41 5.94 3.92 3.17 1.35 5.71 

cad 6.53 5.27 1.56 2.87 3.43 4.39 4.64 4.55 3.51 3.73 4.37 7.12 3.82 3.35 1.58 6.02 

 5.46 3.83 2.22 2.39 3.33 3.61 4.04 3.76 3.67 3.93 4.61 5.72 4.33 3.23 1.73 5.66 

 & 
cad 6.26 5.69 1.53 3.19 3.17 5.72 5.41 5.93 3.48 3.95 4.45 6.01 4.01 3.15 1.48 6.40 

 & 
 6.74 5.20 1.52 2.76 4.07 4.82 4.60 5.59 3.56 3.59 4.50 6.07 4.01 3.28 1.47 5.90 

cad & 
 6.27 4.68 1.50 3.07 3.17 5.12 4.14 6.03 3.49 3.80 4.62 6.13 4.01 3.24 1.49 5.86 
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Table 42  Root mean square errors (RMSE) using the selected-subject NNs, calculated 
with respect to the other subjects’ experimental data 

 RMSE 
HIP KNEE 

tM1 θM1 tM2 θM2 tM3 θM3 tM4 θM4 tM1 θM1 tM2 θM2 tM3 θM3 tM4 θM4 
 8.48 8.21 2.86 4.02 5.41 8.00 6.43 7.30 3.95 6.60 5.63 10.12 5.36 4.94 2.09 10.53 

cad 9.14 10.41 2.35 4.71 5.81 9.49 6.73 8.82 3.99 6.61 5.59 12.59 5.29 5.12 2.29 11.34 

 8.29 7.01 3.69 3.93 5.39 7.16 6.23 6.67 4.16 6.88 6.02 9.20 5.91 5.10 2.63 9.93 

 & 
cad 8.87 10.35 2.33 5.17 4.95 10.40 7.87 10.04 3.95 6.96 5.73 10.11 5.46 4.94 2.36 12.15 

 & 
 9.53 9.20 2.32 4.32 6.40 9.12 6.69 9.19 3.98 6.27 6.00 10.39 5.45 5.06 2.31 10.84 

cad & 
 8.90 9.15 2.30 4.84 4.96 10.33 6.23 10.33 3.96 6.78 5.98 10.48 5.45 5.06 2.37 10.72 
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Appendix E: Regenerated trajectories using the 
characteristic points estimated by the 
neural networks  

This appendix shows examples of curves generated by interpolating the characteristic 
knots estimated by the neural networks and some shaping knots (calculated with Method 1 
from section 4.3.3). The first part includes the curves generated using the neural networks that 
were trained using the data from all the subjects that participated in the experiment, whereas 
for the second part only the data from the subject that scored the highest correlation 
coefficients was used. This appendix is complementary to the curves presented in section 
4.3.2, where the complete explanations of the figures in given. Two type of figures are shown 
here: Fig. 141, Fig. 143, Fig. 145 and Fig. 147 show examples of the curves, whereas Fig. 
142, Fig. 144, Fig. 146 and Fig. 148 depict the values of the second input depending on the 
first input used to generate the plots (b), (c) and (d) from the figures showing the examples, 
respectively. 

Using data from all the subjects 

 
Fig. 141  Generation of hip and knee trajectories depending on cad (a) and 

cad&SLs,norm (b,c,d) using data from all subjects 
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Fig. 142  SLs,norm vs cad input values for curve generation using all 

subjects’ data  

  
Fig. 143  Generation of hip and knee trajectories depending on SLs,norm (a) 

and WSs,norm& SLs,norm (b,c,d) using data from all subjects 
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Fig. 144  WSs,norm vs SLs,norm input values for curve generation using all 

subjects’ data  

Using data from the selected subject 

  
Fig. 145  Generation of hip and knee trajectories depending on cad (a) and 

cad&SLs,norm (b,c,d) using data from the selected subject 
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Fig. 146  SLs,norm vs cad input values for curve generation using the 

selected subject’s data  

  
Fig. 147  Generation of hip and knee trajectories depending on SLs,norm (a) 

and WSs,norm& SLs,norm (b,c,d) using data from the selected subject 
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Fig. 148  WSs,norm vs SLs,norm input values for curve generation using the 

selected subject’s data  

 
 
 


