2,097 research outputs found

    Quality of Service over Specific Link Layers: state of the art report

    Get PDF
    The Integrated Services concept is proposed as an enhancement to the current Internet architecture, to provide a better Quality of Service (QoS) than that provided by the traditional Best-Effort service. The features of the Integrated Services are explained in this report. To support Integrated Services, certain requirements are posed on the underlying link layer. These requirements are studied by the Integrated Services over Specific Link Layers (ISSLL) IETF working group. The status of this ongoing research is reported in this document. To be more specific, the solutions to provide Integrated Services over ATM, IEEE 802 LAN technologies and low-bitrate links are evaluated in detail. The ISSLL working group has not yet studied the requirements, that are posed on the underlying link layer, when this link layer is wireless. Therefore, this state of the art report is extended with an identification of the requirements that are posed on the underlying wireless link, to provide differentiated Quality of Service

    Space station data system analysis/architecture study. Task 2: Options development, DR-5. Volume 2: Design options

    Get PDF
    The primary objective of Task 2 is the development of an information base that will support the conduct of trade studies and provide sufficient data to make key design/programmatic decisions. This includes: (1) the establishment of option categories that are most likely to influence Space Station Data System (SSDS) definition; (2) the identification of preferred options in each category; and (3) the characterization of these options with respect to performance attributes, constraints, cost and risk. This volume contains the options development for the design category. This category comprises alternative structures, configurations and techniques that can be used to develop designs that are responsive to the SSDS requirements. The specific areas discussed are software, including data base management and distributed operating systems; system architecture, including fault tolerance and system growth/automation/autonomy and system interfaces; time management; and system security/privacy. Also discussed are space communications and local area networking

    Real-time communication in packet-switched networks

    Full text link

    BOOM: Broadcast Optimizations for On-chip Meshes

    Get PDF
    Future many-core chips will require an on-chip network that can support broadcasts and multicasts at good power-performance. A vanilla on-chip network would send multiple unicast packets for each broadcast packet, resulting in latency, throughput and power overheads. Recent research in on-chip multicast support has proposed forking of broadcast/multicast packets within the network at the router buffers, but these techniques are far from ideal, since they increase buffer occupancy which lowers throughput, and packets incur delay and power penalties at each router. In this work, we analyze an ideal broadcast mesh; show the substantial gaps between state-of-the-art multicast NoCs and the ideal; then propose BOOM, which comprises a WHIRL routing protocol that ideally load balances broadcast traffic, a mXbar multicast crossbar circuit that enables multicast traversal at similar energy-delay as unicasts, and speculative bypassing of buffering for multicast flits. Together, they enable broadcast packets to approach the delay, energy, and throughput of the ideal fabric. Our simulations show BOOM realizing an average network latency that is 5% off ideal, attaining 96% of ideal throughput, with energy consumption that is 9% above ideal. Evaluations using synthetic traffic show BOOM achieving a latency reduction of 61%, throughput improvement of 63%, and buffer power reduction of 80% as compared to a baseline broadcast. Simulations with PARSEC benchmarks show BOOM reducing average request and network latency by 40% and 15% respectively

    An Overview of the AURORA Gigabit Testbed

    Get PDF
    AURORA is one of five U.S. testbeds charged with exploring applications of, and technologies necessary for, networks operating at gigabit per second or higher bandwidths. AURORA is also an experiment in collaboration, where government support (through the Corporation for National Research Initiatives, which is in turn funded by DARPA and the NSF) has spurred interaction among centers of excellence in industry, academia, and government. The emphasis of the AURORA testbed, distinct from the other four testbeds, is research into the supporting technologies for gigabit networking. Our targets include new software architectures, network abstractions, hardware technologies, and applications. This paper provides an overview of the goals and methodologies employed in AURORA, and reports preliminary results from our first year of research

    An Integrated Network Architecture for a High Speed Distributed Multimedia System.

    Get PDF
    Computer communication demands for higher bandwidth and smaller delays are increasing rapidly as the march into the twenty-first century gains momentum. These demands are generated by visualization applications which model complex real time phenomena in visual form, electronic document imaging and manipulation, concurrent engineering, on-line databases and multimedia applications which integrate audio, video and data. The convergence of the computer and video worlds is leading to the emergence of a distributed multimedia environment. This research investigates an integrated approach in the design of a high speed computer-video local area network for a distributed multimedia environment. The initial step in providing multimedia services over computer networks is to ensure bandwidth availability for these services. The bandwidth needs based on traffic generated in a distributed multimedia environment is computationally characterized by a model. This model is applied to the real-time problem of designing a backbone for a distributed multimedia environment at the NASA Classroom of the Future Program. The network incorporates legacy LANs and the latest high speed switching technologies. Performance studies have been conducted with different network topologies for various multimedia application scenarios to establish benchmarks for the operation of the network. In these performance studies it has been observed that network topologies play an important role in ensuring that sufficient bandwidth is available for multimedia traffic. After the implementation of the network and the performance studies, it was found that for true quality of service guarantees, some modifications will have to be made in the multimedia operating systems used in client workstations. These modifications would gather knowledge of the channel between source and destination and reserve resources for multimedia communication based on specified requirements. A scheme for reserving resources in a network consisting legacy LAN and ATM is presented to guarantee quality of service for multimedia applications

    The AURORA Gigabit Testbed

    Get PDF
    AURORA is one of five U.S. networking testbeds charged with exploring applications of, and technologies necessary for, networks operating at gigabit per second or higher bandwidths. The emphasis of the AURORA testbed, distinct from the other four testbeds, BLANCA, CASA, NECTAR, and VISTANET, is research into the supporting technologies for gigabit networking. Like the other testbeds, AURORA itself is an experiment in collaboration, where government initiative (in the form of the Corporation for National Research Initiatives, which is funded by DARPA and the National Science Foundation) has spurred interaction among pre-existing centers of excellence in industry, academia, and government. AURORA has been charged with research into networking technologies that will underpin future high-speed networks. This paper provides an overview of the goals and methodologies employed in AURORA, and points to some preliminary results from our first year of research, ranging from analytic results to experimental prototype hardware. This paper enunciates our targets, which include new software architectures, network abstractions, and hardware technologies, as well as applications for our work

    Design and analysis of a scalable terabit multicast packet switch : architecture and scheduling algorithms

    Get PDF
    Internet growth and success not only open a primary route of information exchange for millions of people around the world, but also create unprecedented demand for core network capacity. Existing switches/routers, due to the bottleneck from either switch architecture or arbitration complexity, can reach a capacity on the order of gigabits per second, but few of them are scalable to large capacity of terabits per second. In this dissertation, we propose three novel switch architectures with cooperated scheduling algorithms to design a terabit backbone switch/router which is able to deliver large capacity, multicasting, and high performance along with Quality of Service (QoS). Our switch designs benefit from unique features of modular switch architecture and distributed resource allocation scheme. Switch I is a unique and modular design characterized by input and output link sharing. Link sharing resolves output contention and eliminates speedup requirement for central switch fabric. Hence, the switch architecture is scalable to any large size. We propose a distributed round robin (RR) scheduling algorithm which provides fairness and has very low arbitration complexity. Switch I can achieve good performance under uniform traffic. However, Switch I does not perform well for non-uniform traffic. Switch II, as a modified switch design, employs link sharing as well as a token ring to pursue a solution to overcome the drawback of Switch 1. We propose a round robin prioritized link reservation (RR+POLR) algorithm which results in an improved performance especially under non-uniform traffic. However, RR+POLR algorithm is not flexible enough to adapt to the input traffic. In Switch II, the link reservation rate has a great impact on switch performance. Finally, Switch III is proposed as an enhanced switch design using link sharing and dual round robin rings. Packet forwarding is based on link reservation. We propose a queue occupancy based dynamic link reservation (QOBDLR) algorithm which can adapt to the input traffic to provide a fast and fair link resource allocation. QOBDLR algorithm is a distributed resource allocation scheme in the sense that dynamic link reservation is carried out according to local available information. Arbitration complexity is very low. Compared to the output queued (OQ) switch which is known to offer the best performance under any traffic pattern, Switch III not only achieves performance as good as the OQ switch, but also overcomes speedup problem which seriously limits the OQ switch to be a scalable switch design. Hence, Switch III would be a good choice for high performance, scalable, large-capacity core switches

    Real-Time Communication in Packet-Switched Networks

    Get PDF
    Abstract The dramatically increased bandwidths and processing capabilities of future high-speed networks make possible many distributed real-time applications, such as sensor-based applications and multimedia services. Since these applications will have tra c characteristics and performance requirements that di er dramatically from those of current data-oriented applications, new communication network architectures and protocols will be required. In this paper we discuss the performance requirements and tra c characteristics of various real-time applications, survey recent developments in the areas of network architecture and protocols for supporting real-time services, and develop frameworks in which these, and future, research e orts can be considered
    • …
    corecore