
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2011-013 March 14, 2011

BOOM: Broadcast Optimizations for
On-chip Meshes
Tushar Krishna, Bradford M. Beckmann, Li-Shiuan
Peh, and Steven K. Reinhardt

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4426155?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

BOOM: Broadcast Optimizations for On-chip Meshes

Tushar Krishna†, Bradford M. Beckmann⋆, Li-Shiuan Peh†, and Steven K. Reinhardt⋆

†Department of EECS

Massachusetts Institute of Technology

{tushar, peh}@csail.mit.edu

⋆Research and Advanced Development Labs (RADL)

Advanced Micro Devices (AMD) Inc.

{Brad.Beckmann, Steve.Reinhardt}@amd.com

Abstract—Future many-core chips will require an on-chip
network that can support broadcasts and multicasts at good
power-performance. A vanilla on-chip network would send
multiple unicast packets for each broadcast packet, resulting
in latency, throughput and power overheads. Recent research
in on-chip multicast support has proposed forking of broad-
cast/multicast packets within the network at the router buffers,
but these techniques are far from ideal, since they increase
buffer occupancy which lowers throughput, and packets incur
delay and power penalties at each router. In this work, we
analyze an ideal broadcast mesh; show the substantial gaps
between state-of-the-art multicast NoCs and the ideal; then
propose BOOM, which comprises a WHIRL routing protocol
that ideally load balances broadcast traffic, a mXbar multicast
crossbar circuit that enables multicast traversal at similar
energy-delay as unicasts, and speculative bypassing of buffering
for multicast flits. Together, they enable broadcast packets
to approach the delay, energy, and throughput of the ideal
fabric. Our simulations show BOOM realizing an average
network latency that is 5% off ideal, attaining 96% of ideal
throughput, with energy consumption that is 9% above ideal.
Evaluations using synthetic traffic show BOOM achieving a
latency reduction of 61%, throughput improvement of 63%,
and buffer power reduction of 80% as compared to a base-
line broadcast. Simulations with PARSEC benchmarks show
BOOM reducing average request and network latency by 40%
and 15% respectively.

I. INTRODUCTION

As multi-core processors scale to higher core counts,

designing a scalable on-chip cache subsystem has become a

crucial component in achieving high-performance. Together

the cache coherence protocol and on-chip network must be

designed to achieve high throughput and low latency, without

over-burdening either component. At one end of the protocol

design spectrum are full-bit directory protocols [1], [2] which

track all sharers, thereby minimizing the bandwidth demand

on the network by ensuring that requests only probe the

current sharers, while invalidates occur via precise multi-

casts. However, full-bit directories require substantial storage

overhead per block to manage many individual cores and

caches, which increase power and area demands as core

counts scale. The other end of the spectrum belongs to

snooping protocols [3], [4], [5]. These designs do not require

any directory storage, but instead broadcast all requests and

invalidates, which significantly increases network bandwidth

demand. Many recently proposed coherence protocols and

optimizations [6], [7], [8], [9], [10], [11] lie in between to

better balance network bandwidth demand and coherence

state storage. These designs incorporate coarser directory

state to consume less storage than a full-bit directory, and

rely on a combination of broadcasts, multicasts, and direct

requests to maintain coherence. Though these protocols re-

duce the overall network demand versus snooping protocols,

efficient delivery of broadcasts and dense multicasts are

critical for their scalability. For instance, despite filtering

redundant broadcasts in the network, INCF [8] still observes

58% requests being broadcasts on average using Token

Coherence [5] and INSO [4] for the PARSEC benchmark

suite [12] running on 16 cores. VCTM [13] reports 10%

multicast traffic in a coarse Region-based directory coher-

ence scheme with 16-cores with many destinations more

than 50% of the time. This would become worse as core

counts scale. For a 64-core system, we observe that the

AMD HyperTransportTM [3]-based protocol (which normally

broadcasts all requests), even when enhanced with HT As-

sist [6] to track the Owner and only send directed probes,

still relies on broadcast probes for 38-50% of the requests,

as we show later in Section IV. All these observations put

the on-chip network in the limelight to ultimately handle

these many-destination messages at low latency and high

throughput, while taking up low area and power overheads.

An on-chip network is the communication fabric connect-

ing the various cores. An ideal communication fabric would

incur only wire delays between the source and destination

core. But dedicated global point-to-point wires between all

cores do not scale [17], and hence, networks that multiplex

and share wires [18] are widely accepted to be the way

forward. Meshes are often used as the topology since they

map well to physical layout, enabling short wire delays

and high throughput. The routers at mesh intersections

manage contention and enable effective sharing of the wires.

Fig. 1(a) shows such a router. Multicast messages, however,

add tremendous stress on the network. A network with no

multicast support forces the sender to use multiple unicast

packets, effectively forking packets at the source network

interface, an approach we term “fork@nic”. Each multicast

packet with M destinations thus floods the network with M

packets, leading to a dramatic rise in average packet latency

and loss in throughput. Recent works such as VCTM [13],

Multicast Rotary Router (MRR) [14], and bLBDR [15]

address this issue by proposing routers with the ability to fork

flits1, i.e. a single multicast packet enters the network, and

where the route forks out of multiple output ports towards

the destinations, multiple flits are replicated and sent out of

each output port. We term this “fork@rtr”.

1A packet is usually broken down into smaller units called flits.

Switch

Allocator

VC AllocatorRoute

Compute

5x5

Crossbar switch

Input 1 Output 1

Output 5

VC 1

Input buffers

VC 2

VC n

Buffer Write

Routing

Input 5

VC 2

VC n

VC 1

Input buffers

Switch Alloc

VC Alloc

Switch
Traversal

Link
Traversal

(a) Baseline Router Microarchitecture

0

50

100

150

200

250

300

350

400

0 0.2 0.4 0.6 0.8 1

A
v

e
ra

g
e

 B
ro

a
d

c
a

s
t

L
a

te
n

c
y

Injection Rate (packets/cycle)

BASE_fork@nic BASE_fork@rtr-XYtr

BASE_fork@rtr-ring IDEAL

Latency

Gap

Throughput

Gap

(b) Latency and Throughput Gap

0

1

2

3

4

5

6

7

8

9

0.064 0.192 0.32 0.448 0.576 0.704

N
e
tw

o
rk

 E
n
e
rg
y

 (
n
J/
c
y
c
le
)

Injection Rate (packets/cycle)

BASE_fork@nic BASE_fork@rtr XYtr

BASE_fork@rtr ring IDEAL

Energy

Gap

(c) Energy Gap

Fig. 1. Baseline Broadcast Networks (fork@nic, fork@rtr (modeled similar to VCTM [13], MRR [14], bLBDR [15] and RPM [16])
with tree-based route and logical ring route) vs. Ideal (derived in Table I)

While these techniques do improve performance and

power, they are still far from ideal (analyzed in Section II),

especially for broadcasts, as Figs. 1(b) and 1(c) demonstrate

(see Section IV for simulation setup). These state-of-the-art

fork@rtr multicast routers are unable to approach the ideal

limit due to routing, micro-architecture/circuit, and flow-

control limitations, which will be discussed and tackled in

Sections III-A, III-B, III-C respectively.

In this work, we propose BOOM (Broadcast Optimiza-

tions for On-chip Meshes) as a move towards the ideal

network fabric for broadcast and multicast messages. BOOM

comprises three techniques that together enable broadcasts

and multicasts to closely approach ideal energy-delay-

throughput:

• Routing: We introduce the WHIRL routing algorithm

that ideally load balances broadcast traffic across a mesh,

then prunes this broadcast tree dynamically to match the

multicast destination set.

• Router Microarchitecture/Circuit:We introduce a mul-

ticast crossbar circuit, mXbar, that enables flits to fork out

and be sent simultaneously out of multiple output ports,

at similar energy-delay as a unicast.

• Flow control: BOOM extends unicast bypassing of

buffer read/writes for broadcast and multicast flits at

routers at all loads, making single-cycle router pipelines

possible for broadcasts/multicasts.

Section 2 derives the latency, throughput and energy limits

for an ideal broadcast mesh. Section 3 details BOOM,

discussing related work for every component. Section 4

presents our evaluation, and Section 5 concludes.

II. IDEAL BROADCAST MESH

In this section, we derive the ideal latency, throughput, and

power metrics for a mesh, for broadcast traffic, which would

then set design goals for BOOM. There has been prior work

in this regard for unicast traffic (one destination) [19], [20],

but to the best of our knowledge no one has attempted to

analyze and design for these limits for broadcast traffic.

An ideal interconnection network is that which delivers

the best possible throughput at lowest possible latency and

energy within physical constraints. A point-to-point network

with wires connecting each core to every other core would

satisfy this definition. However, such a topology is not

feasible as core counts scale, as there will be insufficient

wiring to accommodate the interconnections within a realistic

die area [19]. A practical topology for on-chip networks is

a mesh, as it is scalable, easy to layout, and offers path

diversity. A mesh has theoretical limits of latency, energy

and throughput under different traffic constraints, assuming

ideal routers.

In Table I, we derive these limits for a k×k mesh for broad-

cast traffic2, injected from randomly distributed sources,

and contrast them with those for unicast uniform-random

traffic [21].

Some of the key insights from Table I are: (1) For k < 4,

the throughput of both the fork@nic and fork@rtr broadcast

techniques are theoretically limited by the ejection links. For

k > 4, however, fork@nic is expected to have k/4 times

lower theoretical throughput3, as its bisection links become

the bottleneck, while ejection links continue to remain the

limiting factor for fork@rtr. This is unlike unicast traffic,

which is always limited by the bisection links. (2) When

k < 4, pure unicasts have k2 times higher throughput than

broadcasts, whereas when k > 4, unicasts have just k times

higher throughput than broadcasts. (3) A broadcast-tree not

only has lower latency than a broadcast-ring, it also loads its

bisection links at half that of a broadcast-ring. However, in

practice, the broadcast-tree results in more flits congesting at

a router at the same time, which causes hotspots and degrades

throughput.

III. BOOM: BROADCAST OPTIMIZATIONS FOR ON-CHIP

MESHES

A. Routing: The WHIRL Algorithm

1) Background: Multicast packets are typically routed in

a path-based or tree-based manner4. In path-based rout-

ing, a multicast packet is forwarded sequentially from one

destination to the next. For multicasts with few destina-

tions, this presents the problem of selecting a deadlock-free,

2All estimates are for a complete broadcast: from initiation at the source
NIC (network interface), till the tail flit of the last copy of the packet is
received at a destination NIC

3Throughput is inversely proportional to channel load [21]. In practice,
k times extra flits in fork@nic would cause extra contention and lower
throughput even further

4In Table I, path-based routing is broadcast ring and tree-based routing
is broadcast tree

TABLE I

Ideal Performance and Power metrics in a k×k mesh with N = k2 tiles.. WE COMPARE UNIFORM-RANDOM DESTINATION UNICAST

TRAFFIC, AND ALL-DESTINATION BROADCAST TRAFFIC, INJECTED FROM RANDOM SOURCES AT A RATE OF R FLITS/CYCLE.

Metric Unicast Broadcast

Average Hop Count or Havg 2(k+1)/3 (3k−1)/2, k even
(k−1)(3k+1)/2k, k odd

Channel Load on each bisection link or Lbis k×R/4 ⋆k3×R/4, †k2×R/4, ‡k2×R/2
Channel Load on each ejection link or Le je R k2×R

Ideal Latency 2(k+1)/3×Trr + 2×Trn (3k−1)/2×Trr + 2×Trn, k even
Tr(r/n): Delay of router-(router/nic) traversal links (k−1)(3k+1)/2k×Trr + 2×Trn, k odd

Ideal Throughput R, k < 4 and k×R/4, k > 4 ⋆k2×R, k < 4 and ⋆k3×R/4, k > 4

(max{Lbis, Le je}) †‡k2×R

Ideal Energy 2(k+1)/3×Exbar + Exbar + N×Exbar +
Er(r/n): Energy of router-(router/nic) traversal links 2(k+1)/3×Err + 2×Ern (N−1)×Err + N×Ern

Exbar: Energy of crossbar-switch within router

Ideal Latency for broadcasts is the hop delay of the furthest destination router, averaged across all sources. If we divide a mesh into four
quadrants, the furthest destination for any router in a particular quadrant, is the corner router in the opposite quadrant. We compute the average hop count
across all sources in a quadrant, and multiply it by four. This hop count is then translated to cycles, by assuming single-cycle routers, and T rr cycles
between routers in links.
Ideal Energy for broadcasts is computed by multiplying the average hop count by the ideal energy of each hop, which is just the energy of the datapath
(crossbar and links).
Ideal Throughput for broadcasts is analyzed by evaluating the channel load across the bisection links and ejection links [21].
⋆ fork@nic (network interface forks flits): an injection rate of R flits/cycle translates to k2×R unicast flits entering the network.
† fork@rtr broadcast-tree (routers fork flits based on an ideal tree-based route), all flits in one half of the network (k2×R/2) cross to the other side; half
go straight along X and fork into multiple flits along Y, half go straight along Y and fork into multiple flits along X. Each of these flits, once forked,
makes k/2 bisection crossings per direction.
‡ fork@rtr broadcast-ring (a single packet traverses a logical ring in the network), all flits in the network (k2×R) cross to the other half, and then return
to the same half in alternate rows/columns, resulting in k/2 bisection crossings per direction per flit.

shortest-path route. For multicasts with many destinations,

and broadcasts, this leads to the packet traversing a logical

ring embedded in the network, and forking out to the NIC

at each destination router. This results in hundreds of cycles

of latency for the destinations at the end of the ring, and is

thus not a scalable solution.

Tree-based routing creates multicast trees in the network,

and are used in most works. Multicast trees however add

the complexity of either storing the tree information in the

network, or creating them dynamically. Many previous works

such as VCTM [13], MRR [14], Samman et al. [22] use the

former approach and use routing tables at routers, which

add area, power and delay overheads [21]. bLBDR [15] and

RPM [16] avoid routing tables and use combinational logic

to create trees. bLBDR partitions the network into different

domains using connectivity bits and broadcasts within them,

while RPM uses priority rules to dynamically determine

routes based on the quadrants relative to a router where

destinations lie.

However, a major limitation of all these schemes is that

their various multicast-trees reduce to one tree in the pres-

ence of broadcasts, or multicasts with very dense destination

sets. The reason for this is that conflicts for choosing paths

are broken by using fixed output port priorities. This is

required to avoid duplicate reception of the same packet via

alternate routes. Fig. 2 shows the trees that all broadcast flits

in the network would use in some of these works, based on

the rules specified in each of them. The downsides of this are

that the links are utilized in an unbalanced manner, lowering

throughput5. For broadcasts in an 8x8 mesh, we observed

that VCTM uses X-links 11%, and Y-links 89% of the time.

RPM does the exact opposite.

5The average number of flits crossing the bisection links now becomes
non-uniform in each direction, instead of uniformly being k/2 like the ideal
load-balanced tree discussed in Table I

To the best of knowledge, there has been no routing

scheme that targets broadcasts/dense multicasts, and achieves

ideal load balance.
2) WHIRL: We propose a tree-based routing scheme

called WHIRL that (1) achieves load-balancing for broad-

casts and dense multicasts, (2) guarantees non-duplicate

packet reception, (3) is non table-based, and (4) is deadlock-

free.

Previous approaches create multicast-trees from unicast

paths. We adopt the opposite approach: we create multicast-

trees from a global load-balanced broadcast-tree. For mul-

ticasts with few destinations, our approach and previous

approaches would yield similar results, but as the desti-

nations increase, our approach would outperform previous

approaches due to more path diversity.

WHIRL utilizes just two-bits to encode the routing in-

formation: the LeftTurnBit (LTB) and RightTurnBit (RTB).

These signify whether the flit should turn left, or turn right,

relative to its current direction of motion6. Combinations of

these bits across all directions, subject to certain restrictions

creates the global WHIRL tree. This tree is then pruned at

network routers based on the multicast destination locations.

Source NIC: Choosing the WHIRL route. The global

WHIRL route which would be taken by a multicast/broadcast

packet is decided by the source network interface (sNIC), i.e.

source routing. This is done not only to balance the load,

but also to ensure non-duplicate and guaranteed reception

of packets at all destinations’ network interfaces (dNIC);

which is hard to support if the routers dynamically decide

which route to take. The sNIC chooses four pairs of (LTB,

RTB), one for each direction. These bits need to adhere to the

following two rules to ensure non-duplicate packet delivery:

(1) If the LTB of a particular direction is high, the RTB of

the direction to its left cannot be high, and

6For instance, for a packet going West, left is South, while right is North

Source

00

00

00

00

00

11 1111 11 11

(a) VCTM [13] bcast =
WHIRL 11-00-11-00

00

11

00 0000 00

11

11

11

11

...

(b) RPM [16] bcast =
WHIRL 00-11-00-11

...

01 01 010101

01

01

01

01

01

(c) bLBDR [15] bcast =
WHIRL 01-01-01-01

Destination Set

1111

01

01

10

10

1000

00

00

00

00

00

00

00

00 00

00 00

00 00

00

(d) WHIRL 11-01-00-10

NE quadrant :

if (is_bcast or num_dest > threshold)

RTB_N = rand(), LTB_E = ~RTB_N;

else

if (occupied_rows < occupied_cols)

RTB_N = 1; LTB_E = 0;

else if(occupied_rows > occupied_cols)

RTB_N = 0; LTB_E = 1;

else

RTB_N = rand(), LTB_E = ~RTB_N

Repeat for all quadrants

(e) Pseudo code at source NIC

Fig. 2. Some WHIRL broadcast trees. Packets fork into all four directions at the source router. By default, every packet continues
straight in its current direction. In addition, forks at intermediate routers are encoded by [LeftTurnBit, RightTurnBit], where left and right
are relative to the direction of traversal. These bits are reset to 0 once a turn completes (hence 00 is implicit on all unmarked arrows).

(2) If the RTB of a particular direction is high, the LTB of

the direction to its right cannot be high.

This results in a total of 16 possible WHIRL trees. Some

of these are shown in Fig. 2. The trees from VCTM [13],

RPM [16] and bLBDR [15] form a subset of our WHIRL

broadcast trees.

If the total number of destinations are above a threshold7,

LTB and RTB for each direction are chosen randomly (to

enable path diversity), subject to the 2 constraints mentioned

above, and one of the 16 WHIRL trees will result. If they

are below the threshold, they are chosen to try and maximize

the number of destinations along the route. We implement

a heuristic where we count and compare the total occupied

rows and columns in each quadrant, and choose LTB/RTB

such that the flit goes along the X direction, and forks into

Y, if the number of occupied rows is higher, and vice versa.

An example of this can be seen in Fig. 2(d). Our pseudo

code is shown in Fig. 2(e), and this component in the source

NIC has a critical path of 480ps in 90nm when synthesized

from RTL.

The sNIC sends the four sets of (LTB, RTB) values, one

for each direction (8 bits in a mesh); along with the actual

outport request (a 5-bit vector with multiple bits high), to

the router it is connected to.

Routers: Implementing WHIRL’s LTB and RTB. WHIRL

is implemented as a one-hop-in-advance lookahead rout-

ing [23] mechanism, to remove route computation from the

critical path. This also enables buffer bypassing, which will

be discussed later in Section III-C. This means that every flit

that enters a router already knows its output ports (including

the one entering from the sNIC). These output port requests

are sent as one-hot encoded values to separate WHIRL

route compute modules, one for each output port8 that the

flit wishes to fork out of, as shown in Fig. 3(a). One-hot

encoding allows us to implement left turns and right turns

by simple left-shift and right-shift operations respectively,

simplify the route computation circuit.

The pseudo code for each WHIRL route compute unit

is shown in Fig. 3(b). It has a critical path delay of

7We set the threshold to 16 for a 8x8 mesh, based on experiments
8For a P-port router, WHIRL requires (P-2) modules at each input port

(assuming no u-turns, and no advance routing required for the NIC), and
(P-1) modules at the NIC

380ps in 90nm, fitting within a 2GHz clock. At each route

computation circuit, (LTB, RTB) values for the next router

are determined. If the flit is turning, these bits are reset

to zero, else they remain the same as the current value.

These new values determine the output ports at the next

router. For broadcasts, continuing straight is implicit, while

next LTB and/or next RTB values being high determines if

the flit needs to turn left and/or right at the next router.

For multicasts, however, routers need to ensure that flits

do not fork into rows/columns which do not contain nodes

in their destination sets. This filtering is performed with

combinational logic, without using routing tables. We assume

that multicast flits carry a destination set bit-string, similar to

that in RPM [16]. In our design, the destination bit-string gets

divided into five Destination Set Regions (DSR) bit-strings,

during the route computation, based on the position of the

neighbor router for which the routing is being performed,

as shown in Fig. 4(a). These regions are called DSR-

LeftTurn, DSR-LeftDiag, DSR-Straight, DSR-RightDiag and

DSR-RightTurn. Unlike broadcasts, the decision to continue

straight, turn left, and turn right depends not just on the

next LTB/next RTB, but also on the occupancy of each DSR,

as highlighted in Fig. 3(b). Note that the same destination

node will lie in different DSRs for different neighbors of

the same current router. This is not a problem, because

the LTB/RTB rules described earlier in Section III-A.2 will

ensure that the destination is reachable from only one of the

neighbors. For the same reason, bits in the destination-set bit-

string do not have to be reset as the flit moves through the

network, like in RPM [16], thereby simplifying the circuitry

further.

Throughput Characterization. Packets traversing all of

WHIRL’s 16 broadcast trees utilize all possible X+, X-,

Y+ and Y- links that lie along the minimal routing path.

This is because WHIRL does not add any fixed direction

priorities, and instead guarantees non-duplicate reception via

the LTB/RTB rules discussed earlier. For pure broadcast

traffic, simulations showed an ideal 50% utilization on both

the X and Y links. From a theoretical perspective, each

injected broadcast flit results in k/2 crossings of the bisection
along each direction, which is the ideal channel load, as

derived in Table I.

Deadlock Avoidance. WHIRL allows all turns, and thus

8 9

4 5 6

0 1 2

7

3

Route Compute

N-neighbor (9)
1 1 1 0 0

1 0

1 1

current_outport

LTB, RTB

Route Compute

S-neighbor (1)

Route Compute

E-neighbor (6)

West Inport

Router 5
10 11

my_outport_1hot

LTB, RTB

1 ..

45

1

69

..

DS (Dest Set)*

0 1

0 00 0 0

my_outport_1hot

LTB, RTB

DS

1 0

0 00 1 0

0 01 1 0

0 0

next_outport

next_LTB, next_RTB

S WEj N Eoutport-encoding

my_outport_1hot

LTB, RTB

DS

1 0

0 00 0 1

0 01 1 1

1 0

next_outport

next_LTB, next_RTB

..

..

.. DS

*Only required

for multicasts

(a) Router 5 does one-hop advance WHIRL routing for its
current outport neighbors 6 and 9.

WHIRL Pseudo Code

At next router:

(1) continue STRAIGHT if

(i) is_bcast, or

(ii) DSR-Straight is non-empty, or

(iii) next_LTB is high and DSR-LeftDiag is non-empty, or

(iv) next_RTB is high and DSR-RightDiag is non-empty

 and,

(2) fork LEFT if next_LTB is high and (is_bcast, or DSR-LeftTurn is non-empty),

and

(3) fork RIGHT if next_RTB is high and (is_bcast, or DSR-RightTurn is non-empty),

and

(4) fork into Network Interface if is_bcast, or it is in DS

Hardware Implementation at each router

next_LTB = is_turning ? 0 : LTB;

next_RTB = is_turning ? 0 : RTB;

next_outport [4] = is_bcast | DS[next_router_id];

next_outport[3:0] =

(my_outport_1hot & (is_bcast | (DSR-Straight !=0) |

(next_LTB & (DSR-LeftDiag != 0)) | (next_RTB & (DSR-RightDiag !=0)))) +

(my_outport_1hot << (next_LTB & (is_bcast | DSR-LeftTurn !=0))) +

(my_outport_1hot >> (next_RTB & (is_bcast | DSR-RightTurn !=0)));

(b) Pseudo Code at Routers.

Fig. 3. Implementation of WHIRL. Each route-compute module takes my outport 1hot, LTB, RTB and Destination Set as inputs, and
computes the next outport, next LTB, next RTB for each neighboring router.

requires a deadlock avoidance mechanism. We do not wish

to restrict any turns and take away the theoretical benefits of

WHIRL’s throughput discussed above. We thus apply con-

ventional VC management to avoid deadlock. We partition

the VCs into two-sets: VC-a allows all possible turns, VC-b

restricts S-to-E and S-to-W turns, as shown in Fig. 4(b).

Since the multicast-tree can be decomposed into unicast

paths, VC-b acts like an escape VC [21]. Packets can allocate

either VC-a or VC-b, depending on whichever is free. It is

possible for all VC-a’s to form a circular-dependency, but

VC-b can never form such a dependency. Thus packets in

VC-a which are stuck in this cycle will use VC-b to escape

the deadlock.This need not be done explicitly by detecting a

deadlock and recovering, but is implicit because all packets

can allocate any VC, including VC-b.
Another cause of deadlock in multicast networks is when

two copies of the same flit take two alternate paths to

reach the same destination. This can never occur in WHIRL

because of the LTB/RTB rules which are enforced by every

router and NIC.
Pt-to-Pt Ordering. Multiple WHIRL routes from the same

sNIC can violate point-to-point ordering from source to

destination. For coherence and other on-chip communica-

tion protocols that rely on this ordering, source network

interfaces statically follow only one of the WHIRL trees

for all messages within an ordered virtual network/message

class, throughout the duration of the computation. Routers

follow FIFO ordering for flits within an ordered virtual

network, by using queueing arbiters for switch allocation,

thereby guaranteeing pt-to-pt ordering. Since there are a

total of 16 possible WHIRL routes, and each sNIC can

independently choose any one of them, there is still adequate

load balancing.

B. Router Microarchitecture and Circuits: Multicast Cross-

bar circuit (mXbar)

1) Background: Multicast routers add the ability for

routers to fork the same flit out of multiple ports. VCTM [13]

does this by reading the same flit out of the input buffers one-

by-one and sending it out of different output ports, based on

successful switch and VC allocation every cycle. MRR [14]

forks flits by circling flits within the Rotary Router [24], and

sending them one-by-one out of all requisite output ports.

The disadvantages of these approaches are: (1) Multicast flits

are queued up more in the buffers since they go serially out

of each of the ports. This increases the occupancy time of

each buffer, which in turn increases the number of buffers

required in the network to sustain a target throughput (2)

Multicast flits spend more cycles at each router adding to

latency. (3) Multiple arbitration cycles are spent in sending

out one particular flit.

These problems could be mitigated by forking flits within

the crossbar. This seems like an intuitive solution, but would

require different design decisions and circuit choices for the

drivers and switch circuits of the crossbar. Some papers

such as Samman et al. [22], and RPM [16] presume forking

within the crossbar, but do not discuss the circuit and power

implications of realizing that. A power-performance trade-off

evaluation for designing a multicast crossbar circuit versus

using a conventional crossbar that relies on serial forking is

critical for multicast routers, but has not been done before,

to the best of our knowledge.

2) mXbar Circuits Characterization.: Architecturally a

PxP crossbar can support simultaneous 1-to-P connectiv-

ity. However, realizing single-cycle unicasts versus M-casts

(where M ranges from 1 to the number of ports P) offer

circuit trade-offs which we explore in detail next. Wire

capacitances of wires were validated by extracted layouts

created using a 90nm PDK, and each crossbar design was

modeled in detail in Orion2.0 [25] at 90nm, targeting a 2GHz

frequency.

Mux-based crossbars use multiple stages of muxes

throughout the area of the crossbar to realize input-to-

output connectivity. The minimum-degree mux available to

the designer determines the number of stages, which in turn

x

 DSR

(Dest Set Regions)

Neighbor

Current router

Destination

DSR-Straight

DSR-RightTurn

DSR-LeftDiag

DSR-RightDiag

DSR-LeftTurn
[11]

X

(a) Dest Set Regions (DSR) for multicast WHIRL. In this example,
the north neighbor’s DSR-LeftTurn and DSR-Straight are empty,
while DSR-LeftDiag, DSR-RightDiag and DSR-RightTurn are non-
empty. DSR-LeftTurn and DSR-RightTurn occupancy overrides the
LTB and RTB values respectively, when deciding to turn, and thus
the packet does not turn left. However, the packet continues straight
even though DSR-Straight is empty, because DSR-LeftDiag and
DSR-RightDiag are non-empty, and both LTB/RTB are high. The
destination x is not in any of these DSRs, as it would be reached via
some other router based on the global WHIRL route.

a/b
a/b

a/b

a/b

a/b

a/b

a

a

a/b

a/ba/b

a/b

a a/b

a/b

a/b

a/b

a/b

a/b

a/b

Deadlock Free Path

VC-a

VC-b

Source

b

a b

b

bb

b

b

b

a

a

a

a

aaa

(b) Deadlock Avoidance by VC partitioning. From the source router,
packets can allocate only VC-a in the S direction, and both VC-a
and VC-b in other directions. Since all packets only make one-turn
throughout any WHIRL route, this ensures that packets in VC-b
never make S-to-E and S-to-W turns, thereby guaranteeing that a
deadlock-free path exists in the network.

Fig. 4. Features of WHIRL.

affects the latency. This design is easy to realize using RTL

synthesis as well. Inherent fanout of input wires to separate

muxes corresponding to each output enables this design to

support broadcasts. However, this crossbar has very high

loading due to fan-out of each input to muxes corresponding

to each output, and suffers from high-energy values for data

traversal [26]. For a 5x5 crossbar, we observed the average

energy for a 1-to-1 traversal to be 0.336 pJ/bit using a

transmission-gate based mux, and 0.538 pJ/bit using a tri-

state based mux.

Matrix Crossbar. Custom-designed matrix crossbars are

often used for better power efficiency [27]. The key com-

ponents of such a crossbar are the input drivers, wires

(horizontal and vertical), and the crosspoint switches, as

highlighted in Fig. 5(a). Unicasts versus multicasts can offer

different design decisions for choosing the switches and

drivers. We discuss these next, and show the latency and

energy derivations in Table II.

CROSSBAR-A: Pass-gate/Transmission Gate switch. This

design is most commonly used due to its simplicity, low-

power and low-area. An input driver (like an inverter chain)

needs to drive both the horizontal, and vertical wires, while

the pass-gates form the appropriate connections at the cross-

points. The input drivers are sized to drive one full horizontal

and vertical wire. The average energy for a 1-to-1 traversal

was observed to be 0.154 pJ/bit in a 5x5 crossbar. However,

these crossbars cannot support a broadcast, which requires

the input driver to drive one horizontal, and P vertical wires,

unless huge slack is available. To support broadcasts, a larger

driver would be required, which would show up as a large

Cinv−c in the energy equation in Table II, and become an

overkill for unicast traffic9.

CROSSBAR-B: Adaptive Input Driver. Since a crossbar

is expected to receive a mix of unicasts and multicasts, we

propose a variant of CROSSBAR-A with an adaptive input

driver. This can be created by using a parallel set of P

minimum-sized tri-states, each of which would connect to

9The energy consumption in this case was 0.564 pJ/bit for all traversals,
1-to-1, or 1-to-5

a driver that connects to the input wire. M of the tri-states

are turned on when drivingM-casts, thereby providing appro-

priate current. This design has similar delay characteristics

as CROSSBAR-A, but would have lower average power due

to the adaptive Cpar−tri. This crossbar consumed an average

energy of 0.160 pJ/bit for a 1-to-1 traversal.

Both CROSSBAR-A and CROSSBAR-B however have

latencies that increase with M, as highlighted in Table II,

which can limit router frequency at high M.

CROSSBAR-C: Tri-state Switch. In this design, the input

driver only needs to drive the horizontal wire and can

be small. Each vertical wire has its own tri-state driver,

and thus this design can support broadcasts. Moreover, the

transmission latency of such a crossbar is independent of M

as Table II shows, and is thus the fastest and most robust

out of all the designs. In terms of energy, the tri-states add

extra load on the vertical wires, as highlighted by 2×Cdtri in
the equations10. Extracted layouts of transistors, and wires

using a 90nm PDK showed that the capacitances of the wires

(about 250fJ/mm) are usually an order of magnitude higher

than those of the drain/gate/source (about 10fJ). Thus the

energy equation for all three designs would be dominated

by Cinput−driver, Cwh and Cwv. It thus seems to be the most

energy efficient design for supporting multicasts.

However, the caveat is area. The cell-height of the cross-

point tri-states is at least 3-times the cell-height of a simple

pass-gate11. This could increase the vertical wire length three

times, in turn increasing Cwv, and thereby power. The cell-

width could be made comparable by allowing the two PMOS

devices connected together in the tri-state in Fig. 5(a) to

share the drain/source; similarly for the NMOS devices12.

As a consequence, modeling this crossbar resulted in an

energy of 0.290 pJ/bit/1-to-1 traversal. However, we can

10The tri-state output stage is an inverter, and adds Cd of both the PMOS
and the NMOS

11This is due to the addition of PMOS devices, which are usually sized
to be twice the NMOS size since they are slower

12In reality, however, custom layout designers would not layout this
design exactly as shown in Fig. 5(a), so these simple estimates will not
hold completely true

In0-

bit 0
In0-

bit n
In1-

bit 0
In1-

bit n
In2-

bit 0
In2-

bit n
In3-

bit0
In3-

bit n
In4-

bit 0
In4-

bit n

Out0-

bit 0

Out0-

bit n

Out1-

bit 0

Out1-

bit n

Out4-

bit 0

Out4-

bit n

Input Driver

Cross-point

Switch

Out2-

bit n

Pass Gate

in

sel

out

Tri-State

in

sel

out

(a) Matrix Crossbar Structure

Switch Allocator

VC Allocator

WHIRL Route

computation

5x5 Multicast

Crossbar switch

Input 1

Output 1

Output 5

VC 1

Input buffers

VC 2

VC n

Input 5

VC 1

Input buffers

VC 2

VC n

Lookahead

GeneratorLookahead
{outport,

LTB,RTB,

DestSet

Vcid}

Lookahead
{outport,

LTB,RTB,

DestSet

Vcid}Bypass Path

next_outport,

next_LTB,RTB

LA_LT

BW SA ST LT

LA_RC

LA_SA

ST

LA_LT

LT

Time

Router n
Router n +1

Router

Pipelines

Flit

Lookahead (LA)

RC: Route Compute
SA: Switch Alloc
LT: Link Traversal

(b) BOOM router microarchitecture

BW SA SA SA SA

CT

LTSTSA

8 cycle roundtrip

BW SA

CT

LTSTSA

5 cycle roundtrip

BASE_fork@rtr-XYtree

CT

LTSTSA

BOOM_mXbar

BOOM_mXbar_ bypass

3 cycle roundtrip

BW: Buffer Write
SA: Switch Allocation
ST: Switch Traversal
LT: Link Traversal
CT: Credit Traversal

(c) Impact on buffer turnaround (minimum cy-
cles before which the same buffer can be reused).
BASE fork@rtr has a turnaround of 8 cycles. The 4
cycle SA at the next router is for the worst case
when flits go along X in the XY-tree. BOOM’s
mXbar reduces this to 5, buffer bypassing reduces
it to 3 cycles.

Fig. 5. BOOM: Broadcast Optimizations for On-chip Meshes

mitigate this issue by avoiding the charging/discharging of

the entire vertical wire, by segmenting the crossbar [26].

Thus, input ports close to the output port which wish to

broadcast, need not charge the full vertical wire cap Cwv.

We modeled the segmented version of this crossbar and

observed an average energy of 0.137 pJ/bit/1-to-1 traversal.

Segmenting CROSSBAR-A also reduced its energy to 0.099

pJ/bit/traversal (the reduction was not as much as that for

CROSSBAR-C due to shorter wires with lower Cwv).

A mXbar like CROSSBAR-C offers an interesting trade-

off against the conventional, non-multicast CROSSBAR-

A. Clearly, in terms of delay, CROSSBAR-C wins be-

cause CROSSBAR-A would require M cycles to transmit

M copies of the same flit, while CROSSBAR-C would do

it in a cycle. But in terms of total energy for transmis-

sion of the M copies, CROSSBAR-A consumes M× 0.099

pJ/bit, while CROSSBAR-C consumes M× 0.137 pJ/bit,

which is 38% higher. The Energy-Delay Product indicates

that CROSSBAR-C wins by a factor of (1-1.38/M) over

CROSSBAR-A. If the average value of M in each router is

greater than 1.38, using CROSSBAR-C makes sense from

an Energy×Delay perspective. But if unicasts dominate,

sticking to the conventional CROSSBAR-A would be more

power efficient. We evaluate this proposition further in the

evaluation section.

3) Multi-port Switch Allocation: To support the mXbar

described above, the switch allocation (SA) needs to grant

multiple output ports to the same requesting input port. In

addition, VC Allocation (VA) needs to be performed for

multiple output ports before the flit is allowed to leave. We

enable these as follows:

(1) Requests to, and responses from the switch allocator

conform to a 5-bit vector13.

(2) Each input port selects one input VC as the requestor

using any arbiter [28].14

(3) All inputs place requests for the switch output ports.

Multiple bits can be high in the request to specify multiple

requests in case of multicasts.

13Local, West, North, East, South
14A priority arbiter can be used to prioritize VCs which have requests

for the maximum number of output ports.

(4) Bit i, (i=0 to 4) from all requests is sent to an arbiter

corresponding to output port i, which selects one input port

as the winner, and generates a one-hot encoded response

vector.

(5) Each output port maintains a queue corresponding to free

VCs at the next router. At the end of SA, a free VC is picked

from each output port i, and assigned to the input port that

won it [29], thereby performing VA.

(6) The response vectors from (4) setup the mXbar select

lines.

(7) Bit j (j=0 to 4) from all responses from (4) is sent as a

bit-vector to input port j. This vector specifies which outport

port requests were granted for each input port. Multiple bits

can be high, as each output port could have independently

picked input port j as the winner. The corresponding flit is

sent to the mXbar and forked out.

(8) The buffer corresponding to the flit is made free if all its

output port requests were granted, else it re-arbitrates for the

remaining ones in the next cycle, thereby supporting partial

allocations.

C. Flow Control: Multicast Buffer Bypassing with Looka-

heads

1) Background: Buffers in NoC routers are a necessary

evil in packet-switched designs. They are required to prevent

collisions of flits wishing to use the same output links, but

add latency and power [27]. Adding physical express links,

such as MECS [30], can help unicast flits to avoid buffers, but

multicast flits still need to go via routers to perform forking.

Previous works [31], [19], [20] have proposed schemes to

speculatively bypass the buffering stage at routers by sending

lookahead signals a cycle before the actual data, to pre-

allocate the crossbar at intermediate routers. This reduces

latency, and also saves buffer read/write power. However,

these techniques only work for unicast flits. To the best of our

knowledge, no prior art has attempted extending bypassing

for multicasts, which is essential for meeting the energy and

delay limits of an ideal broadcast network.

2) Single-Cycle Speculative Multicast Buffer Bypassing:

Prior works enable bypassing of unicast flits in the following

manner: (1) Each flit is preceded by a lookahead that reaches

the next router a cycle in advance. It carries the output port

TABLE II

Latency and Energy comparison for PxP matrix crossbars designs that support multicast

Crossbar Cross-Point Input Driver M-cast Latency† M-cast Energy

A Pass-Gate Inverter Chain Rinv−c×∑C+Rwh× [P×Cdpass +Cwh/2]+ Cinv−c+
Rwh×M×[P×Cspass +Cwv/2)]+ [P×Cdpass +Cwh]+

Rwv× [P×Cspass +Cwv/2] M× [P×Cspass +Cwv]V 2

B Pass-Gate Parallel Rpar−tri×∑C+Rwh× [P×Cdpass +Cwh/2]+ Cpar−tri+
Tri-States Rwh×M×[P×Cspass +Cwv/2)]+ [P×Cdpass +Cwh]+

Rwv× [P×Cspass +Cwv/2] M× [P×Cspass +Cwv]V 2

C Tri-State Inverter Rinv×∑C+Rwh× [P×2×Cgtri +Cwh/2]+ Cinv+
Rtri× [P×2×Cdtri +Cwv/2)+ [P×2×Cgtri +Cwh]+
Rwv× [P×2×Cdtri +Cwv/2] M× [P×2×Cdtri +Cwv]V 2

† First-order RC time constant is estimated using the Elmore Delay Model for distributed RC segments.
P: number of ports, Cd/Cg/Cs : Drain/Gate/Source Capacitances of devices,

Rwh/Rwv: Horizontal/Vertical Wire Resistance, Cwh/Cwv: Horizontal/Vertical Wire Capacitance.

request, and arbitrates for the crossbar, while the flit traverses

the link. (2) Successful arbitration sets up a demux that

allows the flit to connect directly to the crossbar and proceed

out of its output port, instead of going to the buffers. (3) A

new lookahead is generated and sent along further along the

flit’s path.

We discuss the issues and our solutions for each of these

three steps that can enable a multicast router to support

speculative bypassing. The lookaheads need to carry more

information to support simultaneous buffer bypassing and

forking, which potentially continues at all routers till the flit

reaches its destination. For unicasts, lookaheads carry the

VCid, one output port request, and the destination id [19],

[20]. For multicasts, they need to carry the VCid, multiple

output port requests, and the destination set. In addition, to

support WHIRL, the LTB and RTB bits need to be in the

lookahead. However, these information are no longer needed

in the flit, so lookaheads are not strictly an overhead.

With these lookaheads, BOOM enables speculative by-

passing as follows. It uses the same 5-bit vector which

was described previously in Section III-B.3 with multiple

bits high to efficiently encode multiple output port requests

required for (1). For (2), the mXbar is necessary. Otherwise

the flit will be forced to get buffered at all routers where

it is getting forked, to serially send out all copies. The

lookahead arbitration for the crossbar works similar to the

switch allocator described in Section III-B.3. The incoming

lookahead’s output port requests are in the same 5-bit format

described before, and are prioritized over the requests of

other flits buffered at that input port. They are sent to the

switch allocator, which breaks conflicts. If the lookahead

wins all of its ports, the incoming flit does not need to get

buffered, and forks out using the mXbar. BOOM also allows

partially successful allocations by the lookahead, in which

case the incoming flit simultaneously uses the bypass path

to connect to the mXbar, and also gets buffered.

To support (3), BOOM generates multiple lookaheads, one

corresponding to each output port out of which the flit forks.

The WHIRL bits and the destination set from the incoming

lookahead fans out to three15 WHIRL blocks, similar to

Fig. 3(a). Each vector that is generated is embedded into the

outgoing lookahead for that output port, which is sent out

upon successful switch allocation. The actual flit meanwhile

traverses the mXbar.

15For a five-port router, assuming no u-turns, the flit can fork out of
4-ports at maximum. No routing is required for the NIC port.

D. Achieving ideal energy-delay-throughput using BOOM

The load-balanced network routing with WHIRL, com-

bined with the ability to fork out of routers in a single-

cycle using the mXbar, enhanced with the ability to bypass

buffering despite forks, together form the BOOM microar-

chitecture, which is shown in Fig. 5(b), with each of these

additions to a baseline router shaded in gray. The pipelines

followed by the lookahead and the flit are also shown. In a

BOOM network, a broadcast/multicast propagates as follows:

(1) The source NIC calculates the WHIRL route, then

embeds that into a lookahead as four sets of LTB and RTB

bits (Section III-A), along with the output port requests and

the destination set, and sends it out to its router.

(2) This incoming lookahead performs route-computation for

all neighbors based on the LTB and RTB bits (Section III-

A), and in parallel performs switch allocation (as described

in Section III-B.3) where it competes for the mXbar along

with lookaheads from other ports, and buffered flits.

(3) Based on the success of the lookahead, the incoming flit

gets buffered, and/or bypasses directly to the crossbar and

forks (as described in Section III-C.2).

(4) Lookaheads are generated and sent out to all the neigh-

boring routers while the flit traverses the mXbar (as described

in Section III-C.2).

(5) Steps (2)-(4) are repeated at each router until all desti-

nations are reached.

In the best case, a BOOM broadcast/multicast can be

delivered to all destination NICs without any intermediate

buffering at routers, incurring only wire delay and energy

(crossbar and links). This enables the ideal energy-delay for

broadcasts derived in Table I. With WHIRL balancing broad-

cast/multicast traffic evenly across all mesh links, and mXbar

plus multicast bypassing enabling single-cycle router traver-

sals and minimal buffer turnaround time, broadcast/multicast

throughput can be maximized with very few buffers.

IV. EVALUATION RESULTS

We modeled BOOM and the baseline network designs

in detail, within the cycle-accurate network simulator Gar-

net [32], and used ORION 2.0 [25] to determine the network

energy consumption, with new models for the different cross-

bar circuits. Table III describes our simulation parameters.

Table IV describes our baseline routers BASE fork@nic and

BASE fork@rtr. Table V summarizes the traffic patterns we

use.

TABLE III

SIMULATION PARAMETERS

Process Parameters
Technology 90 nm

Vdd 1 V

Frequency 2.0 GHz

Network Parameters
Topology 8-ary 2-mesh

Router ports 5
VCs per port 8

Buffers per port 8
Flit size 128 bits

Link length 1 mm

TABLE IV

ROUTER PARAMETERS

BASE fork@nic
Routing Unicast XY
Crossbar CROSSBAR-A (Sec. III-B)

BASE fork@rtr
Routing Non-Table Mcast Tree [16], [15]

XY-Tree for bcast
XY for ucast

Crossbar CROSSBAR-A (Sec. III-B)

BOOM whirl-mxbar-bypass
Routing WHIRL for mcast/bcast

XY for ucast
Crossbar CROSSBAR-C (Sec. III-B)

Flow Control Multicast Bypass

TABLE V

TRAFFIC PARAMETERS

Synthetic Traffic
Unicast Uniform Random

Bit-Complement
Tornado, Hotspot

Multicast % 5%, 20%,
total traffic 60%, 100%
Multicast DEST ALL: 2-64 random,
destination DEST FEW: 2-16 random

set DEST MANY: 48-64 random

PARSEC [12] Traffic
Setup 32K L1, 1MB L2/core

Protocol HyperTransportTM [3]
based, with HT Assist [6]

A. Network-only Simulation

1) Limit Study with Broadcast Traffic: We start by study-

ing BOOM in the presence of only broadcasts, and char-

acterize it against the ideal broadcast mesh metrics derived

in Section II. We inject a synthetic broadcast traffic pattern

where uniformly-random sources inject single-flit broadcast

packets into the network, at a specified injection rate. The

metric we use for evaluation of latency is broadcast latency

which we define to be the latency between generation of a

broadcast packet at a network interface, to the receipt of the

tail flit of the last copy at the destination network interfaces.

Saturation throughput is the injection rate at which the

average latency reaches 3-times the low-load latency.

Latency and Throughput. Fig. 6(a) shows the aver-

age broadcast latency as a function of injection rate for

BOOM whirl-mxbar-bypass, compared to the two baselines.

The IDEAL lines are calculated from Table I by setting k=8,

and link delays T r(r/n)=1. We observe that BOOM whirl-

mxbar-bypass has 60.6% lower low-load latency, and 62.7%

higher throughput than BASE fork@rtr; and 86.4% low-load

latency, and 380% higher throughput than BASE fork@nic

NoC. WHIRL by itself results in 22.2% improvement in

throughput, bypassing by itself results in 37.0% reduction

in low-load latency, and 22.2% improvement in throughput,

and the mXbar by itself results in a 24.2% lower low-load

latency, and 62.7% higher throughput. These are not shown

in Fig. 6(a) for clarity, but will be explored in detail later.

Energy. Near saturation, BOOM results in an en-

ergy reduction of 70.9% over BASE fork@nic due to

non-replication of flits. The energy savings over the

BASE fork@rtr are 80.1% in buffer read/write energy (for 8

buffers per port in both networks), and 11.6% overall.

We also ran BOOM with 4 buffers per port (Fig. 6(b)),

and observed that it achieves similar throughput as the

BASE fork@rtr with 8 buffers per port, reiterating Fig. 5(c).

With this configuration, BOOM shows a 68.4% and 31.2%

reduction in dynamic and leakage16 energy of buffers, re-

spectively; leading to an overall reduction of 10.7% and 6.7%

in dynamic and leakage energy of the network, respectively.

In summary, with worst case traffic (100% broadcasts),

BOOM’s latency is 5% off ideal on average prior to network

saturation, attains 96% throughput of the ideal, with energy

consumption just 9% above ideal.

16Having fewer buffers in the network lowers leakage energy compared
to the baseline

2) BOOM for mixed unicast-multicast traffic: We evaluate

the impact of BOOM with multicast traffic in the presence

of various kinds of unicast traffic (uniform random, tor-

nado, bit-complement and hot-spot). We discuss the results

for a network with 20% multicast traffic with number of

destinations varying randomly from 2-64 at each injection

(DEST ALL from Table V). For uniform-random (Fig. 6(c)),

WHIRL helps improve throughput by 17.5%, mXbar re-

duces low-load latency by 18% and improves throughput by

26.3%, while multicast bypassing reduces low-load latency

by 31.4%. Combining all three techniques results in a low-

load latency reduction of 49% and throughput improvement

of 43.7%. A similar trend is observed in bit-complement

(Fig. 6(d)). In tornado (Fig. 6(e)), however, mXbar improves

throughput by 30.7%, but adding WHIRL and multicast

bypassing to it do not improve throughput further like in

uniform-random and bit-complement. This is because tor-

nado traffic has unicast flits traveling continuously only on

the X links. Thus load-balancing by WHIRL ultimately gets

limited by the highly imbalanced unicast traffic. An extreme

case of this phenomenon is observed in Hot-Spot traffic17

(Fig. 6(f)). BOOM enables 49% lower low-load latency, but

is not able to push throughput by greater than 15% since the

highly contended and imbalanced Y-links near the hot-spot

nodes limit network saturation (since unicast traffic uses XY

routing).

In summary, WHIRL and mXbar help improve throughput,

while mXbar and multicast bypassing help lower the latency,

as highlighted in Fig. 6. Since BOOM enables each technique

to gel with the other, combining them results in up to 49%

reduction in latency, and 44% higher throughput, due to

efficient and faster use of links, unless adversarial unicast

traffic limits the overall network.

3) Breakdown of impact of WHIRL, mXbar and bypass:

Next we evaluate the impact of each component of BOOM

on performance and power as a function of the amount of

multicast traffic in the network, and the size of the desti-

nation sets. Fig. 7 plots the network saturation-throughput,

and the Energy-Delay Product (EDP) at low-loads, for two

kinds of destination sets: DEST MANY (48-64 destina-

tions randomly chosen) and DEST FEW (2-16 destinations

randomly chosen), and sweeps through the percentage of

multicasts in the network. The unicast traffic is uniform-

17We selected four hot-spot nodes in the network, and all unicast traffic
is directed to one of them randomly.

BASE_fork@nic BASE_fork@rtr

250cy
BOOM_whirl mXbar bypass IDEAL

200

250
t
La
te
n

150

ad
ca
st

50

100

ge
 B
ro
a

0

50

A
ve
ra
g

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Injection Rate (fraction of capacity)

(a) Random Broadcast Traffic

BASE_fork@rtr_8buf BOOM_8buf BOOM_4buf

250

cy

200

t
La
te
n

150

ad
ca
st

50

100

ge
 B
ro
a

0

50

A
ve
ra
g

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Injection Rate (fraction of capacity)

(b) BOOM with fewer buffers

0

10

20

30

40

50

60

70

80

90

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

A
ve
ra
ge

 fl
it

 la
te
nc
y
(c
yc
le
s)

Injection Rate (flits/cycle/node)

BASE_fork@rtr BOOM_whirl

BOOM_bypass BOOM_mXbar

BOOM_whirl mXbar bypass

(c) Uniform Random Unicast

BASE_fork@rtr BOOM_whirl

BOOM_bypass BOOM_mXbar

90s)

BOOM_whirl mXbar bypass

60

70

80

(c
yc
le
s

40

50

60

at
en

cy

20

30

40

e
fli
t l
a

0

10

20

A
ve
ra
ge

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

A

Injection Rate (flits/cycle/node)

(d) Bit-Complement Unicast

BASE_fork@rtr BOOM_whirl

BOOM bypass BOOM mXbar

90)

BOOM_bypass BOOM_mXbar

BOOM_whirl mXbar bypass

70

80

(c
yc
le
s

40

50

60

te
nc
y
(

20

30

40

e
fli
t l
at

0

10

20

ve
ra
ge

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
A
v

Injection Rate (flits/cycle/node)

(e) Tornado Unicast

BASE_fork@rtr BOOM_whirl

BOOM bypass BOOM mXbar

90)

BOOM_bypass BOOM_mXbar

BOOM_whirl mXbar bypass

70

80

cy
cl
es
)

40

50

60

te
nc
y
(

20

30

40

fli
t l
at

0

10

20

ve
ra
ge

0 0.02 0.04 0.06A
v

Injection Rate (flits/cycle/node)

(f) Hot-Spot Unicast

Fig. 6. Performance with 100% broadcasts (a, b), and 80% unicasts + 20% DEST ALL multicasts (c-f).

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

B
A

S
E

_F
O

R
K

@
R

T
R

B
O

O
M

_
W

H
IR

L
B

O
O

M
_

M
X

B
A

R
B

O
O

M
_

B
Y

P
A

S
S

B
O

O
M

_
M

X
B

A
R

+
B

Y
P

A
S

S
B

O
O

M
_

W
H

IR
L

+
M

X
B

A
R

B
O

O
M

_
W

H
IR

L
+

B
Y

P
A

S
S

B
O

O
M

_
A

L
L

B
A

S
E

_F
O

R
K

@
R

T
R

B
O

O
M

_
W

H
IR

L
B

O
O

M
_

M
X

B
A

R
B

O
O

M
_

B
Y

P
A

S
S

B
O

O
M

_
M

X
B

A
R

+
B

Y
P

A
S

S
B

O
O

M
_

W
H

IR
L

+
M

X
B

A
R

B
O

O
M

_
W

H
IR

L
+

B
Y

P
A

S
S

B
O

O
M

_
A

L
L

B
A

S
E

_F
O

R
K

@
R

T
R

B
O

O
M

_
W

H
IR

L
B

O
O

M
_

M
X

B
A

R
B

O
O

M
_

B
Y

P
A

S
S

B
O

O
M

_
M

X
B

A
R

+
B

Y
P

A
S

S
B

O
O

M
_

W
H

IR
L

+
M

X
B

A
R

B
O

O
M

_
W

H
IR

L
+

B
Y

P
A

S
S

B
O

O
M

_
A

L
L

B
A

S
E

_F
O

R
K

@
R

T
R

B
O

O
M

_
W

H
IR

L
B

O
O

M
_

M
X

B
A

R
B

O
O

M
_

B
Y

P
A

S
S

B
O

O
M

_
M

X
B

A
R

+
B

Y
P

A
S

S
B

O
O

M
_

W
H

IR
L

+
M

X
B

A
R

B
O

O
M

_
W

H
IR

L
+

B
Y

P
A

S
S

B
O

O
M

_
A

L
L

Multicast = 5% Multicast = 20% Multicast = 60% Multicast = 100%

Saturation Throughput Energy x Delay

(a) DEST FEW (2-16) Multicasts + Uniform Random Unicast

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

B
A

S
E

_F
O

R
K

@
R

T
R

B
O

O
M

_
W

H
IR

L
B

O
O

M
_

M
X

B
A

R
B

O
O

M
_

B
Y

P
A

S
S

B
O

O
M

_
M

X
B

A
R

+
B

Y
P

A
S

S
B

O
O

M
_

W
H

IR
L

+
M

X
B

A
R

B
O

O
M

_
W

H
IR

L
+

B
Y

P
A

S
S

B
O

O
M

_
A

L
L

B
A

S
E

_F
O

R
K

@
R

T
R

B
O

O
M

_
W

H
IR

L
B

O
O

M
_

M
X

B
A

R
B

O
O

M
_

B
Y

P
A

S
S

B
O

O
M

_
M

X
B

A
R

+
B

Y
P

A
S

S
B

O
O

M
_

W
H

IR
L

+
M

X
B

A
R

B
O

O
M

_
W

H
IR

L
+

B
Y

P
A

S
S

B
O

O
M

_
A

L
L

B
A

S
E

_F
O

R
K

@
R

T
R

B
O

O
M

_
W

H
IR

L
B

O
O

M
_

M
X

B
A

R
B

O
O

M
_

B
Y

P
A

S
S

B
O

O
M

_
M

X
B

A
R

+
B

Y
P

A
S

S
B

O
O

M
_

W
H

IR
L

+
M

X
B

A
R

B
O

O
M

_
W

H
IR

L
+

B
Y

P
A

S
S

B
O

O
M

_
A

L
L

B
A

S
E

_F
O

R
K

@
R

T
R

B
O

O
M

_
W

H
IR

L
B

O
O

M
_

M
X

B
A

R
B

O
O

M
_

B
Y

P
A

S
S

B
O

O
M

_
M

X
B

A
R

+
B

Y
P

A
S

S
B

O
O

M
_

W
H

IR
L

+
M

X
B

A
R

B
O

O
M

_
W

H
IR

L
+

B
Y

P
A

S
S

B
O

O
M

_
A

L
L

Multicast = 5% Multicast = 20% Multicast = 60% Multicast = 100%

Saturation Throughput Energy x Delay

(b) DEST MANY (48-64) Multicasts + Uniform Random Unicast

Fig. 7. Normalized Saturation Throughput and Energy-Delay-Products for BOOM’s components.

random in all cases. We demonstrate the impact of each com-

ponent of BOOM based on these results. BOOM WHIRL

refers to the BASE fork@rtr network with WHIRL routing.

BOOM mXbar refers to the BASE fork@rtr network with a

multicast crossbar, but using the baseline multicast tree, and

so on. BOOM ALL has all three techniques. We can see that

in both traffic conditions, there is a consistent reduction in

EDP due to BOOM. For DEST MANY, for which BOOM

is primarily intended, BOOM’s components lead to 40-60%

higher network throughput, and upto 56% lower EDP.

WHIRL. For DEST FEW, with 5% multicasts, WHIRL’s

performance is very comparable to BASE fork@rtr. This is

expected because for such a configuration, both WHIRL

and BASE fork@rtr create routes that match the destination

locations. WHIRL wins slightly because conflicts are broken

by random LTB/RTB choices in WHIRL, as was shown

in Fig. 2(e), while BASE fork@rtr uses fixed priorities.

WHIRL starts improving throughput as the percentage of

multicasts increase. The real benefits of WHIRL can be seen

in the DEST MANY where it gives 18-25% improvement

by itself, and upto 60% in conjunction with BOOM’s other

optimizations.

WHIRL’s EDP is similar to the fork@rtr, because at low-

loads, at which the EDP was calculated, both WHIRL and

fork@rtr traverse similar routes, incurring similar number of

buffer writes/reads and crossbar/link traversals.

mXbar. For DEST FEW, the mXbar does not show a

huge benefit, and offers throughput improvements similar

to WHIRL. The reason is that the percentage of unicast

dominate over multicasts, so the mXbar does not have much

work to do in terms of forking flits. As the percentage of

multicasts increase, WHIRL+mXbar push the throughput by

20-30%, and lower EDP by 35-50%. For DEST MANY,

however, mXbar steals the show completely. In almost all

cases, it single-handedly pushes the throughput to within

10% of the maximum achieved by all three techniques

together. However, as discussed earlier in Section III-B, the

mXbar has higher energy/bit/1-to-1 traversal, and was found

to consume higher power than the baseline. But the reduction

in latency due to mXbar offsets that and leads to 17-22%

lower EDP than the baseline.

Multicast Buffer Bypassing. Multicast bypassing does

not offer any significant throughput improvement by itself,

in both DEST FEW and DEST MANY. This might seem

contradictory to all previous works on unicast buffer by-

passing [19], [20]. The reason for this is that bypassing

helps increase throughput by enabling faster turnaround of

buffer usage. For multicasts however, the buffer cannot be

freed until all copies of the flit leave! Buffers can only

be bypassed at routers which are not forking flits along

the multicast route. But multicast bypassing by itself does

have delay benefits, because it enables flits to proceed to the

crossbar as soon as they enters, while a copy is also retained

at the buffers. This enables a 20-40% reduction in EDP

even in the DEST FEW case. When multicast bypassing is

combined with WHIRL, or mXbar, more of its benefits come

to light. With WHIRL enabling more load balanced routing,

the chances of bypassing routers outside of the destination set

increases due to lower contention. With mXbar, the biggest

benefit of bypassing is in terms of energy. mXbar coupled

with bypassing enables huge savings in buffer read/write

energy. It also allows faster recycling of buffers, and better

link utilization, all of which push throughput by up to 60%

in some cases.

In summary, for networks with few multicasts, and small

destination sets, WHIRL and mXbar provide similar perfor-

mance improvements. Since WHIRL adds minimum over-

head to the router, it would be a better solution than re-

designing the crossbar to support multicasts. For dense mul-

ticasts/broadcasts, however, the mXbar is critical for good

performance. In this case, latency and power can be saved

further by adding multicast bypassing.

B. BOOM with Real Applications

We evaluate the impact of BOOM on real multi-threaded

applications by using network traces of 64-thread PARSEC

benchmarks [12] running on the M5 [33] infrastructure, using

the X86 CPU model and the GEMS [34] memory model.

Table V lists our setup.

Fig. 8(a) shows that in our setup, for all benchmarks, ex-

cept for blackscholes, 38-50% of all requests are broadcasts.

This leads to an overall 16-23% broadcast traffic across the

control and data messages18. blackscholes was found to fit

its entire data set in its local cache, and thus did not result

in many misses.

We measured the average network latency of packets on

the request network (Fig. 8(b)) as BOOM optimizes just

broadcasts and multicasts, which are only leveraged for

requests here. All results are normalized to BASE fork@rtr

which is our baseline multicast router. We also show

BASE fork@nic for completeness. blackscholes is an outlier

18The control packets are all one-flit wide, while the data packets
are 5-flit wide. Garnet [32] models separate virtual networks for Uni-
cast Control Request, Unicast Control Response, and Unicast Data packets.
The Broadcast Control Request packets share the virtual network with the
Unicast Control Request packets. We gave 8 VCs to each virtual network.
The control VCs were each one-buffer deep, while the data VCs were each
3-buffers deep.

and does not show any significant speedup since it has

less than 1% broadcasts, and will be excluded from further

discussions. For all other benchmarks, BASE fork@nic is

completely saturated due to serialization of 64 separate

packets through the NIC injection port, and thus upto 45%

slower than BASE fork@rtr. This reiterates the need to have

multicast network support. BOOM WHIRL does not show

much improvement in latency here because the network is

operating at a fairly low injection rate and so the baseline XY

broadcast tree is good enough here. BOOM mXbar results

in 14-16% latency reduction. BOOM bypass itself results in

20-25% speedup across all benchmarks. Combined with the

mXbar, it helps lower latency by a further 15%. Overall,

BOOM enables 34-41% speedup in request messages across

all benchmarks.

Fig. 8(b) also overlays the overall network latency. BOOM

lowers network latency by about 10% in bodytrack and

dedup, and about 15% in fluidanimate and x264. Higher

savings in the latter two occur because they have about 6-8%

more broadcasts than the former two. A lot of the network

latency is also dominated by the data packets, since the 13-

20% data packets in these benchmarks each give rise to 5-

flits.

It should also be noted that in these PARSEC traces,

each broadcast/multicast request invalidate message would

result in many unicast acknowledgement messages from the

destinations, all fanning back to the originator of the broad-

cast. These fall under Unicast Control Response in Fig. 8(a).

While BOOM effectively optimizes 1-to-M multicasts, it

does not address the reverse M-to-1 aggregation. Tackling

this reverse flow should lead to further improvements in

overall network performance and is an interesting problem

for future research.

V. CONCLUSIONS

We proposed Broadcast Optimizations to On-chip Meshes

(BOOM) to enable a mesh to approach ideal energy-delay-

throughput for broadcasts. In particular, we introduce the

WHIRL routing algorithm, a multicast crossbar circuit,

and bypass flow-control for multicasts, which successfully

achieves near-ideal energy-delay-throughput.

REFERENCES

[1] J. Laudon and D. Lenoski, “The sgi origin: a ccnuma highly scalable
server,” in ISCA ’97: Proceedings of the 24th annual international
symposium on Computer architecture. New York, NY, USA: ACM,
1997, pp. 241–251.

[2] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy,
“The directory-based cache coherence protocol for the dash multipro-
cessor,” in ISCA. New York, NY, USA: ACM, 1990, pp. 148–159.

[3] A. Ahmed, P. Conway, B. Hughes, and F. Weber, “AMD Opteron
shared memory MP systems,” in 14th Hot Chips Symposium, August
2002.

[4] N. Agarwal, L.-S. Peh, and N. K. Jha, “In-network snoop ordering
(INSO): Snoopy coherence on unordered interconnects,” in HPCA,
Feb. 2009.

[5] M. M. K. Martin, M. D. Hill, and D. A. Wood, “Token coherence:
Decoupling performance and correctness,” in Proceedings of Interna-
tional Symposium on Computer Architecture, Jun. 2003.

[6] P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, and
B. Hughes, “Cache hierarchy and memory subsystem of the AMD
Opteron processor,” IEEE Micro, vol. 30, pp. 16–29, 2010.

[7] M. M. K. Martin, D. J. Sorin, M. D. Hill, and D. A. Wood,
“Bandwidth adaptive snooping,” in HPCA. Washington, DC, USA:
IEEE Computer Society, 2002, p. 251.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Unicast_Data Unicast_Control_Response
Unicast_Control_Request Broadcast_Control_Request

(a) Network Message Counts for 64-
core system with PARSEC running a
HyperTransportTM-based protocol with
HT Assist [6] (to filter non-useful broad-
casts).

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

B
A

S
E

_F
O

R
K

@
N

IC
B

A
S

E
_F

O
R

K
@

R
TR

B
O

O
M

_W
H

IR
L

B
O

O
M

_M
X

B
A

R
B

O
O

M
_W

H
IR

L-
M

X
B

A
R

B
O

O
M

_B
Y

P
A

S
S

B
O

O
M

_M
X

B
A

R
-B

Y
P

A
S

S
B

O
O

M
_A

LL

B
A

S
E

_F
O

R
K

@
N

IC
B

A
S

E
_F

O
R

K
@

R
TR

B
O

O
M

_W
H

IR
L

B
O

O
M

_M
X

B
A

R
B

O
O

M
_W

H
IR

L-
M

X
B

A
R

B
O

O
M

_B
Y

P
A

S
S

B
O

O
M

_M
X

B
A

R
-B

Y
P

A
S

S
B

O
O

M
_A

LL

B
A

S
E

_F
O

R
K

@
N

IC
B

A
S

E
_F

O
R

K
@

R
TR

B
O

O
M

_W
H

IR
L

B
O

O
M

_M
X

B
A

R
B

O
O

M
_W

H
IR

L-
M

X
B

A
R

B
O

O
M

_B
Y

P
A

S
S

B
O

O
M

_M
X

B
A

R
-B

Y
P

A
S

S
B

O
O

M
_A

LL

B
A

S
E

_F
O

R
K

@
N

IC
B

A
S

E
_F

O
R

K
@

R
TR

B
O

O
M

_W
H

IR
L

B
O

O
M

_M
X

B
A

R
B

O
O

M
_W

H
IR

L-
M

X
B

A
R

B
O

O
M

_B
Y

P
A

S
S

B
O

O
M

_M
X

B
A

R
-B

Y
P

A
S

S
B

O
O

M
_A

LL

B
A

S
E

_F
O

R
K

@
N

IC
B

A
S

E
_F

O
R

K
@

R
TR

B
O

O
M

_W
H

IR
L

B
O

O
M

_M
X

B
A

R
B

O
O

M
_W

H
IR

L-
M

X
B

A
R

B
O

O
M

_B
Y

P
A

S
S

B
O

O
M

_M
X

B
A

R
-B

Y
P

A
S

S
B

O
O

M
_A

LL

B
A

S
E

_F
O

R
K

@
N

IC
B

A
S

E
_F

O
R

K
@

R
TR

B
O

O
M

_W
H

IR
L

B
O

O
M

_M
X

B
A

R
B

O
O

M
_W

H
IR

L-
M

X
B

A
R

B
O

O
M

_B
Y

P
A

S
S

B
O

O
M

_M
X

B
A

R
-B

Y
P

A
S

S
B

O
O

M
_A

LL

blackscholes bodytrack dedup facesim fluidanimate x264

Request Latency Network Latency

(b) Average request and network latencies normalized to BASE fork@rtr

Fig. 8. Results with PARSEC Traces.

[8] N. Agarwal, L.-S. Peh, and N. K. Jha, “In-network coherence filtering:
snoopy coherence without broadcasts,” in MICRO 42. New York, NY,
USA: ACM, 2009, pp. 232–243.

[9] M. M. K. Martin, P. J. Harper, D. J. Sorin, M. D. Hill, and D. A. Wood,
“Using destination-set prediction to improve the latency/bandwidth
tradeoff in shared memory multiprocessors,” in In ISCA, 2003, pp.
206–217.

[10] E. E. Bilir, R. M. Dickson, Y. Hu, M. Plakal, D. J. Sorin, M. D. Hill,
and D. A. Wood, “Multicast snooping: A new coherence method using
a multicast address network,” in ISCA, 1999, pp. 294–304.

[11] A. Raghavan, C. Blundell, and M. M. K. Martin, “Token tenure:
Patching token counting using directory-based cache coherence,” in
in Proceedings of the 41st Annual International Symposium on Mi-
croarchitecture (MICRO-41, 2008.

[12] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark
suite: Characterization and architectural implications,” in PACT, Oct.
2008.

[13] N. Enright Jerger, L.-S. Peh, and M. Lipasti, “Virtual circuit tree
multicasting: A case for on-chip hardware multicast support,” in
Proceedings of International Symposium on Computer Architecture,
Jun. 2008.

[14] P. A. Fidalgo, V. Puente, and J.-Á. Gregorio, “MRR: Enabling fully
adaptive multicast routing for CMP interconnection networks,” in
HPCA, 2009, pp. 355–366.

[15] S. Rodrigo, J. Flich, J. Duato, and M. Hummel, “Efficient unicast and
multicast support for CMPs,” in MICRO 41. Washington, DC, USA:
IEEE Computer Society, 2008, pp. 364–375.

[16] L. Wang, Y. Jin, H. Kim, and E. J. Kim, “Recursive partitioning
multicast: A bandwidth-efficient routing for networks-on-chip,” in
NOCS ’09. Washington, DC, USA: IEEE Computer Society, 2009,
pp. 64–73.

[17] S. Heo and K. Asanovic, “Replacing global wires with an on-chip
network: A power analysis,” in In Intl. Symp. on Low Power Elect.
and Design (ISLPED 2005. ACM Press, 2005, pp. 369–374.

[18] W. J. Dally and B. Towles, “Route packets not wires: On-chip
interconnection networks,” in DAC, June 2001.

[19] A. Kumar, L.-S. Peh, P. Kundu, and N. K. Jha, “Express virtual
channels: Towards the ideal interconnection fabric,” in Proc. Int. Symp.
Computer Architecture, June 2007.

[20] A. Kumar, L.-S. Peh, and N. K. Jha, “Token flow control,” in MICRO
41, Lake Como, Italy, November 2008.

[21] W. Dally and B. Towles, Principles and Practices of Interconnection
Networks. Morgan Kaufmann Pub., 2003.

[22] F. A. Samman, T. Hollstein, and M. Glesner, “Multicast parallel
pipeline router architecture for network-on-chip,” in DATE. New
York, NY, USA: ACM, 2008, pp. 1396–1401.

[23] M. Galles, “Scalable pipelined interconnect for distributed endpoint
routing: The SGI SPIDER chip.” in Proc. Hot Interconnects 4, Aug.
1996.

[24] P. Abad, V. Puente, J. A. Gregorio, and P. Prieto, “Rotary router: an
efficient architecture for CMP interconnection networks,” in ISCA 34.
New York, NY, USA: ACM, 2007, pp. 116–125.

[25] A. B. Kahng, B. Li, L.-S. Peh, and K. Samadi, “ORION 2.0: A fast
and accurate NoC power and area model for early-stage design space
exploration,” In Proceedings of Design Automation and Test in Europe
Conf., Feb. 2009.

[26] H.-S. Wang, L.-S. Peh, and S. Malik, “Power-driven design of router
microarchitectures in on-chip networks,” in Proc. Int. Symp. Microar-
chitecture, Nov. 2003, pp. 105–116.

[27] Y. Hoskote et al., “A 5-GHz mesh interconnect for a teraflops
processor,” IEEE Micro, vol. 27, no. 5, pp. 51–61, Sept. 2007.

[28] L.-S. Peh and W. J. Dally, “A delay model and speculative architecture
for pipelined routers,” in HPCA, Jan. 2001.

[29] A. Kumar, P. Kundu, A. P. Singh, L.-S. Peh, and N. K. Jha, “A
4.6Tbits/s 3.6GHz single-cycle NoC router with a novel switch al-
locator in 65nm CMOS,” in Proc. Int. Conf. Computer Design, Oct.
2007.

[30] B. Grot, J. Hestness, S. W. Keckler, and O. Mutlu, “Express cube
topologies for on-chip interconnects,” in Proceedings of International
Symposium of High Performance Computer Architecture, February
2009.

[31] H. Matsutani, M. Koibuchi, H. Amano, and T. Yoshinaga, “Prediction
router: Yet another low latency on-chip router architecture,” in MICRO
42, February 2009.

[32] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, “GARNET: A
detailed on-chip network model inside a full-system simulator,” in
Proceedings of International Symposium on Performance Analysis of
Systems and Software, Apr. 2009.

[33] N. Binkert et al., “The M5 simulator: Modeling networked systems,”
IEEE Micro, vol. 26, no. 4, pp. 52–60, 2006.

[34] M. M. K. Martin et al., “Multifacet’s General Execution-driven
Multiprocessor Simulator (GEMS) Toolset,” SIGARCH Computer Ar-
chitecture News, vol. 33, no. 4, pp. 92–99, 2005.

