66,365 research outputs found

    Adapted K-Nearest Neighbors for Detecting Anomalies on Spatio–Temporal Traffic Flow

    Get PDF
    Outlier detection is an extensive research area, which has been intensively studied in several domains such as biological sciences, medical diagnosis, surveillance, and traffic anomaly detection. This paper explores advances in the outlier detection area by finding anomalies in spatio-temporal urban traffic flow. It proposes a new approach by considering the distribution of the flows in a given time interval. The flow distribution probability (FDP) databases are first constructed from the traffic flows by considering both spatial and temporal information. The outlier detection mechanism is then applied to the coming flow distribution probabilities, the inliers are stored to enrich the FDP databases, while the outliers are excluded from the FDP databases. Moreover, a k-nearest neighbor for distance-based outlier detection is investigated and adopted for FDP outlier detection. To validate the proposed framework, real data from Odense traffic flow case are evaluated at ten locations. The results reveal that the proposed framework is able to detect the real distribution of flow outliers. Another experiment has been carried out on Beijing data, the results show that our approach outperforms the baseline algorithms for high-urban traffic flow

    An Online Outlier Detection Technique for Wireless Sensor Networks using Unsupervised Quarter-Sphere Support Vector Machine

    Get PDF
    The main challenge faced by outlier detection techniques designed for wireless sensor networks is achieving high detection rate and low false alarm rate while maintaining the resource consumption in the network to a minimum. In this paper, we propose an online outlier detection technique with low computational complexity and memory usage based on an unsupervised centered quarter-sphere support vector machine for real-time environmental monitoring applications of wireless sensor networks. The proposed approach is completely local and thus saves communication overhead and scales well with increase of nodes deployed. We take advantage of spatial correlations that exist in sensor data of adjacent nodes to reduce the false alarm rate in real-time. Experiments with both synthetic and real data collected from the Intel Berkeley Research Laboratory show that our technique achieves better mining performance in terms of parameter selection using different kernel functions compared to an earlier offline outlier detection technique designed for wireless sensor networks

    Implementation and assessment of two density-based outlier detection methods over large spatial point clouds

    Get PDF
    Several technologies provide datasets consisting of a large number of spatial points, commonly referred to as point-clouds. These point datasets provide spatial information regarding the phenomenon that is to be investigated, adding value through knowledge of forms and spatial relationships. Accurate methods for automatic outlier detection is a key step. In this note we use a completely open-source workflow to assess two outlier detection methods, statistical outlier removal (SOR) filter and local outlier factor (LOF) filter. The latter was implemented ex-novo for this work using the Point Cloud Library (PCL) environment. Source code is available in a GitHub repository for inclusion in PCL builds. Two very different spatial point datasets are used for accuracy assessment. One is obtained from dense image matching of a photogrammetric survey (SfM) and the other from floating car data (FCD) coming from a smart-city mobility framework providing a position every second of two public transportation bus tracks. Outliers were simulated in the SfM dataset, and manually detected and selected in the FCD dataset. Simulation in SfM was carried out in order to create a controlled set with two classes of outliers: clustered points (up to 30 points per cluster) and isolated points, in both cases at random distances from the other points. Optimal number of nearest neighbours (KNN) and optimal thresholds of SOR and LOF values were defined using area under the curve (AUC) of the receiver operating characteristic (ROC) curve. Absolute differences from median values of LOF and SOR (defined as LOF2 and SOR2) were also tested as metrics for detecting outliers, and optimal thresholds defined through AUC of ROC curves. Results show a strong dependency on the point distribution in the dataset and in the local density fluctuations. In SfM dataset the LOF2 and SOR2 methods performed best, with an optimal KNN value of 60; LOF2 approach gave a slightly better result if considering clustered outliers (true positive rate: LOF2\u2009=\u200959.7% SOR2\u2009=\u200953%). For FCD, SOR with low KNN values performed better for one of the two bus tracks, and LOF with high KNN values for the other; these differences are due to very different local point density. We conclude that choice of outlier detection algorithm very much depends on characteristic of the dataset\u2019s point distribution, no one-solution-fits-all. Conclusions provide some information of what characteristics of the datasets can help to choose the optimal method and KNN values

    Robust detection techniques for multivariate spatial data

    Full text link
    Spatial data are characterized by statistical units, with known geographical positions, on which non spatial attributes are measured. Two types of atypical observations can be defined: global and/or local outliers. The attribute values of a global outlier are outlying with respect to the values taken by the majority of the data points while the attribute values of a local outlier are extreme when compared to those of its neighbors. Classical outlier detection techniques may be used to find global outliers as the geographical positions of the data is not taken into account in this search. The detection of local outliers is more complex especially when there are more than one non spatial attribute. In this poster, two new procedures for local outliers detection are defined. The first approach is to adapt an existing technique using in particular a regularized estimator of the covariance matrix. The second technique measures outlyingness using depth function

    A framework for exploration and cleaning of environmental data : Tehran air quality data experience

    Get PDF
    Management and cleaning of large environmental monitored data sets is a specific challenge. In this article, the authors present a novel framework for exploring and cleaning large datasets. As a case study, we applied the method on air quality data of Tehran, Iran from 1996 to 2013. ; The framework consists of data acquisition [here, data of particulate matter with aerodynamic diameter ≤10 µm (PM10)], development of databases, initial descriptive analyses, removing inconsistent data with plausibility range, and detection of missing pattern. Additionally, we developed a novel tool entitled spatiotemporal screening tool (SST), which considers both spatial and temporal nature of data in process of outlier detection. We also evaluated the effect of dust storm in outlier detection phase.; The raw mean concentration of PM10 before implementation of algorithms was 88.96 µg/m3 for 1996-2013 in Tehran. After implementing the algorithms, in total, 5.7% of data points were recognized as unacceptable outliers, from which 69% data points were detected by SST and 1% data points were detected via dust storm algorithm. In addition, 29% of unacceptable outlier values were not in the PR.  The mean concentration of PM10 after implementation of algorithms was 88.41 µg/m3. However, the standard deviation was significantly decreased from 90.86 µg/m3 to 61.64 µg/m3 after implementation of the algorithms. There was no distinguishable significant pattern according to hour, day, month, and year in missing data.; We developed a novel framework for cleaning of large environmental monitored data, which can identify hidden patterns. We also presented a complete picture of PM10 from 1996 to 2013 in Tehran. Finally, we propose implementation of our framework on large spatiotemporal databases, especially in developing countries

    Spatially smoothed robust covariance estimation for local outlier detection

    Full text link
    Most multivariate outlier detection procedures ignore the spatial dependency of observations, which is present in many real data sets from various application areas. This paper introduces a new outlier detection method that accounts for a (continuously) varying covariance structure, depending on the spatial neighborhood of the observations. The underlying estimator thus constitutes a compromise between a unified global covariance estimation, and local covariances estimated for individual neighborhoods. Theoretical properties of the estimator are presented, in particular related to robustness properties, and an efficient algorithm for its computation is introduced. The performance of the method is evaluated and compared based on simulated data and for a data set recorded from Austrian weather stations

    Modeling of traffic data characteristics by Dirichlet Process Mixtures

    Get PDF
    Conference Theme: Green Automation Toward a Sustainable SocietyThis paper presents a statistical method for modeling large volume of traffic data by Dirichlet Process Mixtures (DPM). Traffic signals are in general defined by their spatial-temporal characteristics, of which some can be common or similar across a set of signals, while a minority of these signals may have characteristics inconsistent with the majority. These are termed outliers. Outlier detection aims to segment and eliminate them in order to improve signal quality. It is accepted that the problem of outlier detection is non-trivial. As traffic signals generally share a high degree of spatial-temporal similarities within the signal and between different types of traffic signals, traditional modeling approaches are ineffective in distinguishing these similarities and discerning their differences. In regard to modeling the traffic data characteristics by DPM, this paper conveys three contributions. First, a new generic statistical model for traffic data is proposed based on DPM. Second, this model achieves an outlier detection rate of 96.74% based on a database of 764,027 vehicles. Third, the proposed model is scalable to the entire road network. © 2012 IEEE.published_or_final_versio
    • …
    corecore