
Title Modeling of traffic data characteristics by Dirichlet Process
Mixtures

Author(s) Ngan, YT; Yung, NHC; Yeh, AGO

Citation
The 8th IEEE International Conference on Automation Science
and Engineering (CASE 2012), Seoul, Korea, 20-24 August 2012.
In Conference Proceedings, 2012, p. 224-229

Issued Date 2012

URL http://hdl.handle.net/10722/189653

Rights Creative Commons: Attribution 3.0 Hong Kong License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/38032117?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 

 

Four Entry Signals Four Exit Signals 

 
(a) All signals are normal 

 

 
(b) All signals are normal 

 

 
(c) Entry S is abnormal 

 
(d) Exit N is abnormal 

Fig. 1. Normal and abnormal traffic data.  
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Abstract—This paper presents a statistical method for 

modeling large volume of traffic data by Dirichlet 

Process Mixtures (DPM). Traffic signals are in general 

defined by their spatial-temporal characteristics, of 

which some can be common or similar across a set of 

signals, while a minority of these signals may have 

characteristics inconsistent with the majority. These 

are termed outliers. Outlier detection aims to segment 

and eliminate them in order to improve signal quality. 

It is accepted that the problem of outlier detection is 

non-trivial. As traffic signals generally share a high 

degree of spatial-temporal similarities within the 

signal and between different types of traffic signals, 

traditional modeling approaches are ineffective in 

distinguishing these similarities and discerning their 

differences. In regard to modeling the traffic data 

characteristics by DPM, this paper conveys three 

contributions. First, a new generic statistical model for 

traffic data is proposed based on DPM. Second, this 

model achieves an outlier detection rate of 96.74% 

based on a database of 764,027 vehicles. Third, the 

proposed model is scalable to the entire road network. 
Keywords: Outlier detection, traffic flow analysis, Dirichlet 

process mixtures 

I.  INTRODUCTION 

Traffic data is the basic component in most traffic flow 
analysis (TFA) [1-3] of modern urban road networks. TFA 
relies on statistic of the road dynamics, which change 
continuously in highway [2] and urban roads [2] regardless.  
This statistic offers significant spatial-temporal traffic 
indicators such as volume and density, vehicles types, 
alerts of incidents, congestions and so on. Not only does it 
help in traffic forecasting [3], maintenance, operation and 
design [2], it is also beneficial to incident detection and 
management [4,5].  Traffic data typically in vast quantity 
from multiple detection sources are frequently 
contaminated by errors and noise during data capturing. 
Local variations in traffic patterns may also appear as 
spatial and/or temporal variations in these traffic indicators. 
Altogether, they form a group of outliers, as contrast to the 
inliers of normal traffic patterns.  

It is common to assume that the captured data is 
normally distributed in order to fit them as a parametric 
problem. However, in realistic cases, they may not always 
exhibit such feature. Traffic signals generally share a high 
degree of spatial-temporal similarities in two situations (1) 

within itself: Entry E of the traffic data in Fig. 1(a) appears 
repetitive; (2) between signals: Exit signals Fig. 1(b) are 
similar in shape. Furthermore, signals from different 
sessions may share similar patterns too, such as Entry N 
signal of the data in Fig. 1(a) and Fig. 1(c). On the 
contrary, abnormal signals such as Entry S shown in 
Fig.1(c) and Exit N shown in Fig. 1(d) are similar to other 
normal signals in majority sampled points, but slightly 
different in the rest. Such differences are hardly prominent 
and can easily be mistaken as normal signal variations. In 
order to deal with this, it would be more appropriate to 
treat it as a nonparametric problem instead.  

A nonparametric problem is usually expressed as a set 
of probability distributions on a given sample space. 
Ferguson [6] stated that the primary difficulty to work 
with nonparametric problem is to find workable prior 
distributions in the parameter space. Two characteristics 
should be obvious in a suitable prior distribution: (1) the 
support of the prior distribution is large w.r.t. an 
appropriate topology on the probability distributions space 
(PDS) on all possible outcomes, and such topology can be 
achieved by defining the limit of a sequence of the PDS 
elements; and (2) given a sample of observations of the 
event, the posterior distribution is manageable analytically.  

In this research, we identified the characteristics of 

these spatial-temporal signals to be aperiodic, finite length, 

casual and random. As mentioned above, in order to get 
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rid of the high degree of spatial-temporal similarities of 

traffic signals, we model the real-world traffic data as 

DPM. The generic DPM model is effective in 

representing the variations in traffic signals and 

segmenting outliers from the rest of the data by its 

unsupervised clustering property. To evaluate the 

proposed model, a set of traffic videos was taken of a 

four-arm junction located in one of the busiest districts in 

Hong Kong. This dataset was captured over 31 days, for 

which each day was divided into AM and PM sessions of 

the time intervals of 07:00-10:00 and 17:00-20:00, 

respectively. Hence, a total of 62 sessions were acquired. 

The junction is characterized by four motion patterns 

(MPs) in one cycle controlled by the traffic lights. The 

data associated with either an Entry or Exit per session is 

collectively called a signal, which represents the volume 

of traffic during a session. Fig. 1 illustrates examples of 

normal and abnormal Entry and Exit signals.  
In general, outlier detection [7] can be interpreted as 

detecting a piece of data, or a subset of data that appears to 
be inconsistent with the remaining dataset. The aim of 
outlier detection is to segment and eliminate the 
inconsistent data for better signal quality. At present, 
existing methods [7] do not offer acceptable detection rate 
for them to be practically useful. The crux of outlier 
detection described in this paper could be considered as 
nonparametric modeling, of which the number of groups 
in the data of interest does not need to be known in 
advance. In the simplest sense, traffic data can be viewed 
as a major group of normal data plus other groups of 
anomalies. Dirichlet Process (DP) priors in this case 
exhibit the characteristics as described in the preceding 
paragraph and are well-suited to the non-parametric 
problem as they have traceable posteriors. It should be 
noted that the posterior distribution of a DP of a sample is 
also a DP. With these elegant properties of DP, we assume 
that if a traffic flow model based on the traffic data is 
generated from a DP, then the respected observations are 
samples of a mixture of these traffic flow models, and can 
be classed as DPM. DPM actually consists of countable 
infinite mixture models, in which its individual model can 
develop itself. The number of clusters in DPM can be 
iteratively determined. In short, DPM is one of the 
remarkable stochastic models used in recent unsupervised 
clustering applications [8-11]. In the proposed DPM 
approach, we firstly extract traffic signals (such as entry 
signals depicted in Fig. 1(a)) from the dataset. Second, the 
signals are standardized and their features described by a 
covariance signal descriptor. This signal descriptor is input 
as the conjugate priors to the DPM in a later stage. Third, a 
PCA is used to reduce the dimension of the signal vector 
of each signal. Fourth, the dimension-reduced signal 
vectors are then modeled by DPM. Fifth, outlier detection 
is accomplished by the collapsed Gibbs sampler.  

       The novelty of this paper is the modeling of complex 

spatial-temporal traffic data as DPM. There are three 

contributions of this paper. First, a new generic statistical 

model for traffic data is proposed based on DPM. Second, 

this model achieves an outlier detection rate of 96.74% 

based on a database of 764,027 vehicles. Third, the 

proposed model is scalable to the entire road network. 

The organization of this paper is as follows: Section II 

outlines the related work. Section III presents details of 

the proposed modeling for outlier detection. Section IV 

describes the performance evaluation. Lastly, conclusion 

is drawn in Section V.   

II. RELATED WORK 

A. Dirichlet process mixtures 

DPM is a popular nonparametric Bayesian model for 
machine learning and data mining, especially for density 
estimation and clustering. DPM is a mixture model that 
composes of a stochastic process called Dirichlet Process 
[6,12,13]. The DP, denoted as           is a distribution 
over probability distributions, and is defined by two 
parameters, a scaling parameter,     , and a base 
probability measure   . The posterior estimation methods 
for DPM are well developed in [8-11,14] .  

Many applications of DPM have been developed for 
detecting abnormal activities [9,14], scene categorization 
[8] and tracking maneuvering targets [11]. Among these 
published work, there is only one record [15] of DPM 
being applied to outlier detection that is in a motion 
segmentation problem. Six real datasets were tested, in 
which the best and worst total error rates from one dataset 
are 2.1% and 8.5%, respectively. This supports the view 
presented in this paper that DPM is promising for 
identifying outliers in large volume of traffic data. 
Moreover, according to literature survey, there is a lack of 
model-based outlier detection approach for traffic data. 
Hence, DPM is chosen due to its elegant mathematical 
representation of the stochastic data and its unsupervised 
clustering characteristic. 

B. Outlier detection for traffic flow analysis 

According to Hodge [7], outlier detection methods have 
been developed in areas such as fraud detection, intrusion, 
activity monitoring, fault diagnosis satellite image analysis, 
and among others for many years. More recently, a 
number of new methods have been developed for fabric 
defect detection [16,17] as well. However, research in 
outlier detection directly related to TFA is far and few in 
between [1,18-20].  

In Hodge’s survey [7], outlier detection methods can 
be classified into 3 categories: unsupervised, supervised 
and semi-supervised clustering. Park et al. [20] presented a 
supervised method by applying statistical tests based on 
two variants of the Mahalanobis distance and empirical 
cutoff points for 2 datasets. Recently, Barria and 
Thajchayapong [1] conducted a similar statistical test 
based on the change of variance in the relative speed of 
vehicles to detect transient anomalies and incident 
precursors. Cheng et al. [19] explored spatial-temporal 
similarities to detect outliers that are regarded as hourly to 
weekly abnormal flow patterns. Chen et al. [18] compared 
three outlier algorithms (statistics-based, distance-based, 
and density based detection) that detect anomalies caused 
by detection devices or traffic incidents. They argued that 
the statistical based algorithm was computationally fastest. 
The density-based algorithm achieved the highest 
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 Fig. 2. The proposed modeling for outlier detection.  

 
Fig. 3. Idea map of a 4-arm junction with Entry and Exit traffic data 

indicated by the arrow in blue and green boxes, respectively.  

precision rate, but it was prone to mislabeling some 
outliers as negatives.  

With regard to the effectiveness of outlier detection 
[1,18,20] directly utilized the original domain of traffic 
data for outlier detection and only [19] has made an 
attempt to project the data into the wavelet-based domain 
for further analysis. Their experimental results show that 
detection accuracy can be 100% by controlling a cutoff 
value in [20], or 90% by the density-based approach in 
[18]. The cutoff value in [20] was manually determined. 
As the traffic data share many spatial-temporal similarities 
and the traditional approach of outlier detection cannot 
resolve signal similarities effectively, it leaves the question 
of whether a new representation of traffic data, such as a 
data transformation onto other domains for separating 
different groups of data, can help in outlier detection with 
high success rate.   

III. MODELING BY DPM FOR OUTLIER DETECTION  

The proposed method is depicted in Fig. 2. Purely for 
convenience without loss of generality, the traffic data 
collected are firstly interpreted as 8 signals (4 Entry 
signals and 4 Exit signals). As signals from various 
sessions have different lengths, we then standardize the 
signals across different sessions. Afterward, each 
standardized signal is input to a covariance feature 
descriptor which is the core part in the Wishart distribution 
prior in DPM. As this feature descriptor can be in high 
dimension which depends on the number of cycles, a PCA 
kernel is employed to reduce its dimension. The reduced 
signal vector is a subspace representation which is 
modeled by DPM. Lastly, the outliers are detected by the 
collapsed Gibbs sampler to classify each input signal.  

i. Entry and Exit signals  

In our research, the traffic data was obtained from a 4-
arm junction with 24 lanes altogether. An idea map is 
depicted in Fig. 3 for illustration. In the said junction, an 
Entry signal of a particular arm is defined as the sum of 
entry volume of vehicles of all four traffic MPs per cycle. 
Entry signals are denoted as               for arms E, S, 
W, and N, respectively. Similarly, an Exit signal is defined 
as the sum of exit volume of vehicles of all four MPs per 
cycle, and is given as               for arms E, S, W, 
and N, respectively. In general, we could represent a set of 
signals as follows:  

Definition 1. Let       
    

      
      for   

      be a feature vector of an Entry (or Exit) signal 

from   sessions of observations. A session is composed 

of   cycles and a signal is represented as 

  
  {  

    
       

 }     
          

 ,  (1) 

where   
  is the number of vehicles observed at the     

cycle,     is the number of cycles in the     session.  

Definition 2. The mean feature vector of an Entry (or Exit) 

signal of   sessions is given by, 

   
 

 

 
 ∑   

   
   .                                 (2) 

In short, we have feature vectors as         ,    
      ,          ,          , for Entry volume per 

arm per cycle as well as         ,         ,    
     ,         , for Exit volume per arm per cycle. 
Arms  ,  ,  and   of the 4-arm junction are denoted by 
 ,  ,  and  , respectively.  

ii. Signal standardization  

Definition 3. A standardization of the cardinality 

|  |
 
    for one particular signal by taking an argument  

        {|  |
 
}            ,        (3) 

where     is the number of cycles of in the     session and 

       .  

There are 62 sessions in our traffic data, hence      . 

The average number of cycles per sessions is 88 and the 

minimum number of cycle is 80 (i.e.     ) in our case. 

As such, a signal is now denoted by   
     

           . 

The truncation of some data points at the end of a feature 

vector is necessary because the number of cycles varies 

which could lead to ambiguities in subsequent evaluation.  

iii. Input as covariance signal descriptor  

Covariance matrix of feature is a popular and effective 

representation in object detection, texture classification 

[21], and visual tracking [22]. In this research, we convert 

the feature vector    into a covariance signal descriptor in 

order to fit the DPMM framework later.  

Definition 4. Let      ,         be the feature 

vector of a signal of   sessions, where   is the number of 

cycles. Then, the covariance signal descriptor from a 

signal in the data     
  is defined by  

  [   ]  
 

   
∑        

 
             ,   (4) 

where     is the mean feature vector and   
  is a     

symmetric positive definite (SPD) matrix.  

iv. Dimension reduction by PCA.  

As the dimension of the covariance signal descriptor is 
chosen to be      , it would lead to a very high 
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computational complexity as it is. Principal Component 
Analysis (PCA) is chosen here because it performs 
dimension reduction efficiently [23]. Mathematically, 
PCA is an orthogonal linear transformation that maps the 
data to a new coordinate domain. In practice, keeping the 
first few principal components would be sufficient to 
represent the original data.  

Definition 5. A signal after the PCA process is now 
expressed as  

  
  ∑   

   
 
   ,      (5) 

where          ,   
  is the linear coefficient,    is the 

    PCA basis vector and     is the dimension to be 
maintained after PCA. The coefficients can be regarded as 

   
             and   

    
      

  . The 

proposed method eventually clusters the signal into a low 
dimensionality representation as               . 

v. Dirichlet Process Mixtures 

Definition 6. A DP is a stochastic process and is defined 
as a distribution over probability measure on an infinite 
parameter space  . The DP has two parameters, a base 
probability measure,   , and a positive scaling parameter 
  . Detailed theory of DP can be found in [6]. A 
distribution    is DP distributed              if the 
relation  

                                         ,  (6) 

holds for any natural number   and    partitions 
         .  

In terms of outlier detection, we aim to find the 
number of clusters in a given traffic data set based on the 
posterior distribution of   from the observations and the 
prior model   . The ideal case is that the distribution   
over each cluster can be determined automatically. In 
order to achieve this, the posterior distribution is 
determined by 

    |                                    

            
 

    
      ∑    

   
    ,      (7) 

where           is the number of observations belonging 
to each corresponding partition          ,   is the total 
number of observations and    

 is the delta function at the 

sample point   .  

Definition 7. If the DP acts as a conjugate prior for the 
distribution over distributions, the conjugate priors for the 
model parameters is a Gaussian distribution prior and a 
Wishart distribution prior as given below,  

  ⃑ |              |
  

 
   

  

 
 ,     (8) 

     ,                                 (9)     

where      is the abbreviation for  

∑                   
   

   ,          (10) 

                 ∑                         (11) 

where           
 ,          ∑   are the class 

distribution parameters,   ⃑         
  ,            

are mixture weights. In our case, we assign    
     from 

the covariance signal descriptor.  

Definition 8. Under a parametric family of    |      the 
DPM is then modeled for the dependency of    to    as  

  |      |    ,   |    ,              ,                  (12) 

where   is the likelihood function with the parameters 
  .Besides, the posterior distribution is given as  

       ⃑        
   |           ∏     | ⃑  

 
       ⃑ |               (13) 

where    |    = ∏  (  ⃑⃑ |      
) 

   ,        

∏  (    ) 
   ,          

  denotes the class in which the 

signal belongs to, and      
              is the hyper-

parameters of the Inverse-Wishart prior, which will be 
investigated in Section IV.  The marginal probability of 
the data in (13) cannot be directly computed. Hence, Gibbs 
sampling is used to determine a discrete representation of 
the posterior by the non-Gaussian density. As the number 
of clusters,  , is required to be known, (13) is modified by 
the nonparametric approach by assuming it is an infinite 
Gaussian mixture model.  

vi. Outlier detection by collapsed Gibbs sampler 

In this section, we will show how the outlier detection is 
formulated and achieved by the collapsed Gibbs sampler.  

Definition 9. The conditional distribution of a single class 
label is known as a Chinese restaurant process (CRP) 
which is expressed as: 

      |     {

  

      
      

 

      
      

 ,                  (14) 

where    ∑         
    is the number of items in 

class  ,     is the number of non-empty groups in the 
clustering,                          .  

Definition 10. In order to classify each signal   
  to a class, 

the posterior density is computed by the collapsed Gibbs 
sampler, which offers a faster convergence, and can be 
expressed as 

   |     ∫       |      

       ∫     |             .    (15) 

Definition 11. The class label updates are defined as  

      |           (  | 
        )     

 |       ,     (16) 

where         means to neglect    from the set     .  

 

To determine whether    
  for           of the     

session is inside or outside a normal group after Gibbs 

sampling, two assumptions are made:  
(1)      as more than one group of clustering exits;  

(2) The normal group should be the majority, meaning 
that it has the maximum number of elements.  
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Fig. 5. Signals of Exit N from 23 PM sessions. Anomalies are identified 

in Sessions 8, 28, and 50 (shown in red color). x-axis is Cycles and y-

axis is number of vehicles.  

TABLE I. 

LIST OF ABNORMAL SESSIONS AND THEIR CORRESPONDING ANOMALIES. 

 Session Signals Type Anomalies 

AM 

15 Entry S, N,  1 Hardware failure 

Exit W 1 Hardware failure 

19 Entry W 2 Frequent congestions in Exit E 

PM 

4 Entry W 3 Vehicles blocking Entry W 

8 Entry S, 4 Low volume in Entry S 

Exit S,W,N 3 Vehicles blocking Exit S 

28 Entry S, 3 Vehicles blocking Entry S 

Exit E, N 5 Congestions in Entry S leading 

low volume in Exit E, N 

30 Entry S 3 Vehicles blocking Entry S 

36 Entry S 5 Congestions in Exit W leading 

low volume in Entry S 

50 Entry S,  5 Congestions in Exit W leading 

low volume in Entry S 

Exit N 5 Congestions in Exit W leading 

low volume in Exit N 
 

 
Fig. 4. Clustering result of data points from the signal of Exit N. Blue 

circles represent the majority group and classified as inliers, whereas the 

red asterisk, cross and square represent the minority groups  and classified 

as outliers. The x-axis and y-axis are coefficients     and    from PCA, 

respectively, where    .  

Theorem 12. Suppose there are    classes of signals after 
the collapsed Gibbs sampling, in which    contains some 
class labels   . The normal group of signals is determined 
by        |  |  where |  | is the number of data points 
from signals in class  . This major group of data points is 
called the inliers. Otherwise, all the remaining groups of 
signals are classified as abnormal and whose data points 
are called the outliers.  

Proof.  It can be deduced from Definitions 9, 10 and 11.  

Fig. 4 depicts an example the clustering result of the signal 
from Exit N. The blue circles represent the majority 
(normal) group and classified as inliers, whereas the red 
asterisk, cross and square represent the minority (abnormal) 
groups and classified as outliers. 

IV. PERFORMANCE EVALUATION 

The traffic video data was recorded and inspected by 
eleven inspectors and a detailed corpus was manufactured. 
The inspectors worked in shift and were divided into two 
teams. Vehicle counting was performed by all inspectors 
and quality control was carried out in order to keep the 
error rate less than 3%. After vehicle counting, a corpus 
was produced. In the corpus, traffic volume, vehicle types, 
incidents and congestions in all sessions were carefully 
recorded and remarked. The numbering of the AM and 
PM sessions are labeled by an alternate ascending order, 
i.e. Session 1 (AM), Session 2 (PM), …, Session 61 (AM) 
and Session 62 (PM). In brief, the total number of vehicles 
in all 62 sessions is 764,027, in which 312,333 vehicles 
were detected in the AM sessions possess and 451,694 
vehicles were detected in the PM sessions possess.  

A. General results 

Out of the 62 sessions, the dataset consists of three 
groups: (1) 46 sessions from Monday to Friday, (2) 8 
sessions from Saturday, and (3) 8 sessions from Sunday. 
As the majority of traffic data is from Monday to Friday, 
we choose this group for the evaluation. Table I tabulates 
the details of abnormal sessions and their corresponding 
anomalies. Fig. 5 depicts the samples of signals of Exit N 
from 23 PM sessions, in which anomalies are manually 
identified in Sessions 8, 28, and 50. Five types of 

anomalies are listed: Type 1: Hardware failure; Type 2: 
Frequent congestions in an Entry/Exit; Type 3: Vehicles 
blocking an Entry/Exit; Type 4: Low volume in an 
Entry/Exit; Type 5: Congestions in an Exit/Entry leading 
to low volume in other Entry/Exit. 

The success rate of outlier detection is measured by 
the following metrics: true positive (TP), false positive 
(FP), true negative (TN), false negative (FN), and 
detection success rate (DSR). The detection success rate is 
defined as  

                                (17). 
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TABLE III.  

OUTLIER DETECTION SUCCESS RATE OF 23 PM SESSIONS (MON-FRI). 

  TP FP TN FN DSR DSR% 

Entry 

E 0 0 23 0 23/23 100% 

S 3 0 18 2 21/23 91.3% 

W 0 2 20 1 20/23 87% 

N 0 0 23 0 23/23 100% 

Exit 

E 0 0 22 1 22/23 95.65% 

S 0 0 22 1 22/23 95.65% 

W 0 0 22 1 22/23 95.65% 

N 3 0 20 0 23/23 100% 

Average       95.65% 
Remark: True positive (TP ), False positive (FP), True negative (TN), False negative (FN), 

Detection success rate (DSR) 

TABLE II.  

OUTLIER DETECTION SUCCESS RATE OF 23 AM SESSIONS (MON-FRI). 

  TP FP TN FN DSR DSR% 

Entry 

E 0 0 23 0 23/23 100% 

S 0 0 22 1 22/23 95.65% 

W 1 0 22 0 23/23 100% 

N 0 0 22 1 22/23 95.65% 

Exit 

E 0 1 22 0 22/23 95.65% 

S 0 0 23 0 23/23 100% 

W 0 0 22 1 22/23 95.65% 

N 0 0 23 0 23/23 100% 

Average       97.83% 
Remark: True positive (TP ), False positive (FP), True negative (TN), False negative (FN), 

Detection success rate (DSR) 

In the first evaluation, the hyper-parameters of the 
conjugate priors are set as follows. The mixture weights of 
the normal group and the abnormal group are chosen 
arbitrarily as        ,       , respectively. The other 
are    

     ,     [   ],           ,      as the 
initial setting. The number of iterations for the collapsed 
Gibbs sampler is 300, for which any number greater than 
100 is empirically found to be stable for Gibbs sampling. 
The dimension   to maintain in PCA is 2. Tables II and III 
list the outlier detection success rates of 23 AM and PM 
sessions, respectively. The average DSR of 23 AM 
sessions (Mon-Fri) is 97.83% while the average DSR of 23 
PM sessions is 95.65%. The overall average DSR of both 
the AM and PM sessions is 96.74%. As other traffic 
databases are not available for a performance comparison, 
our database with 764,027 vehicles is believed to be fair 
and justified for the evaluation.  

V. CONCLUSION 

From the performance evaluation in Section IV, the 
proposed DPM method offers a high detection success rate 
of 96.74% in the real-world traffic data. It is generic, 
unsupervised and fast for outlier detection. As we utilized 
the traffic data (i.e. volume signal) and demonstrated the 
modeling by DPM, we believe that other spatial-temporal 
traffic data, such as travel times, speeds and queue lengths, 
can equally be modeled by DPM under the same 
theoretical framework. The future work include several 
areas: First, the evaluation of the proposed method can be 
extended to the entire road network. As outliers can occur 
in any junctions, outlier detection for the entire network is 
equivalent to individual outlier detection in each junction 
under a simultaneous schedule. Second, it is suitable for 
offline detection and we would extend to the online 

detection in future. Third, we could design other metrics 
for the outlier detection in order to improve the result. We 
believe this work will facilitate real time traffic data 
storage and anomalies detection in the long run. 
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