168 research outputs found

    Transmission strategies for broadband wireless systems with MMSE turbo equalization

    Get PDF
    This monograph details efficient transmission strategies for single-carrier wireless broadband communication systems employing iterative (turbo) equalization. In particular, the first part focuses on the design and analysis of low complexity and robust MMSE-based turbo equalizers operating in the frequency domain. Accordingly, several novel receiver schemes are presented which improve the convergence properties and error performance over the existing turbo equalizers. The second part discusses concepts and algorithms that aim to increase the power and spectral efficiency of the communication system by efficiently exploiting the available resources at the transmitter side based upon the channel conditions. The challenging issue encountered in this context is how the transmission rate and power can be optimized, while a specific convergence constraint of the turbo equalizer is guaranteed.Die vorliegende Arbeit beschĂ€ftigt sich mit dem Entwurf und der Analyse von effizienten Übertragungs-konzepten fĂŒr drahtlose, breitbandige EintrĂ€ger-Kommunikationssysteme mit iterativer (Turbo-) Entzerrung und Kanaldekodierung. Dies beinhaltet einerseits die Entwicklung von empfĂ€ngerseitigen Frequenzbereichs-entzerrern mit geringer KomplexitĂ€t basierend auf dem Prinzip der Soft Interference Cancellation Minimum-Mean Squared-Error (SC-MMSE) Filterung und andererseits den Entwurf von senderseitigen Algorithmen, die durch Ausnutzung von Kanalzustandsinformationen die Bandbreiten- und Leistungseffizienz in Ein- und Mehrnutzersystemen mit Mehrfachantennen (sog. Multiple-Input Multiple-Output (MIMO)) verbessern. Im ersten Teil dieser Arbeit wird ein allgemeiner Ansatz fĂŒr Verfahren zur Turbo-Entzerrung nach dem Prinzip der linearen MMSE-SchĂ€tzung, der nichtlinearen MMSE-SchĂ€tzung sowie der kombinierten MMSE- und Maximum-a-Posteriori (MAP)-SchĂ€tzung vorgestellt. In diesem Zusammenhang werden zwei neue EmpfĂ€ngerkonzepte, die eine Steigerung der LeistungsfĂ€higkeit und Verbesserung der Konvergenz in Bezug auf existierende SC-MMSE Turbo-Entzerrer in verschiedenen Kanalumgebungen erzielen, eingefĂŒhrt. Der erste EmpfĂ€nger - PDA SC-MMSE - stellt eine Kombination aus dem Probabilistic-Data-Association (PDA) Ansatz und dem bekannten SC-MMSE Entzerrer dar. Im Gegensatz zum SC-MMSE nutzt der PDA SC-MMSE eine interne EntscheidungsrĂŒckfĂŒhrung, so dass zur UnterdrĂŒckung von Interferenzen neben den a priori Informationen der Kanaldekodierung auch weiche Entscheidungen der vorherigen Detektions-schritte berĂŒcksichtigt werden. Durch die zusĂ€tzlich interne EntscheidungsrĂŒckfĂŒhrung erzielt der PDA SC-MMSE einen wesentlichen Gewinn an Performance in rĂ€umlich unkorrelierten MIMO-KanĂ€len gegenĂŒber dem SC-MMSE, ohne dabei die KomplexitĂ€t des Entzerrers wesentlich zu erhöhen. Der zweite EmpfĂ€nger - hybrid SC-MMSE - bildet eine VerknĂŒpfung von gruppenbasierter SC-MMSE Frequenzbereichsfilterung und MAP-Detektion. Dieser EmpfĂ€nger besitzt eine skalierbare BerechnungskomplexitĂ€t und weist eine hohe Robustheit gegenĂŒber rĂ€umlichen Korrelationen in MIMO-KanĂ€len auf. Die numerischen Ergebnisse von Simulationen basierend auf Messungen mit einem Channel-Sounder in MehrnutzerkanĂ€len mit starken rĂ€umlichen Korrelationen zeigen eindrucksvoll die Überlegenheit des hybriden SC-MMSE-Ansatzes gegenĂŒber dem konventionellen SC-MMSE-basiertem EmpfĂ€nger. Im zweiten Teil wird der Einfluss von System- und Kanalmodellparametern auf die Konvergenzeigenschaften der vorgestellten iterativen EmpfĂ€nger mit Hilfe sogenannter Korrelationsdiagramme untersucht. Durch semi-analytische Berechnungen der Entzerrer- und Kanaldecoder-Korrelationsfunktionen wird eine einfache Berechnungsvorschrift zur Vorhersage der Bitfehlerwahrscheinlichkeit von SC-MMSE und PDA SC-MMSE Turbo Entzerrern fĂŒr MIMO-FadingkanĂ€le entwickelt. Des Weiteren werden zwei Fehlerschranken fĂŒr die Ausfallwahrscheinlichkeit der EmpfĂ€nger vorgestellt. Die semi-analytische Methode und die abgeleiteten Fehlerschranken ermöglichen eine aufwandsgeringe AbschĂ€tzung sowie Optimierung der LeistungsfĂ€higkeit des iterativen Systems. Im dritten und abschließenden Teil werden Strategien zur Raten- und Leistungszuweisung in Kommunikationssystemen mit konventionellen iterativen SC-MMSE EmpfĂ€ngern untersucht. ZunĂ€chst wird das Problem der Maximierung der instantanen Summendatenrate unter der BerĂŒcksichtigung der Konvergenz des iterativen EmpfĂ€ngers fĂŒr einen Zweinutzerkanal mit fester Leistungsallokation betrachtet. Mit Hilfe des FlĂ€chentheorems von Extrinsic-Information-Transfer (EXIT)-Funktionen wird eine obere Schranke fĂŒr die erreichbare Ratenregion hergeleitet. Auf Grundlage dieser Schranke wird ein einfacher Algorithmus entwickelt, der fĂŒr jeden Nutzer aus einer Menge von vorgegebenen Kanalcodes mit verschiedenen Codierraten denjenigen auswĂ€hlt, der den instantanen Datendurchsatz des Mehrnutzersystems verbessert. Neben der instantanen Ratenzuweisung wird auch ein ausfallbasierter Ansatz zur Ratenzuweisung entwickelt. Hierbei erfolgt die Auswahl der Kanalcodes fĂŒr die Nutzer unter BerĂŒcksichtigung der Einhaltung einer bestimmten Ausfallwahrscheinlichkeit (outage probability) des iterativen EmpfĂ€ngers. Des Weiteren wird ein neues Entwurfskriterium fĂŒr irregulĂ€re Faltungscodes hergeleitet, das die Ausfallwahrscheinlichkeit von Turbo SC-MMSE Systemen verringert und somit die ZuverlĂ€ssigkeit der DatenĂŒbertragung erhöht. Eine Reihe von Simulationsergebnissen von KapazitĂ€ts- und Durchsatzberechnungen werden vorgestellt, die die Wirksamkeit der vorgeschlagenen Algorithmen und Optimierungsverfahren in MehrnutzerkanĂ€len belegen. Abschließend werden außerdem verschiedene Maßnahmen zur Minimierung der Sendeleistung in Einnutzersystemen mit senderseitiger Singular-Value-Decomposition (SVD)-basierter Vorcodierung untersucht. Es wird gezeigt, dass eine Methode, welche die Leistungspegel des Senders hinsichtlich der Bitfehlerrate des iterativen EmpfĂ€ngers optimiert, den konventionellen Verfahren zur Leistungszuweisung ĂŒberlegen ist

    Frequency-Domain Turbo Equalisation in Coded SC-FDMA Systems: EXIT Chart Analysis and Performance

    No full text
    In this paper, we investigate the achievable performance of channel coded single-carrier frequency division multiple-access (SC-FDMA) systems employing various detection schemes, when communicating over frequency-selective fading channels. Specifically, three types of minimum mean-square error (MMSE) based frequency-domain (FD) turbo equalisers are considered. The first one is the turbo FD linear equaliser (LE). The second one is a parallel interference cancellation (PIC)-assisted turbo FD decision-feedback equaliser (DFE). The final one is the proposed hybrid interference cancellation (HIC)-aided turboFD-DFE, which combines successive interference cancellation (SIC) with iterative PIC and decoding. The benefit of interference cancellation (IC) is analysed with the EXtrinsic Information Transfer (EXIT) charts. The performance of the coded SC-FDMA systems employing the above-mentioned detection schemes is investigated with the aid of simulations. Our studies show that the IC techniques achieve an attractive performance at a moderate complexity

    Distributed Quasi-Orthogonal Space-Time coding in wireless cooperative relay networks

    Get PDF
    Cooperative diversity provides a new paradigm in robust wireless re- lay networks that leverages Space-Time (ST) processing techniques to combat the effects of fading. Distributing the encoding over multiple relays that potentially observe uncorrelated channels to a destination terminal has demonstrated promising results in extending range, data- rates and transmit power utilization. Specifically, Space Time Block Codes (STBCs) based on orthogonal designs have proven extremely popular at exploiting spatial diversity through simple distributed pro- cessing without channel knowledge at the relaying terminals. This thesis aims at extending further the extensive design and analysis in relay networks based on orthogonal designs in the context of Quasi- Orthogonal Space Time Block Codes (QOSTBCs). The characterization of Quasi-Orthogonal MIMO channels for cooper- ative networks is performed under Ergodic and Non-Ergodic channel conditions. Specific to cooperative diversity, the sub-channels are as- sumed to observe different shadowing conditions as opposed to the traditional co-located communication system. Under Ergodic chan- nel assumptions novel closed-form solutions for cooperative channel capacity under the constraint of distributed-QOSTBC processing are presented. This analysis is extended to yield closed-form approx- imate expressions and their utility is verified through simulations. The effective use of partial feedback to orthogonalize the QOSTBC is examined and significant gains under specific channel conditions are demonstrated. Distributed systems cooperating over the network introduce chal- lenges in synchronization. Without extensive network management it is difficult to synchronize all the nodes participating in the relaying between source and destination terminals. Based on QOSTBC tech- niques simple encoding strategies are introduced that provide compa- rable throughput to schemes under synchronous conditions with neg- ligible overhead in processing throughout the protocol. Both mutli- carrier and single-carrier schemes are developed to enable the flexi- bility to limit Peak-to-Average-Power-Ratio (PAPR) and reduce the Radio Frequency (RF) requirements of the relaying terminals. The insights gained in asynchronous design in flat-fading cooperative channels are then extended to broadband networks over frequency- selective channels where the novel application of QOSTBCs are used in distributed-Space-Time-Frequency (STF) coding. Specifically, cod- ing schemes are presented that extract both spatial and mutli-path diversity offered by the cooperative Multiple-Input Multiple-Output (MIMO) channel. To provide maximum flexibility the proposed schemes are adapted to facilitate both Decode-and-Forward (DF) and Amplify- and-Forward (AF) relaying. In-depth Pairwise-Error-Probability (PEP) analysis provides distinct design specifications which tailor the distributed- STF code to maximize the diversity and coding gain offered under the DF and AF protocols. Numerical simulation are used extensively to confirm the validity of the proposed cooperative schemes. The analytical and numerical re- sults demonstrate the effective use of QOSTBC over orthogonal tech- niques in a wide range of channel conditions

    Self-interference cancellation for full-duplex MIMO transceivers

    Get PDF
    PhD ThesisIn recent years, there has been enormous interest in utilizing the full-duplex (FD) technique with multiple-input multiple-output (MIMO) systems to complement the evolution of fifth generation technologies. Transmission and reception using FD-MIMO occur simultaneously over the same frequency band and multiple antennas are employed in both sides. The motivation for employing FD-MIMO is the rapidly increasing demand on frequency resources, and also FD has the ability to improve spectral efficiency and channel capacity by a factor of two compared to the conventional half-duplex technique. Additionally, MIMO can enhance the diversity gain and enable FD to acquire further degrees of freedom in mitigating the self-interference (SI). The latter is one of the key challenges degrading the performance of systems operating in FD mode due to local transmission which involves larger power level than the signals of interest coming from distance sources that are significantly more attenuated due to path loss propagation phenomena. Various approaches can be used for self-interference cancellation (SIC) to tackle SI by combining passive suppression with the analogue and digital cancellation techniques. Moreover, active SIC techniques using special domain suppression based on zero-forcing and null-space projection (NSP) can be exploited for this purpose too. The main contributions of this thesis can be summarized as follows. Maximum-ratio combining with NSP are jointly exploited in order to increase the signal-to-noise ratio (SNR) of the desired path and mitigate the undesired loop path, respectively, for an equalize-and-forward (EF) relay using FD-MIMO. Additionally, an end-to-end performance analysis of the proposed system is obtained in the presence of imperfect channel state information by formulating mathematically the exact closed-form solutions for the signal-to-interference-plus-noise ratio (SINR) distribution, outage probability, and average symbol-error rate for uncoded M-ary phase-shift keying over Rayleigh fading channels and in the presence of additive white Gaussian noise (AWGN). The coefficients of the EF-relay are designed to attain the minimum mean-square error (MMSE) between the transmission symbols. Comparison of the results obtained with relevant state-of-the-art techniques suggests significant improvements in the SINR figures and system capacity. Furthermore, iterative detection and decoding (IDD) are proposed to mitigate the residual self-interference (SI) remaining after applying passive suppression along with two stages of SI cancellation (SIC) filters in the analogue and digital domains for coded FD bi-directional transceiver based multiple antennas. IDD comprises an adaptive MMSE filter with log-likelihood ratio demapping, while the soft-in soft-out decoder utilizes the maximum a posteriori (MAP) algorithm. The proposed system’s performance is evaluated in the presence of AWGN over non-selective (flat) Rayleigh fading single-input multiple-output (SIMO) and MIMO channels. However, the results of the analyses can be applied to multi-path channels if orthogonal frequency division multiplexing is utilised with a proper length of cyclic prefix in order to tackle the channels’ frequency-selectivity and delay spread. Simulation results are presented to demonstrate the bit-error rate (BER) performance as a function of the SNR, revealing a close match to the SI-free case for the proposed system. Furthermore, the results are validated by deriving a tight upper bound on the performance of rate-1=2 convolutional codes for FD-SIMO and FD-MIMO systems for different modulation schemes under the same conditions, which asymptotically exhibits close agreement with the simulated BER performance.Ministry of Higher Education and Scientific Research (MoHESR), and the University of Mosul and to the Iraqi Cultural Attache in London for providing financial support for my PhD scholarship

    MIMO Systems

    Get PDF
    In recent years, it was realized that the MIMO communication systems seems to be inevitable in accelerated evolution of high data rates applications due to their potential to dramatically increase the spectral efficiency and simultaneously sending individual information to the corresponding users in wireless systems. This book, intends to provide highlights of the current research topics in the field of MIMO system, to offer a snapshot of the recent advances and major issues faced today by the researchers in the MIMO related areas. The book is written by specialists working in universities and research centers all over the world to cover the fundamental principles and main advanced topics on high data rates wireless communications systems over MIMO channels. Moreover, the book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Cooperative diversity using MIMO systems

    Get PDF
    Multipath fading is one of the primary factors for degrading the performance in a wireless network. Information theoretic and past research suggest the use various diversity techniques to combat fading in wireless networks. Antenna diversity, a form of diversity technique, when incorporated in a wireless transceiver increases the system capacity and is one of the effective methods to combat fading in wireless systems. Also, recent research by Laneman et.al., Sendonaris et.al. suggests that cooperation among users in a wireless networks is an effective approach for a better signal reception in multipath fading environments. The diversity gains obtained by cooperation among the users of a wireless network is termed as cooperative diversity . Although, prior research in cooperative diversity considers users equipped with single antenna, in practical scenarios users may be able to accommodate multiple antennas due to the recent advanced research in semiconductor industry. Hence, the primary purpose of this thesis is to design, simulate and analyze an end-end performance of multi-antenna wireless systems employing cooperative multi antenna relay nodes so as to exploit the cooperative diversity and antenna diversity simultaneously in a wireless networks. Three main contributions to the area of cooperative multiple-input multiple-output (MIMO) wireless systems is presented in this thesis. First, we perform information theoretic analysis to study the impact of antenna arrays on cooperative wireless networks and propose the best possible distribution of antenna arrays among the three terminals of a simple three terminal cooperative relay network. Second, we design, simulate, and analyze a cooperative multiple-input multiple-output (MIMO) wireless systems employing orthogonal space-time block codes as proposed by Alamouti in 1998 with a decode-and-forward (DF) relay terminal. We implement a maximal ratio combining receiver that provides almost twice the diversity gain with respect to point-point multiple input multiple output link. Finally, we implement a practical receiver for cooperative reception using multiple antennas at all nodes based on Bell-Labs Layered Space Time architecture (BLAST). We incorporate a practical adaptive decode-and-forward (DF) relaying technique for reliable signal retransmission for both Alamouti space-time coding and the BLAST schemes. Results presented in terms of bit error rates and throughput show that remarkable performance gains are achievable by combining the concepts drawn from space-time coding, cooperative relaying and array processing

    Interference-Mitigating Waveform Design for Next-Generation Wireless Systems

    No full text
    A brief historical perspective of the evolution of waveform designs employed in consecutive generations of wireless communications systems is provided, highlighting the range of often conflicting demands on the various waveform characteristics. As the culmination of recent advances in the field the underlying benefits of various Multiple Input Multiple Output (MIMO) schemes are highlighted and exemplified. As an integral part of the appropriate waveform design, cognizance is given to the particular choice of the duplexing scheme used for supporting full-duplex communications and it is demonstrated that Time Division Duplexing (TDD) is substantially outperformed by Frequency Division Duplexing (FDD), unless the TDD scheme is combined with further sophisticated scheduling, MIMOs and/or adaptive modulation/coding. It is also argued that the specific choice of the Direct-Sequence (DS) spreading codes invoked in DS-CDMA predetermines the properties of the system. It is demonstrated that a specifically designed family of spreading codes exhibits a so-called interference-free window (IFW) and hence the resultant system is capable of outperforming its standardised counterpart employing classic Orthogonal Variable Spreading Factor (OVSF) codes under realistic dispersive channel conditions, provided that the interfering multi-user and multipath components arrive within this IFW. This condition may be ensured with the aid of quasisynchronous adaptive timing advance control. However, a limitation of the system is that the number of spreading codes exhibiting a certain IFW is limited, although this problem may be mitigated with the aid of novel code design principles, employing a combination of several spreading sequences in the time-frequency and spatial-domain. The paper is concluded by quantifying the achievable user load of a UTRA-like TDD Code Division Multiple Access (CDMA) system employing Loosely Synchronized (LS) spreading codes exhibiting an IFW in comparison to that of its counterpart using OVSF codes. Both system's performance is enhanced using beamforming MIMOs

    Suboptimal maximum-likelihood multiuser detection of synchronous CDMA on frequency-selective multipath channels

    Full text link
    • 

    corecore