11 research outputs found

    Non-amidated and amidated members of the C-type allatostatin (AST-C) family are differentially distributed in the stomatogastric nervous system of the American lobster, Homarus americanus

    Get PDF
    The crustacean stomatogastric nervous system (STNS) is a well-known model for investigating neuropeptidergic control of rhythmic behavior. Among the peptides known to modulate the STNS are the C-type allatostatins (AST-Cs). In the lobster, Homarus americanus, three AST-Cs are known. Two of these, pQIRYHQCYFNPISCF (AST-C I) and GNGDGRLYWRCYFNAVSCF (AST-C III), have non-amidated C-termini, while the third, SYWKQCAFNAVSCFamide (AST-C II), is C-terminally amidated. Here, antibodies were generated against one of the non-amidated peptides (AST-C I) and against the amidated isoform (AST-C II). Specificity tests show that the AST-C I antibody cross-reacts with both AST-C I and AST-C III, but not AST-C II; the AST-C II antibody does not cross-react with either non-amidated peptide. Wholemount immunohistochemistry shows that both subclasses (non-amidated and amidated) of AST-C are distributed throughout the lobster STNS. Specifically, the antibody that cross-reacts with the two non-amidated peptides labels neuropil in the CoGs and the stomatogastric ganglion (STG), axons in the superior esophageal (son) and stomatogastric (stn) nerves, and ~ 14 somata in each commissural ganglion (CoG). The AST-C II-specific antibody labels neuropil in the CoGs, STG and at the junction of the sons and stn, axons in the sons and stn, ~ 42 somata in each CoG, and two somata in the STG. Double immunolabeling shows that, except for one soma in each CoG, the non-amidated and amidated peptides are present in distinct sets of neuronal profiles. The differential distributions of the two AST-C subclasses suggest that the two peptide groups are likely to serve different modulatory roles in the lobster STNS

    Active Gaits Generation of Quadruped Robot Using Pulse-Type Hardware Neuron Models

    Get PDF
    In this chapter, the authors will propose the active gait generation of a quadruped robot. We developed the quadruped robot system using self-inhibited pulse-type hardware neuron models (P-HNMs) as a solution to elucidate the gait generation method. We feedbacked pressures at the robot system’s each foot to P-HNM and varied the joints’ angular velocity individually. We experimented with making the robot walk from an upright position on a flat floor. As a result of the experiment, we confirmed that the robot system spontaneously generates walk gait and trot gait according to the moving speed. Also, we clarified the process by which the robot actively generates gaits from the upright state. These results suggest that animals may generate gait using a similarly simple method because P-HNM mimics biological neurons’ function. Furthermore, it shows that our robot system can generate gaits adaptively and quite easily

    Controlling underwater robots with electronic nervous systems

    Get PDF
    We are developing robot controllers based on biomimetic design principles. The goal is to realise the adaptive capabilities of the animal models in natural environments. We report feasibility studies of a hybrid architecture that instantiates a command and coordinating level with computed discrete-time map-based (DTM) neuronal networks and the central pattern generators with analogue VLSI (Very Large Scale Integration) electronic neuron (aVLSI) networks. DTM networks are realised using neurons based on a 1-D or 2-D Map with two additional parameters that define silent, spiking and bursting regimes. Electronic neurons (ENs) based on Hindmarsh-Rose (HR) dynamics can be instantiated in analogue VLSI and exhibit similar behaviour to those based on discrete components. We have constructed locomotor central pattern generators (CPGs) with aVLSI networks that can be modulated to select different behaviours on the basis of selective command input. The two technologies can be fused by interfacing the signals from the DTM circuits directly to the aVLSI CPGs. Using DTMs, we have been able to simulate complex sensory fusion for rheotaxic behaviour based on both hydrodynamic and optical flow senses. We will illustrate aspects of controllers for ambulatory biomimetic robots. These studies indicate that it is feasible to fabricate an electronic nervous system controller integrating both aVLSI CPGs and layered DTM exteroceptive reflexes

    Molecular characterization of putative neuropeptide, amine, diffusible gas and small molecule transmitter biosynthetic enzymes in the eyestalk ganglia of the American lobster, Homarus americanus

    Get PDF
    The American lobster, Homarus americanus, is a model for investigating the neuromodulatory control of physiology and behavior. Prior studies have shown that multiple classes of chemicals serve as locally released/circulating neuromodulators/neurotransmitters in this species. Interestingly, while many neuroactive compounds are known from Homarus, little work has focused on identifying/characterizing the enzymes responsible for their biosynthesis, despite the fact that these enzymes are key components for regulating neuromodulation/neurotransmission. Here, an eyestalk ganglia-specific transcriptome was mined for transcripts encoding enzymes involved in neuropeptide, amine, diffusible gas and small molecule transmitter biosynthesis. Using known Drosophila melanogaster proteins as templates, transcripts encoding putative Homarus homologs of peptide precursor processing (signal peptide peptidase, prohormone processing protease and carboxypeptidase) and immature peptide modifying (glutaminyl cyclase, tyrosylprotein sulfotransferase, protein disulfide isomerase, peptidylglycine-α-hydroxylating monooxygenase and peptidyl-α-hydroxyglycine-α-amidating lyase) enzymes were identified in the eyestalk assembly. Similarly, transcripts encoding full complements of the enzymes responsible for dopamine [tryptophan-phenylalanine hydroxylase (TPH), tyrosine hydroxylase and DOPA decarboxylase (DDC)], octopamine (TPH, tyrosine decarboxylase and tyramine β-hydroxylase), serotonin (TPH or tryptophan hydroxylase and DDC) and histamine (histidine decarboxylase) biosynthesis were identified from the eyestalk ganglia, as were those responsible for the generation of the gases nitric oxide (nitric oxide synthase) and carbon monoxide (heme oxygenase), and the small molecule transmitters acetylcholine (choline acetyltransferase), glutamate (glutaminase) and GABA (glutamic acid decarboxylase). The presence and identity of the transcriptome-derived transcripts were confirmed using RT-PCR. The data presented here provide a foundation for future gene-based studies of neuromodulatory control at the level of neurotransmitter/modulator biosynthesis in Homarus

    Embodied Models and Neurorobotics

    Get PDF
    Neuroscience has become a very broad field indeed: each year around 30,000 researchers and students from around the ... We trace a path from neuron to cognition via computational neuroscience, but what is computational neuroscience

    Distribution of Ih Channels and their Function in the Stomatogastric Ganglion

    Get PDF
    Generation of rhythmic patterns in the absence of descending commands is an essential and powerful trait of many motor networks. Cyclic rhythmic discharges of motoneurons in repeated motor activities like locomotion, mastication and respiration require underlying circuits of neurons, which are called central pattern generators (CPG). This study examined the possible roles of Ih cation channels in the pyloric network of the stomatogastric nervous system, a rhythmically active network of motoneurons that controls movements of the lobster foregut. Of specific interest were the H-current�s involvement in maintaining firing properties, the distribution of Ih channels within the stomatogastric ganglion, and a potential role for Ih in regulation of synaptic strength. I was able to confirm a homeostatic interaction of Ih with A-type potassium channels, where the over-expression of the IA shal gene after RNA injection evoked a compensatory increase of Ih in different motoneuron types. I observed an additional, non-Ih component of the hyperpolarization activated current, which was more likely to occur in shal-RNA and gfp-RNA injected neurons, compared to untreated neurons. Further, I showed that the homeostatic response of Ih increase is unidirectional; overexpression of the Ih protein PIIH did not lead to an increase of IA. In an immunocytochemical study, I found high concentrations of Ih protein localized in the fine neuropil of the stomatogastric ganglion, an area which is rich in synaptic contacts. Finally, I demonstrate a potential role for Ih in regulating synaptic transmission, for which I found evidence in electrophysiological experiments, where the amplitude of inhibitory postsynaptic potentials decreased with increasing activation of Ih

    Mecanismos de codificación y procesamiento de información en redes basadas en firmas neuronales

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Escuela Politécnica Superior, Departamento de Tecnología Electrónica y de las Comunicaciones. Fecha de lectura: 21-02-202

    Rhythmogenesis and Bifurcation Analysis of 3-Node Neural Network Kernels

    Get PDF
    Central pattern generators (CPGs) are small neural circuits of coupled cells stably producing a range of multiphasic coordinated rhythmic activities like locomotion, heartbeat, and respiration. Rhythm generation resulting from synergistic interaction of CPG circuitry and intrinsic cellular properties remains deficiently understood and characterized. Pairing of experimental and computational studies has proven key in unlocking practical insights into operational and dynamical principles of CPGs, underlining growing consensus that the same fundamental circuitry may be shared by invertebrates and vertebrates. We explore the robustness of synchronized oscillatory patterns in small local networks, revealing universal principles of rhythmogenesis and multi-functionality in systems capable of facilitating stability in rhythm formation. Understanding principles leading to functional neural network behavior benefits future study of abnormal neurological diseases that result from perturbations of mechanisms governing normal rhythmic states. Qualitative and quantitative stability analysis of a family of reciprocally coupled neural circuits, constituted of generalized Fitzhugh–Nagumo neurons, explores symmetric and asymmetric connectivity within three-cell motifs, often forming constituent kernels within larger networks. Intrinsic mechanisms of synaptic release, escape, and post-inhibitory rebound lead to differing polyrhythmicity, where a single parameter or perturbation may trigger rhythm switching in otherwise robust networks. Bifurcation analysis and phase reduction methods elucidate qualitative changes in rhythm stability, permitting rapid identification and exploration of pivotal parameters describing biologically plausible network connectivity. Additional rhythm outcomes are elucidated, including phase-varying lags and broader cyclical behaviors, helping to characterize system capability and robustness reproducing experimentally observed outcomes. This work further develops a suite of visualization approaches and computational tools, describing robustness of network rhythmogenesis and disclosing principles for neuroscience applicable to other systems beyond motor-control. A framework for modular organization is introduced, using inhibitory and electrical synapses to couple well-characterized 3-node motifs described in this research as building blocks within larger networks to describe underlying cooperative mechanisms
    corecore