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Controlling underwater robots with electronic nervous systems
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We are developing robot controllers based on biomimetic design principles. The goal is to realise the adaptive capabilities
of the animal models in natural environments. We report feasibility studies of a hybrid architecture that instantiates a
command and coordinating level with computed discrete-time map-based (DTM) neuronal networks and the central pattern
generators with analogue VLSI (Very Large Scale Integration) electronic neuron (aVLSI) networks. DTM networks are
realised using neurons based on a 1-D or 2-D Map with two additional parameters that define silent, spiking and bursting
regimes. Electronic neurons (ENs) based on Hindmarsh–Rose (HR) dynamics can be instantiated in analogue VLSI and
exhibit similar behaviour to those based on discrete components. We have constructed locomotor central pattern generators
(CPGs) with aVLSI networks that can be modulated to select different behaviours on the basis of selective command input.
The two technologies can be fused by interfacing the signals from the DTM circuits directly to the aVLSI CPGs. Using DTMs,
we have been able to simulate complex sensory fusion for rheotaxic behaviour based on both hydrodynamic and optical flow
senses. We will illustrate aspects of controllers for ambulatory biomimetic robots. These studies indicate that it is feasible to
fabricate an electronic nervous system controller integrating both aVLSI CPGs and layered DTM exteroceptive reflexes.
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1. Introduction

The ability of even simple invertebrates to outperform the
mobility of the most sophisticated robots has suggested
a biomimetic approach to the problem of how to achieve
truly autonomous robotic devices (Taubes 2000; Ayers et al.
2002). Recent advances in biomimetics have made it fea-
sible to construct robots (Figure 1) that to some degree
approximate their animal models (Ayers et al. 2002; Kato
et al. 2004). The existence of such robots provides an em-
bodied technique to model underlying mechanisms of the
control of behaviour (Webb 2000; Webb 2001). Biorobotic
studies can provide unique insights into the critical variables
in the control of behaviour by neuronal networks (Horchler
et al. 2003). We have previously demonstrated biomimetic
robots built with finite-state machines that mimic the oper-
ation of endogenous central pattern generators (Ayers et al.
2000; Ayers and Witting 2007). These controllers capture
the dynamics and logic of the motor pattern generators of
the model animals (Ayers 2002). More recently, we have
begun to construct electronic nervous systems based on
two nonlinear dynamical models of neurons. The first are
analogue computers developed at UCSD (UCSD ENs) that
solve the Hindmarsh–Rose Equations (Pinto et al. 2000).
The second are based on one or two degree maps that
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model the dynamics of neurons and synapses using dif-
ference equations (Rulkov 2002). Here we compare these
architectures and report a feasibility test of the potential
to develop a hybrid central pattern generator-based con-
troller for a biomimetic robot based on a combination of
UCSD electronic neurons (Pinto et al. 2000) and discrete-
time map-based computed neurons (Rulkov 2002).

1.1. Background

Decapod crustacea have long been models for the study
of sensory-motor integration and have provided impor-
tant insights into the organisation of locomotory systems
(Kennedy and Davis 1977). Decapods exhibit tactile nav-
igation capabilities using antennae and bump detectors to
literally feel their way through complex rock-delineated
fields (Ayers 2004). By sweeping antenna over different
subsets of their workspace, they can determine their prox-
imity to objects as well as gauge their height (Sandeman
1985). Lobsters can walk with equal facility in any direc-
tion, rotate in place and change their walking direction on
a step-by-step basis (Ayers 2000a).

1.2. Artificial and natural control architectures

The quest to couple sensing devices with motor control
led to behaviour-based control architectures in the 1980
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Figure 1. The lobster-based robot.

(Brooks 1991). The use of motors to control these early
systems, however, necessitated the use of electronic inter-
faces that differ profoundly from the control principles used
by animals. For example, animals grade muscular force by
recruiting increasingly larger numbers of motor units based
on axon size (Stuart and Enoka 1985). Increasing the force
produced by a motor however requires feedback and a me-
chanical gear arrangement. The absence of actuators that
have a realistic resemblance to biological muscle has been
a challenge to the control of biomimetic robots. However,
recent advances in sensor and artificial muscle technologies
have made it feasible to consider the development of robots
organised along more physiological principles (Taubes
2000).

Studies over the past 40 years have demonstrated that
the innate rhythmic behaviour of animals is generated by
central pattern generators (CPGs) distributed throughout
the nervous system (Delcomyn 1980; Marder et al. 2005)
and modulated by sensory feedback. CPGs are networks
of neurons that can generate an excellent replica of the
motor neuron discharge patterns underlying innate be-
havioural acts in the total absence of sensory feedback
or patterned input from higher centres (Selverston and
Moulins 1987). Unit CPGs are organised by intersegmen-
tal interneurons that modulate and coordinate their activ-
ity (Kennedy and Davis 1977; Stein 1978; Namba and
Mulloney 1999). Coordinating neurons pass information
from a governing CPG to a governed CPG that, depend-
ing on the nature of the synapse, can cause a phase ad-
vance or delay that maintains intersegmental phase or gait.
Command neurons exhibit parametric modulation of CPGs
(Pinsker and Ayers 1983) to initiate operation and control
the average period and amplitude. In some cases, different
commands can select different motor programs from the
same CPG (Bowerman and Larimer 1974; Ayers and Davis
1977).

1.3. CPGs for locomotion

There are numerous examples of central pattern generator
networks (Selverston 1999). In many cases, the underlying
circuitry has been established by paired neuronal recordings
and the cellular properties of the different component neu-
rons defined in terms of their underlying ionic conductances
(Harris-Warrick et al. 1992). Central pattern generators may
produce more than one behaviour. An example of a hypo-
thetical central pattern generator network for the control of
walking in different directions is illustrated in Figure 2. In
this system, a neuronal oscillator generates a three-phase
pattern and command inputs select different behaviours by
gating synapses within the network (Ayers 2004).

2. Biomimetic robots

Figure 1 illustrates an existing biomimetic robot based on
the lobster (Ayers and Witting 2007). The robot consists
of an 8 in. × 5 in. hull actuated by eight three-degree of
freedom legs and stabilised by anterior and posterior hy-
drodynamic control surfaces. It is be powered by NiMH
batteries and, at present, can be controlled by an on board
neuronal-circuit based controller implemented as a finite
state machine on a microprocessor or via a serial interface
from the same code running on a laptop for interactive de-
bugging. The watertight hull contains the motherboard, leg
current driver boards, motor controller board, sonar board
and current drivers for the trim appendages. The moth-
erboard houses power management circuitry, the compass
and pitch and roll inclinometers. Eight modular walking
leg assemblies are attached to a flange on the hull. Each
leg assembly is composed of vertical posts that contain
muscle modules that protract and retract the leg around
a capstan that supports the more distal joints. Two other
segments house paired antagonistic actuators that cause el-
evation/depression and extension/flexion.

2.1. Myomorphic actuators

The leg state machines gate current drivers that actuate an-
tagonistic shape memory alloy (SMA) artificial muscles to
move the different leg joints. The SMA actuators are formed
from nitinol wire (Witting and Safak 2002). When cooled
by the surrounding seawater, the wires can be deformed
and stretched to a martensite structure. When heated to
the transition temperature by electrical current, the marten-
site converts to a more compact structure (austenite) and the
wire contracts by about 5% from its deformed martensite
length. A 250 µ m wire can lift a kilogram in about 150
ms (Witting and Safak 2002). Pairs of SMA actuators can
produce alternating contractions or can be co-activated to
maintain the stiffness of the joint. Pulse width duty cycle
modulation of trains of current pulses allows graded con-
tractions to regulate the attitude and speed of movements.
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Figure 2. Hypothetical Neuronal Circuitry underlying the EN CPG. Triangles represent excitatory synapses. Coloured circles projecting
from the neuronal oscillator neurons represent inhibitory synapses. The inhibition from Elev (elevator) to Stance is stronger than that from
Elev to DEP resulting in a delay between the recovery of swing from Elev relative to the recovery of Dep. This delay represents the late
swing phase of the step period. Coloured circles projecting from the command neurons indicate presynaptic inhibitory synapses. These
synapses gate connections from the Swing and Stance phase inter-neurons appropriate to the direction of walking. The excitatory synapses
from the commands to the bifunctional muscles (protractor, retractor, extensor and flexor) represent the recruiting pathway by which the
speed of walking is controlled.

Each actuator can be activated with three different duty cy-
cles to produce low, medium and high amplitude contrac-
tions corresponding to the recruitment states of the con-
troller.

2.2. Neuromorphic sensors

We have developed several biomimetic sensors necessary
to mediate reactive tactile navigation on the ocean bottom
(Ayers and Witting 2007). All sensors code information
with a labelled line code. Each sensor is represented by a
byte, each bit of which corresponds to a labelled line. The
labelled line represents three characteristics of the stim-
ulus: (1) the sensory modality; (2) the receptive field or
orientation relative to the body; and (3) the amplitude of
the stimulus. All sensors are polled by the state machine
and return a byte representing their status (Figure 3). The
lobster robot is equipped with an exteroceptive sensor suite
that includes: (1) Compass – mediates sense of direction;
(2) Pitch and Roll inclinometers – mediate orientation in
the pitch and roll plane; (3) Antennae – multidimensional
sensors that respond to collision, active sweeps and wa-
ter current; (4) Bump Detectors – respond to collisions by
particular appendages such as the claws.

2.3. A state machine-based CPG

At present this vehicle is controlled by a finite state ma-
chine controller (Ayers and Witting 2007). The outputs of

the finite state machine are control signals that specify the
timing and amplitude of actuator action. These signals are
used to gate power transistors at different duty cycles to
activate contractions of the artificial muscle just as motor
neuron action potentials activate muscle. Antagonist mus-
cles of joints that serve a postural function in a particular
walking direction are co-activated at low amplitude (Ayers
and Clarac 1978).

2.4. Behavioural choice and sequencing

The higher order control of behaviour of the robot is
based on command neurons (Bowerman and Larimer 1974).
There are nine internal state variables or commands; each
of one had two to five states. Modulation of these com-
mands occurs at two levels (Ayers and Witting 2007). For
example, in exteroceptive reflexes, sensor feedback modu-
lates on one command such as walking speed on the two
sides on an ongoing basis to modulate yaw relative to flow.
Similarly, changes in pitch will evoke a reflex that levels
the thorax. More complex, linked sequences involve lists
of both fixed and goal achieving command transition sub-
sequences. These sequences are stored as tables in a be-
havioural library and each is triggered by a specific sensory
releaser. Goal achieving sub-sequences maintain ongoing
states until a goal is achieved (e.g. turning to a particular
compass heading). Achievement of the goal triggers the
next sub-sequence in the list (Ayers 2000b).
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Figure 3. Byte mask for the antennal sensors. This byte is re-
turned to the state machine when the antennal microcontroller
is polled over the serial bus. The upper diagram represents the
physical displacement of the antennal beam in response to hydro-
dynamic flow. A microcontroller interprets the voltage generated
by a Wheatstone bridge connected to the strain gauge on the an-
tenna. Depending on the voltage, one of seven bits set and returned
to the controlling state machine. The eighth bit is set for 150 ms
when the buckling triggered by a head on collision by the antenna
is detected by the microcontroller.

3. Why chaotic electronic neuron networks?

These state machine models are, at best, approximations
of the operation of the biological systems and rely on en-
tirely different mechanisms. As a result, their dynamical
responses to perturbation must differ from that of natural
architectures. When biological neurons from lobster CPGs
are isolated from other neurons and phase portraits made of
their burst patterns, they show clear regimes of chaotic ac-
tivity. This chaotic activity is an important element that has
been built into the behaviour of the Hindmarsh–Rose elec-
tronic neurons. It enables both the biological and the elec-
tronic version of individual and small networks of neurons
to solve the problem of robustness and flexibility, two mu-
tually antagonistic properties. Networks made up of chaotic
neurons display extremely robust local minima but the tra-
jectories can be displaced by transient perturbations such
as inputs from sensory receptors that allow the pattern to be
momentarily altered. This can smoothly adjust the gait of a
robot to irregularities on the ocean floor while maintaining
the stability of the overall locomotory pattern.

We propose an alternative way of controlling robots:
construct the biological networks in electronic neurons and
synapses as an electronic nervous system (ENS). Existing
conductance models of neurons are too computationally in-
tensive to permit real-time robot control by even simple
neural circuits (Hammarlund and Ekeberg 1998). Appli-
cation of non-linear dynamical analysis to isolated lobster
neurons has indicated that they express only four degrees
of freedom (Abarbanel et al. 1996). This allows models of
low enough complexity to capture the dynamics of neurons
and instantiate them in simple analog circuits. Similarly,
map-based neurons can be modelled with difference equa-
tions and allow the real-time operation of more complex
circuits. We advocate the use of a hybrid architecture of
electronic neurons (Pinto et al. 2000) and prototyping with
map-based neurons (Rulkov 2002) to allow adaptive de-
velopment of electronic nervous systems that embody the
CPG components and their interrelations with sensors in
real time.

We chose these architectures for two reasons. First an
electronic neuron-based system accurately reproduces the
rhythmic spatiotemporal motor patterns used by animals
and inherently captures the dynamical processes that lead
to stability and response to perturbation. Secondly, due to
their low dimensionality, these phenomenological models
can operate in real time and respond to perturbations as
rapidly as the real nervous system.

4. Electronic neurons and synapses

4.1. Electronic neurons

Our electronic neurons are analogue computational units
that solve modified Hindmarsh–Rose (HR) equations that
define the four degrees of freedom observed experimentally
in lobster neurons (Pinto et al. 2000).

dx

dt
= ay(t) + bx2(t) − cx3(t) − dz(t) + I

dy

dt
= e − f x2(t) − y(t) − gw(t)

dz

dt
= µ(−z(t) + S(x(t) − h))

dw

dt
= v(−kw(t) + r(y(t) + l)),

a, b, c, d, I, e, f, g, µ , S, h, ν , k, r and l are constants em-
bodying neural dynamics (modified from Hindmarsh and
Rose 1984); x(t) corresponds to membrane voltage; y(t)
represents a ‘fast’ current; we choose µ � 1, so z(t) is a
‘slow’ current. The first three equations (3-D model) can
reproduce several modes of spiking-bursting activity seen
in STG cells. Adding the fourth equation (for w(t); 4-D
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Figure 4. Analog VLSI electronic neuron circuit (upper panel) and electronic synapse circuit (lower panel).

model) introduces an even slower process (ν < µ � 1),
intended to represent intracellular Ca++ dynamics (Fal-
cke et al. 2000). The w(t) dynamics is an additional de-
gree of freedom with a time constant three times slower
than the characteristic bursting times. Both 3-D and 4-

D models have regions of chaotic behaviour, but the 4-
D neuron has much larger regions in parameter space
where chaos occurs. Thus modulation of w(t) can vary
the level of chaos in a network constructed of electronic
neurons.
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Figure 5. Dynamics of discrete-time map-based neurons. (a) Return map of the function. (b) Discharge patterns as β is varied. β
represents the synaptic current. (c) Behaviour over different ranges of α and σ . α and σ are two parameters of the DTM neurons that
determine their pattern of discharge.

ENs can be configured for different levels of complex-
ity. When the integrators for z and w are disabled, the re-
sulting 2-D ENs behave like FitzHugh-Nagumo neurons
(Hindmarsh and Rose 1982). When the w integrator is dis-
abled, the resulting 3-D ENs behave like regular bursters
(Abarbanel et al. 1996). When the w integrator is enabled,
the resulting 4-D ENs become capable of regular as well as
chaotic behaviour over a broad range of parameter values.
When isolated, lobster neurons have different dynamical
personalities ranging from silence to chaotic bursting and
their behaviour can be altered by injected current and neu-
romodulation (Harris-Warrick and Johnson 1989). The ENs
have trim pots that allow variation of seven of the parame-
ters in the HR equations.

4.2. Electronic synapses

Electronic chemical synapses (CSs) instantiate both pre-
and post-synaptic EN potentials, presynaptic release thresh-
old and slope, postsynaptic strength and reversal potential
as previously modelled (Sharp et al. 1993; Destexhe et al.

1994). In our realisation of chemical synapses, we used the
mathematical model of a synapse that can be presented in
the form

I = gS(t)(Vrev − Vpost)

where:

dS(t)

dt
= S∞ − S(t)

τ0(1 − S∞)
S∞ = tanh

(
Vpre − Vth

Vslope

)

The circuit first calculates the voltage

US∞ = tanh

(
Vpre − Vth

Vslope

)

using the five segments piecewise linear function generator
(block ‘tanh’). This voltage is used as input signal to calcu-
late the value of S(t). As one can see the equation for S(t)
is a linear differential equation in which the time constant
τ depends on the parameter S∞ as τ = τ0(1 − S∞). Our
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circuit approximates this dependence in the following way:

τ = τ0 ×
{

1, 0 ≤ S∞ < S1

0.05, S∞ > S1

where S1 ≈ 0.7V

The output voltage of this block multiplied by g(Vrev −
Vpost) is proportional to the synaptic current.

4.3. Analogue VLSI electronic neurons and
synapses

UCSD electronic neurons are relatively large circuits based
on discrete components, require large (±15 V) power sup-
plies and are not suitable for a robotic implementation. We
have already simulated the implementation of HR ENs in
low voltage sub-threshold analogue VLSI (Lee et al. 2004;
Lee J et al. 2007). As the UCSD ENs are based on in-
tegrated circuits, it was first necessary to instantiate Op
Amps and multipliers using sub-threshold VLSI (Figure
4). The modelled controller is based on a standard 0:25 mm
CMOS process with 2V supply voltage. In order to achieve
low power consumption, CMOS sub-threshold circuit tech-
niques are used. The simulated power consumption is 4.8
mW and die size including I/O pads is 2.2 mm × 2.2 mm.
We have also been able to implement and simulate HR 2
and 3 degree electronic neurons, chemical synapses and
presynaptic inhibition (Lee J et al. 2007).

4.4. Discrete-time map-based neurons and
synapses

For modelling the sensory inputs to CPGs, huge numbers
of ENs would be required. Testing and optimisation of net-
works of large numbers of ENs is best done with a com-
putationally efficient simulation models and not ENs. The
critical issue is to simulate nested exteroceptive reflexes in
real time on low power-embedded processors while being
able to reconfigure and anneal the networks readily to test
different hypotheses. A 2-D discrete-time map (Figure 5)
that describes the spiking and spiking-bursting behaviour
of a neuron model (Rulkov 2002) can be written as follows:

xn+1 = fα(xn, xn−1, yn + βn) ,

yn+1 = yn − µ(xn + 1) + µσ + µσn ,

where xn is the fast and yn is the slow (due to 0<µ �1)
dynamical variable. The non-linear function is written in

Figure 6. Hybrid DTM/EN circuits in operation. (a) A recurrent
cyclic inhibition circuit formed of one DTM neuron and two ENs.
(b–d) Entrainment of a bursting EN by a DTM neuron. (b) Free
running EN. (c) Entrainment by excitation from a DTM neuron
that decreases the burst period of the EN. Entrainment by inhi-
bition from a DTM neuron that increases the burst period of the
EN. Entrainment by inhibition from a DTM neuron that increases
the burst period of the EN. (e) Initiation of bursting in a recurrent
cyclic inhibition circuit of three ENs by a trigger command burst
from a DTM neuron.

the following form

fα(xn, xn−1, u) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

α/(1 − xn) + u, xn ≤ 0,

α + u, 0 < xn < α + u

and xn−1 ≤ 0,

−1, xn ≥ α + u

or xn−1 > 0,

where the third argument u = yn or a combination of input
variables that depend on the model type. Input variables
βn and σn incorporate the action of synaptic inputs I syn

and can be written as βn = βEIsyn, σn = σE(Isyn), where
βE is a constant that controls how quickly neurons respond
to the input and supports dynamical mechanisms for spike
frequency deceleration for DC pulses of current.
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Figure 7. Simulation of walking motor programs by analog VLSI CPG circuit shown in Figure 2. Upper four traces are the oscillator
neurons (ele: elevator synergy; dep: depressor synergy; swing: swing phase synergy; stance: stance phase synergy). Middle 6 panels are
the motor neurons (ele: elevator; dep: depressor, pro: protractor, ret: retractor; ext: extensor; flex: flexor) and the lower four panels are the
command neurons (post: antigravity postural command; back: backward walking command; trail trailing side lateral walking command;
for: forward walking command; lead: leading side walking command) (Harris-Warrick and Johnson 1989).

A simplified 1-D analog of the model can be written as:

xn+1 = fα(xn, xn−1, b
rs + βeIn) ,

where brs is a constant defining the resting state of the DMT
model. This type of model does not allow the onset of a
self-sustained regime of bursting. The simplest map-based
model for a synaptic current can be written as:

I
syn
n+1 = γ I syn

n −
{

gsyn

(
x

post
n − xrp

)
, spikepre,

0, otherwise,

where gsyn is the strength of synaptic coupling, and indexes
pre and post stand for the presynaptic and postsynaptic
potentials, respectively. Here γ controls the relaxation rate
of the synapse (0 < γ < 1) and xrp defines the reversal
potential and, therefore, the type of synapse: excitatory or
inhibitory.

5. Simulation of behavioural control with the hybrid
architecture

We use LabViewTM (National Instruments, Austin, TX) to
examine interactions between hybrid networks of discrete-
time map-based (DTM) and electronic neurons (Knudsen
et al. 2006). The DTM neurons and synapses are instanti-
ated as virtual instruments (subVIs) in the LabviewTM G
graphical programming language.1 Their input, outputs
and internal parameters α and σ are connected with each
other and the LabViewTM instrument controls with the
LabViewTM ‘Wire’ tool. In order to create a functional
synapse between the DTMs and the ENs, it was neces-
sary to create an analogue output from the waveform of the
presynaptic DTM. To achieve this, the DTM voltage is used
as the output of a M-series board D/A converter. The ana-
logue output was interfaced to the presynaptic input of an
electronic chemical synapse that was in turn connected to
the desired postsynaptic EN. In order to create a functional

1http://inls.ucsd.edu/∼ rulkov/demo/neuron/map/ndemo.html
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Figure 8. Simulation of rheotaxic behaviour mediated by antennae using discrete-time map-based neurons. (a) The neuronal circuit.
Range fractionating sensory afferents project to the rheotaxic and surge inter-neurons. The highest threshold bending afferents project to
the rheotaxic inter-neurons. The low and medium threshold bending afferents project to the surge inter-neurons. (b) Rheotaxic (rotational)
response to lateral surge when the antennae are deployed forward along the longitudinal body axis. The Two panels represent the activity
of the neurons in Figure 8a when the surge (top two panels) oscillates from left to right to left with a long period. (c) Yawing response
to off centre axial surge (from the right forward quadrant) when the antenna are deployed laterally to the left and right and perpendicular
to the long body axis. Note the difference in the amplitude of antennal movements (down stream antenna bends less) and the resulting
asymmetry in output.

synapse between an EN and a DTM neuron, the EN voltage
is input to the LabViewTM synapse subVI through the A/D
converter and becomes the presynaptic voltage parameter
of the of the synapse subVI.

Figure 6 demonstrates the successful integration of hy-
brid DTM EN central pattern generators, coordinating neu-
rons and commands. In the first experiment (Figure 6a), two
ENs and one DTM neuron are linked by recurrent cyclic
inhibition (DTM inhibits the first EN, the first EN inhibits
the second EN and the second EN inhibits DTM). This
connectivity causes a sequence of bursting where the bursts
proceed between the neurons in the reverse direction of the
inhibition. Thus hybrid CPG networks can be constructed.

Figure 6b, the free run operation of an electronic neuron
is demonstrated configured in bursting mode. In Figure 6c,

the EN is entrained by a DTM neuron through an excitatory
synapse by a DTM neuron configured to burst at a slightly
higher frequency. In Figure 6d, the EN is entrained by a
DTN through an inhibitory synapse configured to burst at
a lower frequency than the unperturbed EN. Thus, hybrid
connections between DTM Neurons and ENs can both per-
turb and entrain EN CPG neurons to increase or decrease
their inherent frequencies (Selverston and Ayers 2006). In
Figure 6e, we initiate the operation of an EN recurrent cyclic
inhibition CPG with synaptic input provided by a DTM trig-
ger command neuron (Stein 1978). Similar results can be
obtained with a gate command where the command neuron
fires tonically throughout the motor program.

We have constructed and simulated central pattern
generators for walking based on Figure 2 from analog
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VLSI-based neurons and synapses (Lee YK et al. 2007).
A simulation of the operation of a neuronal circuit formed
of electronic neurons based on Hindmarsh–Rose neuron
dynamics and first order chemical synapses is modelled in
Figure 7. The controller generates an excellent replica of
the walking motor program (Figure 7) and allows switching
between walking in different directions in response to dif-
ferent command inputs. The results of a simulation where
the commands for forward and lateral leading are turned
on to generate a diagonal walking pattern are shown in
Figure 7.

This result indicates that it is feasible to build walking
CPG chips and to adaptively modulate their behaviour. Us-
ing such chips, it will be feasible to integrate an electronic
nervous system into the robotic vehicle. We have been suc-
cessful at controlling a nitinol-based leg with electronic
neurons by thresholding a power transistor to directly drive
the actuators with the EN action potentials.2 The interface
necessary to do this consists of a comparator and a threshold
circuit to activate a power transistor. The DTM components
of the ENS can operate on a DSP chip. Using a serial bus,
serial to analogue converters and analogue to serial con-
verters can provide bidirectional input-output connectivity
to the aVLSI CPGs.

Figure 8 illustrates an experiment activating walking
commands using simulated input from the robotic anten-
nae. The command and inter-neuronal network is indicated
in the upper panel. In the lower left panel, lateral surge
activates rotational walking where in the lower right panel,
off centre axial surge activates a yawing turn into the surge.
Further layers of such exteroceptive reflexes incorporating
optical flow, bump, gravitational and perhaps chemosensory
sensors can realise an elementary brain with capabilities for
behavioural choice and sequencing.

6. Conclusion

The common bridge between the analog VLSI CPGs and the
DTM neurons is the command neuron voltages (Figure 6d).
If these are generated through D/A converters interfaced to
a serial to analog chip they can be used to connect the ‘brain’
(Figure 8) to the segmental CPGs (Figure 6). This capability
demonstrates that the instantiation of a hybrid electronic
nervous system for adaptive behaviour is both feasible and
capable of control of a self-contained autonomous robot.
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