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ABSTRACT 

Central pattern generators (CPGs) are small neural circuits of coupled cells stably producing a 

range of multiphasic coordinated rhythmic activities like locomotion, heartbeat, and respiration. 

Rhythm generation resulting from synergistic interaction of CPG circuitry and intrinsic cellular 

properties remains deficiently understood and characterized. Pairing of experimental and 

computational studies has proven key in unlocking practical insights into operational and 

dynamical principles of CPGs, underlining growing consensus that the same fundamental circuitry 

may be shared by invertebrates and vertebrates.  

We explore the robustness of synchronized oscillatory patterns in small local networks, revealing 

universal principles of rhythmogenesis and multi-functionality in systems capable of facilitating 

stability in rhythm formation. Understanding principles leading to functional neural network 

behavior benefits future study of abnormal neurological diseases that result from perturbations of 

mechanisms governing normal rhythmic states. 



Qualitative and quantitative stability analysis of a family of reciprocally coupled neural circuits, 

constituted of generalized Fitzhugh–Nagumo neurons, explores symmetric and asymmetric 

connectivity within three-cell motifs, often forming constituent kernels within larger networks. 

Intrinsic mechanisms of synaptic release, escape, and post-inhibitory rebound lead to differing 

polyrhythmicity, where a single parameter or perturbation may trigger rhythm switching in 

otherwise robust networks. Bifurcation analysis and phase reduction methods elucidate qualitative 

changes in rhythm stability, permitting rapid identification and exploration of pivotal parameters 

describing biologically plausible network connectivity. Additional rhythm outcomes are 

elucidated, including phase-varying lags and broader cyclical behaviors, helping to characterize 

system capability and robustness reproducing experimentally observed outcomes.  

This work further develops a suite of visualization approaches and computational tools, describing 

robustness of network rhythmogenesis and disclosing principles for neuroscience applicable to 

other systems beyond motor-control.  A framework for modular organization is introduced, using 

inhibitory and electrical synapses to couple well-characterized 3-node motifs described in this 

research as building blocks within larger networks to describe underlying cooperative 

mechanisms. 
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1 

1 INTRODUCTION  

Rhythm generation observed in nature as part of larger networks with central pattern generators 

(CPGs) is often poorly understood and characterized. This is of fundamental importance because 

CPGs formed from synergistic interactions of coupled interneurons produce bursting patterns 

underlying a broad range of vital rhythmic behaviors, including locomotion, heartbeat and 

respiration [1-9, 31, 86-89, 95-98]. Linking of well-known and extensively studied dynamics of 

half-center oscillators (HCOs) occurring between two cells, often forming the kernel of local CPG 

networks, to larger network dynamics and the robustness and stability of behavioral output 

observed in nature is still in its infancy [10-17, 25-27, 92-94]. Abnormal rhythmogenesis, or 

perturbations away from inherently produced rhythms, in local CPGs can lead to arrhythmias and 

other phenomena observed in dysfunctional neurological or locomotive states. Increasing 

collaboration between experimentalists and computational researchers underlines a growing 

consensus that the same basic structures and circuit elements are likely shared by both invertebrate 

and vertebrate animals, including mammals and people [20, 22, 26, 69-71]. It is important, 

therefore, to better understand the nature and robustness of these networks in a more general and 

qualitative manner to develop additional universal principles that can be applied across systems. 

1.1 Purpose of the Study  

The purpose of this work is two-fold: firstly, to identify and characterize rhythmogenesis in small 

local networks, with an eye both toward stability and robustness in natural systems and to modular 

network construction techniques, and secondly to develop and elaborate on visualization 

approaches and computational tools to reduce the problem and aid in future research. This will 

include building on, and adding to, the analysis of attractors in phase lag return maps between 

CPG building blocks. Pairing of experimental studies and mathematical and computational 
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modeling in this manner has already proven key in unlocking insights into operational and 

dynamical principles of CPGs, and continued work in this area will only continue to unlock more 

[18-21, 25, 57, 73, 104-107]. Emphasis is given on developing modular organization within larger 

network settings, and analysis of multi-functionality within local networks as a result of 

polyrhythmicity and the ability to readily switch rhythm with a single parameter stimulus or 

change [17-18, 29]. This is important for many behavioral outputs observed in nature, including 

storage or output of multi-phase rhythmic patterns that can underlie learning and repetitive tasks 

changes in locomotive gaits. 

 

Figure 1.1 Generalized 3-cell circuit motif 

Coupling strength, gij, of the inhibitory connections between cells may be manipulated, and are 

represented by the black connections with rounded connectors. 

 

Modular organization explored in this work revolves around a 3-cell network of connected HCOs 

(Figure 1.1) as a basis to form the inner kernel of larger CPG networks. A Fitzhugh-Nagumo-type 

reduction is employed to simplify computation, while retaining the ability to manipulate 

biologically relevant parameters [39, 95]. Characterization and general rules derived from 3-node 

kernels can then be applied to experimental data and models where 3-cell circuits can be readily 

observed and manipulated, and then to hypothesize and test rhythm generation and switching in 
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larger settings in which the characterized local network will form a piece in either an expanded 

network (4+ cells) or in a multi-component networks built of 3-node modules (6, 9, etc. cells). The 

goal is to derive new approaches and universal rules for understanding CPGs of simple circuits, 

making these applicable to the study of governing principles of neurological phenomena in 

complex animals. CPGs responsible for locomotive and rhythmic behaviors in many animals are 

commonly tied to a component involving the coupling of neurons in half-center oscillators. Such 

half-center oscillator-based CPGs are implicated in behaviors ranging from respiration and 

circulation, to sleep and locomotion [1-9, 31, 86-89, 95-98]. While many insights into operational 

principles of CPGs have been obtained from mathematical studies, the robustness and stability of 

CPG systems observed in nature is still poorly understood [10-17, 79-84]. Many models exist for 

these, ranging from biologically relevant Hodgkin-Huxley type models in which individual 

parameters can be related to specific ionic  currents or concentration  gradients down to integrate- 

 

Figure 1.2 Lobster pyloric system 3-cell CPG circuit  

Example of 3-cell circuit within the lobster pyloric system, a CPG driving movement of teeth 

used to digest food. This circuit may be considered an embedded 3-cell network with a 3+1 

configuration, or as two overlaid 3-cell networks (LP-PD-PY and AB-PD-PY, for example) 

coupled to synchronize behavior of identical cells, as in Chapter 6 (modified from [24]). 
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and-fire type models in which parameters  are  not  biologically  relevant  but  remain  reasonably  

effective  in  capturing  general dynamical characteristics. Understanding the interplay of half-

center oscillator components within larger network settings is of vital importance and one step in 

expanding this understanding is to explore a three-cell motif in which three neurons are 

interconnected by HCO circuits. Three-cell motifs are frequently observed in nature, often forming 

a constituent block or center for larger identified networks [2, 9, 22-27, 31-37, 64-68]. Examples 

of a couple of these can be seen in Figures 1.2 and 1.3, where three-cell kernels from CPG circuits 

driving either the movement of teeth aiding in digestion within the lobster stomatogastric system 

or swimming pattern output in the Tritonia sea slug. 

Using known principles from two-neuron HCOs, exploration of the nature of symmetric and 

asymmetric  connectivity  between  three  such  neurons on known  mechanisms,  such as synaptic 

 

Figure 1.3 Trinonia swimming 3-cell CPG circuit  

Example of a naturally observed 3-cell circuit within the Tritonia swim system, a CPG which 

drives rhythmic output driving different swimming behaviors (taken from [34]). 
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release, escape, and post-inhibitory rebound, exposes principles giving rise to anti-phase bursting 

in networks. An intermediate system based on generalized Fitzhugh-Nagumo (gFN) dynamics is 

used here to demonstrate replication of results previously obtained using Hodgkin-Huxley-type 

equations. Excellent work has been done in the characterization of similar two-cell systems, and 

some of this work will be reiterated in the context of three-cell networks. Extensive use of phase 

lags and Poincare return maps to characterize the state space of a given CPG motif [18, 39], with 

emphasis on novel use of gFN equations and brief comparison to prior results using Hodgkin-

Huxley equations is therefore important in justifying generalization to universal principles 

throughout this work. The goal of this research is to present novel results describing multi-stability 

and parameter sweep results for three-cell gFN CPGs, and for larger networks of embedded or 

multiple 3-cell circuits, while also developing and providing a framework for others to duplicate 

this type of analysis using the tools outlined both through  this  work  and  in  previous  work.  This  

 

Figure 1.4 Sample phase measurement using voltage traces 

Sample Hodgkin-Huxley modeled voltage traces for three-cell network, with phase lags defined 

by time delays, 𝜏21
(𝑛)

 and 𝜏31
(𝑛)

, between spike initiation with of cell 1 and that of cells 2 and 3. 

Return maps may be represented by two-dimensional tori in which periodic behavior oscillates in 

color-coded trajectories that converge to fixed points (image from [18]). Method described in 

more detail in Chapter 2. 
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work is therefore both an extensive characterization of the networks described, with emphasis on 

general principles and novel outcomes, and a guidebook for researchers who may benefit from 

results or approaches described. 

This work is particularly important, as it remains unclear whether a single motor system may 

generate multiple rhythms using dedicated circuitry for each function or multi-functional circuitry 

that may govern several behaviors [17-18, 27-29, 76]. Using a Fitzhugh-Nagumo reduction (Figure 

2.1 and Equations 2.1-4) with biologically plausible elements permits a useful and systematic 

exploration and quantification of CPG capacity in terms of both the number and robustness of its 

functional states. Both symmetric and asymmetric configurations are explored, with an increasing 

range of possible rhythm outcomes including peristaltic phase-varying lags or broader cyclical 

behaviors. Rhythm switching can result from perturbations or semi-periodic external stimuli will 

help clarify both the capability and robustness of these systems to produce outputs that can be 

validated against biological models derived experimentally. This will build on past work in which 

it has been demonstrated how the set of possible rhythmic outcomes in a CPG can be readily 

controlled by varying either the temporal characteristics of bursting or the structure of network 

coupling [15, 17-18]. Building on this research adds continued insight into the fundamental and 

universal rules governing pattern formation in complex networks of neurons. 

Bi-parametric bifurcation diagrams created by classifying and categorizing these rhythm outputs, 

as well as the types of bifurcations that occur between different behavior regimes, will be used to 

derive general rules described in Chapters 2 and 3, and forming the core of a first part paper soon 

to be submitted, that can be used to hypothesize behaviors and mechanisms in experimentally 

derived circuits. Initial validation of this characterization was done using known network 

structures reflecting known physiological details of various CPG networks in real animals 
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involving three-cell motifs [2, 9, 22-27, 31-37, 64-68], with some general results described or 

shown in Chapters 5 and 6. Work focuses on integrating both known and observed principles for 

three-cell networks and applying them within the framework of larger networks, with exploration 

and characterization again being an underlying principle deriving general rules.  

This characterization required the development of additional computational and visualization 

tools, which forms in part the basis for the novel work being proposed. Exploration includes four-

cell motifs being viewed as a (3+1) dynamic in which we examined changes in three-cell outputs 

via introduction and increased connectivity of a fourth cell. Results can no longer be simplified to 

2D maps (discussed in more detail in Chapter 2, as well as [18]) and require 3D or other creative 

frameworks for visualizing results. Some of these are demonstrated or alluded to in Chapter 6, the 

tools developed hopefully also being applicable to larger, or coupled networks of three-cell motifs 

in which 6, 9, or more cells could ultimately be explored. The general principles derived in 

explorations of these 4, 5, or even 6 cell configurations may then be used, as described in Chapter 

7, to create a framework to hypothesize underlying mechanisms in known 4-cell or higher circuit 

motifs observed in nature. Some of these may include the swim CPGs of sea slugs such as Melibe 

and Dendronotus [7-8, 30-31, 36], or to expanded circuit networks for crustacean stomatogastric 

ganglion (STG) [9, 14, 32-33, 64-68]. Validation of the principles developed in Chapters 2-5 is 

therefore the goal of Chapters 6-7, introducing the concept of electrical coupling for node reduction 

and demonstrating potential extension toward a model for the gastric network. 

Decades of study of CPG dynamics still underlines a deficiency in our understanding of their 

underlying principles, with the collected knowledge thus far not fully generalizable for other neural 

circuits. Using our computational toolkit to perform bifurcation analysis of attractors in the 

corresponding Poincaré phase lag return maps between oscillatory neurons, we can predict and 
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identify robust outcomes in CPGs with mixed, inhibitory and excitatory, slow and/or fast synapses, 

differentiated by phase-locked or periodically varying lags corresponding to stable fixed points 

(FPs) and invariant circles (ICs) of the return map. This powerful approach permits prediction of 

bifurcations and transformations of rhythmic outcomes before they occur in the network, while 

also revealing the capacity of the network and the dependence of its outcomes on coupling strength, 

wiring circuitry and synapses, and external stimuli, thereby letting one quantitatively and 

qualitatively identify necessary and sufficient conditions, for rhythmic outcomes to occur.  

The purpose of this work is to use general principles and a suitable mathematical model, employing 

biologically plausible elements, to derive general and more broadly applicable rules for three-cell 

and larger network rhythmogenesis and pattern switching. This is aimed at not only advancing the 

current state of the theory but in the creation of additional tools that can be used in modular 

explorations of increasingly large and interconnected networks in the future, effectively beginning 

to build a bridge between the growing body of knowledge and expertise in two-cell and local 

network dynamics to the vast body of experimental data and behavioral outputs observed in the 

world around us. 

1.2 Research Design & General Methods 

A Fitzhugh-Nagumo reduction will be employed in exploring dynamic behavior between cells. 

This approach, along with the phase lag return analysis, and subsequent bifurcation analysis, will 

be the basis for all aims, with additional tools being developed, described, and implemented for 4-

cell and larger networks in Chapters 6. As such, greater description of these methods is given in 

Chapter 2, as they will apply to the procedures for all following results. Examples of these methods 

will be described and reiterated more fully where they are employed. As described before, 

Fitzhugh-Nagumo equations are a simplification of the Hodgkin-Huxley formulas and provide a 
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useful intermediate system in which generic mechanisms can be more readily identified and 

manipulated generically in biological subsystems of bursting cells. Here a three-cell system of 

these cells is used, each forming HCOs with the other two (as seen in Figures 1.1 and 2.1). 

Coupling strength between cells, gij, and impulse current stimulus, Iapp, will be most commonly 

explored in bi-parametric analysis, as these variables are most applicable to parameters that can be 

readily influenced in experimental studies and emphasize principles related to network 

connectivity and cellular capability. Three-cell configurations permit a broader range of phase 

difference patterns than simple two-cell systems and effectively mimic a spectrum of small local 

networks of cells across different systems and within different animal models. This research looks 

at the effects of manipulating these parameters, and spans systems of cells that are inherent bursters 

to cells that are inherently quiescent, and captures variations within the fast-slow system dynamic 

and briefly reiterates the effects of shifting from fast-slow to fast-fast systems on duty cycles and 

bursting behavior (discussed further in Chapters 2, 4, and 5).  

The three-cell network of reciprocally inhibitory gFN cells can generate traveling waves, in which 

only one cell fires at a time and firing is in sequence, as well as pace-makers, in which one cell 

effectively inhibits the other two and fires in anti-phase with two in-phase cells. The phase lag of 

cells 2 and 3 are analyzed relative to cell 1 (Figures 1.4 and 2.3, Equations 2.5-2.6), and can 

converge to stable phase-locked states with fixed phase-lag differences. In a three-cell network 

such as this, a two-dimensional phase difference pairing is therefore described. Mapping the 

trajectories of many different initial condition combinations reveals basins of attraction, where 

different initial conditions converge to the same final phase difference fixed points. This 

visualization lends itself well to rapid identification of polyrhythmic stability. Sequences of these 

phase difference maps, varying across a selected parameter, can then be used to observe fixed point 
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movement and the emergence, or bifurcation, of fixed points dynamically changing the phase 

basins observed. We examine in fine detail the nature of some of these bifurcations, with the 

emergence or disappearance of different TWs or PMs, characterizing individual phase-lag return 

maps basin for given parameter sets as containing only pacemakers or traveling waves, or a mixture 

of both rhythm outcomes. This classification allows us to connect regions of varying intrinsic 

mechanisms by describing fixed point outcomes in summary in a bifurcation diagram. This 

approach can first be observed directly in Figure 2.5, discussing generally some symmetric systems 

results more thoroughly described in Chapter 2 and [39].  

These bifurcation diagrams span the range of cellular capability between the release and escape 

mechanisms (Figure 2.6) [10, 27, 73], and therefore connect systems of endogenous bursting cells, 

periodicity set by inhibition, through to tonic spikers, which are induced to bursting behavior 

through inhibition. The post-inhibitory rebound mechanism, in which endogenously quiescent 

cells can be induced to bursting behavior via strong inhibitory coupling, will also be touched on in 

Chapter 5 for cases where its presence can be readily introduced by manipulating biologically 

relevant parameters and ranges. In addition, as parameters are varied, we can generalize findings 

in terms of increasing coupling strength for given parameter changes in other parts of the equations 

(ε demonstrated in Figures 4.13 and 4.14). This generalization is applied to fully symmetric (all 

connections of equal strength as in Figure 1.1) and key anti-symmetric systems described in detail 

in Chapter 3 (Figure 3.1), with specific examples of other asymmetric connectivity demonstrated 

when useful to demonstrate additional polyrhythmicity or stability. Bifurcation diagrams created 

in this manner can then be used to effectively analyze changes within the gFN network. By 

comparing bifurcation diagrams using another, varied, parameter we can gain a third dimension to 
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this bifurcation analysis and will show examples of this in Chapters 3-4, and some generalized 

effects on bifurcation diagrams resulting from fast-slow variation are discussed. 

1.3 General Results  

This research validates the ability of generalized Fitzhugh-Nagumo-type models to capture and 

characterize dynamic changes in rhythmogenesis of local and expanded 3-cell networks by 

exploring phase return maps and higher level visualizations. Analysis of universal rules, as well as 

more detailed exploration of biologically plausible parameter sets, are the guiding principles here. 

Further examples of the methods employed, and results obtained, are presented in extensive detail 

in Chapters 2 and 3, which form the key portion of a first-part paper to be submitted shortly, with 

the goal of making these methods and tools more readily available for use by both the 

mathematician and the experimentalist. In general, as mentioned before, bi-parametric exploration 

will be done varying coupling strength, gij, and impulse current, Iapp, as these represent generic 

cellular capability and network connectivity and are the most readily manipulated in an 

experimental setting and therefore more readily testable for hypotheses in larger network setting 

and experimental results. Comparisons of other parameter shifts using these gij versus Iapp 

bifurcation diagrams may be used to elicit further information.  

1.3.1 Dynamical pattern characterization and bifurcation analysis 

Clear transitions between regimes of fully pacemaker rhythms (with all three pacemakers), 

traveling wave rhythms (with both wave patterns present equally), and mixed rhythms (with all 5 

stable rhythms present) are expected and observed in fully symmetrically connected networks. 

Since all connections are changed equally, no asymmetric behaviors or phase-varying lag was 

expected or observed. Exploration of the bifurcations between pacemaker, traveling wave, or 

mixed regimes results in the observation of two distinct bifurcation types are identified in these 
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transitions from pacemaker to mixed, or mixed to wave rhythm regions, as described in [39] and 

discussed further in Chapters 2 and 4 (Figures 4.3 and 4.7). These, or similar, bifurcation 

transitions were expected to exist in asymmetric settings, along with saddle-node bifurcations 

described in Chapter 4, the characterization of which is a first step toward classifying behaviors 

and mechanisms in local three-cell networks. 

Additional bifurcations present themselves in exploration of asymmetric motifs where we change 

circuit connections within the three-cell motif unequally. In particular, results are described in 

detail four key asymmetric motifs: (1) Mono-biased: in which a single connection is changed, (2) 

Pairwise-biased: in which both connections between two cells are changed, (3) King-of-the-

Mountain: in which both outgoing connections from one cell are affected, and (4) Clockwise-

biased: in which clockwise connections are affected simultaneously, all while the remaining 

connections are held constant (Figure 3.1). More than the standard five stable rhythms described 

for symmetric networks in Chapter 2 were expected, and observed, for each of the key asymmetries 

explored. Increasing a single connection, for example, was expected to first result in some 

dominance by the uninhibited cell and then transition to situations where that cell has little 

influence on the others since it will be strongly inhibited by others. In pairwise-biased cases we 

expect some anti-phase locking between two cells with increasing strength, and in king-of-the-

mountain increasing dominance of a single cell to the point is expected to lead to greater antiphase 

behavior between it and the others. In clockwise-biased networks we expect to see emphasis by 

one or the other traveling wave, depending on the strength of the directional connections. Many of 

these expectations are observed, as some are intuitive, with additional unexpected rhythms and 

behaviors were found. This underlines the ability of Fitzhugh-Nagumo models to maintain an ever 

broader and richer range of output behaviors and predictive power than originally anticipated. 
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As in the symmetric case, a somewhat reversed distribution of pacemaker behaviors versus 

coupling strength in the release and escape mechanism regions was observed in mono-biased 

systems, but much more dynamic transitory behavior and semi-phase locked phase-varying lags 

occurs only in the escape case for mono-biased systems. Pairwise-biased systems were 

hypothesized to be dominated by one PM, which is indeed observed, but a phase-varying lag 

pattern also emerges here , in which two cells may stay roughly in anti-phase (cells 1 and 3 in this 

case) while the third (cell 2) shifts continuously leftward. Doubly- and singly-dominant pacemaker 

states were expected within king-of-the-mountain motifs, as was the dominance of a PM regime 

in the bifurcation diagram, and this is observed (Figure 3.11). An unanticipated river behavior 

appeared here, however, with similar escape-case related effects leading to this behavior for higher 

values of Iapp but with novel appearance of it in the otherwise purely oscillatory mid-range values 

of Iapp. We again see additional peaks and transitions of behavior near full network connectivity 

symmetry, and a significantly reduced region of mixed rhythm generation. The clockwise-biased 

motif results are also as expected, but with much more interesting symmetry in behavior around 

fully-symmetric network transitions. Due to the overwhelming dominance of wave patterns in this 

motif, results are distinguished for this case in Chapter 2, between the 1- and 2- wave states, with 

additional color-coding in the bifurcation diagram in Figure 3.14. We again see effects of 

proximity of the nullclines within release and escape range values of Iapp, and around system 

symmetry. Results for explorations of post-inhibitory rebound and further detail of new 

bifurcations observed in asymmetric release and escape systems are described in Chapter 5. 

1.3.2 Verification of CPG motif models with Hodgkin-Huxley 

This tested the ability of the characterized networks in Chapter 2 to both accurately duplicate 

qualitative features of widely accepted Hodgkin-Huxley models and predict or replicate results 
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obtained experimentally in known 3-cell networks in nature, like those for Melibe, Dendronotus, 

Tritonia, or the lobster pyloric or gastric sub-systems. This may be tested by direct duplication, 

replication, and comparison of both theoretical and natural models, results expected to effectively 

capture dynamics in both settings while introducing the ability to much more broadly sweep 

parameters and describe mechanisms than could be done solely by Hodgkin-Huxley prediction or 

experimental verification. Direct comparison was first made for results previously obtained in [18], 

for which bifurcation diagrams were not created, but using those created here to directly predict 

the effects of coupling strength ratios at varying values of Iapp and observe replication of results 

previously obtained in that study. This was tested bi-directionally, both by qualitatively replicating 

parameters and connections shown in that work and verifying the outcome, or by identifying key 

transitions on bifurcation diagrams for motifs also explored in that paper and using the same model 

and framework used there to produce new figures and verify that the same bifurcations and 

transitions occur. Results validated duplication of phase-lag convergence observed using Hodgkin-

Huxley model dynamics and are not shown here in detail, though some examples can be observed 

in Figure 1.5 and in Chapters 5 and 6. 

Because the Fitzhugh-Nagumo reduction used here assumes that only bursting behavior is of 

interest, inter-spike intervals (ISIs) or other tapering effects observed in nature and captured by 

more complex models within bursting are not explored in this work. The benefit gained here, 

however, is the ability to much more broadly categorize macro-scale bursting behaviors and 

transitions that could then be used to identify areas of interest in which to introduce additional 

layers of complexity to the current gFN model to examine other effects of interest regarding subtler 

waveform variations in initiation and onset, or the effect of ISIs on additional cellular interactions 

not encompassed by the overall bursting pattern itself. It was expected that, neglecting any ISI 
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effects, general rhythm generation and bursting effects will be the same. Transitions from one 

rhythm regime to another, and the specific bifurcation types that occur are also duplicated and the 

breadth of the parameters explored in the work here actually elucidate new results within the 

Hodgkin-Huxley framework that were not apparent in the work already done in [18]. Results 

indicate that the gFN reduction employed successfully captures all the broad pattern generation 

and transition mechanics discovered previously, one simple preliminary verification done prior to 

the results shown in Chapter 3 (Figure 1.5) led originally to the hypothesis that verification of 

qualitative duplication between systems in a bi-directional manner as described above would 

produce these results. Work described in Chapters 2-3 may be used to accurately predict outcomes 

for 3-cell networks existing in nature, and this procedure can be bi-directional. Bifurcation analysis 

and diagrams could be used to direct experimental work by generating hypotheses for rhythmic 

outcomes  not  observed  previously  in  laboratory  settings  but  present  in  results  here, or tested 

 

Figure 1.5 Hodgkin-Huxley model verification  

Example of qualitative duplication of result from [18], w the connections between nodes 2 and 3 

are half the strength of the rest. This motif is a pairwise-biased example, where the connections 

varied are g23 and g32, rather than g13 and g31 as described in Chapter 3, but results are supported 

in bifurcation analysis demonstrated in Figure 3.8 and in outcomes in Chapters 3-5.  
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experimentally by direct manipulation in the lab. This work focuses, in part at least, on verifying 

the ability to qualitatively reproduce already derived experimental data using Fitzhugh-Nagumo 

equations. The goal for this being not only to reproduce but to verify universal principles derived 

and hypothesized in Chapters 2-3 to larger network settings and applications in specific examples 

observable in nature. 

Some of these systems may require the introduction of excitatory connections or electrical 

coupling in order to fully replicate and anticipate behaviors, but both approaches have been 

implemented in other work in our lab and may be readily added to the bifurcation analysis 

performed. Chapter 6 will discuss more detailed results for the introduction of both inhibitory and 

preliminary electrical coupling in joining 3-cell motifs characterized in Chapters 2-5. 

Hypothesized outcomes using results of Chapter 2-3, and knowledge of other results pairing 

electrical coupling or excitatory connections [18, unpublished work by A Kelley] in three-cell 

networks, permit generalization of the transitions and bifurcations predicted to be observed in 

natural systems. One example of this, taken directly from [18] is shown in Figure 7.4. Results 

described in Chapters 2-3 and 5-6 show that gFN sweeping done in this work can effectively 

capture dynamics observed in experimental settings and may permit future hypothesis generation 

and testing to guide new experimental work using these and similarly derived results. 

1.3.3 Rhythm production in networks with embedded 3-cell motifs  

This portion of research is again primarily computational, with exploration of 4-cell configurations 

carried out in a manner like that described previously. All the same tools and procedures are used, 

with additional tools and visualization developed to readily identify and generalize behaviors and 

transitions as was done with the 2-D return maps for 3-cell systems. This approach is two-fold, 

looking at pairing coupled cells in various configurations and looking at the effect of gradually 
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introducing connections from a fourth cell into an already fully-characterized 3-cell network. For 

simplicity, most results of research described here focuses on purely symmetric networks, as 

shown in Chapter 2. This will result in base patterns and transitions that can then be added to future 

asymmetric research. Four cell visualization can be performed using a 3-D return map similar to 

the 2-D version described, in which the phase lag of the fourth cell is also displayed with reference 

to Cell 1, Δ14. Or we can choose to display 2-D return maps for cells 1-3 as before, with another 

showing Δ42 versus Δ43. This approach does not disentangle trajectories that will visually cross 

over one another in a 2-D reference frame, however, and some potential visualization concepts are 

described in Chapter 6. An example of this 3-D visualization approach is shown in Figure 1.6.  

 

Figure 1.6 Coupled 4-cell motif 

(a) Melibe swim CPG circuitry, including electrical synapses. (b) Robust network bursting, 

intracellular recording in-vitro of specified neurons. Characteristic ¾-phase lag shift shown here 

[7,8]. (c) 3D phase lag return map example for swim CPG shown in (a). The stable green fixed 

point shown corresponds to network bursting in (b) with phase lags of (½, ¾, ¼) [31].  

 

In a 3-D visualization of a 3+1 configuration, we observe a map matching the original 2-D return 

map for the 3-cell symmetric motif at given coupling strength when connections to cell 4 are 

unattached. Results in Chapter 6 first explore the effect of a single connection (which overlaps 
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with results of the other coupled 3-cell network shown in Chapters 2-3). While the intent of this is 

not direct application to animal experiments yet, lessons learned here apply to hypothesized circuit 

creation discussed in Chapter 7. These results are applied also to connected pairs of symmetric 3-

cell motifs. It is expected that the addition of a fourth cell, or additional 3-cell motif, will add 

potential extra layers of rhythmicity, in which smaller sub-cycles may shift in an overall larger 

repeating rhythm. Identifying such rhythms in fully-symmetric systems in 3+1, or 3+3, 

configurations may be a first step at characterizing additional stable rhythm patterns and any new 

rhythm transitions that may exist. Results described in Chapters 6 indicate use of this approach in 

larger network settings may successfully capture rhythm dynamics observed experimentally, and 

uncover additional phase-varying lags that occur on a more macro level in which multiple 

intermediate ‘stable’ rhythms may be observed as part of a larger cycle. This work may be useful 

in future work modeling and describing longer term rhythms with repetitive features. 

 

Figure 1.7 Lobster gastric mill circuit 

Example of embedded 3-cell motifs within a larger circuit setting. The LPG-LG-DG network 

could be described as a mono-biased motif, with the LG-INT1-GM network appearing similar to 

a king-of-the-mountain motif. (B) Simplified circuit showing mostly inhibitory connections, a 

single electrical coupling, and one excitatory connection. (D) In vitro motor pattern with five 

phases, time bar ca 3 sec; taken from [37].  
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This tests the ability of the characterized networks in Chapters 2-5 to accurately predict or replicate 

results obtained experimentally in known larger networks with 3-cell kernels observed in nature, 

like that for the lobster pyloric or gastric systems. This can be tested by gradual replication, and 

comparison of experimentally derived natural models. Several specific potential examples are 

described and shown in Chapters 6-7 and in Figures 1.6 and 1.7. Specific application to and from 

experimental data in future research will however be the emphasis here, and the goal of this work 

is to begin the bridge to even larger networks, specifically the lobster gastric mill circuit shown in 

Figure 1.7 and described in Chapter 7. As seen, the gastric mill circuit could be decomposed as 

two 3-cell networks (DG-LG-LPG and LG-INT1-GM), which could be viewed as mono-biased 

and king-of-the-mountain motifs (as shown in Figure 2.5), respectively, in which the changed 

connections (gLPG-DG, gGM-INT1 and gGM-LG) are simply set to zero. This allows for generation of 

preliminary hypotheses for rhythm outcomes based on results described in Chapters 2-6. These 

could be obtained incrementally using increasing electrical coupling between the LG cells of each 

3-cell motif to effectively merge them into one cell for 5-cell dynamics, in a node-reduction 

technique described in Chapter 6.  The two integrated motifs could then be enhanced by stepwise 

addition of the missing connections, a framework for this described in Chapter 7, describing a 

modular framework in which this work is set up to provide a toolkit from which further work and 

more complex systems can be built using characterized 3-cell motifs as building blocks. Additional 

examples of larger networks observed in natural circuits are shown in Figure 1.8, where we observe 

one or more potential embedded three-cell local networks. 

General rules learned from broad characterization of inhibitory motifs, and then applied to mixed 

coupling networks in biologically relevant mathematical models, can be coupled with 

experimental data and understanding of specific ionic current effects of neuromodulators to 
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potentially deduce specific mechanisms for behavioral output changes. This underlines the vital 

importance of being able to more broadly classify and characterize full parameter ranges, as 

described and shown in Chapters 2-4, to streamline and generalize findings to a broader range of 

neuron types and biological systems. This will allow more adept pairing of modeling results with 

experimental work to better understand underlying mechanisms and more adeptly interact with 

them to modulate, control, or repair characterized circuits by introducing external stimulus via 

either electrical input or additional connectivity to restore pattern formation. 

 

Figure 1.8 Natural circuits with embedded 3-cell local networks 

Examples for two larger network settings in which one could describe the larger circuit as having 

one or more embedded 3-cell local networks. Left are two interconnected 3-cell circuits within 

the lamprey spinal network [58], and right a CPG which drives rhythmic output driving different 

swimming behaviors in the segmental movement of the leech.  
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2     PATTERN GENERATION IN SYMMETRIC 3-NODE MOTIFS 

A central pattern generator (CPG) is a small network of coupled neurons that is often responsible 

for locomotive and rhythmic behaviors in animals [1, 6, 9]. The smallest building unit commonly 

tied to many of these CPGs is a component involving the coupling of neurons in half-center 

oscillators (HCO). Such half-center oscillator-based CPGs are implicated in behaviors ranging 

from respiration and circulation, to sleep and locomotion [2, 5, 7-8, 93-94]. While many insights 

into operational principles of CPGs have been obtained from mathematical studies, the robustness 

and stability of CPG systems observed in nature is still poorly understood and cannot be inferred 

a priori [10-17, 25-27, 75-77]. The cooperative dynamics of coupled cells is an area of ongoing 

research, with both biological and phenomenological approaches employed. Many models exist 

for these, including biologically relevant Hodgkin-Huxley (HH) type models in which individual 

parameters can be related to specific ionic currents or concentration gradients [18, 80-82]. The 

many interconnected dimensions of Hodgkin-Huxley models do not lend themselves to thorough 

dynamic analysis, making it difficult to effectively sweep parameters to broadly classify 

mechanisms and configurations of small networks. Integrate-and-fire equations, on the other end 

of the spectrum, can be overly simplistic and are inadequate to connect parameters to biological 

mechanisms that may be directly manipulated or affected, failing to capture nuances in dynamic 

behavior that intermediate systems can. Here research builds on previous work done using HH-

type models for three-node networks, using a generalized Fitzhugh-Nagumo-like (gFN) model to 

simplify prior work and to facilitate broader parameter sweeping. 

We are interested in the interplay of half-center oscillator components within larger network 

settings and explore a three-cell motif in which three neurons are interconnected by these HCO 

circuits. Three-cell motifs are observed in nature, often forming a constituent block or center for 
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larger identified networks [19-20]. Using known principles observed from the dynamics of two-

neuron HCOs, exploration of the nature of symmetric and asymmetric connectivity [15, 17-18] 

between three such neurons, as well as fast, slow, and delayed effects is performed here. These 

effects on intrinsic dynamic properties, such as synaptic release, escape, and post-inhibitory 

rebound [73, 78-79] giving rise to anti-phase bursting in networks are discussed. Here we examine 

gFN dynamics, demonstrating and building upon replication of results obtained using HH-type 

equations. While maintaining generic behaviors, this reduction in complexity permits more 

extensive exploration of pivotal parameters and aids in the search for biologically relevant network 

connectivity that may insure the robustness of rhythmic patterns observed in nature. We examine 

the networks described with a particular eye for multi-stable rhythms, in which a single relevant 

parameter or perturbation can trigger a rhythm change in an otherwise robust network [28-29]. 

The goal of this work is to present novel results describing multi-stability and parameter sweep 

results for three-cell gFN CPGs and to provide a framework for others to easily and rapidly 

duplicate these methods using the novel systems outlined both here and in previous work. As one 

goal is to guide the reader, acting as a tutorial blueprint for network analysis, outlining of the 

computational technique employed is done in much greater detail than would otherwise be done, 

with the hope that this detail will facilitate and streamline understanding and duplication of similar 

work. Some results of this work will therefore be embedded within the description of methodology, 

as examples of the method in action will inherently involve some of the actual work done. We will 

nonetheless try to maintain a generality to our methodology within the methods section and keep 

most discussion of specific mechanisms and results for later. 

Specific results are then be described in terms of the three primary mechanisms underlying network 

rhythmogenesis being explored here. Synaptic release and escape are discussed in detail in 
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Chapters 2-3, which form the core of a first-part paper to be submitted soon. Forming the second 

part, and outlined in Chapter 5, the post-inhibitory rebound mechanism will be highlighted along 

with further detail into specific additional bifurcations and detailed diagrams described in Chapter 

4. Each of these are examined and described with special emphasis on how the circuitry of a neural 

network influences network capacitance on possible rhythms produced. As well as differences in 

rhythm transitions and resilience to multi-stability, we describe: (1) What patterns are possible, (2) 

How stable are these rhythms, (3) Existence of invariant circles, (4) Differences in phase locking 

and phase-slip (PS), and (5) Ranges of network parameters (synaptic coupling strength and 

external current amplitudes specifically) dictating these behaviors (Tables 3.1 and 3.2).  

Within each mechanism we will contrast the behavior of symmetric, networks with all-to-all 

connections of equally inhibitory strength, and asymmetric motifs, where one or more of the 

connections within the network vary relative to the others, with analysis here of a representative 

subset of asymmetric configurations to be discussed later. We discuss the general results with 

specific examples within the subset chosen for both relevance and novelty, particularly to 

applications representative of locomotive or other rhythmic outputs like breathing or circulation 

in natural circuits. Additional asymmetric behaviors and mixed cases will be explored further in 

forthcoming papers. In the concluding part of this chapter we connect overarching mechanisms 

with observation of transitioning stages from release to escape in terms of sequences of 

bifurcations that fixed points undergo with changes in current amplitude, Iapp. 

2.1 Methods 

Fitzhugh-Nagumo-like equations are a mathematical generalization of dynamical features often 

captured by Hodgkin-Huxley-like models [39, 95, 118]. In this paper, we use a generalized 

Fitzhugh-Nagumo system in which we introduce some features, providing a useful intermediate 
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system in which mechanisms can be more readily identified and manipulated generically for use 

in biological subsystems of bursting cells. Here we use a three-cell system of relaxation-like 

oscillator cells, each identical and coupled all-to-all forming HCOs with the other two in the 

following manner: 

𝑉̇𝑖 = 𝑚(𝑉𝑖 − 𝑉𝑖
3) − ℎ𝑖 + 𝐼𝑎𝑝𝑝 + ∑ 𝐺𝑖𝑗(𝑉𝑖 , 𝑉𝑗),  Equation 2.1 

ℎ̇𝑖 = 𝜀 [
1

1+𝑒−𝑘(𝑉𝑖−𝑉0)
− ℎ𝑖] , 𝑖, 𝑗 = 1,2,3,  Equation 2.2 

where ε represents a factor permitting fast-slow dynamics and the variables m and k influence the 

shape of the cubic and sigmoidal nullclines, respectively. Here, the state of the ith node is described 

by its activity variable V, representing membrane voltage, and a recovery variable h, as a way to 

reflect Hodgkin-Huxley formalism within this generalized model. By construction, active driving 

oscillators slow down or repress recovery dynamics of driven oscillators, with the inactive state 

(Vi < 0) induced or maintained by inhibitory coupling. This coupling of active and inactive nodes 

is captured by a sigmoidal coupling function using the following fast threshold modulation [57]. 

𝐺𝑖𝑗(𝑉𝑖 , 𝑉𝑗) = 𝑔𝑖𝑗(𝑉𝑖 − 𝑉𝑟𝑒𝑣)𝛤(𝑉𝑗),   Equation 2.3 

𝛤(𝑉𝑗) =
1

1+𝑒
−𝑘(𝑉𝑗−𝑉𝑡ℎ)

     Equation 2.4 

The Gij term is used to indicate a shift to the fast nullcline (Figure 1(B)) induced by an active 

inhibitory connection, the magnitude dependent on the strength of that connection and the relative 

voltages of the pre- and post-synaptic cells in comparison to the threshold voltage of bursting for 

each. This choice of Vth guarantees that G is positively defined for the range of the V-variable being 

used, and is modulated by fast switching of Γ between 0 and 1. 

Symmetric connectivity does not imply symmetric behavior, and duty cycles, or the time during 

each periodic cycle for which a cell is active, within a specific rhythm vary by cell but anything 

true for one cell may be applied generically to the others. Three-cell oscillatory networks permit a 
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Figure 2.1 3-cell network configuration and fast-slow separation 

(A) Network motif composed of 3-cells coupled by inhibitory connections with weights gij. (B) 

The (h, V)-phase portrait depicting a clock-wise periodic orbit (shown as a grey solid curve at ε = 

0.05, and a dotted curve at ε = 0.30) with 3 strings of blue, green and red dots that represent 

snapshots of the time-evolution of the coupled cells - 1, 2 and 3, respectively. It is superimposed 

with a fast cubic nullcline labeled 𝑉̇ = 0, and shown as solid and dashed (purple) curves for pre- 

and post-synaptic cells, and a slow sigmoidal nullcline (orange), ℎ̇ = 0. (C-D) Voltage traces 

generated by the 3-cell network at ε = 0.05 and ε = 0.3, respectively, corresponding to the 

periodic orbits in Panel B.   

 

broader range of phase difference patterns and effectively mimic a spectrum of small local 

networks of cells across different systems and within different animal models. This research looks 

at the effects of manipulating these parameters, and spans systems of cells that are inherent bursters 

to cells that are inherently quiescent. This work also captures variations within the fast-slow system 

dynamic and briefly reiterates effects of shifting from fast-slow to fast-fast systems on duty cycles 

and bursting (Figure 1.1(C, D)) but focuses primarily on systems with less separation where more 

generalized ranges of behavior occur. In what follows, we show that 3-cell gFN networks produce 

multiple rhythms including traveling waves, in which only one cell fires at a time and firing is in 

sequence (dividing the period evenly in fully symmetric networks), as well as pace-makers, in 

which one cell effectively inhibits the other two and fires in anti-phase with two in-phase cells.  
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Figure 2.2 Trace convergence on a 2-D torus 

A three-dimensional view of the 2-D Poincaré return map torus generated by multiple transients 

of the phase lags, ∆12 and ∆13 defined on mod 1, revealing stable fixed points (FPs) (represented 

by colored ●) with color-coded basins of attraction and separating saddles (represented by gray 

♦). This representation can be unwrapped, as in Figure 2.3, by cutting the torus vertically and 

horizontally along the black axis displayed to better analyze dynamical convergence of ∆12
(𝑛)

 and 

∆12
(𝑛)

 iterates in different systems. 

 

  

As these phase lags are cyclical and repetitive in nature, visualization of the traces over time is 

inherently three-dimensional, as represented in Figure 2.2, in which we see rotation of the phase 

cycles through time with convergence to fixed points on a torus. This view is challenging to 

interpret without viewing from many directions and to analyze stability of the rhythms produced, 

we introduce the notion of phase lags between cells. Unwrapping this torus into a 2-D return map 

aids in visualization. Here we choose cell 1 as a reference to reduce dimensionality as follows. The 

phase lag of cells 2 (∆12) and 3 (∆13) relative to cell 1(as shown in Figure 2.3(d)) are given by, 

∆12
(𝑛)

=
𝜏21

(𝑛)

𝑃𝑒𝑟𝑖𝑜𝑑1
=

𝑡2
(𝑛)

−𝑡1
(𝑛)

𝑡1
(𝑛+1)

−𝑡1
(𝑛) ,    (𝑚𝑜𝑑 1)  Equation 2.5 

∆13
(𝑛)

=
𝜏31

(𝑛)

𝑃𝑒𝑟𝑖𝑜𝑑1
=

𝑡3
(𝑛)

−𝑡1
(𝑛)

𝑡1
(𝑛+1)

−𝑡1
(𝑛) ,    (𝑚𝑜𝑑 1)  Equation 2.6 
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where  t1  represents  the  time  at  which  cell 1 is in upstroke  through the threshold voltage, Vth=0.  

These phase lags can stabilize to fixed differences when stable phase difference fixed points exist 

in the system as n, or the number of cycles, increases. If phase lags continuously shift, there is no  

 

Figure 2.3 Phase-lags and trace convergence 

(A) Poincaré return map for phase lags, ∆12 and ∆13, revealing five stable fixed points (FPs) 

(represented by ●) with color-coded attraction basins, 6 separating saddles (represented by ♦), 

and a single repelling FP at the origin. (B, C) Transients of ∆12
(𝑛)

 and ∆12
(𝑛)

 converging to phase-

locked states correspond to the color-coded FPs in Panel A. (D) Successive delays, 𝜏21
(𝑛)

 and 𝜏31
(𝑛)

, 

between voltage upstrokes in the reference blue cell 1 and in cells 2 (green) and 3 (red) at the n-

th, characteristic for a clockwise traveling wave (D1) and pacemaker rhythm (D2) that are 

represented by the black and blue FPs, at (1/3, 2/3) and (1/2, 1/2) respectively, in Panel A. 
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local attractor. We can plot such trajectories from given initial phase lag combinations, phase 

differences revealing where phase lag combinations will converge to stable phase differences. In a 

three-cell network such as this, a two-dimensional phase difference pairing is therefore described. 

We examine multiple trajectories with differing initial conditions (Figure 2.3) to observe potential 

stability or poly-stability within the system, in which a single or multiple stable rhythm outcomes 

may be observed. Additional detail is provided in Appendix A1. 

Mapping the trajectories of many initial condition combinations reveals basins of attraction for 

phase difference fixed points. Initial condition pairings within each basin converge to the same 

fixed phase lag attractor. Where appropriate, we examine systems under at least 900 initial 

conditions (1x30x30 grid of ∆12 versus ∆13) for a given set of system parameters, obtaining phase 

basin diagrams which can be used to approximate attractive basins of initial conditions for each of 

the distinct rhythmic outputs observed. Color-coding of the traces within these diagrams matches  

 

Figure 2.4 Phase-basin methodology for determining basins of attraction 

(A) Compared with the (∆12, ∆13)-Poincaré map in Figure 2.2A. (∆12, ∆13)-Poincaré map of a 

stronger coupled network at gij = 0.0554 revealing the rapid and jagged convergence (B) to the 

three remaining phase-locked states corresponding to the red, green and blue FPs, represented as 

white circles ○ near (∆12, ∆13) = (0, 1/2), (1/2, 0) and (1/2, 1/2), respectively (A and C). 

Simplified attraction basin diagrams with mixed borders around two unstable fixed points near 

(∆12, ∆13) = (1/3, 2/3) and (2/3, 1/3) to show network outputs clearly for smooth (A, representing 

Figure 2.2) and jagged ∆12 and ∆13 Poincaré maps (C).  
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the dominant cell for pace-maker  regimes, as shown with the blue pacemaker in Figure 2.3, with 

separate colors chosen to represent traveling waves firing in (1−2−3)− (clockwise, in black) and 

(1−3−2)− (counter-clockwise, in purple) sequences, also shown in Figure 2.3. At times, 

particularly when nullclines intersect close to the knee, or when coupling strength is strong, a trace 

approach to visualize convergence is inadequate. For such cases, a phase basin approach in which 

initial conditions are color coded by where they ultimately converge can be used instead. This 

requires a higher mesh grid (50 x 50 or greater) and identifies basins of initial conditions which all 

converge to the same fixed point without visualization of the trajectory of any individual trace 

(Figure 2.4). This approach will be used most extensively in our exploration of the post-inhibitory 

rebound mechanism in Chapter 3, in which much higher coupling strengths are required. 

This visualization lends itself well to rapid identification of poly-rhythmic stability. Sequences of 

these phase difference maps, varying across a selected parameter, can then be used to observe fixed 

point movement and the emergence, or bifurcation, of fixed points dynamically changing the phase 

basins observed. We examine in fine detail the nature of some of these bifurcations, with the 

emergence or disappearance of different traveling waves or pace makers. We also characterize 

individual phase basin diagrams for given parameter sets as containing only pacemakers (PM), a 

mixture of pacemakers and traveling waves, or only traveling waves (TW). When discussing 

detailed analysis of specific bifurcations, we will pay attention to the pacemakers or traveling 

waves involved. We classify any number of pacemakers generically as PM. We do not in general 

distinguish between specific pacemakers or pacemaker combinations in our broader examinations 

of dynamical characteristics, particularly in asymmetric systems. The same simplification will be 

made when identifying TW regimes and mixed regimes, without distinguishing between the total 

number of fixed points in a given phase basin.  This classification allows us to connect regions of  
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Figure 2.5 Phase-basin methodology for determining basins of attraction 

Panel E represents the (gij, Iapp)-bifurcation diagram with color-coded regions corresponding to 

rhythmic patterns of the fully symmetric motif: blue for PM, light green for TW and dark green 

for mixed PM and TW. Panels A1-A4 and A1-D1 are snapshots of the Poincaré return maps 

taken at the locations indicated by white dots along two parametric pathways in panel (E). (A1-

A4) A series of the (∆12, ∆13)-phase lag maps to reveal the capacity and bifurcations of rhythmic 

outcomes in the network due to the escape mechanism. As coupling g is increased (along the 

white barred pathway at the top of Panel E), (A1) both unstable TWs at (1/3, 2/3) and (2/3, 1/3) 

become stable (A2) through a torus bifurcation. All stable PMs, green at (0, 1/2), red at (1/2, 0) 

and blue at (1/2, 1/2), becomes unstable through pitchfork bifurcations at larger values of g after 

merging with nearby saddles. Bifurcations in the network with the underlying release mechanism 

along two bottom pathways (labeled with either ’ or ”) are represented in Figures 2.7 and 2.8. 

Parameters for A1-A4: Iapp = 0.5886, gij = 0.0015, 0.006, 0.019, and 0.0225; parameters for B1-

D1: gij = 0.0015, Iapp = 0.493, 0.419, and 0.393. 
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varying  intrinsic  mechanisms  by  describing  fixed  point  outcomes  in  summary  in  a  bifurcation 

diagram, using classification as PM, TW, or PM/TW as described above. This approach can be 

observed directly in (Figures 2.5), where we first show samples of 4 different plots distributed 

either across gij (in panels A1-A4) or down Iapp (in panels A1-D1). Observation of the rhythm 

patterns present in each of these 7 images makes clear the representation in E, in which we have 

overlaid those points on a bifurcation diagram and use a new coding scheme for the different 

rhythm combinations observed (additional example in Appendix A1). 

Using bi-parametric sweeping, we examine this bifurcation which frames the release and escape 

mechanism neighborhoods in the (gij, Iapp)-parameter plane, for our default parameter set with all-

to-all equivalent inhibitory connections. The diagram reveals network rhythm groups about and 

between the two mechanistic regions of interest, which spans a range of network cells with highly 

varied duty cycles and firing frequencies. The range connects endogenous bursting cells whose 

periodicity is set by inhibition to tonic spikers that are induced to bursting behavior through 

inhibition. This analysis, performing bi-parametric sweeps of at least 50x50 of the previously 

described phase lag grids, is facilitated using Graphical Processing Units (GPUs) provided by 

NVDIA (developed for garage science processing). This vastly reduces the computational time 

required to run the waveform traces we analyze, time required to produce each phase lag 

convergence plot for 900 traces typically taking 40-60 seconds instead of 5-10 minutes or more. 

Bifurcation diagrams created in this manner can then be used to effectively analyze changes within 

the gFN network.  

We examined and verified outcomes observed in prior work, [39] for example, for the effect of 

shifts from fast-fast to fast-slow systems varying the parameter ε. We found in multiple cases that 
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small variations in ε did not change the network output qualitatively and this was not explored 

further. For the purposes of this research we have chosen not to significantly explore shifts in the 

slow-nullcline, as shifts to the fast nullcline directly represent applied currents that may be more 

readily manipulated in biological systems. In addition to nullcline shifting, via varying the Iapp 

parameter, we also generalize our findings in terms of increasing coupling strength. This 

generalization applies to all-to-all equivalent networks of inhibitory connections networks (shown 

in previous figures) and to several key connection motifs that deviate from the all equivalent case 

which are described in detail in Chapter 3. 

2.2 Symmetric Motif Results 

Cells involved in the release mechanism are intrinsic bursters or spikers and will fire readily 

without external input. This mechanism involves intersection of the nullclines at or near the lower 

left portion of the cubic nullcline near the knee (Figure 2.6(A)), where a cell receiving inhibition 

can be effectively locked down in the hyperpolarized state until released from inhibition. Cells 

involved in escape are tonic spikers, bursting behavior only inducible via external input. This 

mechanism occurs when the nullclines intersect near the upper right knee of the cubic nullcline 

(Figure 2.6(B)). The position of the nullcline intersection in either case can make the system 

responsive to small magnitude inhibition between the cells, where a small perturbation can force 

the system to switch states, and we use small coupling strengths in most cases as a result. 

The release mechanism occurs when neurons in the active state, or upper branch of the cubic 

nullcline, stop firing of their own accord and drop to the lower branch. This releases an inactive 

cell on the lower branch from inhibition, the effect of this being movement of the cubic or fast 

nullcline back to the right (solid purple line), restoring intrinsic activity by shifting the nullcline 

intersection from the a stable fixed point on the lower branch to an unstable oscillatory point on 
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the middle branch of the cubic nullcline (square symbol). As soon as this synaptic inhibition is 

removed, the inactive neuron passes the spiking or bursting voltage threshold and starts spiking or 

bursting (black dotted trajectory shows this limit cycle).  

 

Figure 2.6 Release and escape mechanism state spaces 

Phase portraits of the release (A) and escape (B) mechanisms of rhythmogenesis in the neural 

motif. Clusters of the dots, representing the phases of the coupled cells on the periodic orbit, at 

the lower-left and upper-right knees are indicative of stagnation due to bottlenecking near the 

tangency of the nullclines, fast cubic 𝑉̇ = 0, V = 0 (solid and dashed purple curves for pre- and 

post-synaptic cells), and slow sigmoidal ℎ̇ = 0, (orange curve) (see also Figure 2.1(B)). 

 

All three cells in the network act on this same cubic-sigmoidal intersection, with inhibition of one 

or more active cells shifting the respective cubic left (dashed purple line) and creating a stable 

inactive fixed point. Release from inhibition restores the bursting limit cycle (black orbit) for a 

given cell. Escape refers to the case where the slow nullcline intersects the upper branch, 

representing active voltage, of the fast nullcline and produces a stable equilibrium state. In this 

case, once a connected inactive cell passes threshold and begins firing it applies inhibition to the 

currently active cell. This allows the otherwise tonic firing cell to escape from the active state and 
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return to the lower branch of the cubic nullcline. The same color scheme is used to represent the 

nullcline shift and intersection points as in the release example. Manipulation of applied current 

stimulus allows us to connect the release and escape regimes as we transition from lower to higher 

values of Iapp. Because of this, we discuss these two mechanisms together here and in Chapter 3 as 

we explore different connectivity motifs. This ability to span behavior between the two 

mechanisms can be represented through the bifurcation diagram approach outlined in methods, 

and we show here the similarity and differences in the bifurcations that occur and in the dominance 

of different rhythm outputs within each mechanism. 

In fully symmetric 3-cell networks of Fitzhugh-Nagumo inhibitory cells, rhythm regimes follow a 

somewhat distinct pattern as either coupling strength, gij, or applied current shift, Iapp, parameters 

are varied. Using bifurcation diagrams, as described in the methods section, we analyze these 

parameter variations. For stable and symmetric release cases furthest from the knee, or the 

minimum oscillatory intersection of the nullclines, we observe emergence of pacemaker patterns 

from traveling wave or mixed rhythm systems by either increasing coupling strength or decreasing 

the current shift. Close to the lower knee, spiking transitions are faster and we therefore see more 

traveling wave patterns at low coupling strengths, as well as an interesting gain and then loss of 

traveling waves as coupling increases (Figure 2.7). Shifting the cubic nullcline further from the 

lower knee, we observe a shift to hard-locking and can observe a similar bifurcation in which 

systems of traveling wave only patterns do not exist and we see the emergence of pacemaker-only 

patterns from mixed poly-rhythmic regimes (Figure 2.8).  

This bifurcation occurs by increasing inhibitory synaptic strength, gij, or decreasing the current 

shift, Iapp. It is important to note the effect of strong coupling strength, in which the system hard-

locks and transitions to final fixed points occur much more quickly. If exploration of these strong 



35 

coupling regimes were of interest, we would use the phase basin representation discussed 

previously, but for this research we will primarily look at weak coupling within the release and 

escape mechanisms and visualization of trace convergence remains practical. An example within 

the escape mechanism for fully symmetric systems was already demonstrated within the methods  

 

Figure 2.7 Symmetric release case near-knee 

(∆12, ∆13)-Poincaré return maps representing the symmetric release motifs as all connection 

strengths are increased. These maps are sampled along the horizontal pathway at Iapp = 0.3956 in 

the (gij, Iapp)-bifurcation diagram in Figure 2.4, and indicated there by labels with an “. The 

unstable TWs [near (∆12, ∆13) = (1/3, 2/3) and (2/3, 1/3)] in (A”-B”) panels, become stable 

through a secondary Andronov-Hopf/torus bifurcation in (C”), and back to unstable with a 

stronger synaptic strength resulting in the quick and jagged convergence to three PMs in the map 

(D”). Parameters: gij = 0.0005, 0.005, 0.007, and 0.015. 
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section of this work, and we observe that transitions within this region move in the opposite 

direction. Where increasing coupling strength within the release mechanism cells tends to lead to 

less traveling wave, and more pacemaker, behaviors, the escape mechanism is characterized by 

transitions  exhibiting  less  pacemaker  and  more  traveling  wave  rhythms  at  higher  coupling  

 

Figure 2.8 Symmetric release stereotypical case 

(∆12, ∆13)-Poincaré return maps to reveal the capacity and bifurcations of rhythmic outcomes in 

the symmetric, release-based motif as all connection strengths are increased [along the horizontal 

pathway at Iapp = 0.4155 in the (gij, Iapp)-bifurcation diagram in Figure 2.4. (A’-C’) Increasing gij 

makes the separating saddle FPs move close to 2 stable TWs at (1/3, 2/3) and (2/3, 1/3), and 

away from 3 stable PMs thereby making the TW basins shrink and the PM basins widen. (D’) 

With a further increase of coupling both TWs become unstable through a secondary Andronov-

Hopf/torus bifurcation. Parameters: gij = 0.0005, 0.006, 0.015, 0.018. 
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strengths or lower applied currents. This underlies the importance of understanding within which 

mechanism a biological system behaves, to make hypotheses leading to practical experiments. 

Another aspect explored is the effect of shifts in the fast-slow variable, ε, on possible rhythmic 

output and bifurcations between such. We have opted to focus primarily on less fast-slow 

separation using higher epsilon values (0.30 for most of the examples in this paper) but show an 

example of the effect of more fast-slow separation in Figure 2.9, when the same parameters are 

used as was done in the Figure 2.7. As can be clearly seen, shifts to more distinctly fast-slow 

systems with low epsilon values result in much more dominance of traveling wave rhythms. This 

happens because when depolarization occurs more rapidly, the period is more readily divided by 

all three cells and pace-making behaviors can only occur if induced by some initial conditions 

which already place it within this rhythm regime. We will mention more on such fast-slow systems  

 

Figure 2.9 Symmetric portraits for strong fast-slow separation 

 (∆12, ∆13)-Poincaré return maps representing the symmetric release motifs as all connection 

strengths are increased. These maps are sampled along the same horizontal pathway at Iapp = 

0.3956 as in Figure 2.8, but with ε = 0.05, and represent shifts from weaker to stronger coupling 

within the same range of values explored there. The basins of attraction for both TWs [near (∆12, 

∆13) = (1/3, 2/3) and (2/3, 1/3)] are larger at all values of gij, and we see much more rapid 

transition to the fast convergence indicative by jagged traces. PM basins of attraction are 

significantly reduced, and disappear entirely for a much larger portion of the bifurcation diagram 

for this system. Parameters: gij = 0.002, 0.008, and 0.016. 
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periodically throughout the paper, but will focus primarily on more mid-range epsilons where 

broader ranges of rhythms and rhythm transitions can be observed and described. Generalization 

of results here to more fast-slow systems will recognize the trend towards more travelling wave 

behaviors at lower values of ε. Varying coupling strength asymmetrically, however, results in a 

wide range of behaviors and bifurcation transitions otherwise unobserved in fully symmetrical 

systems. The nature of these bifurcations can be observed with variation of the system parameters, 

the focus in Chapter 3 being primarily on changes in coupling strength, changing gij, with 

comparison of different current shift strengths. These parameter variations remain biologically 

testable in labs.  
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3     PATTERN GENERATION IN ASYMMETRIC 3-NODE MOTIFS 

As described within the methods in the previous chapter, an extension to the results described for 

the symmetric three-node motif explored involves examination of several key asymmetric motifs 

frequently observed in biological networks. Here four key asymmetric circuit structures are 

examined in detail: (1) Mono-biased, in which only a single connection, here g31, is changed the 

rest are held constant, (2) Pairwise-biased, in which reciprocal connections between two cells are 

changed equally, here g31 = g13, with the rest are held constant, (3) King-of-the-mountain, in which 

 

Figure 3.1 Key asymmetric network motifs 

Principal configurations of network motifs explored in this paper. (A) Mono-biased motif with a 

single varying connection, here g31. (B) Pairwise-biased motif with two reciprocally changing 

connections, here g31 and g13. (C) King-of-the-mountain motif of a single cell with two outgoing 

varying connections, here g31 and g32, and (D) Clockwise-biased motif with uni-directionally 

varying connections, here g12, g23, and g31.  
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both outgoing connections from one cell are varied identically, here g31 = g32, while the rest are 

held constant, and (4) Clockwise-biased, in which all clockwise connections are affected 

simultaneously, here g12 = g23 = g31, holding the rest constant (Figure 3.1). The default connection 

strength for each unaffected connection shown is gij=0.001, unless otherwise specified. 

3.1.1 Mono-Biased Motif 

An initial examination of asymmetry compares the effect of increasing or decreasing only one 

connection (g31) within an otherwise fully-symmetric, weakly-coupled system. As with the 

symmetric case, the effect of this when very close to the lower knee near intersection of the 

nullclines will be different from effects when further from the knee, effectively showing a transition 

from hard- to soft-locking, in which internal dynamics may rapidly drive the network to converge 

to its final outcomes. Here, and in each of the following asymmetric motifs discussed, we show 

first an example of transitions within the phase lag return maps as g31 is increased within the release 

mechanism regime of values for Iapp (Figure 3.2). Following this, an example of transitions 

observed within the escape mechanism will be discussed, both placed upon a bi-parametric 

bifurcation diagram spanning g31 versus Iapp. Unlike the fully symmetric case first discussed, here 

we observe asymmetric bifurcations in which only one or two pacemakers may appear or disappear 

rather than an all pacemakers (or all traveling waves) simultaneously for a given bi-parametric set 

(g31, Iapp). 

For the release example shown, we initially start with a motif in which the g31 connection is turned 

off (g31 = 0) while all others are held constant at gall = 0.001.  With this connection off, we observe  

a case in which rhythm generation is dominated by the green PM rhythm for most initial phase lag 

condition combinations, a small region of blue PM pattern generation seen in the center of the 

return map (Figure 3.2(A’)). Even at zero connectivity we can see the potential for formation of  
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Figure 3.2  Mono-biased asymmetric release case 

Evolution stages of the (∆12, ∆13)-Poincaré return maps representing the mono-biased (shown in 

Figure 3.1A) release-based motifs as a single connection g31 is increased. These maps are 

sampled along the horizontal pathway at Iapp = 0.412 in the (g31, Iapp)-bifurcation diagram in 

Figure 3.3. The green PM initially dominates, blue coexisting (A’). With increasing g31, a 

sequence of five saddle-node bifurcations occur. The purple TW emerges [near (∆12, ∆13) = (2/3, 

1/3)] and the blue PM’s basin increases in size (B’). The red PM [near (0, 1/2)] emerges (C’) and 

then disappears as its FP collides with the red-to-purple saddle and is consumed within the 

purple TW’s basin of attraction (D’). Increasing g31 further leads to winner-take-all by the purple 

TW, as first the green (E’) and then the blue (F’) FPs collide with the other saddles. Parameters: 

gall = 0.001 except g31 = 0, 0.00081, 0.00108, 0.00135, 0.004, 0.008 in Panels A’-F’, resp. 
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an additional pattern near the traditional (0.66, 0.33) location for the purple TW. This can be seen 

by the interesting whorl around this point with the two saddle nodes (gray diamonds) affecting 

trace behavior in this region. Connection of the g31 synapse leads almost instantly to the emergence 

of this TW (B’), as we see the appearance of an additional saddle node with the creation of the 

purple fixed point. A close examination shows additional shifting of the other saddle nodes from 

the locations observed in (A’). The emergence of the red PM point is much more dramatic, with 

the appearance of both a saddle node and fixed point that rapidly diverge (C’) while consuming 

large portions of what had been in the green basin of attraction. The presence of this third PM 

regime is short-lived, however, as the newly created red PM basin is ultimately consumed by the 

purple TW regime with increasing g31 (here at only 1.35 times the magnitude of the rest of the 

connections). This occurs as the red PM FP collides with the saddle node between it and the purple 

TW FP (D’). Increasing the strength more significantly (first 4x at 0.004, and then 8x at 0.008, the 

symmetric connections) leads to the disappearance of first the green PM (E’) and then the blue PM 

(F’) as those fixed points collide with other saddle nodes and the purple TW dominates all initial 

conditions. These transitions can be seen within the context of the larger bifurcation diagram for 

mono-biased motifs in Figure 3.3. 

As can be seen by the dashed line and points representing the transitions of Figure 3.2, these 

bifurcations are representative for many points along the diagram for different values of Iapp but 

other transitions exist where some rhythm pattern combinations may not exist for certain values of 

Iapp. We observe that PM behaviors (blue region) occur most at low coupling strengths for both g31 

and Iapp, with a brief increase in these rhythms as the nullclines first move further apart around Iapp 

= 0.40 and then a decline as the system moves to purely TW patterns only for mid-range values of 

Iapp  between  approximately  0.43  and  0.53  (the  large  light  green  expanse in the middle of the 



43 

bifurcation diagram). Moving further up, however, we observe the first appearance of an as yet 

unidentified rhythm (sky-blue region) within the escape mechanism for a mono-biased motif that 

will be discussed here in more detail. A more general shift in rhythm generation behavior is clearly  

 

Figure 3.3  Mono-biased asymmetric bifurcation diagram 

The (g31, Iapp)-bifurcation diagram with seven color coded regions corresponding to the various 

single and multi-stable rhythmic patterns of the mono-biased motif (Figure 3.1(A)): gray for 

phase-slip only, light-blue represents co-existence of phase-slip with PM, blue for PM only, 

dark-green for “mixed” PM and TW, and light-green for TW only patterns. Transitions between 

these regions are due to saddle-node (SN) bifurcations eliminating or restoring FPs to the map. 

The horizontal white-barred pathway near the top of the bifurcation diagram at large values of 

Iapp corresponds to the (∆12, ∆13)-return maps sampled for the escape case (Figure 3.4). The 

horizontal white-dashed pathways at the bottom corresponds to transitions due to the release case 

(Figure 3.2). The vertical line given by g31 = 0.001 corresponds to the fully symmetric network 

with all gij equal g31. 
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Figure 3.4  Mono-biased asymmetric escape case 

Mono-biased escape motif evolving via increasing g31 explored by ∆21 and ∆31 Poincaré return 

maps. Only the black (clockwise) TW exists when g31 =0 (A). With increasing synaptic strength 

g31 pitchfork bifurcations occur with the appearance of the blue PM (B), red PM (C), and green 

PM (D). With even greater g31 synapse strength a torus bifurcation occurs while the size of the 

TW basin of attraction diminishes and the black TW fixed-point becomes a repellor (E), then 

disappears as the saddles converge with the black repellor (F). An invariant circle is seen near 

the wave region in Panel E. Parameters: Iapp = 0.5825, gij = 0.001 except g31 = 0, 0.00027, 

0.000676, 0.00081, 0.00149, and 0.00405. 
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observed for the escape case, and shown in detail in the panels of Figure 3.4,  in which we see the 

presence of TW patterns more at lower g31 coupling strength with the appearance of PM patterns  

at higher coupling, the opposite of what was observed in the release mechanism regions and 

example discussed above. 

In the example in Figure 3.4, we observe the existence of a single dominant black clockwise TW 

regime when g31 = 0 with an interesting region where very close initial conditions can lead to 

fundamentally different trajectories but ultimately converge to the same fixed point. This occurs 

for initial conditions on either side of the saddle node point shown in (A) by the gray diamond. 

Points to the left will converge to, and traverse, the path shown by white arrows overlaying the 

black basin as they gradually converge to the final fixed point due to weak coupling for the other 

connections. Points to the right of the saddle node, however, will rapidly converge to the black FP 

as they are already close and are on the side of the saddle that will push them in this direction. The 

introduction of even weak g31 coupling in (B) leads to the appearance of a small basin of blue PM 

attraction in the center of the return map as both an FP and a repellor appear, along with two 

additional corresponding saddle nodes. Continuing to increase g31 strength leads not only to 

increased size of the blue PM basin of attraction, but to the formation of first a red PM (C) and 

then a green PM (D) as those fixed points and corresponding saddles appear within what had 

previously been the basin of attraction for the black TW. We therefore see a rapidly diminishing 

region of black TW attraction, which undergoes an additional torus bifurcation with increased g31 

coupling, creating a brief range in which an invariant circle appears around a repellor where the 

black attractor had been (E) before the region is entirely consumed by the red basin of attraction 

(which first consumed the green PM basin as that saddle node and FP collided). This leads to 

systems in which only PM, in this case only red or blue, behavior can exist for any set of initial 
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conditions, with very rapid convergence for many initial conditions (exemplified by larger white 

regions on the return map, where convergence is so rapid that traces do not appear to traverse these 

areas). Although here we have emphasized the opposite formation or disappearance of rhythms as 

was observed within the release mechanism first discussed, we also see the appearance of a new 

pattern not previously observed. This pattern, and a close-up of the patterns leading up to and after 

the bifurcation can be seen in the detailed bifurcations in Chapter 4. 

 

Figure 3.5  Panel multiplicity for convergence determination 

Zoomed in view of Figure 3.4(A), with 4 identical panels placed adjacent to aid in visualization 

and determination of final convergence to the phase-locked black clockwise traveling wave 

(CTW) pattern. Overly of arrows facilitates visualization of converging outcomes crossing 

boundaries of the 2-D return map. Parameters: Iapp = 0.5825, gij = 0.001 except g31 = 0. 
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While we have chosen in this paper to specifically discuss the effects of changes to g31, all results 

here have been examined and hold true for changes in g13 as well. The change in direction of the 

changing connectivity lead to opposite effects in which, for example, any regions in which the red 

PM (or Cell 3) dominated would now look symmetrically the same but with the blue PM (or Cell 

1) dominating. This switch in context holds true for all changes in direction, and therefore all 

results for the g31 analysis are valid and transitive (with appropriate color and pattern perspective 

shifts) for changes in any other single clockwise or anti-clockwise connection, regardless which 

two cells the connection is between. We have therefore chosen to focus solely on connections 

involving cell 3 in this research. 

3.1.2 Pairwise-Biased Motif 

Asymmetry is accomplished in many ways, and while we have primarily focused thus far on an 

examination of single connection asymmetry within an otherwise symmetric 3-cell configuration, 

other interesting behaviors and trends can be seen when changing more connections. Other anti- 

symmetric cases are generated by changing both the g31 and g13 connections, either in harmony or 

separately. Changing both connections equally within the release mechanism region of values for 

Iapp, we initially observe a system in which both connections are turned off and a single (green) 

PM dominates (Figure 3.6(A’)). This makes sense intuitively since the green cell is the only one 

with outgoing inhibitory connections to both of the other cells. When we introduce weak coupling 

both ways between nodes 1 and 3, however, we see the emergence of the other two PMs (B’), as 

additional saddles appear with two repellors. These repellors are then consumed as they collide 

with saddles at increasing g31 and g13 strength, the basins of attraction becoming more distinct 

without the spiraling out regions from where the repellors had been previously. TW behavior is 

not seen within the release mechanism here, except for values of Iapp that place the nullclines 
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extremely close at the lower knee (this can be observed at the very bottom of the bifurcation 

diagram in Figure 3.8). Additional increases in the coupling strength of the two synapses leads to 

the collision of the red and blue FPs with nearby saddles creating a so-called ‘river of fixed points’ 

 

Figure 3.6  Pairwise-biased asymmetric release case 

(A’) When synapse strengths g31 and g13 equal zero only the green PM exists. (B’) As coupling is 

increased, the blue and red PMs emerge with two saddles simultaneously, as well as the 

simultaneous emergence of two repelling FPs near (∆12, ∆13) = (1/3, 2/3) and (2/3, 1/3), along 

with two saddles, all through SN bifurcations. (C’) Further increasing g31 and g13 gives rise to a 

reverse SN bifurcation, eliminating these repelling FPs. Moreover, simultaneous loss of the blue 

and red PMs due to heteroclinic saddle-node bifurcation gives rise to the onset of a stable 

invariant circle, or gray “river” of slow ∆12-phase slipping with ∆13 ≈ 1/2, that wraps around the 

torus. Hand-drawn lines in D' are sampled to illustrate the attraction basin bounded by the 

incoming separatrices of the saddles. Parameters: Iapp = 0.399, gij = 0.001 except g31 = g13 = 

0.0005, 0.001, 0.0012, and 0.0015.  
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in which we observe peristaltic patterns with recurrently phase-varying lags (D’), or phase-slip 

(PS), with the green PM remaining. Not shown here, but observable on the bifurcation diagram, is 

the ultimate disappearance of this remaining green FP and the existence of a system of purely 

recurrent phase-varying lag in which ∆13 remains roughly constant with nodes 1 and 3 remaining 

locked in semi anti-phase, while ∆12 decreases constantly with phase slip in which cell 2 

experiences a shorter period than the other two cells. As in the example of river behavior in mono- 

biased asymmetry, these are not true fixed points as we see phase-slipping in a consistent and 

recurring pattern. 

When we change both connections equally within the escape mechanism region for Iapp, we again 

initially observe a system in which both connections are turned off and a single (green) PM 

dominates (Figure 3.7(A)). When we introduce weak coupling both ways between nodes 1 and 3, 

however, we see the emergence of the other two PMs, followed by a brief period near full 

symmetry where TW patterns emerge and we see fully mixed regimes (C). Increasing coupling 

strength for both g31 and g13 leads to torus bifurcation as the TW patterns then disappear as their 

FPs collide with saddles. When coupling is strong (E), the green PM basin of attraction continues 

to shrink and ultimately disappears as its FP is consumed by a saddle and its basin of attraction 

joins the red one. At very strong coupling, both remaining FPs merge with their respective saddle 

nodes and we again see a ’river’ in which we observe peristaltic patterns with recurrently phase- 

varying lags (F). In this escape case, however, this phase slip is characterized by increasing ∆12 

separation in which cell 2 experiences a longer period than the other two cells.  

Although we chose to show here examples in which no TW waves existed for the release 

mechanism, while they did for the escape mechanism, the trend we observed in both the fully 

symmetric and mono-biased asymmetric systems exhibiting the reverse appearance or loss of PM  
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Figure 3.7  Pairwise-biased asymmetric escape case 

When synapse strengths g31 and g13 equal zero only the green PM exists (A). As the pair of 

synapses g31 and g13 increase the blue and red PMs emerge through pitch fork bifurcations, (B). 

With further increases both TWs appear (C), and disappear (D) through SN bifurcations. Next 

the green PM disappears via additional SN bifurcation, (E). With the largest g31 and g13 values 

simulated, all PMs are gone and only a gray traveling river exists through a heteroclinic SN 

bifurcation. This gray ’river’ shows that no stable rhythmic pattern remains, but a rhythm that is 

constantly changing in time. Parameters: Iapp = 0.5716, gij = 0.001 except g31 = g13 = 0, 0.000676, 

0.001, 0.00128, 0.00155, and 0.00331. 
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or TW patterns does not hold for double-biased systems. As can be seen in Figure 3.8, PM patterns 

dominate low- or no- coupling of g31 and g13 for all values of Iapp. Additionally, other than the 

unique behavior seen regularly very close to the lower knee, TW patterns only exist within the 

more oscillatory region of values for Iapp that are not truly release or escape (Iapp between 0.43 and 

 

Figure 3.8  Pairwise-biased asymmetric bifurcation diagram 

Bifurcations occur between differently colored regions in the bi-parametric space varying Iapp 

and g31 = g13. Light green represents purely TW, blue represents purely PM, dark green 

represents both types of rhythms, and gray represents purely phase-slip. Transitions between 

these regions indicate torus or pitchfork bifurcations. Specific examples are shown in Figures 3.6 

and 3.7, these examples’ values are represented by the points on the dashed and barred lines. The 

circles on the bottom horizontal line are the parameters sampled in the release case shown in 3.6 

as phase difference portraits. And the top horizontal line points are the sampled escape cases in 

3.7. The vertical line represents the line where network synapses are at full symmetry, with g31 = 

g13 = gij. 
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0.55). Mixed systems occur most frequently at the boundaries of release and escape mechanisms, 

and near full symmetry (vertical dashed line). PS behavior is observed at all values of Iapp when 

coupling is strong for the asymmetric connections (large grey region on the bifurcation diagram). 

Double-biased motifs clearly exhibit all potential rhythm patterns identified so far, but do so in a  

manner that tends towards single pacemaker behavior at weak coupling and river behavior at strong 

coupling. Other rhythms are transitory and exist primarily within mid-ranges of values for Iapp or 

near full symmetry for values of g. The abrupt transitions from TW or PM patterns to river 

behaviors represent interesting bifurcations in which fixed points and saddles collide to become 

consumed in different manners. We have shown first, in the mono-biased case, an example of this 

bifurcation with PMs colliding while one remains. In this double-biased case we have seen the 

complete elimination of all PM behaviors for a full ‘river’ pattern. In both cases, we have observed 

semi phase-lock between nodes 1 and 3 with phase slip by node 2. In the following king-of-

mountain motif we will observe a different pattern for phase slip. 

3.1.3 King-of-the-Mountain Motif 

When asymmetry is achieved by changing the outgoing connections from one cell, however, we 

expect that increasing synaptic strength will result invariably in dominance of the cell being 

strengthened. This king-of-the-mountain case has results that are therefore intuitive at higher 

coupling strengths. We observe, however, interesting dynamics at weak coupling strengths, where 

we again see pacemaker dominance that can possibly transition through mixed or traveling wave 

regimes at higher current shifts. When closer to the lower knee, we see almost exclusive pacemaker 

behavior which merely transitions from two to three, and then to one, pacemakers. Further from 

the knee, as can be seen in the bifurcation diagram later in this paper (Figure 3.11), we observe 

transition through traveling wave regimes at intermediate coupling strengths near full symmetry. 
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This region of traveling wave dominance grows as Iapp increases and we begin to span the gap 

between the release and escape mechanisms. 

 

Figure 3.9  King-of-the-mountain asymmetric release case 

When synapse strengths g31 and g32 are very small only the green and blue PMs exist (A’). As 

the synapse strengths g31 and g32 are increased the TWs and the red PM emerge. The TWs basins 

of attraction cover most the network phase difference space while the three PMs have small and 

relatively equal areas of basins of attractions (B’). With further increases of synapse strengths g31 

and g32 the blue and green PMs begin to merge with saddles and the TWs begin to incorporate 

the PM basin areas (C’). With the strongest synapse strengths g31 and g32 modeled, both TWs 

disappear and the red PM takes all network state space (D’). Parameters: Iapp = 0.426, gij = 0.001 

except g31 = g32 = 0.0001, 0.001, 0.00115, and 0.0015. 

 

In the example shown here for the release mechanism (Figure 3.9), we observe the presence of 

both blue and green PMs at weak outgoing g31 and g32 connections from cell 3. With increased 
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coupling strength for these connections, we observe the simultaneous emergence of both TW 

patterns (B’) near full symmetry as the basins of attraction for the PMs diminish. As the 

connections continue to strengthen, the green and blue PM basins continue to shrink and ultimately 

disappear as their FPs merge with saddle nodes. At strong coupling, the traveling waves also 

collapse as they merge with the saddles nodes being shared with the red PM. This leads to our 

king-of-the-mountain in which the red PM dominates rhythm output for all initial conditions. 

Within the escape mechanism region, we again observe a new behavior in which ‘river’ like 

patterns exist now at low or no coupling connections leaving cell 3. When both g31 and g32 are at 

or near zero (Figure 3.10(A)), we observe recurring phase lag variance in which phase separation  

between cells 1 and 2 is now semi locked in anti-phase while cell 3 exhibits phase slip and under- 

goes shorter firing period than the other two cells. With even weak connection of these two 

connections, we observe the appearance of a small basin of attraction for the red PM. This 

continues to grow, as we also see both other PMs and the two TWs appear, again near full 

symmetry. With increasing coupling strength, the same loss of first the green and blue PMs and  

this time forming a temporary river, however, as a river of so called fixed points passes through 

the locations where the previous green, purple, blue, and black FPs had been (in that order, moving 

up the figure from the bottom in panel E). This behavior would appear to be random at first glance 

to an experimenter in a lab setting, and indicates the potential need for longer observation periods 

a or other measures for pattern determination if one is not to miss the existence of larger macro 

patterns of recurrent behavior that would not be visible with a cursory examination of firing traces 

alone. Finally, at strong coupling, we again see the king of the mountain appear as the red PM 

basin of attraction dominates the entire initial condition set. 

An  examination of the entire bifurcation diagram (Figure 3.11) indicates consistency in this king  
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Figure 3.10  King-of-the-mountain asymmetric escape case 

When synapse strengths g31 and g32 are very small only a grey river (slipping phase difference) 

exists (A). With increasing g31 and g32 synapse strengths the red PM emerges with a small basin 

of attraction area (B). With further increasing g31 and g32 synapse strengths a symmetric system 

with all TWs and PMs having nearly equal basins occurs (C). As the g31 and g32 synapse 

strengths continue to increase, the green and blue PMs disappear as they merge with saddle 

nodes (D). With further increase, the TWs bifurcate and disappear, replaced by a river, and only 

the red PM also remains (E). With the strongest coupling simulated, the river bifurcates and only 

the red PM remains (F). Parameters: Iapp = 0.57, gij = 0.001 except g31 = g32 = 0.00001, 0.00065, 

0.001, 0.0011, 0.00136, and 0.0025. 
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of the mountain behavior and the ability of the red PM to fully dominate all ICs for nearly all 

values of Iapp when the outgoing connections from cell 3 are sufficiently strongly inhibitory. At 

low connection strengths, we observe dominance of the other two PMs for low values of Iapp within 

the release mechanism range, but an almost immediate shift to river behavior with semi phase-lock 

 

Figure 3.11   King-of-the-mountain bifurcation diagram 

Bifurcations occurring in the bi-parametric space varying Iapp and g31 = g32. Light green 

represents purely TW, blue represents purely PM, dark green represents both PM and TW 

rhythms, gray represents purely phase-slip and grey blue is both phase-slip and PM. Transitions 

between these regions indicate torus or pitchfork bifurcations. Specific examples are shown in 

Figures 3.9 and 3.10, these examples’ values are represented by the points on the dashed and 

barred lines. The circles on the bottom horizontal line are the release case samples shown in 

Figure 3.9 as phase difference portraits. And the top horizontal line circles are the sampled 

escape cases in 3.10. The vertical line represents the point where network synapses are fully 

symmetry, g31 = g32 = gij.  
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between nodes 1 and 2 for all other values of Iapp. This river behavior is tempered somewhat with 

weak to symmetric coupling, in which we may observe the emergence of other PM or TW patterns 

as the system passes through full symmetry. These patterns are invariably lost, however, as the red 

basin of attraction gains dominance in most cases with strong g31 and g32 coupling. One interesting 

exception exists however, nearest the upper right knee of the cubic nullcline as high values of Iapp 

position the nullclines in proximity to this region. We observe cases nearest the knee, for 

particularly high Iapp values, in which river-like behavior may again occur even to the exclusion of 

the king-of-the-mountain red PM. 

3.1.4 Clockwise-Biased Motifs 

The final fixed asymmetric case examined is the clockwise case, in which we strengthen all 

clockwise connections (g12, g23, and g31) simultaneously. The intuitive expectation, that this will 

result in traveling wave dominance at either end of the coupling strength spectrum explored, is 

precisely observed. Of note, however, is the way in which the transition from counterclockwise to 

clockwise traveling wave dominance occurs as it typically passes through a regime in which all 

five fixed points exist for both release and escape mechanisms (Figure 3.13). This can be seen in 

the release example shown (Figure 3.12), in which we first observe the simultaneous emergence 

of all three pacemakers (1 to 4 FP transition) at a critical coupling strength value (B’), followed 

quickly by the disappearance of the black clockwise TW pattern as its FP turns into a repellor. We 

then observe the mirror of this, in which there is a 3 to 4 fixed point transition (D’), as the 

counterclockwise TW disappears with increased clockwise coupling strengths, and then the 

simultaneous disappearance of all three pacemakers (E’) and dominance of the counterclockwise 

traveling wave. At very strong coupling we see the return map approach showing trajectories begin  
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Figure 3.12  Clockwise asymmetric release case 

When synapse strengths g12, g23 and g31 are very small only the black TW exists (A). With 

increasing synapse strengths g12, g23 and g31 the black TW basin of attraction shrinks to a 

relatively small area while the three PMs emerged and their basins of attraction are large and 

relatively equal in area to each other (B). As the g12, g23 and g31 synapses are further increased 

the three PMs and their basins of attraction remain relatively constant while the black TW 

disappears (C) and then the purple TW emerges (D). With even greater strengths of g12, g23 and 

g31 simulated the purple TW grows and takes all network phase difference space (E). With the 

strongest synapse strengths used the traces become jagged and cross paths do to hard locking (F). 

Parameters: Iapp = 0.4, gij = 0.001 except g12 = g23 = g31 = 0.0005, 0.00065, 0.001, 0.00135, 

0.0016, and 0.002. 
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Figure 3.13  Clockwise asymmetric escape case  

When synapse strengths g12, g23 and g31 are very small only the black TW exists (A). With 

increasing synapse strengths g12, g23 and g31 the black TW basin of attraction area shrinks while 

the three PMs emerged and their basins of attraction are relatively equal in area to each other (B). 

As the g12, g23 and g31 synapses are further increased the three PMs basins of attraction remain 

relatively constant while the purple TW emerges and the black TW is contained within an 

invariant circle formed by three saddles (C). With greater synapse strengths, the black TW 

disappears and the purple TW’s basin of attraction grows (D and E). With even greater strengths 

of g12, g23 and g31 simulated the purple TW grows and takes all network phase difference space 

with the traces becoming a little jagged do to hard locking (F). Parameters: Iapp = 0.5886, gij = 

0.001 except g12 = g23 = g31 = 0.0005, 0.000743, 0.001, 0.00116, 0.00132, and 0.002. 
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to break down, as was mentioned in the methods section. Rapid convergence makes the trajectory 

representation choppy and unclear, and the phase basin visualization might be more conducive it 

we didn’t already know what was happening here from panel E’.  

 

Figure 3.14   Clockwise asymmetric bifurcation diagram 

Bifurcations occur between differently colored regions, in the bi-parametric space varying Iapp 

and g12 = g23 = g31. Very light green represents networks with only one TW, light green 

represents networks with both TWs, blue represents purely PM, dark green represents both types 

of rhythms Transitions between these regions indicate torus or pitchfork bifurcations. Specific 

examples are shown in Figures 3.12 and 3.13, these values are represented by the points on the 

dashed and dotted lines. The points on the bottom horizontal line are the release case samples 

shown in Figure 3.12 as phase difference portraits. The points on the top horizontal line are the 

sampled escape cases in Figure 3.13. The vertical dashed line represents the point where network 

synapses are fully symmetry, g12 = g23 = g31 = gij.  
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The escape mechanism panels look nearly identical (Figure 3.13) as the same transitions are 

observed.  A transition from the black clockwise TW to the purple counterclockwise TW occurs 

again via the formation of the 3 PMs, disappearance of the black TW, appearance of the purple 

TW, and disappearance of the 3 PMs. In this figure, some of these transitions are discernable in 

finer detail, as the escape mechanism is more conducive to permitting transitory limit cycle 

behavior previously observed as TWs appear or disappear (C). We are also able to more clearly 

see the respective PM FPs approaching the purple TW FP (and the saddle nodes between them 

moving further from the purple TW FP) just prior to merging with its basin of attraction. 

A broader examination of the bifurcation diagram (Figure 3.14) indicates the universality of this 

trend at both ends of the Iapp spectrum in which both release and escape mechanism behaviors are 

observed. In the intermediate region of more oscillatory behavior, we observe a lack of PM pattern 

generation entirely, with transitions occurring in which we see the black clockwise TW pattern 

transition to a purple counterclockwise TW through a region in which both TWs exist and the 

basin of attraction for each is gradually consumed by the other. This is less apparent using our 

traditional all-or-nothing color coding for PM, Mixed, or TW regimes, so here we have chosen to 

color code the differences between 1- or 2-TW regimes even though this has not been done in the 

previous figures. 

3.2 Discussion 

In previous work, as well as an examination of the symmetric motif within this research, we 

observe that differing affects are frequently observed within release and escape mechanism 

regimes as coupling strength between affected cells is increased. PM behaviors are prevalent in 

release regimes at lower Iapp values (here we roughly approximate ranges below 0.44) while TW 

behaviors increase in dominance with increasing Iapp, almost entirely dominating escape regimes 
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(approximately 0.55 and above) except at very low coupling strengths. The exact transition into, 

or out of, each of these mechanisms is only approximate and depends on the nature of the system 

and also upon the nature of hard-locking behavior. For simplicity, results observed are summarized 

in terms of these thresholds. Intermediate Iapp ranges represent more standard oscillatory systems 

in which the dynamics are largely unaffected by proximity of the nullclines to one another.  

 

Table 3.1 Polyrhythmicity and dynamic ranges in release network motifs 

 

Comparison of symmetric motif dynamic transitions and ranges of behavior between the release 

case (Table 3.1) and the escape case (Table 3.2), show not only differences in the dominant 

rhythms generated (PM for release, and TW for escape) but also orders of transition which are 

essentially opposite one another. In these two tables, an X is used to indicate that a particular 

rhythm or rhythm combination exists, with the value listed below it representing the Iapp ranges for 

which they are observed. For example, we see that PM-only behaviors do exist for all Iapp values 

within the release mechanism but that TW-only behaviors only exist for Iapp >0.43. It is important 

to note that both rhythms are observed in the mixed PM/TW regions as well, but not independently. 
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For patterns not present at all Iapp values, the coupling ranges for which they are observed are also 

included, and we see for example that TW-only patterns within the release mechanism are 

observed below the Iapp release threshold (0.44) mentioned for gij below 0.018. The asterisks 

indicate that the given value holds except for the small regions of exception observed in the 

bifurcation diagrams at very weak coupling, or cases in which the nullclines are nearly tangent. 

Comparisons between the two tables in this manner elucidates some of the very different behaviors 

already observed and described in previous sections. This differences are most opposite in the 

symmetric and mono-biased motifs, though phase-slipping behavior tends to occur most frequently 

within escape mechanism ranges of Iapp. Phase-slipping behavior is prolific within the pairwise-

biased motif and additional examples can be found in Chapter 5. 

 

Table 3.2 Polyrhythmicity and dynamic ranges in escape network motifs 

 

In nearly all motifs explored, unique behavior occurs around full symmetry where the strength of 

the connection being manipulated is close to those being held fixed at 0.0010. This is most apparent 

in the clockwise-biased motif in which the bifurcation looks nearly symmetrical around the vertical 
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line representing this equipotent connectivity, but is also clear in the extended ‘peaks’ and 

‘troughs’ of PM/TW mixed behavior observed for the pairwise-biased and king-of-the-mountain 

motifs. Pacemaker behavior is least likely to occur in clockwise-biased motifs, as the nature of this 

connectivity induces traveling wave behavior at both weak and strong coupling, and we see PM-

only behavior only near symmetry for very small ranges of g12=g23=g31, and only at the extremes 

of both release and escape Iapp.  

Traveling waves and pacemakers are obtained in both the inherently bursting release and quiescent 

escape mechanisms; each is dominated more by one (PM and TW respectively) for most motifs 

and the other occurs mostly at low or asymmetric coupling. Post-inhibitory rebound described in 

Chapter 5 is characterized by a small growing traveling wave regime as coupling increases, and 

no pacemaker behavior observed with stereotypical dynamics. The unexpected regularity with 

which different phase-slipping behaviors can be observed in the mono-biased or the two double-

connection motifs lends itself to analysis of macro-scale rhythmic behaviors in which we may see 

periods of apparently stable patterns interspersed by fast rhythm switching to another apparently 

stable rhythm without the need for external stimuli. These may present novel applications to 

experimental research of small local networks in which multi-stable rhythm production can be 

observed with the same connectivity. Rhythm switching for non-phase-slip systems can also be 

readily obtained in both release and escape cases, either by external stimulus in the form of a 

current pulse (abrupt temporary shift up or down in effective Iapp value seen in the bifurcation 

diagrams) or by either natural or artificial connection plasticity (abrupt temporary shift up or down 

in effective gij value seen in the bifurcation diagrams). This has many potential applications for 

both the mathematician and the experimentalist, and some of these will be discussed in further 

detail in the following chapters.   
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4     KEY BIFURCATIONS AND DETAILED TRANSITIONS 

A primary focus of this work has been the identification of key bifurcations in rhythm transition 

and rhythmogenesis within single or modular 3-node inhibitory networks. Many of these 

transitions have been described in the previous two chapters in the larger context of the release 

and escape mechanisms within both symmetric and several asymmetric circuit connectivity 

frameworks. Bifurcations represent qualitative changes in the dynamics of a system produced by 

varying parameters, in this research the primary focus being the connectivity strength, gij, and the 

current or pulse stimulus, Iapp, parameters with some additional discussion of manipulation of the 

fast-slow separation variable, ε. Use of the autonomous ordinary differential equations (ODEs) 

described in Chapter 2, represented for generality as 

𝑥̇ = 𝑓(𝑥, 𝛼), 𝑥 ∈ R𝑛, 𝛼 ∈ R𝑝,  Equation 4.1 

where f is a smooth function and α represents the parameter changed, permits numerical 

determination of the occurrence of a bifurcation. Bifurcations occur at parameter α = α0 if there is 

parameter value α1 close enough to α0 with topologically inequivalent dynamics from those at α0. 

The number and type of stable equilibria or periodic orbits can change with shifts from α0 to α. 

The production of bifurcation diagrams dividing the α parameter space into topologically 

equivalent systems, as demonstrated in the previous chapters, is a primary goal of bifurcation 

theory, with bifurcations occurring at transitions between these regions. 

Identification of ubiquitous bifurcation patterns has resulted in the naming of key types of 

transition dynamics, each with associated defining equations that locate them within a family with 

normal forms (where they exist) exemplifying them. Bifurcations may be viewed as structural 

stability failure within a family type, and here we discuss key families identified in this work. 

These include those previously identified in symmetric 3-node networks, Andronov-Hopf or torus 



66 

bifurcation and pitchfork bifurcation, and additional bifurcations identified in this work for 

asymmetric systems, three types of saddle-node bifurcation representing simple, homoclinic, and 

heteroclinic bifurcations. An example of the generic family type and behavior, as well as specific 

examples of these within the framework of this work varying parameters gij and Iapp, is described 

here. As previous descriptions of Andronov-Hopf and pitchfork bifurcation were discussed in 

terms of changing parameter Iapp, [Chapter 1 and 39], focus here will be on changes in gij. 

4.1 Andronov-Hopf bifurcation 

An Andronov-Hopf bifurcation occurs with the formation of a limit cycle from equilibrium in 

ODE dynamical systems, with equilibrium stability changing through a pair of imaginary 

eigenvalues. This transition can be either subcritical or supercritical, resulting in an unstable or 

stable  limit  cycle,  respectively,  within an invariant two-dimensional  manifold [43-45].  For this 

 

Figure 4.1   Subcritical Andronov-Hopf bifurcation  

Subcritical Andronov-Hopf bifurcation resulting in an unstable limit cycle within an invariant 

two-dimensional manifold. The origin is a stable limit cycle bounding the basin of attraction of 

the stable focus for β < 0 (A) and unstable for β ≥ 0 (C), weakly at β = 0 (B), while a unique 

unstable limit cycle exists for β < 0 (from [43]). 

 

system, we assume a Jacobian matrix 𝐴(𝛼) = 𝑓𝑥(𝑥0(𝛼), 𝛼) with a pair of complex eigenvalues 

𝜆1,2(𝛼) = 𝜇(𝛼) ± 𝑖𝜔(𝛼)    Equation 4.2 
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where μ(0) = 0 and ω(0) = ω0 > 0 represents the case it becomes purely imaginary.  If non-

degeneracy conditions hold, the normal form for an Andronov-Hopf system is topologically 

equivalent locally near the equilibrium and is given by 

𝑦̇1 = 𝛽 ∙ 𝑦1 − 𝑦2 + 𝜎 ∙ 𝑦1(𝑦1
2 + 𝑦1

2),   Equation 4.3 

𝑦̇2 = 𝑦2 + 𝛽 ∙ 𝑦1 + 𝜎 ∙ 𝑦2(𝑦1
2 + 𝑦1

2),   Equation 4.4 

where 𝑦 = (𝑦1, 𝑦2)𝑇 ∈ R2, 𝛽 ∈  R, and 𝜎 = 𝑠𝑖𝑔𝑛 𝑙1(0) = ±1. And l1(λ) is the first Lyapunov 

coefficient. In the subcritical Andronov-Hopf bifurcation (Figure 4.1), σ = +1 and the origin in the 

normal  form  is  asymptotically  stable for β < 0 and unstable for β ≥ 0 (weakly at β = 0), while a 

 

Figure 4.2   Supercritical Andronov-Hopf bifurcations 

(A) 2-D supercritical Andronov-Hopf bifurcation resulting in a stable limit cycle within an 

invariant two-dimensional manifold. The origin has an equilibrium which is asymptotically 

stable for β ≤ 0 (weakly at β = 0) and unstable for β > 0, while a unique and unstable limit cycle 

exists for β < 0 (from [43]). (B) 3-D supercritical Andronov-Hopf bifurcation with similar 

evolution of stability (from [44]). 
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unique and unstable limit cycle exists for β < 0. In the supercritical Andronov-Hopf bifurcation 

(Figure 4.2), σ = -1 and the origin in the normal form has an equilibrium which is asymptotically 

stable for β ≤ 0 (weakly at β = 0) and unstable for β > 0, while a unique and unstable limit cycle 

exists for β < 0. There is a unique and stable circular limit cycle that exists for β > 0 with has radius 

√𝛽. This logic can be extended to multi-dimensional cases where n ≥ 3, the supercritical 

Andronov-Hopf bifurcation in this case also visualized in Figure 4.2. This type of bifurcation 

occurs primarily within the symmetric motif explored in this research, with the appearance, or 

disappearance, of both traveling waves simultaneously.  

 

Figure 4.3   Torus bifurcation via changes in either Iapp or gij 

Changes in either Iapp or gij can lead to a torus bifurcation, here resulting in the disappearance of 

the CCTW pattern (purple traces near (∆12, ∆13) = (2/3, 1/3)). The left quad of panels is taken 

from [39], where this type of bifurcation was discussed in the context of transitions in Iapp. The 

right quad of panels represents this same transition at approximately the same Iapp range as in 

[39] but by increasing coupling strength, gij. The transition occurs more rapidly due to the nearly 

horizontal bifurcation transition (as observed in Figure 2.5(E) where the dark green region meets 

the blue PM region). The size of the basin of attraction diminishes (A-B) before briefly forming 

an unstable limit cycle (C), which is the lost as the point becomes unstable (D). Parameters: Iapp = 

0.41, gij = 0.0130, 0.0140, 0.0149, and 0.0160. 
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As previous work [39] focused primarily on these transitions changing the parameter Iapp, we focus 

here and in the remaining bifurcations discussed on transitions in parameter gij. Side-by-side 

zoomed in views of a torus bifurcation involving disappearance of the counter-clockwise traveling 

wave (CCTW) are shown in Figure 4.3, one from [39] in which the bifurcation was induced by 

changing Iapp and the other showing the same bifurcation via increasing gij. We clearly observe the 

size of the basin of attraction decreasing until the brief formation of a brief unstable limit cycle 

near the critical value of gij, after which stability is lost and trajectories diverge, rather than 

converge, from this fixed point in a subcritical bifurcation.  In Figure 4.4, we observe this same 

transition but in a view in which the full system and both traveling waves can be observed. This is 

a more focused view of the symmetric release case described in Figure 2.8, and follows the same 

evolution of pattern transitions as in Figure 4.3, but with changes in gij much closer placed to the 

bifurcation point.  

Another example of a subcritical Andronov-Hopf bifurcation, for the escape case that was 

described first in Figure 2.5, can be seen in Figure 4.5. Here, however, we observe a reverse order 

in the transitions, with the formation of traveling waves with increasing gij. This is one key finding 

of Chapter 2, in which we identified reverse pattern formation between the release and escape 

mechanisms and can be readily observed in the bifurcation diagram there. This is due to the nature 

of the two mechanisms. The release mechanism, involving inherently bursting cells, occurs when 

neurons in the active state stop firing of their own accord, thereby releasing an inactive cell from 

inhibition, the effect of this being movement of the cubic or fast nullcline back to the right (Figure 

2.6), restoring the bursting limit cycle for a given cell. This mechanism therefore promotes 

pacemaker behavior at lower values of gij due to limited inhibitory effects that would otherwise 

drive the cells to split the cycle. The escape mechanism, involving cells that typically fire tonically, 
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occurs when an inactive cell passes threshold and begins firing, thereby applying inhibition to any 

currently active cell. This allows the otherwise tonic firing cell to escape from the active state and 

therefore promotes traveling wave behavior at lower values of gij due to limited inhibitory effects 

that allow the cells to continue driving toward tonic activity until coupling is strong enough to 

cause  one  cell  to  dominate  dynamics.  While only symmetric examples have been shown here, 

 

Figure 4.4   Full view of symmetric release Andronov-Hopf bifurcation 

Increasing coupling strength of the network causes an Andronov-Hopf, or torus, bifurcation, 

resulting in the disappearance of both traveling waves (black and purple traces near (∆12, ∆13) = 

(1/3, 2/3) and (2/3, 1/3)). The size of the basins of attraction have diminished (A) to the point of 

briefly forming unstable invariant curves emerging from one-way heteroclinic connections 

(triangles) between 3 close saddles (B), which is the lost as the point increasingly unstable (C-

D). Parameters: Iapp = 0.4155, gij = 0.015099, 0.0.015347, 0.0.15594, and 0.015842. 
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some cases of this may be observed in asymmetric motifs briefly transitioning at full network 

symmetry (near gij=0.01, unless otherwise indicated, and represented by the vertical line in 

bifurcation diagrams in Chapter 3) and is most readily observed via transitions in Iapp and is 

therefore not explored in detail here. 

 

Figure 4.5   Example of symmetric escape Andronov-Hopf bifurcation  

Increasing coupling strength of the network causes stable invariant curves and super-critical 

Andronov-Hopf bifurcations of traveling waves, resulting in the appearance of both TW patterns 

(black and purple traces near (∆12, ∆13) = (1/3, 2/3) and (2/3, 1/3)). A purely pacemaker system 

(A) evolves to the point of briefly forming unstable limit cycles (B-C), which are then lost as the 

point increasingly stable and acquire increasingly large basins of attraction (D, and Figure 2.5).  

Parameters: Iapp = 0.5886, gij = 0.000248, 0.000495, 0.00099, and 0.001733. 
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4.2 Pitchfork bifurcation 

A pitchfork bifurcation is a local bifurcation that occurs when a system transitions from one to 

three fixed points, visualization of which looks much like a pitchfork. Much like the Andronov-

Hopf bifurcation just discussed, pitchfork bifurcations can be either subcritical or supercritical.  As 

in the Andronov-Hopf case, a normal form exists for pitchfork bifurcations and is given by the 

general relationship 

𝑑𝑥

𝑑𝑡
= 𝛼 ∙ 𝑥 ± 𝑥3    Equation 4.5 

for the subcritical (+) and supercritical (-) forms, respectively. This version of  𝑥̇ = 𝑓(𝑥, 𝛼) is 

described by a one-parameter function 𝑓(𝑥, 𝛼) with 𝛼 ∈ R where f is an odd function in which the 

first and second order derivatives of 𝑓(0, 𝛼0) equal zero while the third order derivative does not. 

This system has a pitchfork bifurcation at (𝑥, 𝛼) = (0, 𝛼0), with the form given by the third 

derivative as follows. 

𝜕3𝑓

𝜕𝑓3
(0, 𝛼0) {

> 0, 𝑠𝑢𝑏𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
< 0,    𝑠𝑢𝑝𝑒𝑟𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙

  Equation 4.6 

 

Figure 4.6   Pitchfork bifurcations  

Supercritical (A) and subcritical (B) pitchfork bifurcations. Solid lines represent stable points, 

while dotted lines represent unstable ones. Arrows indicated direction of convergence or 

divergence, stable points occurring wherever both lines are incoming (modified from [41]). It is 

not the direction of the pitchfork shape that makes the bifurcation sub- or super-critical, but only 

the stability (solid) or instability (dashed) of the outer lines [41, 46].  
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In the subcritical case, one stable equilibrium exists at x = 0 while two unstable equilibria exist at 

𝑥 = ±√−𝛼 for α < 0. Bifurcation occurs at α = 0, after which the equilibrium that existed at x = 0 

becomes unstable. In the supercritical case for α < 0 there is only a single stable equilibrium appear 

at  𝑥 = ±√𝛼.  It  is  important  to  note  that  the direction of the occurrence of this pitchfork is not  

 

Figure 4.7   Pitchfork bifurcation via changes in either Iapp or gij 

Changes in either Iapp or gij can lead to a pitchfork bifurcation resulting in the disappearance of 

the PM patterns. The top two panels are taken from [39], with a zoomed in view of the collapse 

and disappearance of the blue PM pattern (near (∆12, ∆13) = (1/2, 1/2)), where this type of 

bifurcation was discussed in the context of transitions in Iapp. The bottom two panels represent a 

full view of this same type of transition for all three PMs, (near (∆12, ∆13) = (0, 1/2), (1/2, 1/2) 

and (1/2, 0)), but by increasing coupling strength, gij. The basins of attraction have already 

diminished in size (A) and continuing to decrease until all three FPs becomes unstable and drive 

all initial conditions away (B). Parameters: Iapp = 0.5886, gij = 0.020792 and 0.021535. 
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what matters, but the stability or instability of the outer branches of the pitchfork in each case. 

Pitchfork bifurcations typically occur in flows for systems with symmetry, and this is also the case 

in research in this work in which we observe pitchfork bifurcations occurring only with the 

appearance or disappearance of all three pacemaker rhythms at once. Cases where only one or two 

pacemakers are generated will typically fall into one of the saddle-node bifurcations next. In Figure 

4.7, we observe one such example of subcritical pitchfork bifurcation in which the basins of 

attraction for the three pacemaker rhythms have already diminished significantly in size with 

increased gij. As connectivity continues to increase, these basins diminish even further until all 

three fixed points collide with a nearby saddle and are obliterated, becoming unstable and now 

driving all trajectories away toward one of the traveling wave basins. 

4.3 Saddle-node bifurcations 

Saddle-node bifurcations occur when two fixed points, or equilibria, within a continuous 

dynamical system collide, annihilating one another in the process. This type of bifurcation is 

sometimes also called a tangential, limit point, or fold (for discrete dynamical systems) bifurcation 

and occurs when there is only one zero eigenvalue for the critical equilibrium [41-45]. For this 

system, we assume that α = 0 and that the system has an equilibrium x0 = 0 with a Jacobian matrix 

𝐴(𝛼) = 𝑓𝑥(0,0) with simple eigenvalue, 𝜆1 = 0. As α traverses α = 0, a critical saddle-node 

equilibrium occurs when the two equilibria collide before then disappearing. If non-degeneracy 

conditions hold, the normal form for a one-dimensional saddle-node system is topologically 

equivalent locally near the origin to 

𝑦̇ = 𝛽 + 𝜎(𝑦2),    Equation 4.7 

where 𝑦 ∈ R, 𝛽 ∈  R, and 𝜎 = 𝑠𝑖𝑔𝑛 𝑎(0) = ±1. This form has one stable and one unstable 

equilibria at 𝑦1,2 = ±√−𝜎 ∙ 𝛽 when σ∙β < 0, one critical equilibrium at y0 = 0, and no equilibria 
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for σ∙β > 0. For asymmetric motifs, the appearance or disappearance of traveling wave patterns 

occurs primarily through this bifurcation, as opposed to the exclusively Andronov-Hopf 

bifurcation observed within symmetric systems. Two additional types of special saddle-node 

bifurcations, heteroclinic and homoclinic, will also be discussed here, as they make frequent 

appearance within most of the asymmetric motifs explored in this research.  

 

Figure 4.8   Saddle node bifurcation  

A saddle-node bifurcation in which there exist one stable and one unstable equilibria at β < 0 

(A), one critical equilibrium at β = 0 (B), and no equilibria for β > 0 (C) (taken from[42]).  

 

In Figure 2.9, an example of this transition can be observed in reverse order for the release case 

within a mono-biased motif network. Here the counter-clockwise traveling wave forms with the 

appearance of both the node where this fixed point occurs, near (∆12, ∆13) = (2/3, 1/3), in addition 

to another saddle between the basin of attraction of the blue pacemaker and the newly formed 

traveling wave. Both the stable node and unstable saddle appear as the system passes through a 

critical value of g31, formation of the traveling wave occurring via saddle-node rather than 

Andronov-Hopf bifurcation. Similar transitions can be observed in the formation or disappearance 

of pacemaker patterns, and have been shown in the results of Chapter 3 and will be described in 

greater detail within the detailed bifurcation diagrams for the mono-biased and king-of-the-

mountain (KOM) motifs shown later in this chapter. 
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Figure 4.9   Simple saddle-node bifurcation in mono-biased network 

Reverse order of saddle-node bifurcation, in which a single unstable point exists (A), the whorl 

around the instability increasing before passing the critical g31 value at which point a single 

attractor equilibrium (not observed) briefly occurs. Passing through this critical point, the 

formation of a stable counter-clockwise wave (node) appears along with an additional saddle 

between the blue and purple basins of attraction (B). The CCTW basin (near (∆12, ∆13) = (2/3, 

1/3)) continues to grow thereafter. Parameters: Iapp = 0.4125, gij = 0.001 except g31 = 0.00040541 

and 0.00067568. 

 

4.3.1 Heteroclinic saddle-node bifurcation 

A heteroclinic saddle-node bifurcation is global, rather than local, and involves a heteroclinic 

cycle. These can be either resonance bifurcations, in which stability of the heteroclinic cycle 

changes when an algebraic eigenvalue condition for the equilibria is satisfied and accompanied by 

the creation or destruction of a periodic orbit, or transverse bifurcations, in which the stability of 

the heteroclinic cycle also changes when the real part of a transverse eigenvalue of an equilibrium 

passes through zero [40, 47]. One example of this can be observed in Figure 4.10 for the double-

biased release mechanism, in which we observe red and blue basins of attraction that have already 

shifted from their usual positions (near (∆12, ∆13) = (1/2, 1/2) and (1, 1/2)) as the saddles between 
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the two basins each move closer to one of the two FPs. This transition is symmetric and basin lost 

in one is gained by the other, and vice versa, as they move closer together. The saddles and nodes 

ultimately collide and obliterate one another, leaving only the repellor near the origin, the green 

FP, and the two remaining saddles that had resided between the green PM and the other two. These  

 

Figure 4.10   Heteroclinic saddle-node bifurcation in pairwise-biased network 

Example of heteroclinic saddle-node bifurcation in which the red and blue PM FPs (usually near 

(∆12, ∆13) = (1/2, 1/2) and (1, 1/2)) can be observed to shift. The saddles between both basins also 

shift closer to one or the other of these FPs (A-B) until colliding and annihilating saddles and 

nodes pairwise to form a heteroclinic connection and giving rise to an invariant curve wrapping 

around the torus located between the remaining two saddles bounding the green basin of 

attraction. Parameters: Iapp = 0.3985, gij = 0.001 except g31 = g13 = 0.0012162, 0. 0012838, 

0.0013514, and 0.0014865. 
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two saddles continue to function as normal, and trajectories caught within what used to once belong 

to the red and blue basins of attraction now are continuously repelled from the one remaining stable 

fixed point. This results in a heteroclinic loop residing between the two remaining saddles and in 

an apparently semi-stable phase slip with the red and blue cells appearing to fire essentially in anti-

phase while slipping leftward (at a quicker pace) in relation to the green cell. Similar rivers of 

phase-slip behavior occur in many of the asymmetric motifs because of this heteroclinic saddle-

node bifurcation and some additional examples, not already shown in Chapter 3, will be described 

in Chapter 5 where other unique cases or regular periodic slip with differing patterns can be 

observed in greater detail. 

4.3.2 Homoclinic saddle-node bifurcation 

Homoclinic bifurcations are also global ones which may occur through collision of a saddle point 

with a periodic orbit. When this occurs, the periodic orbit grows until collision, resulting in the 

birth of a limit cycle when the saddle-node disappears. The period of this cycle tends to infinity as 

the parameter approaches its bifurcation value, becoming a homoclinic orbit after which no 

periodic orbit exists any longer [42]. This system is most commonly observed in systems where 

only one parameter is changing asymmetrically, and is therefore most dominant in mono-biased 

networks. 

An example of a homoclinic saddle-node bifurcation occurring within this research can be seen in 

Figure 4.12, in which we see this within the framework of an escape case mono-biased network 

changing only the parameter g31. Here we observe a network already pushed to the limits of both 

Iapp and g31, in which trajectories already show significantly abnormal behavior with only two 

stable fixed points converging all initial conditions to either the blue or red PM patterns. Some 

initial conditions are forced to very rapidly converge (significant white space in the figure) as 
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parameters are strong enough to drive them to regimes of behavior less abnormal to the dynamics 

of this system. The red PM dominates in a unique fashion, having acquired what was once the 

green PMs basin as well as significant portions of both wave basins. A whorl of unique behavior 

remains as a residual effect of the loss of stability of the CTW much earlier, when it previously 

collided with the saddle between it and the blue PM in a standard saddle-node bifurcation. Those 

residual  traces  now  converge to the blue PM. As g31 increases,  we again observe its node or FP 

 

Figure 4.11   Homoclinic bifurcations of a saddle and saddle node  

(A) A “small” or “type I” homoclinic bifurcation occurs when a periodic orbit collides with a 

saddle point. For small parameter values (left), there is a saddle point at the origin and a limit 

cycle in the first quadrant. As the bifurcation parameter increases (middle), the limit cycle grows 

until it becomes a homoclinic loop of the saddle point of infinite duration. When the bifurcation 

parameter increases further (right), the limit cycle disappears (taken from [https:// 

en.wikipedia.org/wiki/Homoclinic_bifurcation]). (B) A saddle-node homoclinic bifurcation on 

an invariant circle in a plane: a 1-D unstable separatrix, Γu, comes back to the saddle-node with 

the characteristic exponents λ1<0 and λ2=0, as time approaches infinity. After the saddle-node 

has vanished, a single, stable periodic orbit emerges from its homoclinic loop 𝛤 (from [42]). 
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and the saddle separating its traces (near ((∆12, ∆13) = (1/5, 3/5)) moving closer together. These 

ultimately collide in a homoclinic saddle-node bifurcation, obliterating one another and resulting 

in a homoclinic loop trapped between the two remaining saddles on either side of the blue basin 

of attraction. 

 

Figure 4.12   Homoclinic saddle-node bifurcation in mono-biased network 

The red basin of attraction has already acquired that of the green PM, its FP having shifted left 

and up (A). The remaining red node and saddle between what used to be the red and green FPS 

(now near ((∆12, ∆13) = (1/5, 3/5)) continue to move toward one another (B), eventually colliding 

and obliterating one another (C) to form a homoclinic loop between the remaining Blue FP 

saddles. With increasing g31 strength, this homoclinic loop becomes more emphatic (D). 

Parameters: Iapp = 0.582, gij = 0.001 except g31 = 0.0036486, 0.0040541, 0.0044595, and 

0.0052703. 
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4.4 Bifurcation transitions with increasing fast-slow separation 

Although the focus of this research has been primarily on shifts within the (gij, Iapp) bi-parametric 

space, shifts in the fast-slow separation variable, ε, have also been noted and it is important to 

return briefly to the effects of these again. This work has focused primarily on systems with only 

moderate fast-slow separation, with ε=0.30, due to the presence of a broader range of rhythms and 

rhythm transitions which can then be generally applied backward to other parameter shifts by 

examining how these transitions shift with changes in each. Previous work [39] touched on the 

shift to or from pacemaker behavior by manipulating this variable, and this is verified and extended 

upon here. In the sections below, work done on symmetric motifs is reiterated upon with additional 

results from this research, followed by similar comparisons for the mono-biased motif. Other 

network connectivity has not been examined in this detail but similar transitions and behaviors are 

expected to exist within these as well. 

4.4.1 Fast-slow transitions in symmetric motifs 

For symmetric inhibitory 3-node networks, fast-slow separation has the effect of controlling the 

appearance or disappearance of purely pacemaker regimes within the bifurcation diagrams. At 

small values of ε, which correlate with high fast-slow separation, transitions between the upper 

and lower branches of the cubic nullcline occur too fast to permit gathering of the cells near either 

knee. This clustering near the knees is what permits pacemaker rhythms to occur in either release 

or escape mechanisms, as it permits one cell to get released and become clearly inhibitory on the 

other two (or to be escape activity prior to the other two, depending upon the case). At high-fast 

slow separation the system dynamics are too fast to permit this clustering, and pacemaker rhythms 

are discouraged. In Figure 4.13, we observe this effect in action, where no purely pacemaker 

behaviors are observed at high fast-slow separation (seen in panel A) and only appear in mixed 
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PM/TW regimes at ranges where nullclines become proximal near either cubic knee.  These mixed 

patterns occur universally for release case ranges (Iapp < 0.45) in this panel, but for higher fast-

slow separation (typically ε ≤ 0.05) can completely disappear. Otherwise they first make 

appearance at system extremes in the upper left quadrant, representing very weakly coupled escape 

cases (Iapp > 0.55),  and in the mid-lower right quadrant, representing strongly coupled oscillatory 

 

Figure 4.13   Increasing PM activity with decreased symmetric fast-slow separation  

At high fast-slow separation (A) no purely pacemaker behaviors are observed in symmetric 3-

node systems, mixed PM/TW behavior does exist universally within the release ranges for Iapp, 

typically below 0.45, and at system extremes (upper left and lower right quadrants representing 

very weakly coupled escape cases and strongly coupled oscillatory cases approaching release-

like behavior). With decreasing fast-slow separation we see minimal initial effect on the purely 

TW regimes but observe the gradual appearance of purely PM regimes, first at very strongly 

coupled oscillatory ranges approaching release-type behavior (B) and then at near-knee low 

values of Iapp within the release case (C). These continue to grow and merge (D) to occupy the 

entire lower right quadrant. With only moderate fast-slow separation (E), we see the appearance 

of a purely PM regime within the escape case in the upper left quadrant with seemingly even 

bifurcation transitions between all regimes (note that this panel is zoomed in to the one-fourth 

the gij range as the others). Andronov-Hopf bifurcations occurring with the appearance or 

disappearance of TW patterns (blue to dark green), and pitchfork bifurcations occurring with the 

appearance or disappearance of PM patterns (light green to dark green).  Parameters: Iapp = [0.39, 

0.6], ε = 0.1, 0.13, 0.15, 0.17, and 0.30, gij = [0, 0.1] for panels A-D, and gij = [0, 0.025] for panel 

E. Some results modified from [39] for lower values of ε. 
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cases (0.45 < Iapp < 0.55) approaching release-like behavior. With decreasing fast-slow separation, 

via increasing values of ε, the purely TW regime appears to be minimally effected initially but 

purely PM regimes gradually appear. This emergence occurs first at very strongly coupled 

oscillatory ranges approaching release-type behavior, continuing to grow, and then at values of 

Iapp approaching the lower-left knee of the cubic and residing well within the release case. These 

regions of purely PM behavior expand and merge to occupy the entire lower right quadrant. With 

only moderate fast-slow separation, in panel E we see the appearance of a purely PM regime within 

the escape case in the upper left quadrant (shown here at 4x magnitude, with gij only extending to 

0.025 rather than 0.1 as in the other panels) with clear, and seemingly highly linear, bifurcation 

transitions between all regimes. Only pitchfork bifurcations are observed at high fast-slow 

separation, with the appearance or disappearance of pacemaker patterns. Andronov-Hopf 

bifurcations begin to occur at higher values of ε, as it becomes possible for the system to exhibit 

purely PM behavior and gain or lose traveling wave patterns. 

4.4.2 Fast-slow transitions in mono-biased motifs 

Similar analysis of the effect of fast-slow separation on mono-biased inhibitory 3-node networks 

also appears to primarily control the appearance or disappearance of purely pacemaker regimes 

within the bifurcation diagrams. Unlike within the symmetric network, purely PM patterns appear 

to be able to exist at all values of ε explored (see Figure 4.14), but appear exclusively within weakly 

coupled release case systems at low values of ε. This is a result both greater propensity for release 

mechanisms to promote pacemaker-like behaviors and of the effect of a single connection that is 

much more weakly coupled than the rest. This results in one cell (here cell 3) have little or no 

inhibitory effect on another (here cell 1) and leads to systems in which blue and green pacemakers 

exist for low values of g31 release case examples (like in Figures 3.2, 4.9, and 5.6). High fast-slow 
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separation is not adequate to overcome this effect for this case. TW-only regimes have much 

greater dominance than previous, though, which is in part promoted by the single-connection 

effects by pushing systems within oscillatory and escape case ranges of Iapp to drive more to 

clockwise- or counter-clockwise-only traveling wave (CTW or CCTW) patterns for weak or strong 

values of g31, respectively. This asymmetry couples with the same effects discussed within the 

symmetric case, leading to much more prolific growth in general in pacemaker activity, leading to 

 

Figure 4.14   Increasing PM activity with decreased mono-biased fast-slow separation 

Unlike in purely symmetric systems, we observe the formation of purely-PM regimes at high 

fast-slow separation (A) due to both asymmetric coupling and the propensity of the release 

mechanism to drive toward such rhythmic activity. Purely-TW regimes dominated at low values 

of ε, but are rapidly forced to share both escape and release ranges of Iapp (Iapp < 0.45 and Iapp > 

0.55, respectively), and then give up almost entirely any formation the escape case. Cases of 

phase-slip are not shown here, for simplicity, but grow to occupy broad stretches of the escape 

case and all low values of g31 with decreasing fast-slow separation. Parameters: Iapp = [0.39, 0.6], 

ε = 0.05, 0.1, 0.15, 0.2, 0.25 and 0.30, and gij = 0.01 except g31 = [0, 0.025]. 
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the appearance in Figure 4.14 of larger regions of both mixed PM/TW and purely PM behavior 

with decreasing fast-slow separation. This asymmetry also leads to phase-slip behavior not seen 

in symmetric systems that was discussed in Chapter 3 and is continued with discussion of a more 

detailed bifurcation diagram in the next sections. For simplicity, as a comparison to the symmetric 

transitions in TW and PM behaviors just discussed, phase-slip is not shown in Figure 4.14 and 

only the three different colored regimes are displayed. For more detail for the ε = 0.30 case, see 

either Figure 3.3 or Figures 4.15-19. 

4.5 Detailed bifurcation analysis and overlay 

In the pattern generation and bifurcation analysis performed in Chapters 2-3, difference was not 

made in the number of each type of pattern present and regimes with either 1 or 2 TWs were simply 

classified as TW generically (other than in the clockwise case in Figure 3.14), as were 1, 2, or 3 

PMs as PM generically, etc. This permitted broad parameter sweeping for characteristic behaviors 

and transitions but did not tease out some additional specific bifurcation behavior existing within 

each of the PM, PM/TW, or TW regimes identified. Some of these specific transitions and 

bifurcations have been discussed within the context of specific examples in Chapter 3, where 

asymmetric motifs lead to additional bifurcation types, as well as earlier in this chapter in examples 

of each of the key bifurcations observed. More examples of unique rhythms and pattern-switching 

can be found in Chapter 5 as well, but here additional research has been made on the specific 

transitions and bifurcations within two of the key asymmetric motifs: the mono-biased and king-

of-the-mountain (KOM) asymmetric motifs. In the following sections, specific examination of 

each key rhythm type (1- or 2-TW, 1-, 2-, or 3-PM, and PS) is performed and transitions are 

described in terms of each of the types of bifurcations outlined earlier in this chapter. This permits 

much more comprehensive detail than in the previous bifurcation diagrams in Chapters 2 and 3 
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and is done with these two specific motifs with an eye toward coupling of networks and potential 

future steps described in Chapters 6 and 7. 

4.5.1 Mono-biased bifurcation detail 

Previously, examination of the mono-biased system revealed broad regions of purely traveling 

wave behavior within oscillatory Iapp ranges. This did not distinguish, however, between 

differences in clockwise and counter-clockwise traveling wave (CCT and CCTW, respectively) 

behaviors which are expected to dominate in one direction or the other with changes in a single 

connection, g31. Although regions of purely TW behavior were minimal within the release and 

escape cases, mixed PM/TW patterns were prolific within the release case and at lower coupling 

strengths within escape cases approaching more oscillatory ranges, distinguishing between 

rhythms remains relevant here as well. Only standard saddle-node bifurcations are observed in this 

system with the appearance or disappearance of traveling waves, as opposed to the purely 

Andronov-Hopf bifurcations observed for these patterns in the symmetric motif.  

Detailed examination in Figure 4.15 of traveling wave pattern formation separately from all other 

patterns reiterates the reverse dominance of these patterns, as seen in Figure 3.3, from that observed 

in symmetric systems, with TWs occurring primarily with weaker connectivity at lower g31 values 

for escape ranges of Iapp > 0.55 and for stronger coupling at higher g31 values for release ranges of 

Iapp < 0.45. A very restricted range of the bi-parametric (g31, Iapp)-space exists for which both 

traveling waves exist (lighter green region in the bifurcation diagram). This region extends upward 

and downward along Iapp near full symmetry (g31 = gij = 0.01). System symmetry also dictates the 

transition point at which the clockwise traveling wave (CTW) to counter-clockwise traveling wave 

(CCTW) rhythm switch occurs with increasing g31 in regions with only one traveling wave (darker 

green region in the bifurcation diagram). Arrows in the figure indicate presence of saddle-node 
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bifurcations in which TW patterns are created or destroyed, via either the creation of both a FP- 

node and a saddle from an unstable point or collision of an FP-node and a saddle eliminating a 

rhythm and forming a repelling unstable point, and occur at every line in the system in this figure. 

Although emphasis here is primarily on changes due to g31, Andronov-Hopf bifurcation may occur 

through  vertical  transitions  in  Iapp  at  system  symmetry  in  asymmetric  systems  and would be 

 

Figure 4.15   Traveling wave formation within mono-biased networks  

Detailed examination of TW pattern formation separately from all other behavior reiterates 

reverse dominance of these patterns from that observed in symmetric systems (TW occurring 

typically at lower g31 for escape and higher g31 for release). Also observed is a very narrow range 

of bi-parametric (g31, Iapp)-space in which both traveling waves exist (lighter green). This region 

extends upward and downward along Iapp near full symmetry (g31 = gij = 0.01), line not shown 

here but visible in Figure 3.3. This vertical line also indicates the transition point at which CTW 

to CCTW rhythm switch occurs in regions with only one traveling wave (darker green), with 

CTW at g31 < 0.01 and CCTW at g31 > 0.01. All TW-related bifurcations occurring in the mono-

biased motif are standard saddle-node bifurcations (indicated by arrows), with birth or 

destruction of both an FP-node and a saddle. Axes: Iapp = [0.39, 0.60], g31 = [0, 0.01]. 
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observed here as a direct vertical transition from two traveling waves to none. As can be seen, this 

type of bifurcation does not occur at all in the mono-biased motif.  

 

Figure 4.16   Pacemaker formation within mono-biased networks 

Detailed examination of PM pattern formation separately from all other behavior also reiterates 

reverse dominance of these patterns from that observed in symmetric systems (occurring higher 

g31 for escape and lower g31 for release). Also observed is a very narrow range of bi-parametric 

(g31, Iapp)-space in which all three PMs exist (bright blue). This region extends upward and 

downward along Iapp near full symmetry (g31 = gij = 0.01), line not shown here but visible in 

Figure 3.3. This vertical line also indicates the transition point at which 1- and 2-PM rhythms 

(light and dark blue, respectively) gain or lose either the red PM, at values of g31 < 0.01, or blue 

PM, at values of g31 > 0.01, where these transitions occur. All PM-related bifurcations occurring 

in the mono-biased motif for 1-2, 2-3 PMs are standard SN bifurcations. Bifurcations gaining or 

losing the single blue or red PM are purely SN for release but may be either SN or homoclinic 

SN for escape, not all shown here with arrows but discussed in the body of text. A singular case 

of pitchfork bifurcation occurs with vertical transition of Iapp at symmetry, marked by an x. Axes: 

Iapp = [0.39, 0.60], g31 = [0, 0.01]. 
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Detailed examination in Figure 4.16 of pacemaker formation separately from other patterns 

reiterates the reverse dominance of these patterns, as seen in Figure 3.3, from that observed in 

symmetric systems, with TWs occurring primarily with stronger connectivity at higher g31 values 

for escape ranges of Iapp > 0.55 and for weaker coupling at lower g31 values for release ranges of 

Iapp < 0.45. A very restricted range of the bi-parametric (g31, Iapp)-space exists for which all three 

pacemaker rhythms exist (bright blue region in the bifurcation diagram). This region extends 

upward and downward along Iapp near full symmetry (g31 = gij = 0.01). System symmetry also 

dictates the transition point at which 1- and 2-pacemaker rhythms (light and dark blue, 

respectively) gain or lose either the red pacemaker, at values of g31 < 0.01, or blue pacemaker, at 

values of g31 > 0.01, where these transitions occur with increasing g31 in regions with only one or 

two pacemakers (light and dark blue regions in the bifurcation diagram, respectively). Arrows in 

the figure indicate presence of saddle-node bifurcations in which PM patterns are created or 

destroyed, via either the creation of both a FP- node and a saddle from an unstable point or collision 

of an FP-node and a saddle eliminating a rhythm and forming a repelling unstable point, and occur 

at every line in the system in this figure. For the release case, these are all standard saddle-node 

bifurcations. For the escape case, these may be either standard SN or homoclinic saddle-node 

bifurcations. Homoclinic cases only occur at or near transitions involving the formation of phase-

slip, discussed next, with one example shown in the figure for the loss of a single red PM to phase-

slip activity. Transition from phase-slip to generate a single blue PM, or both the blue and green 

PMs (not shown in figure), occurs below the line of symmetry at g31 = gij = 0.01 and only within 

escape values of Iapp > 0.55. Although emphasis here is primarily on changes due to g31, pitchfork 

bifurcation may occur through vertical transitions in Iapp at system symmetry in asymmetric 

systems and would be observed here as a direct vertical transition from all three pacemaker 
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rhythms to none. An example of this bifurcation, denoted by an x in this figure, and in Figure 4.18, 

occurs only within the release case at near-knee proximity of the nullclines.  

Detailed examination in Figure 4.17 of phase-slip formation separately from other patterns 

indicates that this transition occurs only within the escape ranges of Iapp > 0.55 and for ranges of 

g31 coupling away from system symmetry. The gray regions within the figure indicate the presence  

  

Figure 4.17   Phase-slip within mono-biased networks 

Detailed examination of PS pattern formation separately from other behaviors indicates escape-

case-only phase-slip away from full symmetry (g31 = gij = 0.01), line not shown here but visible 

in Figure 3.3. This vertical line also indicates the transition point at which the blue, or both blue 

and green, PMs appear, at values of g31 < 0.01, or either the red or blue PM disappear, at values 

of g31 > 0.01, where these transitions occur. The red PM is lost on the left side of the gray region, 

where g31 > 0.01, while the blue PM is lost on the right side in a unique case leading to an ergotic 

system in which no FPs or periodic behavior of any kind exists (see Figure 5.5) All PS-related 

bifurcations occurring in the mono-biased motif are homoclinic SN bifurcations, indicated by 

arrows. Axes: Iapp = [0.39, 0.60], g31 = [0, 0.01]. 
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of phase-slip, with the left region, where g31 < 0.01, exhibiting transition from phase-slip to blue, 

or blue and green PM, behavior through formation of a FP-node and a saddle (or two of each) 

where these align with those transitions in Figure 4.16. Collision of an FP-node and saddle results  

 

Figure 4.18   Detailed bifurcation transitions within mono-biased networks 

Detailed overlay of bifurcations within the mono-biased asymmetric motif indicates a 

preponderance of standard SN bifurcation behavior, with several key cases of homoclinic SN 

bifurcation within the escape range of values for Iapp > 0.55. It is important to note that two 

homoclinic SN bifurcations occur in sequence in a small number of cases where PM behavior 

appears within a system still exhibiting PS behavior, and can be observed by the light gray-blue 

region at the top left corner. Additionally, two homoclinic bifurcations also occur at the top right, 

where we observe two small light grey areas in which phase slip exists independently before 

being lost to ergotic behavior. A singular case of pitchfork bifurcation occurs with vertical 

transition of Iapp at symmetry, marked by an x. Where possible, all transitions are clearly denoted 

but for complex cases near full symmetry, g31 = gij = 0.01, within release or escape cases refer to 

Figures 4.15-17. Axes: Iapp = [0.39, 0.60], g31 = [0, 0.01]. 
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in obliteration of a pacemaker rhythm and creation of phase-slip or ergotic behavior in mono- 

biased asymmetric systems. In the right region, where g31 > 0.01, This vertical line also indicates 

the transition point at which the blue, or both blue and green, PMs appear, at values of g31 < 0.01, 

or either the red or blue PM disappear, at values of g31 > 0.01, with the red PM disappearing on the 

left side of the gray region (see Figure 5.4) and the blue PM being lost on the right side to the 

formation of ergotic behavior in which no fixed points or periodic activity of any kind exists (see 

Figure 5.5 for example) All PS-related bifurcations occurring in the mono-biased motif are 

homoclinic saddle-node bifurcations, indicated by arrows in the figure. 

Combining all three detailed analyses of the three key rhythm types, seen in Figure 4.18, provides 

a comprehensive view of the occurrence of the bifurcations described. Within the mono-biased 

asymmetric motif, only standard saddle-node and homoclinic saddle-node bifurcations occur, 

except for the singular case of pitchfork bifurcation at full symmetry for the release case system 

with near-knee proximity of the nullclines (shown with an x in Figure 4.16 but not here). Detailed 

analysis of bifurcations in this manner is expected to lead to better hypothesis development when 

coupling motifs within the framework of larger network circuitry, and will be demonstrated or 

alluded to for several cases in Chapters 6 and 7. 

4.5.2 King-of-the-mountain bifurcation detail 

Previously, examination of the king-of-the-mountain system revealed broad regions of purely 

pacemaker behavior within all Iapp ranges. This did not distinguish, however, between differences 

in 1, 2, or 3 PM behaviors which are expected to dominate in one direction or the other with 

changes in two connections, g31 = g32. Regions of purely TW behavior were observed primarily 

within oscillatory ranges between the release and escape cases, 0.45 < Iapp < 0.55, being largest at 

mid-range values where nullclines lead to the most generic oscillatory behavior. Mixed PM/TW 
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patterns most often occurred briefly for connectivity above symmetry, with a small region of such 

behavior around symmetry at near-knee proximity of the nullcline within the release case. 

Additional phase-slip behavior was observed for Iapp below full symmetry, and additional in 

extreme escape cases in the upper right quadrant with strong g31-g32 coupling. This connectivity 

framework is again dominated by the various saddle-node bifurcation, with Andronov-Hopf and 

pitchfork bifurcations only occurring at symmetry in some cases with vertical transitions in Iapp. 

Detailed examination in Figure 4.19 of traveling wave pattern formation separately from other 

patterns emphasizes a narrow range of dominance of these patterns, as seen in Figure 3.11, with 

TWs occurring primarily around full system symmetry, g31 = g32 = gij = 0.01, and in or near fully-

oscillatory systems with 0.45 < Iapp < 0.55. Most of the bi-parametric (g31=g32, Iapp)-space for which 

these patterns exist is dominated exclusively by both traveling waves coexisting (lighter green 

region in the bifurcation diagram). This region extends upward and downward along Iapp near full 

symmetry. A few singular cases of mono-TW behavior exist (darker green region in the bifurcation 

diagram), with such cases being dominated by clockwise patterns, for g31 = g32 < 0.01, and counter-

clockwise patterns, for g31 = g32 > 0.01. Arrows in the figure indicate presence of saddle-node 

bifurcations in which TW patterns are created or destroyed, via either the creation of both a FP- 

node and a saddle from an unstable point or collision of an FP-node and a saddle eliminating a 

rhythm and forming a repelling unstable point, and occur at every line in the system in this figure. 

Heteroclinic saddle-node bifurcations occur with the appearance of both traveling waves from 

purely phase-slip behavior, discussed later, on the right side of the light green region where g31 = 

g32 < 0.01. Andronov-Hopf bifurcation may occur through vertical transitions in Iapp at system 

symmetry in asymmetric systems and would be observed here as a direct vertical transition from 

two traveling waves to none. As can be seen, this type of bifurcation occurs only at symmetry for 
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the lower or upper bounds of the escape and release case values of Iapp, respectively, or at near-

knee proximity of the nullclines for the release case, and are indicated by o marks.  

  

Figure 4.19   Traveling wave formation within KOM networks 

Detailed examination of TW pattern formation separately from all other behavior emphasizes 

dominance of these patterns around full system symmetry, g31 = g32 = gij = 0.01, and in or near 

fully-oscillatory systems, with 0.45 < Iapp < 0.55. A singular exception exists in a small region of 

symmetry at near-knee proximity of the nullcline within the release case. Most bi-parametric 

(g31=g32, Iapp)-space for which these exist is dominated by both TWs (lighter green region), 

extending upward and downward along Iapp near full symmetry. Singular cases of mono-TW 

behavior exist (darker green regions), with such cases being dominated by either CTW, for g31 = 

g32 < 0.01, or CCTW, for g31 = g32 > 0.01. Most TW-related bifurcations in the KOM motif are 

standard SN bifurcations (indicated by arrows), with birth or destruction of both an FP-node and 

a saddle, a singular line of heteroclinic SN bifurcations occurring along the left edge where g31 = 

g32 < 0.01. AH bifurcation occurs through vertical transitions at symmetry at the bounds of 2-TW 

behavior, indicated by o marks. Axes: Iapp = [0.39, 0.60], g31 = g32 = [0, 0.008]. 
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Detailed examination in Figure 4.20 of pacemaker formation separately emphasizes dominance of 

these patterns across the bi-parametric (g31=g32, Iapp)-space, with a narrow range extending upward 

and downward along Iapp near full symmetry (g31 = g32 = gij = 0.01), line not shown here but visible 

in Figure 3.11, in which all three pacemakers exist (bright blue region in the bifurcation diagram). 

  

Figure 4.20   Pacemaker formation within KOM networks 

Detailed examination of PM formation separately emphasizes dominance of these patterns across 

the bi-parametric (g31=g32, Iapp)-space, with a narrow range extending upward and downward 

along Iapp near full symmetry (g31 = g32 = gij = 0.01), line not shown here but visible in Figure 

3.11, in which all three PMs exist (bright blue). This vertical line also indicates the transition 

point at which 1-PM rhythms (light blue) gain or lose the red PM, at values of g31 = g32 < 0.01 or 

g31 = g32 > 0.01, respectively, at the outer limits. A small region of 2-PM behavior, in which only 

the blue and green PMs occur, exists within the release case for g31 = g32 < 0.01. PM-related 

bifurcations (key areas noted by arrows) occurring in the KOM motif are evenly split between 

standard and heteroclinic SN for both release and escape, and exclusively standard SN for 

oscillatory ranges between. Transitions from 1-3, 3-1, or 1-none are all heteroclinic. Heteroclinic 

SN bifurcation from a single red PM to phase-slip is discussed in Figure 5.17. Axes: Iapp = [0.39, 

0.60], g31 = g32 = [0, 0.008]. 
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This vertical line also indicates the transition point at which singular-pacemaker rhythms  

(light blue region in the bifurcation diagram) gain or lose the red pacemaker, at values of g31 = g32 

< 0.01 or g31 = g32 > 0.01, respectively, at the outer limits. A small region of two-pacemaker 

behavior, in which only the blue and green pacemakers occur, exists within the release case, for 

g31 = g32 < 0.01, and is indicative of inherent pacemaker rhythm formation in release case systems 

at low synaptic coupling. Pacemaker-related bifurcations (noted by arrows in the bifurcation 

diagram) occurring in the king-of-the-mountain motif are undergone via a combination of both 

standard saddle-node and heteroclinic saddle-node bifurcations for both the release and escape 

case ranges of Iapp, Iapp < 0.45 and Iapp > 0.55, respectively, and exclusively through standard 

saddle-node bifurcation for oscillatory ranges in between. Transitions from one-to-three, three-to-

one, or one-to-no pacemakers are all heteroclinic in this system. Heteroclinic saddle-node 

bifurcation from a single red pacemaker is observed in the upper right quadrant for extreme escape 

cases with very strong coupling and is discussed in further detail in Figure 5.17. Although 

emphasis here is primarily on changes due to g31 = g32, pitchfork bifurcation may occur through 

vertical transitions in Iapp at system symmetry in asymmetric systems and would be observed here 

as a direct vertical transition from all three pacemaker rhythms to none. An example of this 

bifurcation, denoted an x in this figure, and in Figure 4.22, occurs only at the lower bounds of the 

release case at symmetry with near-knee proximity of the nullclines. 

Detailed examination in Figure 4.21 of phase-slip formation separately from other patterns 

indicates that this transition occurs much more broadly for all oscillatory and escape case ranges 

of Iapp > 0.43 away from full symmetry (g31 = g32 = gij = 0.01), line not shown here but visible in 

Figure 3.11. Before this line, one and two traveling wave patterns appear within oscillatory ranges 

of Iapp, while red pacemaker behavior appears from phase-slip within escape ranges, for g31 = g32 



97 

< 0.01. Beyond the line of symmetry, there is a narrow region (light gray middle region in the 

bifurcation diagram) for which one or both traveling wave patterns are lost via heteroclinic saddle-

node bifurcation. In addition, within the escape case (right gray region in the bifurcation diagram) 

where the red pacemaker is ultimately lost via a heteroclinic bifurcation, in which the FP-node and 

saddles collide to form a heteroclinic loop, and phase-slip behavior is observed  (examples  of  this  

  

Figure 4.21   Phase-slip within KOM networks 

Detailed examination of PS pattern formation separately from other behaviors indicates more 

extensive phase-slip away from full symmetry (g31 = g32 = gij = 0.01), line not shown here but 

visible in Figure 3.11, for all oscillatory and escape case ranges of Iapp > 0.43. This vertical line 

also indicates the transition point at which 1- or 2-TW patterns appear within oscillatory ranges 

of Iapp, or red PM behavior appears from PS within escape ranges, for g31 = g32 < 0.01. Above g31 

= g32 > 0.01, there is a narrow region (light gray middle region) for which 1- or 2-TW patterns 

disappear and within the escape case (right region) where the red PM is lost and PS behavior is 

observed. All PS-related bifurcations occurring in the KOM motif are heteroclinic SN 

bifurcations, indicated by arrows.  Axes: Iapp = [0.39, 0.60], g31 = g32 = [0, 0.008]. 
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can be seen and are discussed further in Figures 3.10 and 5.16. All phase-slip bifurcations 

occurring in the king-of-the-mountain motif are created via heteroclinic SN bifurcations, indicated 

by arrows in the figure. 

 

Figure 4.22   Detailed bifurcation transitions within KOM networks  

Detailed overlay of bifurcations within the KOM asymmetric motif indicates extensive standard 

and heteroclinic SN bifurcation behavior. Below system symmetry (g31 = g32 < gij = 0.01), 

heteroclinic SN bifurcations are characteristic for movement from PS to either PM or TW 

rhythms, but have no occurrence within the release case, Iapp < 0.45. Above system symmetry, 

extensive occurrence of heteroclinic SN bifurcation is observed in direct transitions from 3-to-1 

PM regimes within both release and escape, and in the appearance or disappearance of PS in the 

escape case. No such behavior is observed for the oscillatory ranges in between.  The existence 

of a single pitchfork and three AH bifurcations occurs only at system symmetry with vertical 

transitions of Iapp, and is denoted by x and o marks, respectively.  Where possible, all transitions 

are clearly denoted but for complex cases around full symmetry, g31 = g32 = gij = 0.01, within 

release or escape cases refer to Figures 4.19-21. Axes: Iapp = [0.39, 0.60], g31 = g32 = [0, 0.008]. 



99 

Combining all three detailed analyses of the three key rhythm types, seen in Figure 4.22, provides 

a comprehensive view of the occurrence of the bifurcations described. Within the king-of-the-

mountain asymmetric motif, only standard saddle-node and heteroclinic saddle-node bifurcations 

occur with horizontal transitions in g31 = g32. Three cases of Andronov-Hopf bifurcation are 

observed for both the release and escape cases at full symmetry (g31 = g32 = gij = 0.01), occurring 

with vertical transitions in Iapp taking the system outside the lowermost and uppermost region of 

two traveling wave rhythms, respectively, and again for only the extreme release case at near-knee 

proximity of the nullclines (shown with o marks here and in Figure 4.19). A singular case of 

pitchfork bifurcation is also observed in the extreme near-knee release case (marked by an x here 

and in Figure 4.20).  

4.6 Discussion and applications 

Five key bifurcations have been observed in this research on inhibitory-connected gFN 3-node 

networks of cells: Andronov-Hopf, pitchfork, saddle-node, heteroclinic SN, and homoclinic SN 

bifurcations. Both AH and pitchfork bifurcations are found to only occur in cases for which system 

symmetry exists and all inhibitory connections are of equal strength. This situation exists for all 

parameters of symmetric motifs, and therefore all bifurcations within this motif are represented by 

one of these two bifurcations. For the four asymmetric motifs examined, this symmetry only exists 

along the vertical line represented by gij = 0.01, and we therefore only observe AH and pitchfork 

bifurcations with vertical movement in Iapp. Due to the nature of behavior within the release case 

system at near-knee proximity of the nullclines, Iapp < 0.40, the occurrence of these bifurcations 

may be observed as many as two times each within the release case and at most once within the 

escape case. In the mono-biased network, no observations of pitchfork bifurcations are seen at all. 

Within the king-of-the-mountain network, the only case of an AH bifurcation exists at the near-
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knee proximity case just described. These results are summarized in Table 4.1. Standard SN 

bifurcations dominate all of the asymmetric motifs, as these bifurcations essentially replace both 

AH and pitchfork for creation or destruction of traveling wave or pacemaker rhythms, respectively, 

in asymmetric settings, and typically for cases in which there is a single rhythm gained or lost. 

Heteroclinic SN bifurcations occur extensively within the motifs with double-connection changes, 

due to the fact that two parameters are required to change in order for heteroclinic transitions to 

occur, with both pairwise-biased and king-of-the-mountain exhibiting cases of these bifurcations 

across nearly the full range Iapp, and both above and below system symmetry. In both cases they 

are more common in escape ranges of Iapp > 0.55, and there is an interesting switch in the 

occurrence of heteroclinic SN bifurcations with phase-slip in which they occur in oscillatory 

ranges of Iapp only for strong connectivity, g31 = g13 >> gij = 0.01, in pairwise-biased systems and 

weaker connectivity, g31 = g32 < gij = 0.01, in king-of-the-mountain systems.  Homoclinic SN 

bifurcations occur prolifically within escape range values of Iapp > 0.55 within mono-biased 

asymmetric networks, both above and below system symmetry. In this work, with focus primarily 

on bifurcations with horizontal movement in the bi-parametric (g31, Iapp)-space, this bifurcation is 

only observed in the mono-biased motif due to the fact that homoclinic transitions can occur only 

in cases where a single parameter is changed. This does not mean that such bifurcations cannot 

also occur via vertical transitions in Iapp as has been observed for both AH and pitchfork 

bifurcations. An example can be observed indirectly by comparing Figures 3.4(A) and 5.16, where 

we see a single CTW pattern that is eliminated via collision of the FP-node and saddle seen in 

Figure 3.5(A), resulting in the diagonal phase-slip rhythm discussed in Figure 5.16. Such cases are 

not identified in this work, or summarized in the table, but it is important to note that they exist for 

both heteroclinic and homoclinic SN bifurcations. 
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Detailed analysis of the types of bifurcations, and the parameter ranges at which they occur, 

facilitates identification of potential regions conducive to rhythm switching or polyrhythmic 

stability when connected to external stimuli or within the framework of a larger network as an 

embedded motif. This identification also allows for the placement of known systems and 

parameters on the bifurcation diagrams in a manner that can be conducive to determining potential 

areas of research or parameters to change in order to test hypotheses on how rhythm patterns and 

generation will be affected both in models and in experimental settings. The goal of this research 

is not only to provide such detailed analysis for the dynamics, motifs, and parameter values 

explored here but to also create a framework for future research with other dynamics, connectivity, 

or parameter ranges to be applied and summarized concisely. As an example of some potential 

future directions, or application of these results within larger network settings, research or future 

steps discussed in Chapters 6 and 7 will make direct use of the results of Chapters 2-4 and, in 

particular, for the symmetric, mono-biased, and king-of-the-mountain motifs described in greater 

detail in this work and in prior work [18, 39]. 

Table 4.1 Summary of key network motif bifurcations 
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5 FURTHER POLYRHYTHMICITY AND POST-INHIBITORY REBOUND 

In previous chapters, the focus has been on broader characteristics that can be used to identify and 

describe shifts in pattern generation across the bi-parametric (gij, Iapp)-space. Brief discussion of 

the effects of fast-slow separation has also been alluded to, but will be discussed in more detail 

here. Additional polyrhythmicity is also discussed, with specific exceptional cases of rhythm 

switching, basin-acquisition, and phase-slip behavior with both semi-phase-lock and larger scale 

rhythmicity. These are added to by several additional cases of asymmetry that do not fall strictly 

within the five key motifs described thus far. Finally, experiments involving implementation of 

the post-inhibitory rebound mechanism are discussed with general trends in behavior outlined 

similarly to what was done in the escape and release mechanism framework, but at a more macro 

level in which specific cases are limited to Iapp ranges falling within what would have typically 

characterized either of those cases or the purely oscillatory ranges between (0.45 < Iapp < 0.55). 

5.1 Additional asymmetric pattern generation 

In this section, description of specific asymmetric rhythm switching and basin-acquisition, as well 

as of unique regions of mono- or poly-invariant circle behaviors, is broken into the general 

framework within three of the key asymmetric motifs described in detail: (1) Mono-biased systems 

with a single varying connection, g31, (2) Pairwise-biased systems with two reciprocally changing 

connections, g31 and g13, and (C) King-of-the-mountain (KOM) systems of a single cell with two 

outgoing varying connections, g31 and g32. Less uniquely different pattern generation behavior is 

possible within the clockwise-biased system but one example of slight asymmetry in this manner 

is shown in conjunction with strong g31 coupling within the mono-biased section. Special emphasis 

is given here on the types of bifurcations discussed in Chapter 4, and particularly to specific 

variations in phase-slipping and transient phase-locking behaviors.  
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5.1.1 Further rhythm switching in mono-biased motifs 

For mono-biased systems with a single varying connection, g31, asymmetric transitions in pattern 

generation and switching are readily obtained away from system symmetry for all ranges of Iapp. 

As described in Chapters 3 and 4, these transitions occur almost exclusively via saddle-node 

bifurcations and often in a homoclinic manner. In Figure 5.1, we observe (∆12, ∆13)-Poincaré return 

maps for a specific case of near-knee release case, where the proximity of the fast cubic and slow 

sigmoidal nullclines near the lower left knee of the cubic nullcline can drive highly unique pattern 

generation with very small changes in synaptic coupling.  Distinct rhythm switching behavior 

occurs with increasing mono-biased asymmetric coupling, and traveling wave formation can be 

induced at low values of Iapp within this motif. At very weak coupling strength, only the blue 

pacemaker rhythm dominates for all initial conditions. With increased inhibitory coupling from 

cell 3 to cell 1, a critical value of g31 exists for which a homoclinic bifurcation leads to formation 

of an invariant circle near the location of the traditional purple CCTW at (∆12, ∆13) ≈ (2/3, 1/3). 

This invariant circle exhibits unique jitter behavior in which traces trapped in this region oscillate 

in proximity to the purple CCTW, and appear to be traveling waves that jitter, or shift slightly back 

and forth in relation to one another. With increasing synaptic coupling, this invariant circle 

acquires an increasingly large basin of attraction before collapsing as the repellor inside this 

invariant circle undergoes additional homoclinic saddle-node bifurcation and becomes a traditional 

stable CCTW FP attractor with the black CTW simultaneously taking over what had been the blue 

basin of attraction through a saddle-node bifurcation. The purple CCTW basin of attraction 

gradually increases in size with increased synaptic coupling, taking over the black basin of 

attraction via an additional homoclinic saddle-node bifurcation, with another brief invariant circle 

appearing near (∆12, ∆13) ≈ (1/3, 2/3) before the black attractor ultimately collides with the 
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remaining nearby saddle and is obliterated. This type of rhythm transition is indicative of systems 

in which plasticity in synaptic coupling can lead to short- or long-term pattern transitions that could 

alternate back and forth as the strength of this connection strengthens or weakens. 

 

Figure 5.1   Near-knee rhythm switching in mono-biased motifs 

 (∆12, ∆13)-Poincaré return maps for the near-knee release case show distinct rhythm switching 

behavior with increasing mono-biased asymmetric coupling. At very weak coupling strength (A), 

only the blue pacemaker rhythm is possible. At a critical value of g31, a homoclinic bifurcation 

occurs and an invariant circle appears near (∆12, ∆13) ≈ (2/3, 1/3) with unique jitter behavior (B). 

With increasing synaptic coupling, this invariant circle acquires an increasingly large basin of 

attraction (C) before collapsing as its repellor becomes a traditional stable CCTW FP attractor 

with the black CTW taking over the blue basin of attraction through a saddle-node bifurcation 

(D). The purple CCTW basin gradually takes over the black basin of attraction, with another 

brief invariant circle appearing near (∆12, ∆13) ≈ (1/3, 2/3) before the black attractor collides with 

the nearby saddle and is obliterated. Parameters: Iapp = 0.389, gij = 0.001 except g31 = 0, 0.0004, 

0.0006, 0.0007, 0.001, 0.0012, 0.0014, and 0.0016. 

 

A similar transition in behavior, but further from the near-knee release case proximity just 

described, can be seen in Figure 5.2 where this transition includes similar transient jitter behavior 

occurring through homoclinic saddle-node bifurcation but with no long-term TW formation. 

Beginning at full symmetry with g31=gij=0.001, the system in this example exhibits fully 
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symmetric PM behavior, with all three pacemakers possible, which disappears as clockwise 

symmetry is broken with increasing g31 strength. Breaking this clockwise symmetry initially gives 

greater dominance to the red PM pattern due to its asymmetric power to inhibit cell 1, and leads 

directly to the potential for a transient invariant circle only in the CCTW region due to the existence 

now of overall increased counter-clockwise connectivity. These bifurcations occur as a green-to-

red saddle in the upper left quadrant collapses with the red PM fixed point via SN bifurcation while 

 

Figure 5.2   PM basin acquisition via fleeting jitter in a mono-biased network 

Beginning at full symmetry with g31 = gij = 0.001, the system exhibits fully symmetric PM 

behavior which disappears as clockwise symmetry is broken with increasing g31 strength. The 

green-to-red saddle in the upper left quadrant collapses via saddle-node bifurcation a homoclinic 

bifurcation occurs near (∆12, ∆13) ≈ (2/3, 1/3), in which the transient formation of an invariant 

circle with purple CCTW behavior is observed for a highly restricted range of g31 coupling 

strengths (B-D). This jitter effect acquires a small basin of attraction (E) before ultimately 

disappearing as its node and the saddle between it and the green PM fixed point near (∆12, ∆13) = 

(1/2, 0) collide and obliterate one another. Parameters: Iapp = 0.400, gij = 0.001 except g31 = 0.001, 

0.00152, 0.00154, 0.00156, 0.0019, and 0.0036.  
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the homoclinic bifurcation occurs near (∆12, ∆13) ≈ (2/3, 1/3), in which the transient formation of 

an invariant circle with purple CCTW behavior is observed for a highly restricted range of g31 

coupling strengths. The red PM pattern disappears via saddle-node bifurcation as the saddle 

between it and the green PM near the invariant circle collide. The remaining jitter effect acquires 

a small increasing basin of attraction before ultimately disappearing as its node and the saddle 

between it and the green PM fixed point near (∆12, ∆13) = (1/2, 0) collide and obliterate one another. 

Ultimate pattern formation in this system will lead to bi-modal PM behavior in which either the 

green or blue PM will result depending on initial conditions or a external stimulus shifting relative 

phase-lags between cells. 

 

Figure 5.3   TW basin acquisition via invariant circle in mono-biased network 

Basin acquisition of the black CTW by the red PM occurs via a homoclinic saddle-node 

bifurcation with transient formation of an invariant circle near (∆12, ∆13) ≈ (1/3, 2/3). As in 

Figure 5.2, this is due to increases in g31 coupling strength above system symmetry at g31 = gij = 

0.001. The basin for which this jitter effect occurs diminishes in size before disappearing as its 

repellor node and the saddle between it and the red PM fixed point, near (∆12, ∆13) = (0, 1/2), 

collide and obliterate one another. Parameters: Iapp = 0.582, gij = 0.001 except g31 = 0.0012162, 

0.0016216, and 0.0021622.  

 

In Figure 5.3, an example of more traditional asymmetry in which a black CTW pattern coexisted 

with both red and blue PMs within escape ranges of Iapp. In panels A and B, the formation of an 
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invariant circle with jitter behavior around the CTW, near (∆12, ∆13) ≈ (1/3, 2/3), has occurred with 

increasing g31 coupling strength above system symmetry at g31=gij=0.001, with basin acquisition 

of the black CTW by the red PM occurring via a homoclinic saddle-node bifurcation like that 

observed in the previous two examples. The basin for which this jitter effect occurs diminishes in 

size before disappearing as its repellor node and the saddle between it and the red PM fixed point, 

near (∆12, ∆13) = (0, 1/2), collide and obliterate one another and again lead to bi-modal PM behavior 

in which either the red or blue PM dominate based on initial conditions or external pulse stimuli 

or connectivity within larger networks. 

Finally, within purely mono-biased asymmetric systems, a transition in rhythmicity can occur 

(Figure 5.4) at near-knee proximity of the nullclines in the escape case, where the proximity of the 

fast cubic and slow sigmoidal nullclines near the upper right knee of the cubic can drive the 

network at strong g31 coupling to the point where no attractors, repellors, or saddles exist any 

longer and the system cycles in a seemingly incoherent manner with quasi periodic covering of 

the entire 2-D torus occurs with no stable repeating rhythms of any kind.  This ergotic behavior is 

only observed in this system for escape case ranges of Iapp > 0.55, with regions of this specific 

behavior identified in the upper right corner of the bifurcation diagram detail in Figures 4.17 and 

4.18. In this example, a blue PM attractor, near (∆12, ∆13) = (0, 1/2), already coexists with unique 

phase-slip behavior leading to apparent regular slipping of the system diagonally through ranges 

of (∆12, ∆13) connecting periods of seemingly green or red PM alignment. With increasing g31 

connectivity, which is already at very strong coupling, the blue basin of attraction decreases in size 

along the (∆12, ∆13) diagonal as the saddles on either side of it converge on the fixed-point node 

and obliterate one another via homoclinic saddle-node bifurcation.  
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Figure 5.4   Ergotic torus in a mono-biased escape case network 

An example of homoclinic saddle-node bifurcation within the escape case ranges of Iapp > 0.55 

leading to ergotic torus behavior, in which no stable patterns or coherent rhythmicity of any sort 

exists any longer. A blue PM attractor, near (∆12, ∆13) = (0, 1/2), coexists with phase-slip 

behavior leading to apparent regular slipping of the system diagonally through ranges of (∆12, 

∆13) connecting brief periods of seemingly green or red PM alignment. With increasing g31 

connectivity, already at very strong coupling, the blue basin of attraction decreases in size as the 

saddles on either side converge on the fixed-point and obliterate one another. With collapse of 

these final saddles and node, no attractors, repellors, or saddles exist any longer and the system 

cycles in a seemingly incoherent manner with quasi periodic covering of the entire 2-D torus. 

Regions of this specific behavior can be observed in the upper right corner of the bifurcation 

diagram detail in Figures 4.17 and 4.18. Parameters: Iapp = 0.597, gij = 0.001 except g31 = 

0.007027, 0.0077027, 0.0090541, and 0.0093243. 

 

An additional unique example of slight clockwise asymmetry in conjunction with increasingly 

strong g31 coupling can be seen in Figure 5.5, and is included here even if not purely mono-biased 
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asymmetry. Here basin-switching behavior is observed, in which the red PM node and right saddle 

between the red and blue PM basins of attraction collide and eliminate one another as the blue PM 

acquires both basins of attraction via a heteroclinic saddle-node bifurcation. This shift from 

traditional saddle-node or homoclinic saddle-node bifurcation typically observed in mono-biased 

systems occurs as a direct result of manipulation of more than one key parameter, with both g31 

and clockwise asymmetry coexisting. The red basin joins the blue PM basin as a direct result of 

interior occurrence of the trajectories on the blue side of the incoming separatrix of the right blue-

green saddle, near (∆12, ∆13) = (4/7, 1/3). With additional increasing g31 coupling, and further 

movement of the instability, a heteroclinic connection between saddles occurs and the incoming 

trajectories switch side and join the green PM basin of attraction.  

 

Figure 5.5   Basin-switching in a nearly mono-biased network 

An example basin-switching behavior in which the red PM node and right red-blue saddle collide 

and eliminate one another as the blue PM acquires both basins of attraction. The red basin joins 

the blue due to interior occurrence of the trajectories on the blue side of the incoming separatrix 

of the right blue-green saddle, near (∆12, ∆13) = (4/7, 1/3). With additional increasing g31 

coupling, a heteroclinic connection between saddles forms and the incoming trajectories switch 

sides and join the green PM basin of attraction. It is important to note that this example of mono-

biased increase in g31 differs from others shown in previous chapters, where full symmetry 

existed in the remaining connections. Here there is slight increased counter-clockwise 

connectivity. Parameters: Iapp = 0.400, g12 = g23 = 0.0038, g13 = g32 = g21 = 0.0041, g31 = 0.0061, 

0.0070, and 0.0071. 
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5.1.2 Further rhythm switching in pairwise-biased motifs  

For pairwise-biased systems with two varying connections, g31 and g13, asymmetric transitions in 

pattern generation and switching are again readily obtained away from system symmetry for all 

ranges of Iapp. As described in Chapters 3 and 4, these transitions occur almost exclusively via 

saddle-node or heteroclinic saddle-node bifurcations. As in the example in Figure 5.1, here we 

observe a system in which a blue pacemaker rhythm coexists with an invariant circle near (∆12, 

∆13) = (2/3, 1/3). As in Figure 5.5, additional asymmetry is introduced here, here with g13 held at 

half the strength of system symmetry, at g13=0.005, but with g31 synaptic coupling decreasing in 

strength from symmetry at g31=gij=0.001 in a mono-biased fashion.  With decreasing g31 coupling, 

the blue PM basin of attraction is consumed by the purple invariant circle through heteroclinic 

saddle-node bifurcation in saddle-node to invariant circle, or SNIC-like, behavior. At a critical 

value of g31, a heteroclinic loop between the saddles occurs and a system with two different 

coexisting invariant circles exists, one with s-shaped phase-slip behavior passing through regions 

that once characterized the red PM, black CTW, and blue PM patterns. This phase-slip pattern then 

consumes the basin of attraction of the purple invariant circle as its node and remaining saddle 

collide and eliminate one another. This behavior then converges to stereotypical phase-slip, like 

that existing in typical pairwise-biased asymmetric systems described in Chapter 4. All initial 

condition space solutions converge and remain on this phase-slip path, with regular repeating 

phase shifts passing through regions of all what used to be the standard rhythm patterns (transient 

seemingly red PM patterns shifting to black CTW, then through blue PM, and purple CCTW 

rhythms before returning to red PM behavior, and repeating continuously) laying between the 

position of the remaining saddle near the traditional green PM FP location near (∆12, ∆13) = (1/2, 

0) and (1/2, 1). Examples of these temporary shifts in phase-lag behavior can be observed in panel 
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E’, along with three traces at the lower right showing shifts in seeming PM to TW or vice versa 

slipping. Traces correspond to the transitions indicated by the arrows in the phase-basin 

representation in E’. 

 

Figure 5.6   Invariant circle multiplicity in pairwise-biased systems 

A system in which a blue PM coexists with an invariant circle near (∆12, ∆13) = (2/3, 1/3). 

Additional asymmetry exists, with g13 connectivity weak, at g13 = 0.005, and g31 decreasing in 

strength from symmetry beginning at g31 = gij = 0.001.  With decreasing g31 coupling, the blue 

PM basin of attraction is consumed by the purple invariant circle via heteroclinic saddle-node 

bifurcation in SNIC-like behavior. At a critical value of g31, a heteroclinic loop between saddles 

forms and two different invariant circles coexist, one purple SNIC-like case and one with s-

shaped phase-slip passing through regions that once characterized the red PM, black CTW, and 

blue PM FP locations. This phase-slip then consumes the purple invariant circle basin as its node 

and remaining saddle collide. This converges to stereotypical phase-slip existing in typical 

pairwise-biased asymmetric systems, as g31 = g13. All solutions converge to this path, with 

repeating phase shifts passing through regions of all 4 standard rhythm patterns (red PM → black 

CTW → blue PM → purple CCTW → red PM) occurring between the remaining saddle near 

(∆12, ∆13) = (1/2, 0) and (1/2, 1). Examples of shifts in phase-lag can be seen in E’ and the three 

traces at the lower right, indicated by the arrows in the phase-basin representation shown in E’. 

Parameters: Iapp = 0.413, gij = 0.001 except g13 = 0.0005 and g31 = 0.001, 0.0009, 0.0008, 0.0007, 

0.0006. 
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In Figure 5.7, an example is observed of a pairwise-biased system in which an unstable invariant 

circle, or ‘river’, along the ∆12-axis repels all trajectories away and toward one of the two traveling 

wave fixed points, near (∆12, ∆13) = (1/3, 2/3) and (2/3, 1/3). With increasing g13=g31 coupling 

strength,  the two remaining  TW FPs  each  approach one of the remaining  black-purple  saddles, 

 

Figure 5.7   Heteroclinic SN bifurcation in pairwise-biased systems 

Example of a pairwise-biased system with an unstable invariant circle, or ‘river’, along the ∆12-

axis which repels all trajectories away and toward one of the two TW fixed points (A), near (∆12, 

∆13) = (1/3, 2/3) and (2/3, 1/3). With increasing g13 = g31 connectivity, each of the remaining FPs 

approach one of the two remaining black-purple saddles, ultimately colliding and eliminating 

each other in two simultaneous heteroclinic saddle-node bifurcations. All solutions converge to 

this invariant circle with left-moving phase-slip behavior, with cells 1 and 3 remaining in quasi-

antiphase, ∆13 ≈ 0.5, while cell 2 fires with shorter period slips continuously leftward in traces of 

bursting activity. Parameters: Iapp = 0.5006, gij = 0.001 except g13 = g31 = 0.001, 0.0023649, 

0.0027027, 0.0028378, and 0.0031081. 
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ultimately colliding and eliminating each other in two simultaneous heteroclinic saddle-node 

bifurcations. All initial condition space solutions converge to this invariant circle with left-moving 

phase-slip behavior, cells 1 and 3 remaining in quasi-antiphase, ∆13 ≈ 0.5, with oscillatory left- and 

right-ward jitter, while cell 2 fires with shorter period and appears to slip continuously leftward in 

observation of individual traces of bursting activity in this system. 

5.1.3 Further rhythm switching in KOM motifs  

For KOM systems with two varying connections, g31 and g32, asymmetric transitions occur away 

from system symmetry for all ranges of Iapp. As described in Chapters 3 and 4, and in the pairwise-

biased systems, these transitions occur almost exclusively via saddle-node or heteroclinic saddle-

node bifurcations. In Figure 5.8, like the previous example, a system in which a pair of heteroclinic 

saddle-node bifurcations occurs is seen, as the traveling wave fixed points, near (∆12, ∆13) = (1/3, 

2/3) and (2/3, 1/3), each collide with one of the black-purple saddles and obliterate one another 

with increasing g31 = g32 coupling. Unlike in the preceding case, this leads to the disappearance of 

both black and purple FP attractors with formation of a heteroclinic loop between the incoming 

separatrices of the remaining red saddles as trajectories are trapped between, with the red 

pacemaker continuing to coexist. Additional increases in g31=g32 coupling lead to additional 

movement of the remaining two saddles that ultimately results in the switching of trajectories to 

the other side of the incoming separatrices, as seen in Figure 5.5, and acquisition of the entire 

initial condition space by the red pacemaker rhythm. This type of behavior could represent 

transitions in plasticity where some conditions can lead to seemingly erratic rhythmic behavior 

before settling back to a stability, and parallel brief shocks to a system in which transient seizure 

or abrupt and sporadic changes in behavior might be explained through network transition. 
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Figure 5.8   Loss of TWs with heteroclinic loops in KOM systems 

As in the previous example, a pair of heteroclinic saddle-node bifurcations occur as the TW fixed 

points, near (∆12, ∆13) = (1/3, 2/3) and (2/3, 1/3), collide with the black-purple saddles and 

obliterate one another with increasing g31 = g32 coupling.  Unlike Figure 5.7, this leads to 

disappearance of both black and purple FP attractors with formation of a heteroclinic loop 

between the incoming separatrices of the remaining red saddles. Additional increases in coupling 

lead to further shifting of the remaining saddles that results in switching of trajectories to the 

other side of the incoming separatrices and acquisition of all IC-space by the red PM. 

Parameters: Iapp = 0.5687, gij = 0.001 except g31 = g32 = 0.0012162, 0.0013514, and 0.0014865. 

 

In Figure 5.9, another example of acquisition of the entire initial condition space by the red 

pacemaker is observed via simultaneous heteroclinic saddle-node bifurcations. In this example, 

pacemaker rhythms within the escape mechanism ranges of Iapp > 0.55 we can observe asymmetric 

shifts in the acquisition of both the blue and green PM basins of attraction by the red attractor, as 

collision of the repellors, near (∆12, ∆13) = (1/3, 2/3) and (2/3, 1/3), with the both the left red-to-

blue and lower blue-to-green saddles leads to division of the traces within the original blue and 

green basins, passing near each of the regions of fleeting CTW and CCTW rhythmicity, by the red 

and green, and red and blue, basins respectively. Further increases in g31 = g32 synaptic coupling 

strength lead to ultimate destruction of both the blue and green fixed point nodes via collision with 

the saddles near (∆12, ∆13) = (1/3, 3/5) and (2/3, 1/5) through saddle-node bifurcation. 
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Figure 5.9   PM basin acquisition via heteroclinic SN bifurcations 

Another example of acquisition of the entire IC-space by the red PM via simultaneous 

heteroclinic saddle-node bifurcations. Here, PM rhythms within the escape range of Iapp > 0.55 

observe asymmetric shifts in acquisition of the blue and green PM basins of attraction by the red 

attractor, as collision of the repellors, near (∆12, ∆13) = (1/3, 2/3) and (2/3, 1/3), with the left red-

blue and lower blue-green saddles leads to splitting of traces passing near TW rhythmicity within 

the original blue and green basins by the red and green, and red and blue, basins respectively (B). 

Further increases in g31 = g32 coupling strength lead to the destruction of the blue and green FP 

nodes through collision with the saddles near (∆12, ∆13) = (1/3, 3/5) and (2/3, 1/5) via saddle-

node bifurcation (C). Parameters: Iapp = 0.5858, gij = 0.001 except g31 = g32 = 0.00094595, 

0.0010811, and 0.0012162. 

 

In Figure 5.10, the system begins with coexistence of both a red pacemaker attractor and an 

unstable invariant circle (or repelling river in this case), near ∆13 ≈ 0.75. The saddles then split and 

the red PM basin of attraction becomes blocked to all interior initial conditions by the incoming 

red saddle separatrices. Heteroclinic connection in the system now passes through all five of the 

traditional (∆12, ∆13)-space fixed-point locations and rhythms will observe phase-slip in which 

transient portions may appear to briefly pass through regions in which traces mimic green PM, 

purple CCTW, red PM, blue PM, and black CTW alignment repetitively. With increased g31=g32 

coupling, the red PM collides with the saddle and all initial condition space now converges to this 

periodic phase-slip behavior. 
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Figure 5.10   Heteroclinic connection between SN separatrices 

Beginning in a system with coexistence of a red PM attractor and an unstable invariant circle (or 

repelling river), near ∆13 ≈ 0.75, saddles split and the red PM basin of attraction of red PM is 

blocked to all interior ICs by the incoming saddle separatrices (B). Heteroclinic connection in the 

system now passes through all the traditional (∆12, ∆13) FP locations and rhythms undergo phase-

slip, in which transient portions may appear to briefly mimic green PM → purple CCTW, red 

PM → blue PM → black CTW alignment repetitively. With increased g31 = g32 coupling, the red 

PM node collides with the saddle and all IC-space now converges to this periodic phase-slip 

behavior. Parameters: Iapp = 0.5943, gij = 0.001 except g31 = g32 = 0.0044595, 0.005, 0.0052703, 

and 0.0055405. 

 

5.2 Additional fast-slow transition effects on trace patterns 

As observed in prior work, and discussed briefly in Chapters 1 and 2, decreasing size of pacemaker 

regimes in fully symmetric networks has been observed with increasing fast-slow separation 
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(implemented by decreasing ε). While the region in the bifurcation diagrams in which only 

traveling waves occur did not grow significantly, wave basins within mixed regions did, and we 

observe the disappearance of pacemaker-only behaviors entirely as ε gets smaller. Less slowing 

occurs near the knees when there is greater fast-slow separation, and is inadequate to slow any cell 

enough to induce pacemaker behavior in truly fast-slow separated symmetric systems. The shape 

of the orbit limit cycle and the respective traces for systems, as well as respective duty cycles 

within bursting behavior, also vary with fast-slow separation and will be described in greater detail 

here. An example of this shift away from the extensive pace-maker rhythm production possible 

within both release and escape ranges, as well as across all values of Iapp, can be seen in both the 

following figures, where their respective basins of attraction compared to similar cases in Chapter 

2 are clearly smaller and trajectories exhibit faster convergence. 

In Figure 5.11, we observe this situation occurring within the release case symmetric motif as 

connectivity gij increases. For direct comparison, these (∆12, ∆13)-Poincaré return maps are sampled 

along the same horizontal pathway at Iapp=0.4155 in Figure 2.9, but with ε=0.05. This gives us a 

direct representation of the effect of shifts from moderate to high fast-slow separation, moving 

from weaker to stronger coupling within the same range of values explored there. While both PM 

and TW behaviors are still observed, much more pronounced dominance of traveling wave patterns 

exists for all gij values, with the distinct hard-locking behavior with extremely fast phase-lag 

convergence, that was previously discussed, occurring much sooner and more dramatically than 

in the example in Chapter 2 with ε=0.30. Unlike the moderate fast-slow separation previously 

discussed, the TW basins of attraction do not diminish in size or disappear at all with increasing 

symmetric coupling strength in release case systems and, in fact, it is the pacemaker rhythms 

whose basins of attractions are observed to diminish in size and ultimately disappear. 
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Figure 5.11   Increased fast-slow separation in symmetric release motif 

 (∆12, ∆13)-Poincaré return maps representing the symmetric release motifs as all connection 

strengths are increased. These maps are sampled along the same horizontal pathway at Iapp = 

0.4155 as in Figure 2.9, but with ε = 0.05, and represent shifts from weaker to stronger coupling 

within the same range of values explored there. While it is still possible for both PM and TW 

behaviors to occur, much more pronounced dominance of TW patterns exists for all gij values, 

with distinct hard-locking behavior with extremely fast phase-lag convergence occurring much 

sooner and more dramatically. Unlike the moderate fast-slow separation previously discussed, 

the TW basins of attraction do not diminish in size or disappear at all. Parameters: gij = 0.002, 

0.008, 0.002, 0.008, 0.002, and 0.016. 

 

 

In an alternate example, in Figure 5.12 we instead observe (∆12, ∆13)-Poincaré return maps 

representing the symmetric release motifs as all connection strengths are held constant and Iapp 

spans the range of the bi-parametric space explored. These maps are sampled not only along the 

same vertical pathway at gij=0.0015, but also at the exact same Iapp values sampled and shown in 

Figure 2.5(D1-A1), but with ε=0.05. This permits direct observation representing shifts from 
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release mechanism ranges of Iapp, through oscillatory ranges, and finally to those for escape 

mechanism behaviors. As in the Chapter 2 results, traveling wave patterns occur most prolifically 

within oscillatory ranges, while pacemaker behaviors are more prominent within the escape and 

release  ranges.  Distinct  differences exist, however, with greater traveling wave dominance again  

  

Figure 5.12   Increased TW dominance with high fast-slow separation 

 (∆12, ∆13)-Poincaré return maps representing the symmetric release motifs as connection 

strengths are held constant and Iapp spans the range of the bi-parametric space explored. These 

maps are sampled at the same points along the vertical pathway at gij = 0.0015 shown in Figure 

2.5(D1-A1), but with ε = 0.05, and represent shifts from release mechanism ranges of Iapp 

through oscillatory ranges to those for escape mechanism behaviors. As in the Chapter 2 results, 

TW patterns occurring most within oscillatory ranges and PM behaviors more visible within the 

escape and release ranges. Distinct differences exist, however, with greater TW dominance at all 

values of Iapp, decreased PM basin of attraction size, and no ranges for which PM-only behavior 

can exist. Parameters: Iapp = 0.393, 0.419, 0.493, and 0.588. 
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observed at all values of Iapp, with the decreased size of pacemaker basins of attraction mentioned 

previously, and no ranges of Iapp at this coupling strength for which only pacemaker rhythms can 

exist. This trend is observed across the system and can be seen in the summary bifurcation diagram 

of rhythmicity as the fast-slow separation variable is changed that was discussed in the previous 

chapter (Figure 4.13). Similar effects were also observed across the mono-biased system (Figure 

4.14) and in individual sampling within the other network motifs explored. 

These effects are a direct result of fast-slow separation and the ability, or inability, of cells to 

cluster near the knees of the cubic nullcline if not driven to hard by the fast-nullcline. In Figure 

5.13, examples of this effect of fast-slow separation on the shape and behavior of the generalize 

Fitzhugh-Nagumo relaxation oscillator used in this work are explored. At high-fast slow 

separation, with ε = 0.05, jumps to and from the active and inactive branches of the cubic nullcline 

are quick as a direct result of the much faster push toward them relative to the sigmoidal nullcline, 

leading to a crisp black limit cycle with nearly vertical jumps between the branches (A). This effect 

is also directly observed in the respective sample wave-form (B), with much more square looking 

behavior relative to the gradual upward and downward sloping observed at less separation with ε 

= 0.30. This separation is due to vector field convergence to the cubic that is much faster relative 

to the sigmoidal nullcline. At only moderate fast-slow separation, with ε = 0.30, the convergence 

toward the sigmoidal nullcline is stronger relatively and both the resulting black orbit and traces 

are more rounded in appearance (B and D). Both these key examples are sample within the release 

case, which can be seen with near proximity of the nullclines occurring at the lower left knee of 

the cubic nullcline. Shown additionally, examples showing further transformation of these 

transitions in wave-form shape and period can be seen contrasting both release and escape values 

of Iapp (0.4 and 0.6, respectively) across intermediate values of decreasing fast-slow separation (ε 
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= 0.10→0.17) between the two extreme samples already described extensively. The changes in 

shape are emphasized, becoming more rounded as ε increases, but we can here observe directly 

the change in period that is also associated with shifts in fast-slow separation. At high-fast slow 

separation, the period for each burst is much longer due to much slower sigmoidal nullcline drive 

 

Figure 5.13   Transitions in wave-form patterns with fast-slow separation 

Examples of the effect of fast-slow separation on the shape and behavior of the gFN relaxation 

oscillator explored here. At high-fast slow separation (A), with ε = 0.05, jumps to and from 

active and inactive branches of the cubic nullcline are quick, resulting in a crisp black limit cycle 

and wave-forms that are nearly vertical (C). This is due to much faster vector field convergence 

to the cubic rather than sigmoidal nullcline. At only moderate fast-slow separation (B), with ε = 

0.30, the convergence toward the sigmoidal nullcline is stronger and both the resulting black 

orbit and traces (D) are more rounded in appearance. (E) Additional examples showing 

transitions in wave-form shape and period can be seen within the context of both release and 

escape values of Iapp (0.4 and 0.6, respectively) with decreasing fast-slow separation (ε = 

0.10→0.17). 
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that results in longer time on both the upper and lower branches of the cubic nullcline. In addition, 

the effect on duty cycle moving from release to escape ranges of Iapp is also reiterated, with higher 

duty cycle in escape cases where the limit cycle slows near the upper right knee and leads to 

increased time in the active state. This duty cycle shift is valid across all motifs explored. 

5.3 Phase slipping across motifs  

As described in Chapters 3 and 4, phase-slipping behavior has been observed in asymmetric 

systems without one-way asymmetry. In clockwise systems, asymmetry is directional and equal 

and does not permit phase-slip behavior as the system is inherently driven to either clockwise or 

counter-clockwise rhythmicity away from full symmetry. In the following section, summary of 

phase-slip behavior mimicking pacemaker-like phase-lock previously observed, as well as 

additional unique cases observed within the mono-biased and KOM systems with an emphasis on 

cyclical rhythmicity that varies in time spent within each apparent rhythm pattern. 

5.3.1 Pacemaker-like phase-lock in slipping patterns 

In (∆12, ∆13)-Poincaré return maps, where trajectory convergence is described relative to cell 1, 

several distinct cases have been observed where phase-lock with phase-slipping behavior is 

exhibited via an apparent river passing horizontally or vertically through the (∆12, ∆13)-space. In 

Figure 5.14, examples of three of these key phase-slip behaviors with phase-locking behavior are 

reiterated. A vertical downward-shifting phase-slip observed within the king-of-the-mountain 

system (from Figure 3.10(A)) is shown with ∆12 ≈ 0.5 phase-lock of cells 1 and 2, in which voltage 

traces for cell 3 appear to continuously slip leftward relative to the other two cells, having a shorter 

period with essentially locked anti-phase bursting by the other two. Similar continuously leftward-

shifting phase-slip within a pairwise-biased system is also shown, in this case as an additional 

point sampled beyond the g31 = g13 strength of Figure 3.6(D’), occurring after loss of the red 



123 

pacemaker node has occurred via saddle-node bifurcation, with ∆13 ≈ 0.5 phase-lock of cells 1 and 

3, in which cell 2 appears to fire with shorter period than the other two cells. Finally, an alternate 

rightward-shifting phase-slip within the pairwise-biased system (from Figure 3.7(F)) is reiterated, 

with ∆13 ≈ 0.5 phase-lock of cells 1 and 3, in which cell 2 appears to continuously fire with longer 

period than the other two cells in observation of traces of bursting activity. 

 

Figure 5.14   Vertical and horizontal phase-slip with quasi phase-lock 

Examples of three different phase-slip behaviors with phase-locking behavior. (A) Downward-

shifting phase-slip within a KOM system (from Figure 3.10(A)) with ∆12 ≈ 0.5 phase-lock of 

cells 1 and 2, in which cell 3 fires with shorter period than the other two cells. (E’) Similar 

leftward-shifting phase-slip within a pairwise-biased system (additional point extending past the 

g31=g13 strength of Figure 3.5(D’) after loss of red PM node) with ∆13 ≈ 0.5 phase-lock of cells 1 

and 3, in which cell 2 fires with shorter period than the other two cells. (F) Rightward-shifting 

phase-slip within a pairwise-biased system (from Figure 3.7(F)) with ∆13 ≈ 0.5 phase-lock of 

cells 1 and 3, in which cell 2 appears to fire with longer period than the other two cells. 

Parameters: Iapp = 0.57, 0.399, and 0.5716 and gij = 0.001 except g31 = g32 = 0.00001, g31 = g13 = 

0.004, and g31 = g13 = 0.00331. 
 

5.3.2 Mono-biased S-patterns within the escape mechanism 

Additional phase-slip with apparent phase-lock behavior is also possible, and less apparent with 

representation here with respect to cell 1. In Figure 5.15, an example of diagonal phase-slip with 

a slight s-shaped behavior can be seen within the mono-biased system. In this case, we shift from 

the base case in Figure 3.5(A) by inducing an additional vertical shift in Iapp, which would be a 
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heteroclinic bifurcation if both were made simultaneously. This case exhibits different quasi phase- 

locking behavior with the phase-lock of cells 2 and 3, ∆23 ≈ 0.5, in which phase-lags for both cells 

appear to continuously slip leftward in the return maps, with shorter period than cell 1. This 

example, which has undergone an additional saddle-node bifurcation, contrasts with the system 

convergence to black clockwise traveling wave dominance that was shown previously at zero 

coupling of cell 3 to cell 1, and occurs manipulating a single parameter by increasing Iapp. 

 

Figure 5.15   S-pattern phase-slip in mono-biased systems 

Example of diagonal phase-slip behavior within mono-biased system (from Figure 3.5(A), with 

effect of vertical shift in Iapp shown in panel B) with different quasi phase-locking behavior with 

∆23 ≈ 0.5 phase-lock of cells 2 and 3, in which phase-lags both cells appear to continuously slip 

leftward (diagonally downward but staying approximately in anti-phase with each other) on the 

return map and fire with shorter period than the cell 1. This contrasts with system convergence to 

CTW behavior (A) shown previously for zero coupling of cell 3 to cell 1, and occurs via saddle-

node bifurcation with increasing Iapp. Parameters: gij = 0.001 except g31 = 0 and Iapp = 0.582 and 

0.586. 
 

5.3.3 KOM S-patterns within the release mechanism 

An entirely different kind of s-shaped phase lag is possible, one example observed previously in 

Figure 3.10(E), where phase-slip occurs with repetitive transitions in wave-form phase-lag 

relationships with both an extended period of apparent stereotypical phase-lock behavior between 

cells 1 and 3, ∆13 ≈ 0.5, followed by relatively fast transitions diagonally, with apparent phase-lock 
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between cells 2 and 3, ∆23 ≈ 0.5, like that described in Figure 5.15. This overall pattern is like that 

observed in Figure 5.11, but coexisting with the red pacemaker, near (∆12, ∆13) = (0, 1/2) and (1, 

1/2), and with much more stable and rapid convergence to this river of periodic behavior. A 

detailed view of this invariant circle phase-slip is represented in Figure 5.16, in which a pair of 

heteroclinic saddle-node bifurcations have led to formation of a heteroclinic loop between the 

incoming separatrices of the remaining red saddles. All initial space conditions between the 

saddles  on  either  side  of the  red  basin  converge  and  remain on this s-shaped path, with regular  

 

Figure 5.16   S-pattern phase-slip in KOM systems 

Detailed view of the invariant circle phase-slip observed in Figure 3.10(E), and like Figure 5.8, 

in which a pair of heteroclinic saddle-node bifurcations lead to formation of a heteroclinic loop 

between the incoming separatrices of the remaining red saddles. All solutions beginning within 

these separatrices converge and remain on this s-shaped path, with regular repeating phase shifts 

passing through regions of all 4 standard rhythm patterns (green PM → purple CCTW → blue 

PM → black CTW → green PM) laying between the remaining saddles near the traditional red 

PM FP location near (∆12, ∆13) = (0, 1/2) and (1, 1/2). Examination of traces along this path 

exposes difference in the time spent at different locations, with lines representing 20 cycles 

shown along this river. More time is spent near TW-like rhythms (very short black and purple 

lines), and the fastest transitions (dashed black lines) occur between locations of traditional FP 

locations. The most time is spent in the horizontal traversal from near (∆12, ∆13) = (0.9, 0.5) to 

(∆12, ∆13) = (0.1, 0.6), and results in the system appearing for extended periods to have phase-

locked phase-slipping behavior with cells 1 and 3 in anti-phase. Parameters: Iapp = 0.570 and gij = 

0.001 except g31 = g32 = 0.00136. 
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repeating phase shifts passing through regions of all four of the remaining standard rhythm 

patterns. This begins at the bottom, near (∆12, ∆13) = (1/2,0, with green pacemaker alignment, 

which transitions relatively quickly to purple CCTW alignment before then passing for an 

extended period horizontally through the blue PM and arriving at black CTW alignment, after 

which more rapidly converging back to its starting green PM position. A look at traces along this 

path exposes difference in the time spent at different locations along this river. More time is spent 

near TW-like rhythms, and the fastest transitions occur between locations of traditional FP 

locations. During the faster diagonal traversal from the black CTW location to the purple CCTW 

location, passing through the green PM FP location, apparent phase locked anti-phase behavior 

exists between cells 2 and 3, with cell 1 now firing with shorter period relative to the other two. 

5.4 Post-inhibitory rebound mechanism 

Post Inhibitory Rebound (PIR) is a mechanism through which some neurons are activated, where 

the cell can respond to hyperpolarization with depolarization above the level of the normal 

potential to create bursting-like behavior once hyperpolarizing stimulus is removed [49, 50]. 

Traditionally, excitation increases a post-synaptic cell’s activity and inhibition decreases it. In 

some cases, inhibition changes the values of the ion gating variables. The gating variable values 

determine the voltage threshold which needs to be exceeded to fire an action potential. Once 

inhibition stops, the window of potential for PIR behavior can be explained as the time in which 

increased neuronal excitability exists, and is the property by which many CNS neurons can exhibit 

action potential bursting immediately after inhibitory synaptic stimulus. It is thought that PIR may 

contribute to the maintenance of oscillatory activity in networks that are characterized by mutually 

inhibitory connections, like those involved in locomotor behaviors [51-52]. 
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Figure 5.17   Minimum external perturbation required for PIR 

Inducing an external stimulus to hyperpolarize a cell can lead to firing of a cell (spikes in the 

blue trace) upon release of the stimulus. This effect is directly related to the length of the 

stimulus (shown in the green trace for a fixed negative current input), however, with a minimum 

duration for which activity can be induced. Below this duration, cells in coupled inhibitory 

networks will remain in their natural quiescent state. 

 

Again, in some cases, strong inhibition or mild inhibition applied for a sufficiently long duration 

(see Figure 5.17) will decrease the threshold for firing below the uninhibited quiescent voltage, 

allowing a cell to fire a spike or packet of spikes following a period of hyperpolarization before 

returning to rest [48]. In this case, rapid release from inhibition can cause the post cell to fire an 

action potential from inhibition alone. In the Fitzhugh-Nagumo model the quiescent state is 

considered to occur at the bottom left knee, near what is normally considered release case 

mechanism ranges of Iapp. Strong inhibition shifts this knee to the left (see Figure 2.6) and the 

equilibrium point shifts left and down to the new stable intersection of nullclines. When the 

inhibition is released, if the intersection shifts back faster than the post cell’s slow variable can 
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change, the post cell can pass by the original knee (on the left of the knee) and jump to the upper 

branch of the fast cubic nullcline to initiate a burst of active behavior. 

5.4.1 Post-inhibitory rebound methods 

During investigation of this phenomena, modeling parameter sets were tested to verify that the PIR 

mechanism was at work. This was accomplished by running the model with no inhibition and 

confirming stable quiescence for the cells and then running the model with inhibition present and 

with one cell starting on the active branch, an initial condition restriction not used during the 

release and escape cases discussed in Chapters 2-4. This confirmed that internal inhibition can 

generate branch jumping in all cells, and verified previous work and observation that some 

networks of neurons, which do not intrinsically oscillate, may be induced to generate coherent 

rhythms, often in the form of globally synchronous cluster states for slow synapses with 

sufficiently large coupling strength [48]. For most parameter sets some or all the initial condition 

states result in quiescence persisting. For some range of inhibition values most initial condition 

space resulted in stable PIR rhythmic generation. All parameter sets had minimum synaptic 

coupling strength required to produce stable rhythm patterns, a minimum which directly results in 

typical hard-locking behavior within these networks that causes the system to very rapidly 

converge to final equilibrium. Below this minimum all initial condition space results in stable 

quiescent network behavior (Figure 5.19(A)). This nature requires use of the phase-basin approach 

to representing phase-lag convergence, as described in Figure 2.4, since representation of traces 

makes it difficult to discern transitions which are abrupt and can shift dramatically between 

computational iterations (Figure 5.18). This makes for unattractive looking 2-D Poincaré return 

maps but may lend itself to quick CPG decision making and possibly forms of logic gating. While 

increasing coupling strength is required to induce greater, or ongoing, bursting duration above the 
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minimum thresholds described to initiate it, this can often ultimately lead to cases where too strong 

synaptic coupling can ultimately lead to chaotic behavior in which activity may occur seemingly 

randomly with no rhythmic behavior observable (Figure 5.19).  This can be avoided by applying 

appropriate additional constraints, specifically by inducing PIR in systems avoiding canard-like 

limit cycle behavior, upon which there does not seem to be maximum value of coupling strength 

for non-chaotic behavior. For the generic synapse mechanism, with strong fast and slow system 

separation, and near the left nullcline, pacemaker rhythms are not observed. 

 

Figure 5.18   Hard-locking effects in PIR systems 

The hard-locking nature of strong synaptic coupling required in PIR networks causes rhythmic 

jumping. The traces make only a few very big jumps, rapidly converging to their final rhythmic 

pattern. Parameters: ε = 0.069, Iapp = 0.5528, and gij = 0.03. 

 

Another method to induce PIR is with modification of the synapse mechanism, such that there is 

a band of state space between the active and inactive states, and prohibiting inhibition from acting 

on cells in the state space of the upper branch, permits pacemaker rhythms to emerge stably for 

conditions which they could not within the generic synapse mechanism just described. Changing 

the timing parameter, ε, to be closer to a value of 1 also allows the emergence of pace maker 



130 

rhythms. In all cases for which the stable pacemaker rhythms exist, the initial condition space that 

results in pacemaker rhythms is a very narrow minority of the total initial condition space. This 

behavior also lends itself to the fast CPG decision making mentioned. 

 

Figure 5.19   Coupling strength effects of on PIR behavior 

With increasing synaptic strength, a small region of persistent activity may emerge and grow 

from initial quiescence (shown by yellow in phase-basins) until almost all the phase space results 

in rhythmic network activity (traces for B and C). Here we observe TW patterns represented by 

the black and purple basins. Most initial conditions settle to their respective fixed points in only 

two or three steps (characteristic of hard-locking in PIR cases, see Figure 5.18) and observed in 

the jagged trace convergences in the left panels. At too strong connectivity, chaos may result (D) 

and is represented by random multi-color coding. Parameters: ε = 0.30, Iapp = 0.6107, and gij = 0, 

0.2304, 0.2575, and 0.2902. 
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A third method exists to induce pacemaker rhythms, which is also available in combination with 

either the generic synapse or strong fast slow system separation methods described. By shifting 

the cubic nullcline, such that the gap at the right knee is much smaller compared to the left knee, 

the time a cell effectively spends on the upper branch can be manipulated for longer duration. This 

results in increased total inhibition on the other cells, and can push the cells further out leftward 

from the lower knee of the cubic nullcline, making them jump immediately to the upper branch of 

the cubic upon release, even if the cells on the bottom branch were not at the knee when the 

inhibition began. Normally a cell needs to be close to this knee when another cell begins to apply 

inhibition to cause a PIR event, and is a primary reason why traveling wave patterns dominate the 

initial condition space for this mechanism. 

5.4.2 Symmetric PIR results 

To remain coherent with previous results discussed for escape and release case mechanisms, 

results in this section will be organized in terms of shifting the nullclines from right proximity 

(escape-like) through oscillatory middle ranges to left proximity of the nullclines (release-like) for 

fully symmetric motif PIR systems. This is then followed by general discussion of some results 

for the four key asymmetric motifs described in previous chapters. It is important to note that most 

of the results will parallel the rhythms observed previously (generic PM or TW behavior), but that 

much of PIR initial condition (IC) space will still often remain or return to quiescent states rapidly 

after external stimulus is applied. In addition, there are times in which PM behavior may be 

identified (and other times not recognized) for unique cases where the system drives one cell to 

quiescence while the other two manage to remain active in anti-phase (Figure 5.20). For simplicity, 

these are not described or distinguished separately from the general results. 
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Figure 5.20   Half-center oscillator reduction in PIR systems 

An interesting case when the system reduces to a half center oscillator, with the green and blue 

cells remaining active and in anti-phase (∆12 = 1/2) but the red cell remains quiescent. This is 

pacemaker behavior but does not fall within the framework of the classic case discussed in 

previous chapters. Parameters: gij = 0.02, beginning with (∆12 = 0.5). 

 

In the right nullcline proximity case, in ranges of Iapp close to those observed for the escape case 

mechanism, pacemakers are the first rhythms to emerge with increasing synapse strength. For a 

certain range of values, pace makers occupy all the initial condition space (Figure 5.21). At some 

of these values the IC space for one pacemaker is divided into multiple islands (shown zoomed in 

for a special case in Figures A.8 and A.9). Phase basin diagrams show the system with most or all 

IC space resulting in network silence. At low coupling strengths, quiescence dominates (in 

yellow), but increasing coupling can cause the appearance of stable regions of the IC state space 

for which PM rhythms can exist (green and red). Beyond a certain threshold, however, these 

patterns lose stability and then return to the typical regimes of TW-dominant parameter space, 

occupying all none silent initial conditions. 

As mentioned, PMs in these systems have interesting conditions for separating initial condition 

space with the final stable rhythms. The bulk of the blue, red, and green basins remain around their 

respective fixed points. However, for certain synapse strengths there are ambiguous boundaries 

for these basins. On certain boundaries, crossing parameter space vertically, for ICs beginning with 

cells 1 and 2 in anti-phase (∆12 = 0.5), and beginning cell 3 at different relative positions, we 
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observe cases where final stable rhythm outcomes will switch from green to blue and back and 

forth in short ranges of initial condition space (Figure A.8). These changes are due to small 

differences of the cells starting or leaving a bursting or quiescent state and how this affects final 

stability. Similar behavior is observed moving across parameter space horizontally, for ICs 

beginning with cells 1 and 3 in anti-phase (∆13 = 0.5), but with rhythms switching between either 

red or blue PM behavior (Figure A.9). 

 

Figure 5.21   Panel of return maps for symmetric ‘escape’ range PIR 

Phase basin diagrams showing the system with most or all initial condition space resulting in 

network silence. At low coupling strengths, quiescence dominates (in yellow), but increasing 

coupling can cause the appearance of stable regions of the IC state space for which PM rhythms 

can exist (here green and red). Beyond a certain threshold, however, these patterns lose stability 

and then return to the typical regimes of TW-dominant parameter space. Parameters: ε = 0.067, h 

= -0.433, Iapp = 0.592, gij = 0.001, 0.01, 0.02, 0.03, 0.04, 0.05, 0.05zoom, 0.06, 0.09, 0.1, 0.2, 0.3, 

and 1.3 
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For oscillatory ranges of nullcline proximity, when the fast null-cline is in the middle and both 

knee gaps are about equal, there is strong fast slow system separation. This results in systems for 

which the traveling waves are the only stable rhythmic outputs (Figure 5.22). With low synapse 

strengths PM rhythms emerge but only last a couple network cycles before transitioning to stable 

network quiescence, with only the unstable and transient pace makers existing. With increasing 

synapse strength, stable traveling waves emerge and grow. Initially silence occupies most the 

initial condition space. With increasing synapse strength, the basins of attraction, for the traveling 

wave  cases,  grows to occupy most the initial condition space. For this same system, introduction  

 

Figure 5.22   Panel of return maps for oscillatory symmetric case PIR 

Panels showing the system with symmetric network connectivity and increasing coupling 

strength. Large regions of quiescent ICs (yellow regions) are gradually acquired by increasing 

basins of attraction of the TWs (black and purple) in the symmetric case, while in the mono-

biased system this is paired with regions of increased PM behavior (green PM regions). 

Parameters: ε = 0.067, h = -0.394, Iapp = 0.496, gij = 0.01, 0.02, 0.03, 0.04, 0.08, 0.1, 0.2, 0.45, 

1.5.  
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of a synaptic mono-biased anti-symmetry increasing the connection from cell 1 to cell 2, g12, gives 

some similar results but with clearly asymmetric behavior (Figure A.11, right panels). This system 

begins, as did the symmetric one, at an initial synaptic coupling strength, gij = g12 = 0.07, where 

both TW basins are present and occupy just under 50% of the IC space was used. With increasing  

 

Figure 5.23   Panel of return maps for symmetric ‘release’ range PIR 

Phase basin diagrams showing the system again beginning with most or all IC space resulting or 

returning to network silence (in yellow). Increasing coupling again causes the appearance and 

growth of stable regions of the IC state space for which PM rhythms can exist (green and red) 

with TW behavior. Beyond a certain threshold, these patterns lose stability and return to the 

typical regimes of primarily TW-dominant parameter space. This is emphasized by stability of 

rhythm outputs in panels G-I with increasing coupling strength not inducing any further rhythm 

changes. Parameters: ε = 0.069, h = -0.311, Iapp = 0.465, gij = 0.001, 0.02, 0.04, 0.06, 0.09, 0.15, 

and 1.5.  
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g12 strength, the TW basins grew, with the purple CCTW basin growth outpacing that of the black 

CTW, eventually occupying significantly more IC space. Unlike the symmetric case, the transient 

green pace maker never disappears with increasing g12 strength. Significant differences only 

appear if the anti-symmetric connection is that of the others, looking like the symmetric case prior.  

In the left nullcline proximity case, in ranges of Iapp close to those observed for the release case 

mechanism, the gap between the slow sigmoidal and left knee of the fast cubic nullclines is much 

smaller than that on the right. This system behaviors very similarly to the oscillatory ranges just 

described, with the early emergence of PMs being unstable and transient. TWs are the only stable 

network outputs, with basins of attraction growing with increasing synaptic strength to include 

most, but never all, of IC space (Figure 5.23). This finding might support the conclusion that small 

PIR networks are more rugged and resist perturbations to network behavior for small variations in 

synaptic configuration. If a single connection can be 5 times as large as the other connections, 

others all being equivalent, and the same basic network behavior is preserved, then this CPG will 

perform its specific task even with significant damage to the network. If this is true, one would 

expect small PIR networks to be found in essential and consistent behavior governing CPGs. One 

would not expect to find these networks in behaviors that need to be fine-tuned in response to 

varying environmental conditions. 

Comparison of the emergence and existence of regions of possible rhythmic behavior within 

otherwise largely quiescent ICs for the entire bi-parametric (gij, Iapp)-space (Figure 5.24) indicates 

dominance of TW patterns when PIR succeeds in initiating rhythms.  This occurrence of TW 

behavior (shown in green) increases with decreasing values of Iapp, and only appears with 

increasing coupling strength, gij, PM rhythms (dark and light blue) only appearing at near right-

knee nullcline proximity and only for midranges of gij, with the presence of increasing regions of  
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Figure 5.24   Pattern contribution with shifts in Iapp for symmetric PIR 

Set of 3 graphs showing the contribution of TWs, PMs, and transient PMs at increasing synapse 

strengths, each box spanning the range from 0-100%. Quiescent behavior (shown in yellow) 

dominates ICs for the bi-parametric (gij, Iapp)-space, with the presence of increasing regions of 

stable TW behavior (green) in all cases but primarily transient pockets of PM behavior 

otherwise. For right-knee proximity of the nullclines (A), with Iapp > 0.55, we observe a critical 

point at which PM behavior (darker blue) entirely dominates, increasing until that point and 

decreasing afterward. For oscillatory ranges of Iapp (B), only transient PM behaviors (lighter 

blue) are observed and appear to peak at the same range of gij ≈ 0.05. For right-knee proximity of 

the nullclines (A), with Iapp < 0.45, we observe a similar but much reduced range of tPM activity 

and increased dominance of TW rhythms, an increasing trend observed with decreasing Iapp. 
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stable TW behavior (green) in all cases but primarily transient pockets of PM behavior otherwise. 

For right-knee proximity of the nullclines where PM activity is most prevalent, with Iapp > 0.55, 

we observe a critical point at gij ≈ 0.05 where PM behavior (darker blue) entirely dominates, 

increasing up to that point and decreasing afterward. For oscillatory and left-knee proximity ranges 

of Iapp < 0.55, only transient PM behaviors (lighter blue) are observed and appear to peak near the 

same range of gij. These are patterns in which PM behavior is only temporarily induced (transient 

PM, or tPM, shown in light blue) and then falls back into quiescence over time. These fleeting 

periods of transient PM activity increase to dominate as much as 40% of the bi-parametric (gij, 

Iapp)-space within oscillatory ranges but are much less present at low ranges of Iapp. This behavior 

is nearly the reverse of that observed for escape-to-release shifts in Iapp within the symmetric motif 

explored in the previous chapters. 

5.4.3 Asymmetric PIR results 

For asymmetric motifs, two different experiments are explored and begin for cases with moderate 

and strong synaptic coupling within the right knee proximity of the nullclines case with high fast-

slow separation (Iapp=0.592 and ε=0.067). The first case, gij = 0.0663, begins at full symmetry near 

a peak PM region while the second case, gij = 0.1724, begins at full symmetry in a null space 

between stable PM and TW regimes (Figure 5.25(A and B), respectively). An additional 

experiment is also described in the Appendix in Figure A.11. 

For the first case, in which we observe a system with only moderate symmetric synaptic coupling, 

with gij = 0.0663, both PM and TW behavior exists. Beginning from this state, decreasing or 

increasing the relevant coupling strengths for each asymmetric motif from this initial state (shown 

by vertical line), we observe shifts in pattern formation unique to each connectivity network 

(Figure 5.27).  For  the  mono-biased  motif  (panels  across  A),  in  which  g31 is manipulated, we  
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Figure 5.25   Initial symmetric states for asymmetric PIR examples 

Panels showing phase-basin return maps for the two cases of asymmetric PIR explored here. In 

panel A, we observe a system with only moderate symmetric synaptic coupling in which PM 

behavior exists and panels in Figure 5.26 describe shifts in this system by decreasing or 

increasing respective asymmetric gij values from this initial state, beginning the system with ICs 

within one of the peak PM regions visible. In panel B, we observe a system with strong 

symmetric synaptic coupling in which only quiescence exists (no trajectories in B, or yellow in 

A), with panels in Figures 5.27 and 5.28 describing shifts by decreasing or increasing respective 

asymmetric gij from here. Parameters: Iapp = 0.592, ε = 0.067, and gij = 0.0663 or 0.1724. 

 

observe increasing dominance of the red PM only briefly with increased g31, and followed by an 

overall increase in green PM activity where rhythms exist. Red PMs decrease, and then disappear 

entirely, with decreasing g31 coupling, with green PM behavior increasing slightly. For the 

pairwise-biased motif (panels across B), in which g31 = g13 is manipulated, we observe increasing 

dominance of the red PM activity above and green PM activity below symmetry, green PMs 

occupying nearly the entire IC-space at low coupling values. For the KOM motif (panels across 

C), in which g31 = g32 is manipulated, we observe increasing complete dominance of the red PM 

above symmetry, while it nearly disappears entirely with shifts below. For the clockwise-biased 

motif (panels across D), in which g31 = g12 = g23 is manipulated, we observe increasing dominance 

of one or the other TW pattern, clockwise below and counterclockwise above symmetry, while it 

nearly disappears entirely with shifts below, with asymmetric reduction in the green PM. 



140 

 

Figure 5.26   Asymmetry in moderately coupled right-knee PIR systems 

Series of phase maps for asymmetric motifs above and below full symmetry (vertical line) with 

moderate coupling strength. Beginning from a system with large PM activity (Figure 5.25(A)), 

differences are observed in pattern emergence or disappearance with decreasing or increasing 

asymmetric coupling strength, left and right panels in each row, respectively. Mono-biased (A), 

pairwise-biased (B), and KOM (C) motifs all show shifts emphasizing a singular PM rhythm, 

while the clockwise (D) motif sees these rhythms disappear with increasing dominance on a 

single TW pattern. Yellow regions again indicate ICs leading to quiescence. Parameters: ε = 

0.067, Iapp = 0.592, and gij = 0.0663; A: g31 = 0.0464, 0.0654, 0.0689, and 0.0902, B: g31 = g13 = 

0.0623, 0.0642, 0.0714, and 0.0831, C: g31 = g32 = 0.0599, 0.0638, 0.0724, and 0.0896, D: g31 = 

g12 = g23 = 0.0593, 0.063, 0.0736, and 0.0893. 
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Figure 5.27   Asymmetry in strongly coupled right-knee PIR systems 

Phase maps for asymmetric motifs above and below full symmetry (vertical line) with strong 

coupling strength. Beginning from a system with no rhythmic activity (Figure 5.25(B)), 

differences are observed in pattern emergence decreasing or increasing asymmetric coupling 

strength, left and right panels in each row, respectively. Mono-biased (A), pairwise-biased (B), 

and KOM (C) motifs again all show shifts emphasizing a singular PM rhythm, but with much 

greater dominance than observed at moderate coupling (Figure 5.26(A-C)). Yellow regions 

indicate ICs leading to quiescence. Parameters: ε = 0.067, Iapp = 0.592, and gij = 0.1724; A: g31 = 

0.1421 and 0.1590, B: g31 = g13 = 0.1218 and 0.2490, C: g31 = g32 = 0.1508 and 0.2031. 
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For the second case, in which we observe a system with strong symmetric synaptic coupling, with 

gij = 0.1724, we begin with ICs in the null-space for which no stable patterns exist (Figure 5.25(B)). 

Decreasing or increasing the relevant coupling strengths for each asymmetric motif from this initial 

state (shown by vertical or horizontal lines), we observe shifts in pattern formation unique to each 

connectivity network (Figures 5.27-28). For all three cases involving only connections to or from 

cell 3 (shown in Figure 5.27), g31 for mono-biased (A), g31 = g13 for pairwise-biased (B), and g31 =  

  

Figure 5.28   Strongly coupled clockwise right-knee PIR motifs 

Phase maps for clockwise asymmetric motif above and below full symmetry (horizontal line) 

with strong coupling strength. Beginning from a system with no rhythmic activity (Figure 

5.25(B)), we observed the asymmetric appearance and then disappearance of blue PM activity in 

both directions, ultimately leading to dominance of the CCTW pattern (A) at high coupling 

strength or, unlike in both release-escape and the moderately coupled PIR system previously 

described in which CTW patterns dominated, system-wide quiescence (D) at low synaptic 

coupling. Yellow regions indicate ICs leading to quiescence. Parameters: ε = 0.067, Iapp = 0.592, 

and gij = 0.1724 except g31 = g12 = g23 = 0. 1970, 0.1844, 0.1542, and 0.1190. 
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g32 for KOM (C), we again observe shifts emphasizing a singular PM rhythm, green below and 

blue above full symmetry, but with much greater dominance than was observed at moderate 

coupling. All three systems remain dominated primarily by quiescence for most of the bi-

parametric (gij, Iapp)-space. For the clockwise motif (panels across D), in which g31 = g12 = g23 is 

manipulated, we observe increasing dominance of one or the other TW pattern, clockwise below 

and counterclockwise above symmetry, while it nearly disappears entirely with shifts below, with 

asymmetric reduction in the green PM on either side. For the clockwise asymmetric motif shown 

in Figure 5.28, however, we observe the asymmetric appearance and then disappearance of blue 

PM activity in both directions. This occurs transiently, ultimately leading to dominance of either 

the CCTW pattern at high coupling strength (D) or, unlike in both release- and escape-like systems 

and the moderately coupled PIR systems previously described in which CTW patterns dominated, 

system-wide quiescence occurs at low synaptic coupling (A). 

5.4.4 Summary of PIR results 

The PIR mechanism is a challenging system to broadly sweep and analyze, as was done within the 

escape-release framework discussed in previous chapters. The range of inhibition strengths for 

which PIR activity can exist is relatively narrow compared to the other mechanisms investigated. 

When this behavior does exist, there are always significant dead zones of system quiescence for 

the mechanism in the (gij, Iapp) bi-parametric state space. TWs remain the dominant stable rhythmic 

pattern for most ranges and initial conditions for this system. PM rhythms require particular 

conditions to exist within this framework, and are nearly always a minor rhythm regime when 

compared to TW rhythms or static equilibrium. PIR networks jump quickly to final rhythm states 

due to both the required strong coupling and its inherent hard-locking nature. This makes PIR a 

viable candidate for CPG decision making in complex logic systems.  
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Results for symmetric near left-knee proximity of the nullclines indicate that PIR may induce 

transitions from TW-specific network outputs to PM rhythms. This results directly from changes 

in the duty cycle of the cells in the network as the move from smaller to larger values for affected 

coupling strengths. This relationship between duty cycle and rhythmic output is directly opposite 

that observed in both the escape and release cases, where TW typically remain dominate stable 

outputs with large duty cycle values. This could be a result of the hard-locking nature of PIR, and 

merits additional comparison to escape and release cases with definite hard locking characteristics. 

On the other end of the spectrum, when near right-knee proximity of the nullclines exists, 

transitions to PM behaviors are significantly reduced and only exist transiently, with TW rhythms 

occurring with much greater frequency. Within asymmetric PIR motifs, additional deviations from 

release-escape stereotypical behavior are observed, and most particularly for the clockwise-biased 

system. The general response of clockwise-biased increases in coupling strength, causing the 

emergence and or domination of a singular TW rhythm well above or below symmetry, holds true 

for only one of the two asymmetric synapse cases investigated. The other loses stability for all 

network output with decreasing clockwise anti-symmetry, becoming dominated entirely by 

quiescent output. This illustrates how much more dependent the PIR mechanism is on non-synaptic 

parameters than are the other mechanisms, with some cases where no magnitude of synaptic anti-

symmetry can induce network outputs. 

5.5 Discussion and applications 

An examination of these further rhythmicity patterns, bifurcations, and the addition of additional 

asymmetry in several of the systems via coupling strength shifts or changes in fast-slow separation, 

aids in understanding these networks in a broader context in which manipulation of increasing 

numbers of parameters, plasticity, or residence within the framework of most of these patterns 
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occurs because of saddle-node bifurcations, often either homoclinic or heteroclinic. The 

unexpected regularity with which different phase-slipping behaviors can be observed in all three 

of the asymmetric motifs explored further lends itself to analysis of macro-scale rhythmic 

behaviors in which we may see periods of apparently stable patterns interspersed by fast rhythm 

switching to another apparently stable rhythm even without the need for external stimuli. These 

may present novel applications to experimental research of small local networks in which multi-

stable rhythm production can be observed with the same network connectivity.  

Further examination of changes in fast-slow separation within a system reiterate the increased 

dominance of oscillatory behavior with TW behaviors within the entire (gij, Iapp) bi-parametric 

state space. This has been demonstrated directly both in this chapter and in the previous one, in 

which bifurcation detail across changing values of ε was performed more extensively both for 

symmetric and mono-biased networks, and is a direct result of the increased drive of the fast-cubic 

nullcline in drawing trajectories toward it relative to the slow sigmoidal nullcline. This leads to 

squarer limit cycle orbits and waveforms, as little or no clustering of cells can occur for very long 

at the knees of the cubic nullcline, even with near-knee proximity in either the release or escape 

case ranges of Iapp. Changes in increased duty cycle for escape cases was described specifically 

here in the context of fast-slow separation as well, but are valid with increases in Iapp > 0.55 for all 

network motifs explored, as well as within the framework of PIR. 

In results described for exploration of PIR, there was a relatively narrow range of inhibitory 

coupling strengths for which bursting activity can be induced. When it does exist, it is generally a 

minority relative to the large zones of quiescence typically observed. TWs remain the dominant 

rhythmic output of the network for most ranges and initial conditions, with PM rhythms requiring 

highly restrictive conditions and typically coexisting with TW patterns and for an even more 
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restricted volume of IC space. PIR networks jump quickly to final rhythm states due to both the 

required strong coupling and its inherent hard-locking nature. Within asymmetric PIR motifs, 

additional deviations from release-escape stereotypical behavior are observed, most emphatically 

for the clockwise system, and underlines the increased dependence of the PIR mechanism on non-

synaptic parameters.  
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6 TRANSITIONS IN 3-CELL MODULAR NETWORKING 

Work in previous chapters has extensively explored the nature and behavior of local three-cell 

networks, with allusion to use of these not only in hypothesis generation for experimental studies, 

but also as a potential framework for using results from this work as 3-node building blocks for 

modular networking. Larger networks formed in this manner become more complicated, and 

visualization of dynamics observed in these systems becomes challenging within the framework 

of trace analysis and even using the phase-lag reduction employed thus far to reduce visualization 

to a two-dimensional system that could be displayed using the Poincare return maps extensively 

employed in this research. Some discussion is made here about ways in which higher-order 

networks could be readily analyzed and visualized, beginning with the simpler case of connection 

of a single additional node to one of the five key network motifs explored. This becomes more 

complicated with the addition of two cells, or the combination of two motifs, and an additional 

approach to doing this while continuing to use this methodology is described later in this chapter.  

Initial observations and results connecting 3-cell motifs into larger six-cell networks is described 

in the context of inhibitory connectivity, maintaining the reciprocally inhibitory HCO dynamics 

explored extensively thus far. Use of excitatory connections is not described here, but would be 

another method in which one network could be used to stimulate rhythm switching in the other, 

and is a recommended direction for future work building on this research. Finally, exploration of 

the addition of electrical between motifs is examined, with emphasis on transitions in 

rhythmogenesis and rhythm switching with increasing electrical connectivity. This approach is 

specifically used to describe a method for creating five-cell networks using strong electrical 

connection to effectively merge two cells together. This approach can also be used, and is 

described for a couple examples in the Appendix, to define even four-cell networks as coupled 
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three-cell motifs with two cells from each network being strongly electrically coupled. Broad 

transitions in rhythmicity are described, with the hope that future research can use some of these 

preliminary guiding principles in hypothesis generation and in furthering extensive bi-parametric 

exploration of these systems similarly to what has been done for the five key motifs described in 

this research, effectively building a growing library of bifurcation diagrams that can aid in 

continuing to bridge the gap between well-known small local network dynamics and behavioral 

outputs and rhythm generation in much larger interconnected networks. 

6.1 Visualization of higher-dimension phase-lag return maps 

6.1.1 4-cell networks and 3-D visualization 

Addition of a single cell to previously described three-cell networks lends itself to three-

dimensional visualization using the same phase-lag reduction approach used thus far, continuing 

to use cell 1 as a reference from which all results are described. The simplest case would be 

connection of this fourth cell to only one of the three-cell network, and preliminary work by others 

in our lab indicates that this method can effective capture and describe dynamics previously 

alluded to as a single external pulse or stimulus to cause rhythm switch within a polyrhythmic 3-

node network. A single cell can induce rhythm switch using a single incoming inhibitory stimulus 

to the network, which would depend on the intrinsic mechanism, whether release or escape, in 

which its Iapp value resides. For a release case system, in which Iapp < 0.45, the fourth cell would 

be an endogenous burster, moving along its orbit cycle continuously oscillating without any 

inhibitory stimulus, and provide a periodic inhibitory stimulus to the cell it is connected to. For 

escape case systems, in which Iapp > 0.55, this cell would instead fire continuously without any 

inhibitory stimulus, as it remains trapped in the active state on the upper branch of the cubic 

nullcline without inhibitory effects to shift the sigmoidal nullcline and allow it to escape said 
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inhibition, and provide instead a continuous inhibitory stimulus to the cell it is connected to. This 

would have much more significant effect on network dynamics, as the connected cell would 

effectively become continuously inhibited and require unique parameter values or much stronger 

3-cell network coupling to overwhelm and escape this drive. For either of these cases, this system 

is relatively easy to visualize using a three-dimensional representation, as shifts will tend to be 

linear in their effects and traces will not generally cross one another and complicate visualization 

and interpretation (see Figure 6.1). 

 

Figure 6.1   Sample 4-cell configuration and 3-D visualization 

(A) Doubling of potential number of synaptic connections observed with addition of a fourth cell 

to the network. (B) 3-D visualization for an originally 3-PM symmetric 3-cell motif with the 

addition of additional symmetric coupling only between cells 3 and 4, where gij = g43 = g34 and 

g4j = 0 otherwise. Cell 3 becomes silenced relative to the other two cells in the original 3-cell 

network, and cannot induce enough inhibition to become dominant for any of the three-

dimensional (∆12, ∆13, ∆14)-space. All traces within the 3-cell motif will converge to either blue 

or green PM dominance, with the relative positions of cells 3 and 4 remaining in anti-phase, ∆34 

= 0.5, and positioned in an alternate anti-phase position to the dominant cell depending whether 

cell 4 was initially active relative to cell 3.  
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At the opposite end of the spectrum, this additional fourth cell could instead be fully connected to 

the network, forming an HCO relationship with all three other cells and doubling the number of 

connections that could be manipulated either symmetrically or asymmetrically. An example of full 

connectivity can be seen in Figure 6.1(A), where cell 4 is shown in yellow. The 3-D visualization 

shown in the (B) is for a symmetric motif but with only reciprocal inhibitory coupling of cells 3 

and 4, as was described in the second simpler case in which the fourth cell only connects to one 

within the 3-node motif. Here we can see a three-cell motif that originally exhibited all three 

pacemaker rhythms driven to only two pacemakers instead. For the symmetric connectivity of cell 

4 onto cell 3, where gij = g43 = g34, cell 3 becomes effectively silenced relative to the other two 

cells in the 3-cell network with this additional inhibitory stimulus, and cannot induce enough 

inhibition on either cell 1 or 2 to become dominant for any of the three-dimensional (∆12, ∆13, ∆14)-

space. All traces within the 3-cell motif will converge to either blue or green pacemaker behavior, 

with the relative positions of cells 3 and 4 remaining in anti-phase, ∆34 = 0.5, and positioned 

depending on whether cell 4 was initially active or not relative to cell 3. It is important to note that 

this PM behavior may result in a staggered anti-phase location by either the red or yellow cell 

which is dictated by initial conditions. The effect of adding additional cell 4 connectivity results 

in traces which will cross over one another even on a 3-dimensional surface, and makes this 

visualization inadequate to properly describe or identify overall behavior. For such cases, as in the 

higher-order networks described later, use of two 2-D return maps is required, with the optimal 

choice of which lags are shown being dictated by both the connectivity and the needs of the 

experimentalist, typically ∆14 and a second lag relationship of choice. Such representations are not 

shown here, as emphasis is on use of 3-cell motifs as building blocks for larger networks.  
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6.1.2 Larger network visualization technique 

Connectivity of larger networks with 5, 6, or more cells involves many more relationships between 

cells, with appropriate references becoming more challenging to identify and describe, particularly 

if more than a couple connections between networks exist. This can become complicated very 

rapidly, and additional visualization may need to be developed to describe complex systems, an 

example of multiple inhibitory and electrical connections, as well as an excitatory connection 

replacing zero connectivity of g31 in two otherwise mono-biased motifs, can be seen in Figure 6.2 

for a hypothesized network inducing synchronicity between cells in each system. This type of 

connectivity is not currently conducive to the methods employing broad spanning of parameters 

described in this work, and is currently restricted to continuing to visualize individual traces to 

characterize behaviors for specific parameter combinations. 

 

Figure 6.2   Anti-phase connectivity of mono-biased motifs with internal complexity 

Example of additional connectivity between to otherwise mono-biased motifs with g31 = 0. 

Replacement of g31 by an excitatory connection, as well as weak electrical connection of cells 1 

and 2 in each motif adds significant internal complexity to network dynamics not explored in this 

research. Further coupling of two such identical modified mono-biased inhibitory motifs is 

shown with HCO connectivity of left cell 2 and right cell 1, as well as incoming inhibitory 

connections to the same two cells from cell 3 of the opposing network. This helps drive an anti-

phase relationship between the two local networks and this circuitry is representative of a 

hypothesized network inducing synchronicity between respective cells on each side. 
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Figure 6.3   2-panel phase basin visualization for 6-cell networks  

Example using two phase-basin return maps to describe two symmetric 5-rhythm motifs with 

reciprocally inhibitory coupling of cells 1 and 4. Here a fixed initial condition is set for one 

network, here the [456]-network begins at the blue PM position, (∆45, ∆46) = (0.5, 0.5), shown at 

right (C), beginning [123] with all (∆12, ∆13)-space as usual. In this case, the left phase basin 

diagram (B) shows final outcomes for [123], with significant reduction in the size of the TW 

basins. Traces converging to system-wide red PM behavior, with [456] synchronicity (not shown 

for left phase-basin). 
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Maintaining the structure of research performed thus far, connection of three cell motifs is 

examined initially using only inhibitory coupling within the framework of the five key network 

motifs described. This permits use of the two phase-return map approach described, in which each 

of the two 3-cell networks is described with respect to its primary cell, cell 1 in the first network 

and cell 4 in the second network, and additional understanding of connectivity between the two 

primary cells is required to interpret outcomes. A simplified version of this approach to 

representation can be seen in Figure 6.3, using two phase-basin return map visualizations to 

describe the connection of two symmetric motifs with reciprocal inhibitory coupling of cells 1 and 

4. This approach requires setting a fixed starting initial condition for one network, here [456] at 

the blue PM position (∆45, ∆46) = (0.5, 0.5) shown at right, while beginning [123] with all (∆12, 

∆13)-space as usual. In this case, the left phase basin diagram shows final outcomes for [123], with 

significant reduction in the size of the TW basins, which was originally a stereotypical oscillatory 

network with all five basic rhythm patterns present in equal distribution. Shown as well are panels 

zooms of traces converging from an initial system condition of [123] synchronous and [456] blue-

pacemaker with 1 and 4 in-phase, (∆12, ∆13, ∆14, ∆45, ∆46) = (0, 0, 0, 0.5, 0.5). This specific starting 

condition leads to system-wide red pacemaker behavior with [456] synchronicity (phase-basin 

representation not shown here). This system is at fully symmetric synaptic coupling, with 

gij=gkl=g14=g41, additional detail on this approach, as well as the effects of weak-to-strong mono- 

and pairwise-biased inter-motif coupling is described in the following section. 

6.2 Inhibitory coupling of symmetric motifs 

Extending on the approach of a double phase-basin return map representation of system dynamics, 

reference to the left motif will be described as was done in Figure 6.3, with [123] represented by 

coupling strength, gij, and phase-lag references, (∆12, ∆13). The right motif, [456] is represented by 
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coupling strength, gkl, and phase-lag references, (∆45, ∆46). Careful description of the relevant 

relationships g14, g41, and ∆14 will permit larger network characterization. In preliminary work 

shown here, only these relationships are manipulated, but the number of additional potential gil 

and gkj connections creates a total number of possible connections having the relationship 

∑ 2(𝑖 − 1)𝑛
𝑖=1 , where n is the number of nodes present in the larger network, as was first seen in 

the simple case of adding only a fourth cell. If fully interconnected, this network could potentially 

have ∑ 2(𝑖 − 1)6
𝑖=1 = 30 connections to manipulate. This vastly compounds the complexity of the 

network, particularly for any introduced asymmetry, and here work focuses primarily only 

describing effects of addition of either one, a mono-biased single-coupling using g41, or two, 

pairwise-biased single-coupling using g14 = g41 > 0, inhibitory connections between symmetric 

motifs. It is important to note that here, and through the remainder of this work, the term single-

coupled is used to represent the number of pairs of cells interconnected between the two motifs, 

and not necessarily the number of connections, which could be one or two for each pair of cells. 

Some examples of such double- or triple-connected networks are shown in the Appendix but are 

not an emphasis of initial modular networking done in this research. 

6.2.1 Mono-biased single inhibitory-coupled symmetric networks 

For simplicity, the following examples employ equi-symmetric motifs, in which all connections 

within each of the two symmetric motifs are equal those in the other, gij = gkl. Only the coupling 

connection(s) between the two symmetric motifs are manipulated, and are done so in terms of 

weak, equal, and strong coupling of motifs. For single-coupled symmetric networks, this 

relationship can be expressed as g41 = 0.5∙gij = 0.5∙ gkl, g41 = gij = gkl, and g41 = 2∙gij = 2∙gkl, for weak, 

equal, and strong, respectively. In all cases, the [456]-motif is driving the [123]-motif via this 

single incoming connection. An example for visualization of trace convergence for the [123]-motif 
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with increasing mono-biased g41 coupling in Figure 6.4 shows increased sensitivity to driving 

influences by the incoming connection from cell 4 that cause trajectories to initially move less 

smoothly, often crossing one another, before stabilizing to final rhythm outcomes in relationship 

to cell 1. This is due to increasing push by the driving cell as g41 becomes stronger and drives the 

initially in-phase relationship of cells 1 and 4, ∆14 = 0, to anti-phase, ∆14 = 0.5. In inhibitory mono-

biased single-coupled networks, the [456]-motif remains unaffected, as it is not driven in any way 

by [123]. This means that local network will remain in the stable blue pacemaker rhythm in which 

it started, and there is no need to observe visualization of its phase-lag relationship. The blue 

pacemaker outcome originally present in [123] is largely diminished because of this additional 

inhibitory influence on it,  and portions of its basin are lost to green and red pacemaker  outcomes  

 

Figure 6.4   Trace convergence in mono-biased single-coupled symmetric networks  

Addition of a single inhibitory synapse, g41, between two symmetric motifs. The [456]-motif is 

begun with fixed initial condition with a blue PM rhythm at (∆45, ∆46) = (0.5, 0.5) driving the 

[123]-motif, which is fully explored using a grid of ICs. Cells 1 and 4 begin in-phase, and rapidly 

driven to anti-phase with increased g41 coupling. With weak g41 coupling, little overall effect is 

observed in final (∆12, ∆13) fixed point outcomes, but initial trajectories fluctuate as cell 1 is 

pushed away from cell 4. With increasing g41 coupling, these initial fluctuations become more 

complex and interpretation is complicated by crossing trajectories. Parameters: ∆14,init = 0,  g41 = 

0.5∙gij = 0.5∙gkl, g41 = gij = gkl, and g41 = 2∙gij = 2∙gkl. 
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in that motif. Some initial conditions, particularly for stronger g41 coupling, experience extensive 

‘wandering’ effects in which longer cycle time is required to observe final convergence, and some 

initial conditions may in fact appear to exhibit seemingly chaotic behavior. 

Even in this simple connectivity case, a trajectory-based approach to phase-lag return maps is 

inadequate for rapid analysis of rhythm outcomes, and phase-basin representations will be used 

here instead, as was done for some previous strong-coupling or post-inhibitory rebound systems 

in which this method was employed. This simplifies interpretation of the effects of increasing g41 

coupling on [123] rhythm outcomes by ignoring entirely the individual trajectories of each initial 

condition  and  instead  plotting  at  its  position only the color of the final rhythm outcome for that  

 

Figure 6.5   Basin visualization for mono-biased single-coupled symmetric networks  

As in Figure 6.4, a single inhibitory synapse, g41, connects two symmetric motifs with [456] 

beginning as a blue PM rhythm, (∆45, ∆46) = (0.5, 0.5) driving the [123]-motif, with cells 1 and 4 

in-phase. Here, however, phase-basin representation simplifies interpretation of the effects of this 

coupling on [123] rhythm outcomes by ignoring entirely the trajectories of each IC and instead 

plotting only the color of the final rhythm outcome for that starting position. This reiterates 

dominance of green and red PM outcomes, and emphasizes additional complexity for some ICs 

originally starting in the blue PM basin that now converge to one of the other two or exhibit 

seeming chaotic behavior. Longer cycle time would be required to observe final convergence for 

some of these states. Parameters: ∆14,init = 0,  g41 = 0.5∙gij = 0.5∙gkl, g41 = gij = gkl, and g41 = 2∙gij = 

2∙gkl. 
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initial condition. Interpretation reiterates dominance of both the green and red pacemaker 

outcomes, and emphasizes additional complexity for some initial conditions originally starting in 

the blue PM basin that now converge to one of the other two or may even exhibit seeming chaotic 

behavior (denoted by multi-colored or yellow regions in the phase-basin diagram). Longer cycle 

times would typically be adequate to observe final convergence for some of these states, while in 

other systems this may indeed represent phase-slip, quiescence, or ergotic tendency. 

This approach much more clearly represents final rhythm outcomes by avoiding complexity 

introduced by trajectories crossing over one another within the phase-lag return map, and is 

employed for all remaining results described in this chapter and in the supplemental results found 

in the index for modular networking using connected 3-node motifs. In this previous example, 

increasing the driving force of [456] on [123] by increasing g41 coupling leads to increasing 

reduction in the ability of the blue pacemaker rhythm to dominate the [123]-network. Since [456] 

was itself unaffected, its rhythm generation remained in the blue pacemaker rhythm in which it 

began, (∆45, ∆46) = (0.5, 0.5), but in local network anti-phase relative to [123], as cell 4 affectively 

turns off cell 1 whenever it is active, ∆14 = 0.5. This means that final rhythm outcomes, in 

relationship to cell 1, could be described as (∆12, ∆13, ∆14, ∆15, ∆16) = (x, y, 0.5, 0, 0), with x and y 

each representing the final return map solutions for each initial (∆12, ∆13) starting position. 

6.2.2 Pairwise-biased single inhibitory-coupled symmetric networks 

In the mono-biased connection of symmetric motifs just described, one network will always 

remain in its original state, receiving no reciprocal or other external driving force to push its system 

away from its beginning equilibrium. The introduction of a second, reciprocal connection, between 

cells 1 and 4 leads to feedback between the two networks that can lead to rhythm changes in both. 

This single additional connection adds increasing complexity that now requires visualization of 
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both phase-basin outputs, since [456] will not necessarily remain in the starting position it which 

it begins. This approach still requires a fixed (∆45, ∆46)-space initial condition for which the results 

in both phase basins are valid, with full sweeping of possible rhythm generation outcomes 

requiring a collection of paired [123]-[456] phase-basin return maps for the entire (∆45, ∆46)-space 

being sampled. For complex asymmetric networks, where many rhythms are possible and 

symmetry does not exist between specific pacemaker or traveling wave outcomes, this problem 

may be too complex for this approach to properly explore full network potential. For symmetric 

systems, however, this problem does not exist due to equivalency that exists between each 

pacemaker or each traveling wave pattern. Outcomes that are valid for one of each set will apply 

symmetrically to the other(s). In this section, results are therefore described for initial conditions 

sampling only one key rhythm type (PM, TW, or one of each) with the knowledge that the results 

will be transitive to the others. One further simplifying assumption is made here, however, in using 

initial conditions that have already converged to stable equilibrium in the unconnected motif. 

Results obtained in this manner may not always be valid for any other initial conditions within the 

original basin of attraction for the rhythm in the connected network, as system-wide convergence 

once both networks are connected can be heavily influenced by the specific relative phase-lag 

separation of each cell. For clarity, the first example of this approach will use the same system 

settings and parameters previously observed for the stereotypical symmetric release case, 

described in Figure 2.8(C). In this case, all five rhythm outcomes are originally possible, but with 

vastly reduced basins of attraction for the two traveling wave outcomes. In Figure 6.6, the phase-

lag return map obtained previously for this is shown, as well as visualization of the connection of 

two such identical motifs via reciprocally inhibitory pairwise-biased single coupling. In future 

examples, the initial phase-basin result prior to connection will be shown instead. 
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Figure 6.6   Weak inhibitory pairwise-biased symmetric mixed release 

Introduction of weak reciprocal inhibition between cells 1 and 4 (g14 = g41) of identical 

symmetric release case motifs described in Figure 2.8(C). Sample outputs for this network are 

shown in the Figure 6.7 for [456] beginning in either blue PM or purple CCTW rhythmicity, near 

(∆45, ∆46) = (0.5, 0.5) or (2/3, 1/3), respectively. Parameters: Iapp = 0.4155, gij = gkl = 0.015 except 

g14 = g41 = 0.0075. 

 

As in the example in Figure 6.4, introduction of weak reciprocal inhibition between in-phase cells 

1 and 4, ∆14 = 0, at half the strength of the other connections, with g14 = g41 = 0.0075, leads to initial 

loss of the traveling wave rhythms. In Figure 6.7, we observe the effect of this reciprocal inhibition 

on [123] is the same for either (∆45, ∆46) beginning position for [456] (left panels of A and B). 

Traveling wave patterns completely disappear and the entire (∆12, ∆13)-space is evenly shared by 

the three pacemaker rhythms, but with an interesting whorl of split divergence to these three 

patterns from the locations where the black CTW and purple CCTW rhythms had previously 

existed. Introduction of this additional inhibitory coupling has successfully driven the system 

through torus bifurcation in which collapse of saddles around each point has resulted in a stability 

shift. All three pacemaker rhythms are possible in [123] in either initial condition for (∆45, ∆46), 

depending on initial (∆12, ∆13)-relationships. The outcomes for [456] are very different, however, 

depending on which of the two initial conditions for (∆45, ∆46) are used. When begun as a blue 
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pacemaker rhythm, (∆45, ∆46) = (0.5, 0.5), the system remains in this stable rhythm even with 

reciprocal coupling with [123] via the g14 = g41 connection. This is a direct result of the fact that 

coupling between motifs is weak and there is not a strong drive to push cells 1 and 4 into anti-

phase, which would have potentially led to abrupt early transitions in convergence trajectories. 

 

Figure 6.7   Weak inhibitory pairwise-biased symmetric release 

Symmetric release case system, as in Figure 2.8(C), with introduction of weak reciprocal 

inhibition, g14 = g41, between in-phase cells 1 and 4. Panels represent system outcomes for both 

networks, exploring all (∆12, ∆13)-space, but starting [456] as either blue PM (A) or purple 

CCTW (B) with (∆45, ∆46) = (0.5, 0.5) or (2/3, 1/3), top and bottom panels respectively. For both 

cases, [123] converges equally to one of three PM rhythms based on ICs, TW patterns 

disappearing completely. For the first case, [456] will remain in blue PM rhythmicity with weak 

coupling, while for the second it rapidly diverges from this pattern to either the blue or green 

PM. Parameters: ∆14,initial = 0,  Iapp = 0.4155, gij = gkl = 0.015 except g14 = g41 = 0.0075. 
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When [456] is begun as a counterclockwise traveling wave, (∆45, ∆46) = (2/3, 1/3), however, it is 

not guaranteed that it will remain in a stable blue PM rhythm and the green PM rhythm outcome 

now occurs half of the time, depending on the initial conditions of (∆12, ∆13), which in turn affect 

when and how strongly cell 1 is activated and exerts inhibition on cell 4. It is important to note 

here that interpretation of the (∆45, ∆46) using this approach is different from that used thus far for 

(∆12, ∆13)-return maps. Since we begin the [456]-motif at a specified initial condition, its return 

map does not represent the outcome for each (∆45, ∆46)-space condition but instead represents for 

the singular initial condition being examined what rhythm [456] will exhibit given that specific 

pairing of shown (∆12, ∆13)-return map outcomes. For example, if we wanted to know the outcome 

of pairing a red PM [123] network condition, (∆12, ∆13) = (0, 0.5), with a black CTW [456] network 

condition, (∆45, ∆46), using initially in-phase coupling of cells 1 and 4, the ∆14 = 0, we need only 

look at the (0, 0.5) position in each of the two panels in Figure 6.7(B). In the left panel, a red dot 

is present at (∆12, ∆13) = (0, 0.5), indicating that network [123] remains a red PM even after the 

networks are connected in this manner. In the right panel, however, a green dot is present at (∆45, 

∆46) = (0, 0.5), indicating that network [456] will transition from its initial black CTW rhythm, 

with relationship (∆45, ∆46) = (1/3, 2/3), to become a green PM system, with relationship (∆45, ∆46) 

= (0.5, 0), when cell 4 begun in phase with cell 1 when [123] begins as a red-PM, with (∆12, ∆13) 

= (0, 0.5). In this manner, we can pair each matching point on the two return maps to determine 

the rhythm outcomes for both local networks given that specific starting position in [123] for the 

fixed beginning point selected for [456]. To be specific, this system could be represented in this 

example with either of the two following relationship transformations: (∆12, ∆13, ∆14, ∆45, ∆46) = 

(0, 1/2, 0, 1/3, 2/3) → (0, 1/2, z, 1/2, 0) or (∆12, ∆13, ∆14, ∆15, ∆16) = (0, 1/2, 0, 1/3, 2/3) → (0, 1/2, 

z, z+1/2, z), where z is the amount of anti-phase behavior induced by the strength of the coupling 
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between the two networks, and indicates the importance of also knowing the final outcome for ∆14 

when using this method. In this case, coupling is too weak to push them to full anti-phase and, 

depending on the initial conditions for (∆12, ∆13), generally ∆14 remains close to zero. 

Extending on this example, but using weaker network connectivity, with gij = gkl = 0.0005, and 

very slightly higher Iapp, the size of the basins of attraction for the traveling wave patterns is more 

equivalent to those observed for pacemakers (see Figure 6.8). This change permits more system 

dynamics, and sensitivity to change, than the previous one did, for which traveling waves were 

eliminated with the introduction of even weak inter-network coupling. In Figure 6.9, system 

changes can be observed beginning this larger network with [456] in either the blue PM or black 

CTW rhythm, near with (∆45, ∆46) = (0.5, 0.5) or (1/3, 2/3). As before, both cases are explored (A 

and B, respectively) beginning with cells 1 and 4 in-phase, with ∆14 = 0, but now followed by an 

example beginning in anti-phase, with ∆14 = 0.5, for the black CTW initial conditions (C). 

 

Figure 6.8   Moderate inhibitory pairwise-biased symmetric mixed release 

Introduction of moderate reciprocal inhibition between cells 1 and 4 (g14 = g41) of identical 

symmetric release case motifs with weaker inner-network connectivity, and larger initial basins 

of attraction for the TW rhythms. Sample outputs for this network are shown in Figure 6.9 for 

[456] beginning in either blue PM or black CTW rhythmicity, near (∆45, ∆46) = (0.5, 0.5) or (1/3, 

2/3), respectively. Parameters: Iapp = 0.42, gij = gkl = g14 = g41 = 0.0005. 
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In the top two panels, where the system begins with cells 1 and 4 in-phase, ∆14 = 0, examining the 

full (∆12, ∆13)-space of initial conditions with blue PM [456], having (∆45, ∆46) = (1/2, 1/2), much 

greater effect resulting from moderate coupling is observed than was seen with weak coupling. 

Here gij = gkl = g14 = g41, and the reciprocal inhibition between the two local networks at cells 1 and 

4 is just as strong as connections within each network to other cells. Both local networks are much 

more susceptible to (∆12, ∆13) initial condition effects, and frequently driven away from whatever 

original pattern had dictated its rhythmicity. The [123]-motif sees significant reduction in potential 

pacemaker outcomes, with increasing traveling wave regimes and complex basin boundary 

relationships with multiple non-contiguous pockets of (∆12, ∆13)-space for which each pattern can 

occur. The [456]-motif continues to retain much ability to stay in a blue pacemaker (BPM) rhythm 

relationship for about 45% of the (∆12, ∆13)-space initial conditions, with an equal portion of these 

initial conditions now driving it instead to black traveling wave behavior. Of interest, however, 

are the new regions of very slow convergence or of either apparent chaotic or quiescent behavior 

shown in yellow. These regions must be recognized with care, as this color coding only indicates 

that the numerical methods employed in this computational approach did not converge to a solution 

within the number of cycles specified (typically 150 were used). To broadly span results and 

connect regions of differing rhythmicity, these specific cases have not been investigated in much 

depth in this research as they generally form a minority of overall outcomes and would require 

individual trace analysis (in this case for up to 10% of the 75x75 grid, or approximately 562 traces 

for this map alone).  

In the middle two panels, all (∆12, ∆13)-space of initial conditions are again explored with cells 1 

and 4 beginning in-phase, ∆14 = 0, but with a fixed black CTW initial condition for [456], having 

(∆45, ∆46) = (1/3, 2/3). Patterns in both networks are again frequently driven away from the pattern  
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Figure 6.9   Moderate inhibitory pairwise-biased symmetric mixed release 

Symmetric release case, with introduction of moderate reciprocal inhibition, g14 = g41, between 

cells 1 and 4. Panels represent system outcomes for both networks, exploring all (∆12, ∆13)-space, 

[456] starting as blue PM or black CTW, (∆45, ∆46) = (0.5, 0.5) or (1/3, 2/3), cells 1 and 4 

beginning in-phase for A and B and anti-phase black CTW for C. PM rhythms outcomes for 

[123] significantly diminish in A, with most [456] outcomes remaining blue PM or shifting to 

CTW. Conversely, most TW rhythms are lost in both networks for initial black CTW [456], with 

red and green PM rhythms gaining dominance for both networks in opposite fashion for each 

case. Unique diagonal and origin initial conditions (∆12 = ∆13 or (∆12, ∆13) ≈ 0) with convergence 

to black CTW rhythms in anti-phase. Parameters: Iapp = 0.42, gij = gkl = g14 = g41 = 0.005. 
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dictating its starting rhythmicity, but this time with significant reduction in potential traveling 

wave outcomes for both motifs, and complete or nearly complete elimination of the blue 

pacemaker as a possible outcome for the [456] and [123] motifs, respectively. Both networks are 

dominated, in different ways, by red and green pacemaker, as well as counterclockwise traveling 

wave, rhythms, again with complex basin boundary relationships with multiple non-contiguous 

pockets of (∆12, ∆13)-space for which each pattern may occur. Reiterating upon the same example 

used for interpretation in the weakly connected motifs in Figure 6.7, pairing of a red PM [123] 

network condition, (∆12, ∆13) = (0, 0.5), with a black CTW [456] network condition, (∆45, ∆46), 

using initially in-phase coupling of cells 1 and 4, the ∆14 = 0, is indicated by the color of the dot in 

the (0, 0.5) position in each of the two panels in Figure 6.9(B). The green dot in the left panel 

indicates that network [123] shifts from red to green PM rhythmicity, with (∆12, ∆13) = (0.5, 0), 

after connection with [456].  The red dot at this position in the right panel that network [456] shifts 

from black CTW to red PM rhythmicity after coupling. Unlike the weak coupling case, however, 

the stronger g14 = g41 coupling in this system is adequate to push cells 1 and 4 into near anti-phase 

for nearly all (∆12, ∆13)-space, with ∆14 ≈ 0.5. This specific initial condition set for the system could 

therefore be represented with either of the two following relationship transformations: (∆12, ∆13, 

∆14, ∆45, ∆46) = (0, 1/2, 0, 1/3, 2/3) → (0, 1/2, 1/2, 1/2, 0) or (∆12, ∆13, ∆14, ∆15, ∆16) = (0, 1/2, 0, 

1/3, 2/3) → (0, 1/2, 1/2, 0, 1/2). 

For the anti-phase starting condition of a black CTW [456] network, with ∆14 = 0.5, a significantly 

different outcome is observed than that for the black CTW starting in-phase. The [123] network 

again is primarily dominated by red and green pacemaker, as well as counterclockwise traveling 

wave, rhythms but without most of the complex basin boundaries and non-contiguous pockets of 

(∆12, ∆13)-space observed for which each pattern may occur. The [456] network is driven for nearly 
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all initial conditions of the (∆12, ∆13)-space to green pacemaker rhythmicity, with a narrow band 

of black CTW rhythms possible along the diagonal or near the origin, where starting conditions of 

either ∆12 = ∆13 or (∆12, ∆13,) ≈ (0, 0) existed, respectively. The same example of interpretation 

used thus far would result in an outcome for pairing of a red PM [123] network with a black CTW 

[456] network using anti-phase initial connection of cells 1 and 4 would give the final relationship 

(∆12, ∆13, ∆14, ∆45, ∆46) = (0, 1/2, 1/2, 1/3, 2/3) → (2/3, 1/3, 1/2, 1/2, 0) or (∆12, ∆13, ∆14, ∆15, ∆16) 

= (0, 1/2, 1/2, 5/6, 1/6) → (2/3, 1/3, 1/2, 0, 1/2). Examples reading these maps continues in this 

manner and will not be performed for remaining results shown here. 

 

Figure 6.10   Strong inhibitory pairwise-biased symmetric mixed system 

Introduction of very strong reciprocal inhibition between cells 1 and 4 (g14 = g41) of identical 

symmetric release case motifs with weaker inner-network connectivity, and larger initial basins 

of attraction for the TW rhythms. Sample outputs for this network are shown in Figure 6.11 for 

[456] beginning in either blue PM or black CTW rhythmicity, near (∆45, ∆46) = (0.5, 0.5) or (1/3, 

2/3), respectively. Parameters: Iapp = 0.42, gij = gkl = 0.0005 except g14 = g41 = 0.050. 

 

Finally, for strong reciprocally inhibitory coupling between the two networks, with g14 = g41 ten 

times as strong within-network connections, similar trends in behavior are observed in Figure 6.11 

as  were  seen  in  the  moderately  coupled  networks  just  described.  Traces  in  this  connectivity  
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Figure 6.11   Strong inhibitory pairwise-biased symmetric mixed release 

Symmetric release case with strong reciprocal inhibition, g14 = g41. Panels represent system 

outcomes for both networks, exploring all (∆12, ∆13)-space, [456] starting as blue PM or black 

CTW, (∆45, ∆46) = (0.5, 0.5) or (1/3, 2/3), cells 1 and 4 beginning in-phase for A and B and anti-

phase black CTW for C. In this case, TW rhythms outcomes for [123] significantly diminish in 

A, with most [456] outcomes again remaining blue PM or shifting to CTW. Also conversely, 

most PM rhythms are lost in both networks for initial black CTW [456], TW rhythms gaining 

dominance and particularly the CCTW rhythm for the in-phase [456] network. Green PM 

behavior dominates anti-phase [456] unique diagonal initial red PM outcomes at ∆12 = ∆13 initial 

conditions. Parameters: Iapp = 0.42, gij = gkl = 0.0005 except g14 = g41 = 0.050. 
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framework converge much more quickly, however, and this induces some additional complexity 

in basin boundary and non-contiguous rhythmicity pocket outcomes than previously. In addition 

to overall increased complexity in all three visualized outcomes, a distinct new region of possible 

red PM [456] outcomes now exists in the anti-phase black CTW example in the right panel of C 

for initial conditions in which ∆12 = ∆13. 

 

Figure 6.12   Strong inhibitory pairwise-biased symmetric TW system 

Introduction of very strong reciprocal inhibition between cells 1 and 4 (g14 = g41) of identical 

symmetric oscillatory case motifs in which only TW rhythms are possible when unconnected. 

Sample outputs for this network are shown in Figure 6.13, this time instead spanning all (∆45, 

∆46)-space while beginning [123] in black CTW rhythmicity, near (∆12, ∆13) = (1/3, 2/3). 

Parameters: Iapp = 0.50, gij = gkl = 0.010 except g14 = g41 = 0.050. 

 

Finally, as examples shown thus far all resided in release case ranges of Iapp, for which all five 

primary rhythm outcomes were possible for either network when unconnected, an example of 

strong coupling between two purely oscillatory networks, in which only the two traveling wave 

patterns exist when uncoupled, is explored here (see Figure 6.12). In this example, the full (∆45, 

∆46)-space of initial conditions is explored while [123] is begun in each case with the black CTW 

initial condition, at (∆12, ∆13) = (1/3, 2/3). This is only shown for the in-phase initial condition, 
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with ∆14 = 0 at initiation of coupling of the two networks. This results in initial conditions for most 

of (∆45, ∆46)-space converging to green PM behavior, with the blue PM outcome not possible at 

all due to the very strong inhibitory effects on it by the [123] network. Both traveling wave and 

the red PM rhythm remain possible in minority. The [123]-motif, which began with wave-forms 

in the black CTW phase-lag, with (∆12, ∆13) = (1/3, 2/3), will by and large remain a traveling wave 

but is equally likely to be pushed in counter-clockwise rotation depending on the initial conditions  

for (∆45, ∆46). Additional regions of both red and green PM outcomes are also possible, with blue 

rhythms again not possible at all. Interestingly, there is now an increased region of multi-colored 

phase-basin outcomes near what could almost be considered the wing-tips of a butterfly pattern. 

 

Figure 6.13   Strong inhibitory pairwise-biased symmetric TW networks  

Symmetric case in oscillatory range of Iapp, with strong reciprocal inhibition, g14 = g41. Panels 

represent system outcomes for both networks, exploring all (∆45, ∆46)-space, [123] starting as 

black CTW, (∆45, ∆46) = (1/3, 2/3) and cells 1 and 4 beginning in-phase, with ∆14 = 0. Green PM 

rhythms outcomes dominate the IC-space of [456], with the presence of all other patterns except 

the blue PM. Most [123] outcomes remain oscillatory traveling waves for all [456] ICs as but 

with equal distribution of CTW and CCTW and the appearance of some previously impossible 

red and green PM behaviors. More dynamic rhythm behavior is seen, with appearance of 

multiple PM regions, as well as regions of multi-colored phase-varying lag, or ‘rivers’, similar to 

those seen in asymmetric 3-node motifs previously described. Parameters: Iapp = 0.50, gij = gkl = 

0.010 except g14 = g41 = 0.050. 
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Previously it was observed that yellow color-coding indicated outcomes for which the numerical 

method employed in this computational approach had not yet, or could not, converge to a solution 

either as a result of the need for longer cycle time to converge or due to quiescence or chaos 

reigning for those particular initial condition combinations. Here, however, where multicolored 

points are all clustered together, examination of the individual traces results in determination that 

phase-slip behaviors can be induced for these particular initial condition combinations and thereby 

creates the ‘river of fixed points’ effect previously described in Chapters 3-5. This type of phase-

slip was not possible in symmetric 3-node motifs independent of external connectivity, so this is a 

novel result of reciprocal coupling of such networks. Closer examination of several of the previous 

figures also indicate smaller regions where this behavior may also exist but the effect is particularly 

emphatic with very strong coupling, and additional research is required to verify the consistent 

existence of such phase-slip at moderate coupling ranges. The specific shape and direction of this 

phase-slip behavior is also not an emphasis or described here. 

6.3 Electrical coupling of symmetric motifs 

Unlike both inhibitory, which has been an emphasis of this research, and excitatory coupling, 

which are both chemical, electrical coupling is a conductive link formed in a narrow gap between 

two neighboring cells [54]. This is often called a gap junction and impulses transmitted this way 

are much faster but do not have the advantage of gain that is available to chemical connections, 

and signals relayed will be the same or smaller than that of the originating neuron. Electrical 

synapses are mostly bidirectional and often found in systems requiring fastest possible response 

time, such as escape reflexes, as they allow for many neurons to fire synchronously [55-56]. Mixed 

networks with both oscillating and hyperpolarized, passive neurons can even see strengthening of 

such a connection between them result in increasing or decreasing the frequency of the oscillator 
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depending on the properties of the oscillator. In networks coupling oscillatory cells, such as the 

purely traveling wave examples at mid-range values of Iapp shown later, the effects of electrically 

coupling depend significantly on membrane potentials, intrinsic properties, and coupling strength 

[53]. Here electrical connection will be explored first in connecting symmetric motifs, as was done 

with inhibitory coupling, and then in exploring effects of introducing electrical coupling between 

a symmetric motif and a purely clockwise one in a hybrid system. For each of these two modular 

networks, experiments are demonstrated of using networks that exist in purely pacemaker, purely 

traveling wave, or mixed rhythm outcome potentials prior to being connected. Only single-

coupling will be explored again, with some additional examples for double- and triple-coupling 

shown in the Appendix. 

6.3.1 Single electrically-coupled symmetric PM networks 

For these first examples, two networks of symmetric motifs within release ranges of Iapp are 

connected via electrical coupling between cells 1 and 4, as seen in Figure 6.14. These unconnected 

motifs are not capable of producing traveling wave rhythmicity without external input, but are 

selected here for their near-bifurcation parameter set in which we see a whorl of differing 

pacemaker generation capability around the traditional locations of the black CTW and purple 

CCTW rhythms, near (∆12, ∆13) = (1/3, 2/3) and (2/3, 1/3). Electrical coupling is not able to induce 

such dramatic rhythm switch even for this carefully selected example.  

Since both networks are identical, we can consider the phase-basin in Figure 6.14 as the reference 

from which network rhythmicity will deviate with the introduction of coupling. In Figure 6.15, the 

effect of beginning the [456]-motif with cells 1 and 4 in-phase, ∆14 = 0, and with blue pacemaker 

rhythmicity can be observed. Spanning all of the (∆12, ∆13) initial condition space results in the 

immediate disappearance of the previous whorl behavior in [123], and a growing region of blue 
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Figure 6.14   Single electrically-coupled symmetric PM systems  

Electrical coupling of identical symmetric release networks for which only PM outcomes 

originally exist. Sample outputs for this network are shown in Figures 6.15-17, spanning all (∆12, 

∆13)-space ICs while beginning [456] in either blue PM or black CTW phase-lag, near (∆45, ∆46) 

= (1/2, 1/2) and (1/3, 2/3), respectively. Both begin with in-phase cells 1 and 4, ∆14 = 0, followed 

by an anti-phase example for CTW. Parameters:  Iapp = 0.4, gij = gkl = 0.005. 

 

pacemaker rhythmicity for initial conditions in that network beginning near the origin, (∆12, ∆13) 

≈ 0, with increasing electrical coupling. The [456]-motif remains fixed as a blue pacemaker (BPM) 

network, as no force exists to push cells 1 and 4 out of phase. Starting the [456]-motif in Figure 

6.16 with initial conditions appearing as a black clockwise traveling wave, near (∆45, ∆46) = (1/3, 

2/3), with cells 1 and 4 still in-phase at ∆14 = 0, the previous whorl behavior again unfolds, but 

only slightly, as it thickens in the [123]-motif. A growing region of blue pacemaker rhythmicity is 

again observed with increasing electrical coupling for initial conditions beginning near the origin. 

The [456]-motif continues to remain largely fixed as a blue pacemaker network, with some 

potential for green or red pacemaker rhythmicity, the former disappears entirely while the latter 

only increases with stronger electrical coupling. This occurs largely for [123]-ICs beginning near 

the origin, but with unusual symmetric occurrence occurring along the ∆12 = ∆13 diagonal. 
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Figure 6.15   Single electrically-coupled symmetric PM systems, in-phase BPM 

Symmetric release networks, for which only PM rhythms are possible, connected via increasing 

electrical coupling of cells 1 and 4. Panels represent outcomes for both networks, spanning all 

(∆12, ∆13)-space ICs while beginning [456] in blue PM phase-lag, near (∆45, ∆46) = (1/2, 1/2), 

cells 1 and 4 in-phase, with ∆14 = 0. Previous whorl behavior disappears immediately in [123], 

with a growing region of blue PM rhythmicity for ICs beginning near the origin at higher 

electrical coupling, while [456] remains fixed as a blue PM network. Parameters: Iapp = 0.4, gij = 

gkl = 0.005, gelec = 0.005 and 0.010. 

 

Finally, for the case where cells 1 and 4 begin in anti-phase, ∆14 = 1/2, with [456] in black CTW 

phase-lag, near (∆45, ∆46) = (1/3, 2/3), observed in Figure 6.17, the previous whorl behavior 

disappears at weak coupling in [123] only to then be reintroduced and thickened as coupling 

increases. Blue pacemaker rhythmicity again increases but with shifting behavior, more so around 

the ∆12 = ∆13 diagonal, while only moderately for initial conditions beginning near the origin. [456]  
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Figure 6.16   Single electrically-coupled symmetric PM systems, in-phase CTW  

Symmetric release networks, for which only PM rhythms are possible, connected via increasing 

electrical coupling of cells 1 and 4. Panels represent outcomes for both networks, spanning all 

(∆12, ∆13)-space ICs while beginning [456] in black CTW phase-lag, near (∆45, ∆46) = (1/3, 2/3), 

cells 1 and 4 in-phase, with ∆14 = 0. Previous whorl behavior unfolds slightly but thickens in 

[123], with a growing region of blue PM rhythmicity again observed for ICs beginning near the 

origin at higher electrical coupling. [456] remains largely fixed as a blue PM network, with some 

potential for green or red PM rhythmicity, the latter of which increases with stronger electrical 

coupling while green disappears entirely. Parameters:  Iapp = 0.4, gij = gkl = 0.005, gelec = 0.005, 

0.010, and 0.05. 
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Figure 6.17   Single electrically-coupled symmetric PM systems, anti-phase CTW 

Symmetric release networks, for which only PM rhythms are possible, connected via increasing 

electrical coupling of cells 1 and 4. Panels represent outcomes for both networks, spanning all 

(∆12, ∆13)-space ICs while beginning [456] in black CTW phase-lag, near (∆45, ∆46) = (1/3, 2/3), 

cells 1 and 4 in anti-phase, with ∆14 = 1/2. Previous whorl behavior disappears in [123] at weak 

coupling only to be reintroduced and thickened at stronger coupling. Blue PM rhythmicity again 

increased but with shifting behavior and only somewhat for ICs beginning near the origin. [456] 

can only produce small pockets blue PM behavior, which disappear entirely as red and green PM 

behavior dominate and stabilize with increasing electrical coupling. Parameters: Iapp = 0.4, gij = 

gkl = 0.005, gelec = 0.005, 0.010, and 0.05. 
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can now only produce small pockets blue pacemaker behavior, which disappear entirely as red and 

green pacemaker behavior dominate and stabilize with increasing electrical coupling, eventually 

forming single continuous basins for each at initial conditions within the (∆12, ∆13)-space. 

6.3.2 Single electrically-coupled symmetric TW networks 

Next, electrical coupling of oscillatory networks exhibiting only traveling wave rhythms when 

connected, base case shown in Figure 6.18, results in both networks remaining fairly exclusively 

in traveling wave outcomes for all initial conditions explored. The networks described here are 

sampled at mid-range values of Iapp, with sample outputs shown in Figures 6.19-20, using the same 

full span of initial (∆12, ∆13)-space conditions being typically employed in this chapter, but here 

sampling only the in-phase case of [456] black CTW phase-lag, near (∆45, ∆46) = (1/3, 2/3), with 

∆14 = 0, and the anti-phase case of [456] purple CCTW phase-lag, near (∆45, ∆46) = (2/3, 1/3), with 

space are explored with a fixed starting position for the [456]-network in black clockwise phase- 

 

Figure 6.18   Single electrically-coupled symmetric TW systems 

Electrical coupling of identical oscillatory symmetric networks for which only TW outcomes 

originally exist at mid-range values of Iapp. Sample outputs for this network are shown in Figures 

6.19-20, spanning all (∆12, ∆13)-space ICs while beginning [456] in either black CTW phase-lag, 

near (∆45, ∆46) = (1/3, 2/3), with in-phase cells 1 and 4, ∆14 = 0, or in purple CCTW phase-lag, 

near (∆45, ∆46) = (2/3, 1/3), in anti-phase at ∆14 = 0.5. Parameters: Iapp = 0.5, gij = gkl = 0.005. 
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∆14 = 0.5. This change is made for novelty to test the ability of electrical coupling to synchronize 

networks as alluded to earlier. In the first example, in Figure 6.19, all of the initial conditions for 

the (∆12, ∆13)-lag position, near (∆45, ∆46) = (1/3, 2/3). The relationship between cells 1 and 4 is 

begun in-phase, with ∆14 = 0. The original phase-basin map in Figure 6.18 indicates even division 

along the ∆12 = ∆13 diagonal between the clockwise and counter-clockwise rhythms in unconnected 

networks.  This  division  is  maintained symmetrically about this line but is perturbed, with basin  

 

Figure 6.19   Single electrically-coupled symmetric TW systems, in-phase CTW 

Oscillatory symmetric networks, for which only TW rhythms are possible, connected via 

increasing electrical coupling of cells 1 and 4. Panels represent outcomes for both networks, 

spanning all (∆12, ∆13)-space ICs while beginning [456] in black CTW phase-lag, near (∆45, ∆46) 

= (1/3, 2/3), cells 1 and 4 in-phase, with ∆14 = 0. Previous division of the (∆12, ∆13)-space along 

the ∆12 = ∆13 diagonal in [123], is perturbed symmetrically around this line to increasing effect in 

the upper right quadrant is coupling increases. [456] remains fixed as a black CTW network. 

Parameters: Iapp = 0.5, gij = gkl = 0.005, gelec = 0.005 and 0.05. 
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Figure 6.20   Single electrically-coupled symmetric TW systems, anti-phase CCTW  

Oscillatory symmetric networks, for which only TW rhythms are possible, connected via 

increasing electrical coupling of cells 1 and 4. Outcomes again span (∆12, ∆13)-space ICs, but 

beginning [456] with purple CCTW phase-lag, near (∆45, ∆46) = (1/3, 2/3), and cells 1 and 4 in 

∆14 = 1/2 anti-phase. Division of the (∆12, ∆13)-space along the ∆12 = ∆13 diagonal in [123], is 

even more profoundly perturbed around this line but beginning at the lower left quadrant before 

extending along it with coupling increases. [456] continues to remain largely fixed as a black 

CTW network, but observes (∆12, ∆13)-ICs around (0.5, 0.5) where [456] can be driven to purple 

CCTW rhythmicity. These effects increase with coupling as the system is forced to bring cells 1 

and 4 back into phase. Parameters: Iapp = 0.5, gij = gkl = 0.005, gelec = 0.005, 0.010, and 0.05. 
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switching occurring at the top and right boundaries and with even more increasing effect in the 

upper right quadrant as coupling increases. The [456]-motif continues to remain fixed in its 

original black clockwise traveling wave rhythm, with these system initial conditions and beginning 

in-phase behavior not being adequate to drive it to any other pattern. 

For the anti-phase case in Figure 6.20, however, very different effects are observed, particularly 

for the [456]-motif that has up to this point seemed unresponsive to (∆12, ∆13)-space initial 

condition effects. In this case [456] was begun with the purple counter-clockwise traveling wave 

pattern, near (∆45, ∆46) = (1/3, 2/3), with ∆14 = 1/2 anti-phase. Because electrical coupling drives 

the cells to burst together with increasing strength, the stronger the electrical coupling becomes, 

the more dramatic and quickly the system conditions will change. The division of the (∆12, ∆13)-

space along the ∆12 = ∆13 diagonal in [123] that was seen previously is now even more profoundly 

perturbed around this line but with reverse effect. This perturbation begins at the lower left 

quadrant before extending along the diagonal with coupling increases. The [456]-motif continues 

to remain mostly convergent to black clockwise rhythmicity, but observes a very specific range of 

(∆12, ∆13)-space initial conditions near (∆12, ∆13) = (0.5, 0.5) where the [456] local network can 

instead be driven to purple CCTW rhythmicity, particularly with very strong electrical coupling. 

These effects increase with coupling as the system is forced to bring cells 1 and 4 back into phase 

much more quickly. 

6.3.3 Single electrically-coupled symmetric penta-rhythmic networks 

Finally, exploring electrical coupling of symmetric release networks in which all five rhythm 

outcomes are initially possible gives additional similar results. As before, all of the (∆12, ∆13)-space 

of initial conditions are explored while sampling cases where (∆45, ∆46) = (1/2, 1/2) or (1/3, 2/3), 

beginning in either blue pacemaker or black clockwise traveling wave rhythmicity. These are 
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indicated in the phase-basin diagram shown in Figure 6.21. Both cases are again shown beginning 

with cells 1 and 4 in-phase, at ∆14 = 0, with an additional anti-phase example then shown for the 

black clockwise traveling wave case. When the system is initiated with the [456]-motif beginning 

with in-phase blue pacemaker phase-lag, near (∆45, ∆46) = (1/2, 1/2), all capability of the [123]-

network to produce traveling wave rhythms is immediate lost with electrical coupling. All three 

pacemaker rhythms grow and take over what used to be the basin of attraction for each of the 

traveling wave rhythms, but with lesser growth of the blue region as the red and green patterns 

take over most of this (∆12, ∆13)-space. As in previous examples, the blue rhythm acquires a 

growing region of initial condition space near the origin where all three cells fire initially in near 

synchronicity. The [456]-network, on the other hand, remains unaffected in these initial conditions 

and remains in blue pacemaker activity with cell 4 continuing to remain in-phase with cell 1.  

 

Figure 6.21   Single electrically-coupled symmetric mixed rhythm 

Electrical coupling of identical symmetric release networks for which all five rhythm outcomes 

are possible when unconnected. Sample outputs for this network are shown in Figures 6.22-24, 

spanning all (∆12, ∆13)-space ICs while beginning [456] in either blue PM or black CTW phase-

lag, near (∆45, ∆46) = (1/2, 1/2) and (1/3, 2/3), respectively. Both begin with in-phase cells 1 and 

4, ∆14 = 0, followed by an anti-phase example for the black CTW case. Parameters: Iapp = 0.42, 

gij = gkl = 0.005. 
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When the [456]-motif begins in-phase but with a black clockwise traveling wave, phase-lag near 

(∆45, ∆46) = (1/3, 2/3), all five rhythms remain possible in [123]. This is paired, however, with a 

shift in the pacemaker basins from the lower left to upper right quadrant, with growth again of the 

blue pacemaker near the origin at (∆12, ∆13) ≈ (0, 0), both continuing with increased coupling. The 

[456]-network experiences significant shifting for half of the (∆12, ∆13)-space of initial conditions, 

as the black clockwise traveling wave may be pushed into red pacemaker rhythmicity. The (∆12,  

 

Figure 6.22   Single electrically-coupled symmetric mixed rhythm, in-phase BPM 

Symmetric release networks, for which all five rhythm outcomes are possible, connected via 

increasing electrical coupling of cells 1 and 4. Panels represent outcomes for both networks, 

spanning all (∆12, ∆13)-space ICs while beginning [456] in blue PM phase-lag, near (∆45, ∆46) = 

(1/2, 1/2), and cells 1 and 4 in-phase at ∆14 = 0. TW rhythms are completely eliminated in [123], 

with only slight growing of the blue PM region at higher electrical coupling. The [456]-motif 

continues to observe primarily blue PM rhythm outcomes, with narrow bands of CTW rhythms 

shown by black bands. Parameters: Iapp = 0.42, gij = gkl = 0.005, gelec = 0.005 and 0.05. 
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∆13)-space of initial conditions for which this red pacemaker behaviors outcome occurs aligns with 

the same conditions for which [123] itself converges to pacemaker behaviors, resulting in both 

networks exhibiting either all pacemaker or all traveling wave rhythms at system equilibrium.  

 

Figure 6.23   Single electrically-coupled symmetric mixed rhythm, in-phase CTW 

Symmetric release networks, for which all five rhythm outcomes are possible, connected via 

increasing electrical coupling of cells 1 and 4. Panels represent outcomes for both networks, 

spanning all (∆12, ∆13)-space ICs while beginning [456] in black CTW phase-lag, near (∆45, ∆46) 

= (1/3, 2/3), with in-phase cells 1 and 4 at ∆14 = 0. All five rhythms remain in [123], with an 

interesting shift in the PM basins of attraction from the lower left quadrant to the upper right, as 

well as growth of the blue PM near the origin at (∆12, ∆13) ≈ (0, 0). [456] sees a dramatic shift 

from its starting position as a black CTW to that of a red PM for half of the (∆12, ∆13)-space ICs. 

These red PM behaviors all align with outcomes in [123] for which PM behaviors were induced, 

with either all PM or all TW rhythms visible in both local networks at once. Parameters: Iapp = 

0.42, gij = gkl = 0.005, gelec = 0.005 and 0.05. 
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Figure 6.24   Single electrically-coupled symmetric mixed rhythm, anti-phase CTW 

Symmetric release networks, with all five rhythm outcomes are possible, connected via electrical 

coupling of cells 1 and 4. Panels represent outcomes, spanning all (∆12, ∆13)-space ICs while 

beginning [456] as a black CTW, near (∆45, ∆46) = (1/3, 2/3), with cells 1 and 4 in anti-phase at 

∆14 = 1/2. Results are most striking, all five rhythm outcomes remaining possible in [123] but 

with complex boundaries and non-contiguous basins which stabilize somewhat with increasing 

coupling. At lower coupling, the [456] motif splits most of the (∆12, ∆13)-IC outcomes, 

converging to CCTW or green PM rhythmicity in [456]. A red PM basin also emerges in [456] 

for (∆12, ∆13)-ICs near (1/2, 1/2), which grows and then dominates at strong electrical coupling in 

lieu of the purple CCTW. Parameters: Iapp = 0.42, gij = gkl = 0.005, gelec = 0.005, 0.010, and 0.05. 
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Finally, when the [456]-motif begins with a black clockwise traveling wave instead in anti-phase, 

∆14 = 1/2, all five rhythms still remain possible in [123, but with increasingly complex boundaries 

and non-contiguous regions for each rhythms basins of attraction. The blue pacemaker is the only 

rhythm in that network which remains located within its traditional region of (∆12, ∆13)-space initial 

conditions and behaves very similar to the past two examples. Every other pattern observes 

significant basin switching, as beginning the system with cells 1 and 4 in anti-phase forces rapid 

shifting to bring them into phase with electrical coupling. At lower values of electrical coupling, 

the [456] motif is pushed rapidly from its initial clockwise rotation and splits most of the (∆12, 

∆13)-space of initial conditions by converging to counterclockwise traveling wave or green 

pacemaker rhythmicity. A small red pacemaker basin also emerges in [456] for (∆12, ∆13)-ICs near 

(1/2, 1/2), which continues to grow with strong electrical coupling until it dominates with the 

frequency in with the counterclockwise rhythm did at lower coupling strengths. 

6.4 Electrical coupling of symmetric-clockwise hybrid networks 

As symmetric motifs are the simplest to model and manipulate, and have the most straight-forward 

responses to shifts in the bi-parametric (gij, Iapp)-space, these have been used extensively in this 

research as the first step in elucidating behavioral outcomes for parameter shifts in these network. 

This was done first in Chapter 2 with the 3-node motif and again in this chapter as the basis for 

use of 3-node motifs in modular networking, first with a simple 4-cell example and now within 

the framework of coupled motifs. As before, the next step is to introduce additional asymmetry 

and observe changes in behavior from that seen in the purely symmetric modular networks. In this 

section, research describes connection of the simplest asymmetric motif, the clockwise-biased one 

in which no phase-slipping behavior was observed in the unconnected network. To further simplify 

this  first  step at modular asymmetry, this clockwise-biased network is not only connected with a  
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Figure 6.25   Single electrically-coupled symmetric-clock hybrid system 

Electrical coupling of a symmetric network for which TW outcomes almost entirely dominate 

with a purely clockwise network for which only the black CTW pattern exists. Sample outputs 

for this network are shown in Figures 6.26-28, spanning all (∆12, ∆13)-space ICs while beginning 

[456] in either blue PM or black CTW phase-lag, near (∆45, ∆46) = (1/2, 1/2) and (1/3, 2/3), 

respectively. Both begin with in-phase cells 1 and 4, ∆14 = 0, followed by an anti-phase example 

for the CTW IC. Parameters:  Iapp = 0.45, gij = gkl = 0.008. 

 

fully symmetric one, but is also held in the unique case where only counterclockwise connectivity 

exists (in other words, g46 = g65 = g54 = 0). An example of this symmetric-clockwise hybrid can be 

seen in Figure 6.25, along with phase-basin diagrams representing the initial state of both the 

[123]- and [456]-motifs when uncoupled. A nearly oscillatory symmetric release case network is 

employed for [123], in which traveling wave entirely dominate. This is paired with a purely 

clockwise network for which only the black clockwise rhythm is possible initially.  
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Figure 6.26   Single electrically-coupled symmetric-clock hybrid, in-phase BPM 

Connection of an almost entirely TW-dominated symmetric network with a purely clockwise 

network, with only black CTW patterns possible, via increasing electrical coupling of cells 1 and 

4. Panels represent outcomes for both networks, spanning all (∆12, ∆13)-space ICs while 

beginning [456] in blue PM phase-lag, near (∆45, ∆46) = (1/2, 1/2), with cells 1 and 4 in-phase at 

∆14 = 0. [123] converges primarily to TW rhythms at weaker electrical coupling due to continued 

clockwise rhythmicity of [456], but with increasing presence of possible PM outcomes which 

grow to dominate at stronger coupling. [456] remains fixed as a black CTW at all coupling 

values. Parameters: Iapp = 0.45, gij = gkl = 0.008, gelec = 0.002, 0.005, and 0.01. 
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As in examples previously shown, all initial conditions for the (∆12, ∆13)-space shown in Figure 

6.26 are spanned in the symmetric [123] motif while beginning the clockwise [456] motif, which 

can initially only converge to black clockwise rhythms, first in the blue pacemaker phase-lag 

position, near (∆45, ∆46) = (1/2, 1/2), and with cells 1 and 4 beginning in phase. At weaker electrical 

coupling, the [123]-network converges primarily to traveling wave rhythms as a result of the 1/3 

period inhibitory stagger to cell 1 provided by continued clockwise rhythmicity of [456]. With 

increasing electrical coupling, however, an increasing presence of possible pacemaker outcomes 

grows to dominate at stronger coupling with red and green pacemaker behaviors switching 

stereotypical positions. The [456]-network remains constantly in black clockwise pattern 

generation at all coupling values, electrical coupling and in-phase initiation unsurprisingly 

inadequate to drive it to other rhythmicity. 

This lack of power to drive the purely clockwise [456]-network out of black clockwise traveling 

wave behavior remains valid for all systems explored in which cells 1 and 4 began in-phase. There 

is therefore no immediate push on cell 4 with electrical coupling that would cause it to deviate 

from its original outcome. The example in Figure 6.27, for which that network begins in fact in 

this starting position is unsurprising in maintaining the same outcomes for the [456]-motif. This is 

compounded further by the observation that the [123]-motif also seems to be unaffected in any 

way different from what was just observed in the blue pacemaker starting position of Figure 6.26. 

Beginning in-phase, with no impetus to push abruptly from starting conditions, the clockwise 

[456]-network will immediately converge to its black clockwise rhythmicity no matter its starting 

position and will therefore have the same long-term effects on the [123]-network for all couplings 

and initial conditions observed (in this case not only of the (∆12, ∆13)-space but also the (∆45, ∆46)-

space). This is therefore an extremely robust modular network. 
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Figure 6.27   Single electrically-coupled symmetric-clock hybrid, in-phase CTW 

Connection of an almost entirely TW-dominated symmetric network with a purely clockwise 

network, with only black CTW patterns possible, via increasing electrical coupling of cells 1 and 

4. Panels represent outcomes for both networks, spanning all (∆12, ∆13)-space ICs while 

beginning [456] in black CTW phase-lag, near (∆45, ∆46) = (1/3, 2/3), cells 1 and 4 in-phase, with 

∆14 = 0. Entire system converges to nearly identical outcomes as in the in-phase blue PM 

example of Figure 6.26, with the purely clockwise connectivity of [456] resulting in its 

immediate convergence to black CTW behavior in both cases, which in turn drives outcomes in 

[123]. Parameters: Iapp = 0.45, gij = gkl = 0.008, gelec = 0.002, 0.005, 0.01. 
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Figure 6.28   Single electrically-coupled symmetric-clock hybrid, anti-phase CTW 

Almost entirely TW-dominated symmetric network electrically coupled with a purely clockwise 

one, where only black CTW patterns exist, via connection of cells 1 and 4. Panels represent 

outcomes spanning all (∆12, ∆13)-space ICs beginning [456] in black CTW phase-lag, near (∆45, 

∆46) = (1/3, 2/3), in cells 1 and 4 anti-phase at ∆14 = 1/2. [123] results mostly in TW rhythms at 

weaker coupling due to CTW dominance of [456], but with possible PM outcomes growing to 

dominate at stronger coupling with complex boundaries. [456] remains mostly black CTW, but 

now exhibits CCTW and regions of red PM activity for some (∆12, ∆13)-ICs, decreasing in size 

with coupling. Parameters:  Iapp = 0.45, gij = gkl = 0.008, gelec = 0.002, 0.005, and 0.01. 
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Finally, and of most interest, is the case beginning the [456]-motif in Figure 6.28 again with black 

clockwise traveling wave rhythmicity but connecting cells 1 and 4 electrically beginning in anti-

phase, with ∆14 = 1/2. As in both previous examples, the [123]-motif remains largely dominated 

by traveling wave rhythms at weaker coupling due to the clockwise traveling wave dominance of 

[456], but with more extensive basin switching between the two patterns than was previously 

observed. With increased electrical coupling, possible pacemaker outcomes also again grow to 

occupy much of the phase-basin diagram but with complex boundaries and multiple regions of 

non-contiguous basins of attraction for each rhythm. More surprisingly, while the [456]-network 

continues to remains mostly in black clockwise traveling wave rhythmicity, it can now be induced 

to exhibit not only counterclockwise traveling wave patterns but also small regions of red 

pacemaker activity for some (∆12, ∆13)-space initial conditions. Both additional patterns see 

decreasing basin sizes with stronger electrical coupling. 

While initial coupling even what might be considered the simplest asymmetric network with a 

symmetric one led to many straight-forward and intuitive results, particularly for the [456]-

network with the existence of only counterclockwise-directional inhibition, but exhibited dramatic 

shifts in behavior with anti-phase initial coupling of cells 1 and 4, and sometimes with increasingly 

strong electrical coupling. Even with only the single electrical connection explored in this chapter, 

dramatic results were sometimes achieved in establishing apparent synchronicity of cells 1 and 4 

for both the symmetric-symmetric and the symmetric-clock. This is not enough to force full 

network symmetry between the two local networks, however, and additional electrical coupling of 

cells would be required. Some preliminary results for adding this type of coupling for the 

symmetric-clock hybrid network can be found in the Appendix for both double and triple electrical 

coupling of the two networks. 
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6.5 Very strong electrical coupling for node reduction 

In addition to establishing apparent node synchronicity, and even local network synchronicity 

using two or three electrical couplings, use of this method of connecting networks can permit the 

use of this 3-node modular structure in constructing larger networks that are not necessarily of 

modulus 3 dimension. Precisely because electrical coupling generally drives connected cells to in-

phase relationships, and therefore at very strong coupling to full synchronicity, introduction of 

very strong electrical coupling effectively makes two nodes identical to one another. This 

reciprocal identity assumption via very strong coupling and synchronicity can be used to collapse 

two nodes onto one another or, in the case of connecting two 3-node networks, combine a modular 

6-cell network into an effectively 5-cell configuration. This is potentially a highly useful technique, 

in permitting the rich range of results and parameter sweeping that has been done in this, and other 

similar, research to be applied not only within networks with 3-cell kernels or with modular 3-

node multiplicity but also to essentially any number and configuration of cells by simply collapsing 

cells upon one another where necessary to create the desired larger network structure. 

In the following figures this is shown as an extension of the results discussed in the previous 

sections, first with the three types of coupled symmetric networks explored (pacemaker-only 

release, traveling-wave only oscillatory, and five rhythm release), and then with the symmetric-

clockwise hybrid motif explored. In Figure 6.29, for example, we observe three panels extending 

results for the combined pacemaker-only symmetric release networks described in Figures 6.14-

6.17. The top pair of panel represents the extension to Figure 6.15, with [456] beginning in blue 

pacemaker rhythmicity and cells 1 and 4 in-phase, but with electrical coupling now set at gelec = 

0.1, or twenty times as strong as the rest of the network connections, in addition to acting faster as 

an electrical connection. All outcomes in this node-reduction lead to pacemaker rhythms in both 
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Figure 6.29   Very strong single electrically-coupled symmetric PM systems 

Very strong coupling of two purely symmetric release case motifs initially exhibiting only PM 

rhythms, extensions on Figures 6.15-17. All (∆12, ∆13)-space ICs are spanned for the [123]-motif. 

(A) [456] starts as in-phase BPM, (∆14, ∆45, ∆46) = (0, 0.5, 0.5). (B) [456] starts as in-phase 

CTW, (∆14, ∆45, ∆46) = (0, 0.33, 0.67), (C) [456] starts as anti-phase CTW, (∆14, ∆45, ∆46) = (0.5, 

0.33, 0.67). In all three cases, we observe final system outcomes emphasizing the trends seen 

earlier and now having stabilized to final rhythm generation patterns that will remain constant for 

any additional increases in electrical coupling. Parameters: Iapp = 0.4, gij = gkl = 0.005, gelec = 0.1. 
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networks, final rhythms in the [456]-motif dependent entirely on its beginning state. This is 

followed then by a pair of panels extending Figure 6.16 by representing the same strength electrical 

coupling with [456] beginning in-phase again but in the blue pacemaker position, and then in anti-

phase with initial purple counterclockwise phase-lag. In both cases, the [123] network sees basin 

switching of the CTW and CCTW regimes across the ∆12 = ∆13 diagonal in the upper right quadrant 

with initial conditions placing cell 2 or 3, or both, late in the initial period of bursting cell 1.  This 

 

Figure 6.30   Very strong single electrically-coupled symmetric TW systems 

Very strong coupling of two purely symmetric release case motifs initially exhibiting only TW 

rhythms, extensions on Figures 6.19-20. All (∆12, ∆13)-space ICs are spanned for the [123]-motif. 

(A) [456] starts as in-phase BPM, (∆14, ∆45, ∆46) = (0, 0.5, 0.5). (B) [456] starts as anti-phase 

CCTW, (∆14, ∆45, ∆46) = (0.5, 0.83, 0.17). In both cases, symmetric outcomes around the 45-

degree line, in which only TW patterns exist, are observed for both networks. A unique region of 

CCTW rhythmicity occurs when beginning [456] in anti-phase. Parameters:  Iapp = 0.5, gij = gkl = 

0.005, and gelec = 0.1. 
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switch is even more pronounced when cells 1 and 4 begin in anti-phase, as rapid convergence of 

the two cells by strong electrical coupling forces them to come into phase immediately and all 

other cells receive resulting inhibitory stagger altering normally stable convergence to fixed 

outcomes. The [456]-motif is immediately driven to only clockwise traveling wave rhythms when 

begun in-phase with (∆14, ∆45, ∆46) = (0, 0.5, 0.5), but can be driven to either clockwise or 

counterclockwise rhythmicity when begun in anti-phase. 

In Figure 6.31, where very strong coupling of two symmetric release case motifs capable of 

producing all five standard rhythms, as seen in Figure 6.21, extends on observations of Figures 

6.22-24, we again observe stable fixed outcomes that emphasize the trends seen previously while 

having stabilized to outcomes that will no longer vary with additional electrical coupling strength. 

For the extension on the example beginning with in-phase blue pacemaker activity in [456], with 

(∆14, ∆45, ∆46) = (0, 0.5, 0.5), only pacemaker rhythm outcomes are possible in both networks 

because of both the cell 1 and 4 synchronicities and the pacemaker stimulus induced by [456] onto 

[123]. For the case where [456] begins with in-phase clockwise traveling wave phase-lag, with 

(∆14, ∆45, ∆46) = (0, 0.33, 0.67), all rhythms remain possible in [123] with only either clockwise 

traveling wave or red pacemaker outcomes present in [456], pacemaker rhythms in [456] aligning 

with conditions where pacemakers also stabilize in [123]. Finally, when [456] begins in an anti-

phase clockwise traveling wave position, at (∆14, ∆45, ∆46) = (0.5, 0.17, 0.83), abrupt transitions 

forcing cells 1 and 4 back into synchronicity lead to additional green pacemaker rhythms in [456] 

which align with interesting growth of the blue pacemaker basin in [123]. Basin switch is again 

observed in upper right quadrant of [123] along the ∆12 = ∆13 diagonal for all three cases, with 

increasingly complex pattern transitions and boundaries for both networks beginning in anti-phase. 

Lastly,  we  introduce  very  strong  electrical  coupling  of  a  symmetric  network  for  which  TW  
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Figure 6.31   Very strong single electrically-coupled symmetric multi-rhythm systems 

Very strong coupling of two symmetric release case motifs initially capable of producing all five 

standard rhythms, extensions on Figures 6.22-24. All (∆12, ∆13)-space ICs are spanned for the 

[123]-motif. (A) When [456] begins in-phase BPM, (∆14, ∆45, ∆46) = (0, 0.5, 0.5), only PM 

rhythm outcomes are possible in both networks. (B) When Motif (456) begins in-phase CTW, 

(∆14, ∆45, ∆46) = (0, 0.33, 0.67), all rhythms are possible in [123] with only CTW and RPM 

present in [456]. (C) When [456] begins anti-phase BTW, (∆14, ∆45, ∆46) = (0.5, 0.17, 0.83), 

abrupt transitions lead to additional green PM rhythms in [456]. Basin switch in upper right 

quadrant of [123] is observed in all cases, with complex pattern transitions for both networks 

when begun in anti-phase. Parameters: Iapp = 0.42, gij = gkl = 0.005, and gelec = 0.1. 
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outcomes almost entirely dominate with a purely clockwise network for which only the black CTW 

pattern exists, as seen in Figure 6.25, as an extension of the results in Figures 6.26-28, but with 

modifications to the third case introducing it first beginning instead in counter-clockwise 

rhythmicity and then as an in-phase clockwise example instead. Outcomes here again emphasize 

the trends seen previously, but stabilized to outcomes that will no longer vary with additional 

increasing electrical coupling strength. As before, the [123]-motif is explored using all (∆12, ∆13)-

space initial conditions are spanned for the [123]-motif. As before, when the [456]-motif begins 

with in-phase blue pacemaker rhythmicity, with (∆14, ∆45, ∆46) = (0, 0.5, 0.5), all five rhythms 

continue to remain possible in [123] but with significantly reduced capability to produce traveling 

wave patterns. When [456] begins instead with in-phase clockwise traveling wave phase-lag, at 

(∆14, ∆45, ∆46) = (0, 0.33, 0.67), this trend is even more pronounced with very few initial conditions 

in the (∆12, ∆13)-space for which they can occur. In both cases, the blue basin of attraction is also 

significantly reduced. This is even more emphatically reduced in the case in which [456] begins 

in anti-phase with a counterclockwise traveling wave, (∆14, ∆45, ∆46) = (0, 0.67, 0.33). This system 

is forced to abruptly transition to bring cells 1 and 4 into immediate synchronicity with very strong 

electrical coupling, and complex basins of rhythm potential appear in both networks. The [123]-

network is now primarily occupied by traveling wave rhythms, which are paired with complex 

outcomes in [456] which do not always converge to the clockwise rhythm and may indicate 

artificial rhythmicity induced by the strongly-coupled inhibition provided from [123] and require 

additional investigation. This anti-phase example was selected here as an alternative to the view 

of the black clockwise initial state shown in Figure 6.28. Finally, results of strong coupling for that 

network beginning in-phase, but with slight stagger from the original position now at (∆14, ∆45, 

∆46) = (0.5, 0.17, 0.83) instead, show that observed trends continue for the [456]-motif, with both 
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Figure 6.32   Very strong single electrically-coupled symmetric-clock hybrid system 

Very strong coupling of a symmetric motif producing primarily TW rhythms with a purely 

clockwise network with only CTW initially, extensions on Figures 6.26-28. All (∆12, ∆13)-space 

ICs are spanned for the [123]-motif. (A) When [456] begins in-phase BPM, (∆14, ∆45, ∆46) = (0, 

0.5, 0.5), all five rhythms remain possible in [123] but with decreasing TW patterns. (B) When 

[456] begins in-phase CTW, (∆14, ∆45, ∆46) = (0, 0.33, 0.67), this trend is more emphatic. (C) 

When [456] begins in-phase CCTW, (∆14, ∆45, ∆46) = (0, 0.67, 0.33), TW rhythms instead 

dominate most of [123] and additional complex regions of non-CTW behavior become possible 

in [456].  (D) When [456] begins anti-phase in staggered CTW, (∆14, ∆45, ∆46) = (0.5, 0.17, 0.83), 

almost purely PM behavior in [123] is paired with fixed CTW outcomes in [456].  Parameters: 

Iapp = 0.45, gij = gkl = 0.008, and gelec = 0.05. 

 

the counterclockwise traveling wave and red pacemaker rhythms now eliminated. In this case, 

however, almost purely pacemaker behavior exists in [123] with much less complex basin 

boundaries than beginning in the traditional position. This underlines the sensitivity of the network  

 

Figure 6.33   Effective 5-node reduction of Sym-Sym and Sym-Clock networks 

The effect of very strong electrical coupling cells between two networks forces them into fixed 

synchronicity, effectively collapsing them into a single cell with outgoing connections into both 

original local-networks. The effect of this node-reduction is shown here for the two systems 

explored with: (A) two symmetric 3-node networks into a 5-node configuration, collapsing cells 

1 and 4 into a single cell with four incoming and four outgoing connections, and (B) a symmetric 

3-node motif combined with a purely clockwise one, collapsing cells 1 and 4 into a single cell 

with only three incoming and three outgoing connections. 
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to initial conditions in both networks, and the need to develop even further techniques to 

adequately span and explore all initial condition spaces for both networks. The effect of 

introducing this very strong electrical coupling cells between two three-node motifs forces them 

into fixed synchronicity, effectively collapsing any connected cells into single cells with outgoing 

connections into both original local-networks. The effect of this node-reduction can be observed 

in Figure 6.33 for the two examples discussed here. 

6.6 Discussion and applications 

In this chapter, we discussed the use of three-node motifs in modular networking, as building 

blocks for construction of larger networks with embedded local networks. An initial example of 

use of this approach in developing a 3+1 configuration, in which an additional cell is added to a 

known three-cell network to introduce additional dynamics and potential rhythmicity. Expansion 

of the motifs in this manner effectively doubled the number of potential connections possible for 

parameter sweeping from six to twelve, vastly compounding the complexity of these systems and 

the ability to visualize such systems. With a single additional cell, it is still possible to retain all of 

the key features of phase-lag return maps previously described, but using a three-dimensional 

visualization. This approach is relatively easy to interpret for simplistic cases, where only one or 

two additional connections are used, but becomes difficult to analyze outcomes with additional 

connectivity or asymmetry, with traces challenging to untangle visually when viewing return maps 

of these outcomes. An example of the simplest case, for a symmetric motif with a fourth cell only 

connected to one of the original three, was shown and gave a good idea for usable cases in which 

this method could be valuable. 

With increasing complexity, or with larger network coupling using two three-cell motifs, this 

three-dimensional visualization is inadequate and a technique for using phase-basin diagrams for 
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outcomes in both networks was introduced. This technique requires beginning one of the two 

networks in a fixed initial condition, while permitting full spanning of the initial condition space 

of the other network as had been done previously. Phase-basin diagrams for the outcomes then 

indicate the outcomes of each of the two networks, but relative to the initial conditions of the 

spanned network. In this research, results were typically demonstrated spanning the full (∆12, ∆13)-

space for the [123] network while beginning the [456] network at several fixed rhythmicity 

positions to represent general outcomes. For symmetric networks, or coupled networks using at 

least one symmetric network, this method is useful in teasing out general trends in behavior, as 

selection of the specific traveling wave or pacemaker rhythm used in [456] can typically be applied 

to results picking any other traveling wave or pacemaker rhythm instead. For further introduced 

asymmetry, this method would require more extensive spanning of paired initial conditions in 

order to evaluate asymmetric outcomes in beginning positions for the [456]-motif. For simplicity, 

this work focused on beginning positions that represented initial blue pacemaker or black 

clockwise traveling wave phase-lag, with starting conditions for connectivity of cells 1 and 4 in 

either in-phase or anti-phase relationships, with ∆14 = 0 or 0.5 respectively. This permits 

exploration of the effect of either inhibitory or electrical coupling of those two cells on rhythms in 

both networks when synchronous or asynchronous initial conditions exist or are imposed. 

Results of connecting three-node motifs in this way were explored first with single inhibitory 

connection of only cells 1 and 4, both with mono-biased and pairwise-biased coupling. In the 

mono-biased case, this represented driving input onto the [123]-motif by oscillatory rhythms 

generated in the [456]-motif and could be interpreted as almost any kind of external input, 

including single-cell addition or a single incoming connecting from another external local network 

of any size. This impulse effect had influences on the rhythm generation of the driven network that 
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aligned well with hypothesized outcoming using both results from work in earlier chapters and 

known effects of external impulse stimuli. Visualization only of the affected network was 

necessary in this case, as no feedback was provided to the driving network that would affect its 

beginning rhythm in any way. In the pairwise-biased case, however, more significant effects were 

observed and visualization of both network outcomes was required. It was here that we introduced 

in further detail the concept of pairing phase-basin representations both to avoid the complexity of 

interpreting phase-lag return map trajectories that could now cross over one another but also 

because the driving network could also be induced to change rhythm. Only symmetric motifs were 

paired in these preliminary examples, but similar effects and methods would remain equally viable 

for other paired network combinations. 

This approach was then extended to introduction of electrical coupling of three-node motifs, where 

relative synchronicity is generally achieved rapidly between connected cells even with moderate 

coupling strength, and full synchronicity becomes normal with increasing strengths. As this type 

of connectivity was new to research discussed thus far, more extensive sampling was provided and 

results were again shown first using paired symmetric networks as a base case to work from. We 

showed the effect of pairing symmetric motifs with differing mechanisms, both release case and 

fully oscillatory systems, with examples of symmetric motifs capable of producing pacemaker-

only, traveling wave only, or full penta-rhythmicity each shown. The effect of electrical coupling 

is significant in many cases, but highly dependent on whether the connected cells begin in-phase 

or anti-phase, as electrical coupling will push them to synchronize. The stronger the electrical 

coupling, the more significant the observed effect of shifts in rhythmicity due to eventual 

synchronization of cells 1 and 4. In nearly every example, many of which were chosen precisely 

because they existed in bi-parametric (gij, Iapp)-space near observed bifurcation effects, dramatic 



202 

rhythm shifts could be induced eliminating or creating rhythms possible in each network. At times 

these effects were immediate even at very low coupling, while requiring stronger coupling to drive 

networks in other cases. In all cases, rhythm outcomes tended to stabilize with increasing coupling 

strength. These trends were observed as well in the paired symmetric-clockwise motifs, with 

surprising capability to drive a network which did not even have the capability by itself to produce 

a specific rhythm to do so when paired, particularly when strongly connected in anti-phase. 

Finally, as an extension of this stabilizing behavior with increasing electrical coupling strength, 

the effect of very strong coupling in forcing cells 1 and 4 to immediately synchronize was explored. 

Experiments described in connecting the previous systems with increasingly strong electrical 

coupling were all extended by inducing electrical coupling at 10-20 times the strength of previous 

results shown. In each case the trend previously observed was extended, or sometimes repeated if 

the system was already at full synchronicity of cells 1 and 4. All examples shown here were 

validated by testing double the strength shown to verify that no further rhythm changes were 

observed in either network. In every case, cells 1 and 4 are immediately driven to in-phase 

synchronicity, with ∆14 = 0, and behave as one unit with no time differentiation between waveform 

observations of either cell. This permits these cells to effectively be treated as a single cell and is 

a novel method for node-reduction that permits extensions of the work described to networks that 

are not necessarily multiples of the three-node motifs characterized. This outcome may be valuable 

in bridging the gap between well-known and characterize local dynamics of two- or three-cell 

networks to the behavioral outcomes driven by much larger networks, and is a first step in using 

this and other research in modular networking to build larger networks with known dynamics.  
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7 CONCLUSIONS 

This focus of this research has been to explore the robustness of synchronized oscillatory patterns, 

revealing universal principles of rhythmogenesis and multi-functionality, or stability of multiple 

phase-locked outcomes, in circuits with the same parameter set. This type of multi-functionality is 

important in rhythm switching behaviors and vital in the understanding of systems capable not 

only of generating a multitude of rhythmic motor control behaviors like walking, swimming, and 

breathing, but also in other networks facilitating tasks with periodic stability, like circadian 

rhythms, and even perhaps in memory formation and retrieval. Understanding general principles 

which can lead either functional and dysfunctional behaviors in neural networks is a goal that may 

benefit future study of abnormal neurological diseases and other biological arrhythmias that result 

from perturbations of the mechanisms governing normal rhythmic states. 

While building upon previous work using Hodgkin-Huxley-type equations to capture a full range 

of biologically feasible parameter effects in inhibitory three-cell networks, this work focused on 

qualitative and quantitative stability analysis of a family of reciprocally coupled neural circuits, 

constituted of generalized Fitzhugh–Nagumo neurons, while retaining some general biologically 

relevant parameters that can be readily manipulated in an experimental setting. This permits a 

reduction in complexity that allows much more extensive parameter sweeping and exploration of 

system-wide outcomes. Extensive use of the methods of bifurcation analysis and phase reduction 

were used to reduce this complexity even further, allowing much broader elucidation of qualitative 

changes in rhythm stability by permitting extensive exploration of pivotal parameters that was 

previously impossible to describe biologically plausible network connectivity. 

This work has explored both symmetric and asymmetric connectivity within three-cell motifs, 

which often form constituent blocks within larger networks, with the goal of characterizing key 
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network connectivity commonly observed and building a framework to use these results for 

hypothesis generation and validation with experimental work in either laboratory or natural 

settings. Intrinsic mechanisms of synaptic release, escape, and post-inhibitory rebound were all 

examined, and each lead to differing poly-rhythmicity, where a single parameter or perturbation 

may trigger rhythm switching in otherwise robust networks. Additional rhythm outcomes were 

also discovered and elucidated, including phase-varying lags and broader cyclical behaviors, 

helping to characterize system capability and robustness that could reproduce or anticipate 

experimentally observed outcomes.  

Finally, by developing a suite of visualization approaches and computational tools, some 

accessible online through the lab at the site NuerDS.net, for use in the three-cell networks, to 

catalog and describe the potential for robustness of network rhythmogenesis, and extending these 

tools for use in characterizing outcomes in larger network settings, novel new methods have been 

disclosed for principles in neuroscience applications and modeling that may be applicable to 

systems beyond central patterns generators and simple motor-control.  A framework for 

approaching this modular organization was introduced, by using both inhibitory and electrical 

coupling of well-characterized 3-node motifs, employing these local circuits as building blocks 

within larger networks to describe underlying cooperative mechanisms. 

7.1 Polyrhythmicity in local 3-node networks 

In Chapters 2 and 3, methods of phase-reduction and phase-lag return maps were described and 

paired with use of bifurcation diagrams to systematically and extensively explore bi-parametric 

outcomes and rhythm switching behaviors. The focus here, and in the following chapters, was 

primarily on exploration of the bi-parametric (gij, Iapp)-space to represent changes readily observed 

in nature or manipulatable in a laboratory setting. Changes in connectivity strength, gij, between 
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cells can be used to represent the formation of new connectivity in learning or development, or 

through changing circuit connection strength that may either occur with use (or lack thereof) or be 

induced by additional chemical or electrical internal or external stimulus causing a connection to 

strengthen or weaken. In Hodgkin-Huxley-type models, these types of changes could be 

represented through a variety of gating variables or other parameters that are now all enveloped 

within this single coupling parameter in the gFN model employed here. Similarly, the current shift 

parameter, Iapp, also encompassed what could be a combination of internal ionic flows with 

differing parameters and behaviors in more complex models and here envelop all such changes.  

This approach allows for broad sweeping of parameter space but would require teasing out 

individual sub-components to determine appropriate connectivity or current changes to manipulate 

in a lab setting. One other limitation here is the simplicity of the waveform, as the focus here is on 

bursting patterns and rhythmicity and not on fluctuations within those bursts that would represent 

interspike intervals (ISIs) or other tapering effects observed in nature and captured by more 

complex models. The benefit gained here, however, is the ability to much more broadly categorize 

macro-scale bursting behaviors and transitions that could then be used to identify areas of interest 

in which to introduce additional layers of complexity to the current gFN model to examine other 

effects of interest regarding subtler waveform variations in initiation and onset, or the effect of 

ISIs on additional cellular interactions not encompassed by the overall bursting pattern itself.  

Results from examination of the fully-symmetric three-node network were as expected, and 

distinct trends in pattern formation and collapse were observed within the framework connecting 

release-type mechanisms at low ranges of Iapp < 0.45, through oscillatory mid-ranges, to escape-

type mechanisms occurring at higher Iapp > 0.55. Pacemaker patterns are more readily apparent at 

the two extremes, with the nature of null-cline proximity for the release and escape cases 
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permitting more ready clustering of the cells near each knee of the nullcline as transitions slowed 

and induced longer periods of inhibition on one or more cells in the network. Opposite effects were 

observed for the two mechanisms, with inherently bursting release-case cells more likely to 

produce traveling wave outcomes at low coupling strength and escape-case ones at higher coupling 

strengths. The reverse was true for pacemaker rhythms, which tended to still dominate both these 

mechanisms relative to traveling wave formation. Truly oscillatory ranges of Iapp tended toward 

pure traveling wave regimes of behavior, with no nullcline slowing effects to push the cells to not 

simply divide the limit cycle space equally when all connections are of equal strength. The effects 

of post-inhibitory rebound described in Chapter 5 were characterized by a small growing traveling 

wave regime as coupling increases, strong coupling generally required to induce any activity 

whatsoever in these otherwise quiescent systems, with no pacemaker behavior observed for the 

symmetric motif. 

Extending this approach to four additional key asymmetric motifs in Chapter 3, traveling wave 

and pacemaker rhythms are again observed in both the inherently bursting release and quiescent 

escape mechanisms, with each dominated more by one (PM and TW respectively again) for most 

motifs and the other occurs mostly at lower asymmetric coupling strengths. In nearly all motifs 

explored, unique behaviors occur around full symmetry where the strength of the connection being 

manipulated was close to those being held fixed at 0.0010. This is most apparent in the clockwise-

biased motif in which the bifurcation looks nearly symmetrical around the vertical line 

representing this equipotent connectivity, but is also clear in the extended ‘peaks’ and ‘troughs’ of 

mixed behavior observed in either the pairwise-biased or king-of-the-mountain motifs. Pacemaker 

behavior is least likely to occur in clockwise-biased motifs, as this connectivity induces traveling 

wave behavior at any strength coupling, and pacemaker-only behavior is only induced near 
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symmetry for very small ranges of g12 = g23 = g31 at the extremes of both release and escape. It is 

important to note that, while four key asymmetric circuit configurations are explored in detail, 

these results are symmetric with results for identical changes affecting different cells within the 

network. Results obtained, both in phase-lag return map outcomes and bifurcation diagrams 

summarizing them, need only be oriented and viewed with correct reference to the cell or cells 

being affected. An example of symmetric equivalence of asymmetric motifs is describe in Figure 

7.1, where equivalent motifs for each of the four key asymmetric motifs are represented. 

 

Figure 7.1   Symmetrically equivalent asymmetric 3-node motifs 

Examples of alternate circuitry in 3-node networks which remain symmetrically equivalent to 

each of the four key motifs described. For each key motif, shown as the base case and in bold in 

the equivalence list, one visual alternate example is provided, and denoted with an *, along with 

a list of all possible equivalent networks which could be described using the outcomes from 

Chapters 3-5 of this work.  

 

Phase-slipping behaviors were observed with unexpected regularity in the mono-biased or the two 

double-connection motifs, and lend themselves to analysis of macro-scale rhythmic behaviors in 

which periods of apparently stable patterns interspersed by fast rhythm switching to another 
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apparently stable rhythm without the need for external stimuli might be observed. These may 

present novel applications to experimental research of small local networks in which multi-stable 

rhythm production can be observed with the same connectivity. Rhythm switching for non-phase-

slipping systems is also readily obtained in both release and escape cases, either by external 

stimulus in the form of a current pulse (abrupt temporary shift up or down in effective Iapp value 

seen in the bifurcation diagrams) or by either natural or artificial connection plasticity (abrupt 

temporary shift up or down in effective gij value seen in the bifurcation diagrams). Some of these 

types of effects are observed in the coupled network outcomes described in Chapter 6.  

Further investigation into the specific types of bifurcations observed, and the cases in which these 

could be induced was a primary focus of Chapter 4. Andronov-Hopf and pitchfork bifurcations, 

which characterized all rhythm transitions observed within the fully symmetric motif, were not 

typical for changes observed within the asymmetric motifs. As most results in this work are 

described in detail with movement across the bifurcation diagram, changing gij, the symmetric 

requirement for the existence of either Andronov-Hopf or pitchfork bifurcation exists only along 

the vertical line in each bifurcation diagram representing full system symmetry and these are 

therefore only observed with vertical shifts in Iapp along that line. Asymmetric motifs bifurcate 

primarily through saddle-node bifurcation, with frequent observation of homoclinic saddle-node 

bifurcation in mono-biased systems and heteroclinic saddle-node bifurcation in either pairwise-

biased or king-of-the-mountain motifs. Further examples and details for these rhythm transitions 

were described in the detailed bifurcation diagrams for both the mono-biased and king-of-the-

mountain networks in Chapter 4, and in further images described in Chapter 5. A summary of the 

stereotypical rhythm transitions within the release and escape mechanism, as well as the existence 

of phase-slip behavior and the key bifurcations observed for each motif, can be seen in Table 7.1. 
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Table 7.1 Summary of 3-node network polyrhythmicity and bifurcations 

 

As mentioned, a narrow range of inhibitory coupling strengths exists for which bursting activity 

can be induced post-inhibitory rebound and generally requires very strong coupling relative to the 

other results described. When bursting activity does exist, it generally occupies a small fraction of 

the (∆12, ∆13)-space of initial conditions relative to the large zones of quiescence typically 

observed. Traveling waves remain dominant for most ranges and initial conditions, with 

pacemaker rhythms requiring highly restrictive conditions to occur, and typically coexist with 

traveling wave patterns for an even more restricted volume of initial condition space. PIR networks 

jump quickly to final rhythm states due to both this required strong coupling and its inherent hard-

locking nature. Within asymmetric PIR motifs, additional deviations from release-escape 

stereotypical behavior were observed within the other systems continued, most emphatically for 

the clockwise system, and underlines the increased dependence of the PIR mechanism on non-

synaptic parameters. 
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Most of the work described here is in terms of the four key motifs, and examined in the simple 

case where each of these asymmetries were equivalent within themselves (i.e., in pairwise-biased 

both g31 and g13 were changed equally). Specifically, that any introduced asymmetry was equal for 

all connections being manipulated. For example, results for the pairwise-biased case are described 

in terms of g31 = g13, with g12 = g21 = g23 = g32 held constant at another connectivity strength. A 

couple very specific cases for asymmetry in this pairwise-biased case where g31 ≠ g13 were 

examined, but in general this additional asymmetry was not explored here, and represents another 

direction in which future work could extend these results. Additional asymmetry in this manner is 

not possible for the mono-biased motif, but can be applied in each of the other three key motifs 

explored, with some examples for such additional asymmetry described in Figure 7.2. 

 

Figure 7.2   Additional asymmetry within asymmetric 3-node motifs 

Examples of introducing additional asymmetry within the changing connections of three of the 

key asymmetric motifs explored. (A) As done in Figure 5.6, unequal changes in g31 (black) and 

g13 (grey) can lead to additional rhythm transitions. (B) Example of asymmetric effects of 

unequal king-of-the-mountain outgoing connections, g31 ≠ g32. (C) As done in Figure 5.5, 

unequal changes in the clockwise connections, g12 = g23 ≠ g31, may lead to additional changes in 

rhythmicity. In all of these cases, results would be symmetric changing any other connection. 

 

Finally, while most of this work has focused on shifts in the (gij, Iapp) bi-parametric state space, the 

same approach could be implemented using any bi-parametric pair or by spanning bifurcation 

diagrams across changes in a third parameter to create a panel of changes or a three-dimensional 
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tri-parametric bifurcation diagram visualization. Examination of changes in fast-slow separation, 

parameter ε, in this manner in Chapter 5, and in several specific-case examples in earlier chapters, 

emphasized the increasing dominance of oscillatory behavior at high fast-slow separation, with 

traveling wave behaviors growing to dominate the entire (gij, Iapp) bi-parametric state space. This 

is a direct result of the increased drive of the fast-cubic nullcline in drawing trajectories toward it 

relative to the slow sigmoidal nullcline, leading to squarer limit cycle orbits and more abrupt 

waveforms transitions, as little or no clustering of cells is permitted to occur at the knees of the 

cubic nullcline, even with near-knee proximity in either the release or escape case ranges of Iapp. 

Changes in duty in the context of fast-slow separation was described as well. 

 

Figure 7.3   Examples of alternate key motifs observed in nature 

Other key motif configurations could be examined in similar fashion, and represent cases for 

extension in future work. (A) Semi-clockwise biased, with gij held constant but changing g12 = 

g23. (B) Serf-of-the-valley, with gij held constant but changing g13 = g23. (C), Pairwise-affective 

with gij held constant but changing g13 = g31 = g23. (D) Paired-clockwise, with gij held constant 

but changing g12 = g23 = g31 = g32. 
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Lastly, future work could extend on the atlas of figures and results that have been described thus 

far for the four key asymmetric motifs by adding additional key motifs observed in nature to a 

growing collection of results and bifurcation diagrams describing outcomes for key asymmetries 

observed in natural settings. An example of four additional motifs that could be explored can be 

seen in Figure 7.3, some with very different connectivity than those examined here (semi-

clockwise biased and serf-of-the-valley), while others could be performed independently or 

potentially represent a pairing of results obtained in the four key motifs explored in this work. 

Pairwise-affective could be considered a pairwise-biased motif affected by an additional mono-

biased connection to one cell in the pairwise couple, and paired-clockwise could be considered a 

pairwise-biased motif with the addition of full clockwise asymmetry (or conversely as a clockwise-

biased motif with the addition of mono-biased asymmetry onto a single node). This emphasizes 

the broad range of outcomes that could be effectively explored using the analytical and 

computational tools developed in this research, and aid in a growing atlas of results from which 

future work could hypothesize outcomes pairing well-characterized motifs. 

7.2 Modular networking and expansion techniques 

Finally, in Chapter 6, use of the three-node local network outcomes as building blocks to connect 

and describe larger networks was introduced. This required an extension of the analytical tools and 

visualization approaches employed up to that point to extend the phase-reduction and return map 

techniques for application in higher-dimensional settings. The methods employed in Chapters 2-5 

readily lend themselves to analysis of 4-node networks in which only one or two connections are 

added, with an example of 3-D visualization of such a network demonstrated there. For further 

circuit connectivity, however, this approach may be inadequate and additional methods of 
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visualization would be required in order to rapidly span and evaluate parameter changes within 

more complex networks. 

Work in this area moved directly to connection of two three-cell motifs to each other, as any results 

obtained here for release case outcomes would immediately apply to 3+1 circuit connectivity for 

mono-biased coupling of the two networks. If either a single release-case cell or one cell from 

another release-case 3-cell motif drives only a single cell in the other 3-cell local network without 

reciprocal inhibition, the effects observed will be identical for purely traveling wave rhythmicity 

in the driving network. In such a case, the fully oscillatory distribution of bursting will maintain 

the original period of a single inherently bursting release mechanism cell. This may change, 

however, if the driving network is in pacemaker rhythmicity and is not begun with the connected 

cells in-phase. This type of outcome was not discussed in this work but presents another area in 

which interesting outcomes might be observed. 

As an extension to using the original visualization approach, a method is introduced for beginning 

one network with fixed initial conditions while spanning the full bi-parametric (gij, Iapp)-space of 

initial conditions for the other network. Use of phase-basin return maps was required, as phase-lag 

return maps would describe trajectories crossing over one another and be difficult to interpret. 

Since one network begins with fixed initial conditions, its phase-basin map represented instead the 

final outcome to which it converged from that initial position, given the corresponding (∆12, ∆13) 

initial condition in the other network. This approach proved useful in describing initial results of 

introducing mono-biased and pairwise-biased inhibitory coupling of cells 1 and 4 between two 

networks, a summary of results for connectivity explored can be seen in Table 7.2. Results from 

these examples validated the capability of 3-node network outcomes to hypothesize rhythm shifts 

induced by coupling within a larger network framework. Further exploration of this type of 
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coupling was not described here, either with mixed three-node networks or with additional 

coupling between networks, but indicates similar outcomes while underlining the need for 

additional tools to effectively span all possible parameter combinations. 

 

Table 7.2 Summary of coupled symmetric 3-node network outcomes 

 

Coupling of three-node networks was then described using electrical coupling, where relative 

synchronicity was generally achieved rapidly between connected cells even with moderate 

coupling strength, full synchronicity induced with increasing strength. Pairing of symmetric motifs 

within both release case and fully oscillatory systems was examined, with examples of local 

networks capable of producing pacemaker-only, traveling wave only, or full penta-rhythmicity 

intially. The effect of electrical coupling is typically significant but highly dependent on whether 

the connected cells begin in-phase or anti-phase, as electrical coupling will push them eventually 
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to synchronicity. These effects are summarized in Tables 7.2 and 7.3, where circuits are shown 

with all initial conditions and final outcomes. In all cases, rhythm outcomes tended to stabilize 

with increasing coupling strength, a trend which continued as well in the paired symmetric-

clockwise motifs, with surprising capability to drive a network which did not even have the circuit 

capability by itself to produce a specific rhythm to do so when paired. 

 

Table 7.3 Summary of coupled symmetric-clock 3-node network outcomes 

 

This stabilizing behavior with increasing electrical coupling strength was used to explore the effect 

of inducing immediate synchronicity through very strong coupling of cells 1 and 4, at 10-20 times 

the strength of previous results shown. Results validated that no further rhythm changes could be 

induced with any further increase in electrical connectivity. In each case, cells 1 and 4 were 

immediately driven to in-phase synchronicity, with ∆14 = 0, and behaved as a single unit with no 

time differentiation between waveform observations of either cell, permitting these cells to 
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effectively be treated as a single cell in a novel method for node-reduction. This result indicates 

the capability to extend the three-node outcomes, comprising most this research, not only to larger 

networks of multiplicity three, but also to networks of almost any dimension. This outcome may 

be valuable in bridging the gap between well-known and characterized local dynamics of two- or 

three-cell networks to the behavioral outcomes driven by much larger networks, and is a first step 

in using this and other research in modular networking to construct larger networks. 

7.3 Future extensions and applications 

A primary focus of this work has been to introduce methods to rapidly and cohesively sweep 

parameters describing polyrhythmicity and bifurcation transitions in three-node networks, with a 

specific eye toward applying these results to describe outcomes in natural settings where these 

behaviors are observed.  While the results are interesting in themselves, the goal of this research 

is to create a framework from which both hypothesis generation for experimental work and 

construction of large modular networks can be extended, aiding studies bridging the gap between 

small local network rhythms and large-scale behavioral outputs in biological systems. Some of 

these applications are immediately available, with experimental results validating outcomes 

observed in the three-node results discussed in this work. Two examples of this can be seen in 

Figure 7.2, where rhythm generation and bifurcation within either a mono-biased or pairwise-

biased three-node motif may effectively capture rhythmicity like that of the pyloric stomatogastric 

circuit. By first eliminating the g23 connection in the left panels, to create what could be viewed as 

the zero-state mono-biased case, a system exists in which the blue-black saddle and the black fixed 

point are in proximity to one another and prepared to undergo further saddle-node bifurcation with 

an additional parameter change. By then decreasing the coupling strength from cell 3 to cell 2, g32, 

this saddle and node converge and obliterate one another, as the blue pacemaker takes over the 



217 

original basin of attraction of the clockwise traveling wave. With increasing g32 strength, the blue-

green saddle and green FP node move together and undergo an additional saddle-node bifurcation 

in which blue acquires both basins of initial condition space. Finally, at strong g32 coupling, the 

remaining traveling wave collapses and the blue pacemaker dominates nearly all the (∆12, ∆13)-

space of initial conditions. The pattern here now appears similar to the specific phase-lag 

combination observed for rhythms in the pyloric STG circuit. This is of course an example of 

additional asymmetry not present in bifurcation diagrams shown in earlier chapters, but mimics 

the dual-connection asymmetry mentioned for several specific examples in Chapter 5, and 

represents  an  additional  key  motif  that  might  be added to the collection of key motifs in future  

 

Figure 7.4  Hypothesized pyloric replication  

Left: Poincaré return maps for phase-lags in an inhibitory HH-model CPG, all five rhythms 

observed. As single connection g32 is eliminated, 3 of the 5 fixed points disappear through a 

series of saddle-node bifurcations, resulting in (D) with a dominant blue PM, like the rhythm 

observed in the pyloric STG circuit [from 18]. Right: Similar outcome observed with different 

parameters using gFN-model. Beginning with strong g31 connection, in which only the CCTW 

rhythm is possible, decreasing g31 leads to emergence of CTW (B), which is then captured by 

the BPM rhythm (C), with only the BPM rhythm possible when the connection is removed 

entirely (D). Parameters: Iapp = 0.389, gij = 0.001 except g31 = 0.0016, 0.001, 0.0006, and 0. 

 



218 

work. The example in the right panels shows similar transition to PM-only outcomes at different 

parameter values using the mono-biased motif described in this work and eliminating g31. 

Extensions of this approach for coupled networks can also be made, and in Figures 7.3 and 7.4 a 

description for using strong electrical coupling to use two of the well-characterized three-cell 

motifs to represent a 5-cell circuit is provided. Examination of the larger five-cell gastric network 

lends itself readily to decomposition into two key three-cell local networks, and in Figure 7.3 we 

observe  how  two  subsets of three  cells could each be considered either a mono-biased or a king- 

 

Figure 7.5   3-cell motif identification within the gastric network 

The gastric network can be described in general terms as the coupling of two characterized three-

node motifs: a mono-biased motif, removing the connection g31 = 0, and a king-of-the-mountain 

motif, removing the connections g64 = g65 = 0. These networks can be collapsed via strong 

electrical coupling reducing cells 2 and 4 into one effectively synchronous cell with outputs into 

both networks (Figure 7.6). Additional coupling is required to mimic the effect of the remaining 

connections and could be introduced stepwise (Figure 7.7). 
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of-the-mountain local network. By rotating and orienting the networks in the manner shown, we 

can maintain the local network relationships that permit direct use of results in Chapters 3-5. Each 

of these could be studied individually, and compared to experimental results as was done in the 

previous example, or as a cohesive network in which strong electrical coupling is used to collapse 

cell 2 of the left network onto cell 1 of the right network. This permits construction of an effective 

5-node network of purely inhibitory connections which captures most of the circuit connectivity 

observed in the original network, and would represent a first step in transitioning from three-cell 

results to five-cell outcomes that can be validated experimentally. The effective larger network 

circuit achieved at this intermediate step can be seen in Figure 7.6. 

 

Figure 7.6   Effective 5-cell configuration with strong electrical coupling 

Creation of a fully inhibitory 5-node network approximating a first step toward the full gastric 

network, using very strong electrical coupling to collapse a node from a king-of-the-mountain 

local network, with g65 = g64 = 0, onto a node in a mono-biased local network, with g31 = 0. 

Examination of extended inhibitory networks in this fashion is a logical next step in using 

outcomes of this research toward applications in larger circuits observed in nature. 
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Further research using this approach could characterize this 5-node network, as was done in 

Chapter 6, in order to both validate this experimentally, if the other missing connections can 

someday be turned off in the laboratory setting with chemical or electrical interaction, and to 

hypothesize changes in rhythmicity observed by introducing one or more of the missing 

connections. An approach to this that would maintain the structure of this research would first 

introduce the inhibitory connection from cell 1 of the left network to cell 3 of the right network. 

Secondly, introduction of the electrical connection between cells 1 and 3 of the right network 

would be the logical next step, if practically feasible. And finally, introduction of excitatory 

coupling, which has not been done in this research, from cell 2 of the right network onto cell 1 of 

the left network (Figure 7.7). This is of course a simplistic approach and assumes equal 

connectivity of all inhibitory connections, and additional steps would be required in transitions to 

the full network if any asymmetry exists in these. 

 

Figure 7.7   Stepwise approach to analysis of 5-node gastric network 

Outcomes using well-characterized three-node networks, and observed results of strong electrical 

coupling of mono-biased and KOM networks could be extended to more accurately approximate 

the full gastric circuit by stepwise introduction of (A) first an additional inhibitory connection 

between cells 1 and 6, g16, followed by (B) electrical coupling of cells 2 and 6, gelec,26 and finally 

(C) an excitatory connection from cell 5 to cell 1, gexc,51. 
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In addition to this specific application of construction of a larger network using a modular approach 

employing well-characterized three-node outcomes, another next step for future research would 

be scaling this modular networking methodology up on a large scale. Three-node motifs could be 

connected to create vast networks of interconnected cells, using fully symmetric, fully fixed 

asymmetric, or mixed networks of multiple three-node motifs. There is no limit to the network size 

to which this extension could be made, but additional restrictions may be required to facilitate 

analysis and create realistic networks in which some size restriction or other boundary conditions 

may exist. An example of two frameworks in which boundary conditions of this sort could be 

employed can be found in Figure 7.7, where either a torus or flat-cube approach to introducing 

both network boundaries and additional cyclical interaction are each described. In torus network 

connectivity, where a flat network of cells may be connected cyclically both horizontally and 

vertically  and  create  a  doughnut  shaped  relationship, appearing similar to the way in which we  

 

Figure 7.8   Sample boundary conditions in modular networking 

Example of (A) torus network connectivity, where a flat network of cells may be connected 

cyclically both horizontally and vertically and create a doughnut shaped relationship, and (B) flat 

cubic network connectivity, where a flat network of cells may be folded and connected into a 

hollow cube upon the surface of which network activity occurs.  
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unfolded the phase-return map torus to create 2-D return maps in Chapter 2. In flat cubic network 

connectivity, a flat network of cells may similarly be folded and connected into a hollow cube 

upon the surface of which network activity is observed. This approach could also be made three-

dimensional, with interior three-node motifs connecting the exterior network boundaries in more 

complex ways. In any of these applications, additional tools would be required to aid in 

visualization of outcomes, and some thought may be required to optimize computational 

performance with ever-increasing network size. 

Finally, it is important to point out that this research emphasized outcomes in networks of 

heterogeneous cells, in which all cells employed the same cellular capabilities, and it would be 

interesting to observe the outcomes of mixing cells with differing intrinsic mechanisms. In 

particular, as opposite trends were observed for outcomes in the bifurcations of three-node 

networks in either the release or escape ranges of Iapp, it would be interesting to connect mixed 

networks of these cells to describe other potential rhythmicity outcomes. Other parameter changes 

or additions, influencing the nature of the nullclines or the speed of the synapses could also 

dramatically influence outcomes and would be of interest in future work. Natural networks of cells 

within animals are typically comprised of many kinds of cells and connections with differing 

capabilities and mechanisms, and the next logical step would be to begin systematic observation 

of outcomes achievable when studying such mixed networks.  
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APPENDICES  

Appendix A: Supplementary Methods 

Appendix A.1: Rhythm Pattern Identification 

 

Figure A.1   Identification of red pacemaker using traces and phase lag 

Detailed examination of convergence to the red PM rhythm, near (∆12, ∆13) ≈ (0, 1/2), with full 

phase-lag return map in (A). Convergence of ∆12 to zero is observed in (B) with similar 

convergence of ∆13 to approximately 0.55 in this example. Traces in bottom panels show anti-

phase relationship of the red cell against the blue and green ones. Color coding of traces 

converging to red PM rhythmicity, (3-[1,2]), in panels A-C is implemented to align with this 

outcome. 



237 

 

Figure A.2   Identification of remaining pacemakers using traces and phase lag 

Detailed examination of convergence to remaining PM rhythms, near (∆12, ∆13) ≈ (1/2, 1/2) and 

(1/2, 0), with full phase-lag return map in (A). Convergence of both blue and green PM phase-

lag ∆12 to approximately 0.45 and 0.55, respectively is observed in (B). Similar convergence of 

blue and green PM phase-lag ∆13 to approximately 0.45 and zero, respectively (C). Traces in 

bottom panels show anti-phase relationship blue and green PM activity, (2-[1,3]) and (1-[2,3]) 

respectively. Color coding of traces in panels A-C is implemented to align with all three PM 

outcomes observed.  
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Figure A.3   Identification of traveling wave patterns using traces and phase lag 

Detailed examination of convergence of TW rhythms, near (∆12, ∆13) ≈ (1/3, 2/3) and (2/3, 1/3), 

with full phase-lag return map in (A). Convergence of both black CTW and purple CCTW 

phase-lag ∆12 to approximately 0.33 and 0.66, respectively is observed in (B). Similar 

convergence of black CTW and purple CCTW phase-lag ∆13 to approximately 0.66 and 0.33, 

respectively (C). Traces in bottom panels show black clockwise, firing in (1-2-3) sequence, and 

purple counterclockwise, firing in (1-3-2) sequence, TW activity, respectively. Color coding of 

traces in panels A-C is implemented to align with both TW outcomes.  
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Appendix A.2: Sample Regime Identification in Release Bifurcation Diagrams 

 

Figure A.4   Pattern identification in symmetric release networks 

Example of classification of regime designation for phase-lag return maps within the release 

range of Iapp for creation of bifurcation diagrams in the three-node symmetric motif. Poincare 

return maps exhibiting only TW patterns, as seen in the top row of panels in the left-hand grid, 

are classified computationally as TW-only and coded with the light green color. Return maps 

exhibiting only PM patterns, as seen in the bottom left and right panels in the left-hand grid, are 

classified as PM-only and coded with the blue color. Return maps exhibiting both PM and TW 

patterns, as seen in the remaining panels in the left-hand grid, are classified as mixed PM/TW 

and coded with the dark green color. See Figure 2.5 for an extension of this logic for the full 

range of the bi-parametric (gij, Iapp)-space explored for the symmetric motif, spanning Iapp values 

from full release at Iapp = 0.39 to full escape at Iapp = 0.6. 
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Figure A.5   Pattern identification in mono-biased release networks 

Example of classification of regime designation for phase-lag return maps within the release 

range of Iapp for creation of bifurcation diagrams in the three-node mono-biased motif. Poincare 

return maps exhibiting only TW patterns, as seen in the top row of panels in the left-hand grid, 

are classified as TW-only and coded with the light green color. Return maps exhibiting only PM 

patterns, as seen in the bottom left panels in the left-hand grid, are classified as PM-only and 

coded with the blue color. Return maps exhibiting both PM and TW patterns, as seen in the 

remaining panels in the left-hand grid, are classified as mixed PM/TW and coded with the dark 

green color. See Figure 3.3 for an extension of this logic for the full range of the bi-parametric 

(g31, Iapp)-space, with gij = 0.01 otherwise, explored for the symmetric motif, spanning Iapp values 

from full release at Iapp = 0.39 to full escape at Iapp = 0.6. 
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Appendix B: Supplementary Post-Inhibitory Rebound 

 

Figure A.6   PIR systems result in network silence for most conditions 

Three sets showing the system with most or all initial condition space resulting in network 

silence. With increasing synaptic strength, small regions of persistent activity may emerge and 

grow transiently (traces for B and C). These fleeting periods of rhythmic behavior are described 

in Chapter 5, and recognized (tPM for transient PM activity that settles ultimately to quiescence). 

These periods also increase in length with increased coupling but may sometimes result in 

abnormal rhythmicity in which one cell may either remain quiescent, or rarely burst, relative to 

the others (C, and Figure 5.19).  
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Figure A.7   Pattern transitions within the post-inhibitory rebound mechanism  

Series of phase maps with synaptic strength slowly increasing in all connections. The series 

starts slightly too weakly connected to produce synaptic activity, gradually increasing to show 

the smooth emergence of both TW states and the growth of their basins of attraction until almost 

all of phase space is occupied by them. The last phase map shows the chaotic system that results 

if the synaptic strength is increased too much.  
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Figure A.8   Vertical traversal of PIR right walk case 

For ICs beginning with cells 1 and 2 in anti-phase (∆12 = 0.5), beginning cell 3 at different 

relative positions can lead to distinctly different final rhythm outcomes. Traces on the right 

indicate that the system here will always converge to either green or blue PM behavior, 

emphasized with boxed examples of this rhythm. In general, this is directly a result of the system 

beginning in either of these two cases, with an interesting unexpected transition to green with the 

blue basin, or to blue within the green basin (shown as pockets of these colors within the larger 

basins of each).  
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Figure A.9   Horizontal traversal of PIR right walk case 

For ICs beginning with cells 1 and 3 in anti-phase (∆13 = 0.5), beginning cell 2 at different 

relative positions can lead to distinctly different final rhythm outcomes. Traces on the left 

indicate that the system here will always converge to either red or blue PM behavior, emphasized 

with boxed examples of this rhythm. In general, this is directly a result of the system beginning 

in either of these two cases, with an interesting unexpected transition to red with the blue basin, 

or to blue within the red basin (shown as pockets of these colors within the larger basins of 

each).  
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Figure A.10   Traveling wave dominance in fully oscillatory symmetric case PIR 

Two sets showing the system with symmetric (left panels) or mono-biased (right panels) network 

connectivity with increasing coupling strength. Large regions of quiescent ICs are gradually 

acquired by increasing basins of attraction of the TWs in the symmetric case, while in the mono-

biased system this is paired with regions of increased pacemaker behavior (green PM regions). 

Parameters: Symmetric with gij = 0.07, 0.09, 0.12, 0.8, 1.5; Mono-biased with gij = 0.07 except 

g12 = 0.07, 0.09, 0.12, 0.4, 0.7.  
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Figure A.11   Additional asymmetric motif results in PIR systems 

Series of phase maps for asymmetric motifs with decreasing respective coupling strengths. At 

strong coupling strengths, distinct basins of rhythmic activity exist in all 4 motifs. With 

decreasing synaptic coupling, these basins diminish in size and become largely dominated by 

quiescent behavior. Strong coupling in all three systems favoring inhibition from cell 2, 

pairwise-biased, mono-biased, and KOM, all favor the red PM rhythm. The clockwise motif in 

this case behaves like release-escape systems in favoring CCTW rhythms at strong coupling, and 

CTW ones at weak. As in all PIR systems, regions of ICs always exist in which quiescent 

behavior remains at any coupling strength.  
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Appendix C: Supplementary Modular Networking 

Appendix C.1: Doubly Electrically-Coupled Symmetric-Clock Hybrid 

 

Figure A.12   Doubly-coupled electrically connected Symmetric-Clock hybrid system 

Double electrical coupling of a symmetric network for which TW outcomes almost entirely 

dominate with a purely clockwise network for which only the black CTW pattern exists. Sample 

outputs for this network are shown in Figures A.13-16, spanning all (∆12, ∆13)-space ICs while 

beginning [456] in either blue PM or black CTW phase-lag, near (∆45, ∆46) = (1/2, 1/2) and (1/3, 

2/3), respectively. Both begin with in-phase cells 1 and 4, ∆14 = 0, followed by an anti-phase 

example for the CTW IC. Very strong coupling example for each followed last. Parameters:  Iapp 

= 0.45, gij = gkl = 0.008. 
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Figure A.13   Doubly-coupled electrically connected Sym-Clock, in-phase BPM 

Connection of an almost entirely TW-dominated symmetric network with a purely clockwise 

network, with only black CTW patterns possible, via increasing electrical coupling of cells 1-to-

4 and 2-to-5. Panels represent outcomes for both networks, spanning all (∆12, ∆13)-space ICs 

while beginning [456] in blue PM phase-lag, near (∆45, ∆46) = (1/2, 1/2), with cells 1 and 4 in-

phase at ∆14 = 0. [123] converges again primarily to TW rhythms at weaker electrical coupling 

due to continued clockwise rhythmicity of [456], but with increasing presence of blue PM 

outcomes which grow to dominate at stronger coupling. [456] remains fixed as a black CTW at 

all coupling values. Parameters: Iapp = 0.45, gij = gkl = 0.008, gelec = 0.002, 0.005, and 0.01. 

 



249 

 

Figure A.14   Doubly-coupled electrically connected Sym-Clock, in-phase CTW 

Connection of an almost entirely TW-dominated symmetric network with a purely clockwise 

network, with only black CTW patterns possible, via increasing electrical coupling of cells 1-to-

4 and 2-to-5. Panels represent outcomes for both networks, spanning all (∆12, ∆13)-space ICs 

while beginning [456] in black CTW phase-lag, near (∆45, ∆46) = (1/3, 2/3), cells 1 and 4 in-

phase, with ∆14 = 0. Entire system converges to nearly identical outcomes as in the in-phase blue 

PM example of Figure A.13, with the purely clockwise connectivity of [456] resulting in its 

immediate convergence to black CTW behavior in both cases. [123] again sees significant 

dominance of blue PM behavior with stronger coupling. Parameters: Iapp = 0.45, gij = gkl = 0.008, 

gelec = 0.002, 0.005, and 0.01. 
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Figure A.15   Doubly-coupled electrically connected Sym-Clock, anti-phase CTW 

Almost entirely TW-dominated symmetric network electrically coupled with a purely clockwise 

one, where only black CTW patterns exist, via connection of cells 1-to-4 and 2-to-5. Panels 

represent outcomes spanning all (∆12, ∆13)-space ICs beginning [456] in black CTW phase-lag, 

near (∆45, ∆46) = (1/3, 2/3), in cells 1 and 4 anti-phase at ∆14 = 1/2. [123] results mostly in TW 

rhythms at weaker coupling due to CTW dominance of [456], but with possible PM outcomes 

growing to dominate at stronger coupling with complex boundaries. [456] remains mostly black 

CTW, but now exhibits CCTW and very small regions of green PM activity for some (∆12, ∆13)-

ICs, decreasing in size with coupling. Parameters:  Iapp = 0.45, gij = gkl = 0.008, gelec = 0.002, 

0.005, and 0.01. 
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Figure A.16   Very strong double electrically-coupled symmetric-clock hybrid system 

Very strong double coupling of a symmetric motif producing primarily TW rhythms with a 

purely clockwise network with only CTW initially, extensions on Figures A.15-17. All (∆12, 

∆13)-space ICs are spanned for the [123]-motif. (A) When [456] begins in-phase BPM, (∆14, ∆45, 

∆46) = (0, 0.5, 0.5), all blue PM behavior dominates in [123] with some green PM, and a narrow 

region in which CCTW outcomes occur in both networks. (B) When [456] begins in-phase 

CTW, (∆14, ∆45, ∆46) = (0, 0.33, 0.67), CCTW is lost entirely, with green PM behavior also 

diminishing in [123], black CTW dominating all [456]. (C) When [456] begins anti-phase in 

staggered CTW, (∆14, ∆45, ∆46) = (0.5, 0.17, 0.83), blue PM behavior dominates [123] and 

matching regions of CCTW rhythmicity are observed in both networks with a small zone of 

green PM ICs possible in [123].  Parameters: Iapp = 0.45, gij = gkl = 0.008, and gelec = 0.05. 
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Appendix C.2: Triply Electrically-Coupled Symmetric-Clock Hybrid 

 

Figure A.17   Triply-coupled electrically connected Symmetric-Clock hybrid system 

Triple electrical coupling of a symmetric network for which TW outcomes almost entirely 

dominate with a purely clockwise network for which only the black CTW pattern exists. Sample 

outputs for this network are shown in Figures A.20-23, spanning all (∆12, ∆13)-space ICs while 

beginning [456] in either blue PM or black CTW phase-lag, near (∆45, ∆46) = (1/2, 1/2) and (1/3, 

2/3), respectively. Both begin with in-phase cells 1 and 4, ∆14 = 0, followed by an anti-phase 

example for the CTW IC. Very strong coupling example for each followed last. Parameters:  Iapp 

= 0.45, gij = gkl = 0.008. 
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Figure A.18   Triply-coupled electrically connected Sym-Clock, in-phase BPM 

Connection of an almost entirely TW-dominated symmetric network with a purely clockwise 

network, with only black CTW patterns possible, via increasing electrical coupling of cells 1-to-

4, 2-to-5, and 3-to-6. Panels represent outcomes for both networks, spanning all (∆12, ∆13)-space 

ICs while beginning [456] in blue PM phase-lag, near (∆45, ∆46) = (1/2, 1/2), with cells 1 and 4 

in-phase at ∆14 = 0. [123] converges primarily to TW rhythms at weaker electrical coupling due 

to continued clockwise rhythmicity of [456], but with a brief window of possible red PM 

outcomes at intermediate coupling for some ICs. [456] remains fixed as a black CTW at nearly 

all coupling values and ICs, with a very small region at stronger coupling in which CCTW 

rhythmicity occurs in both networks simultaneously. Parameters: Iapp = 0.45, gij = gkl = 0.008, 

gelec = 0.002, 0.005, and 0.01. 
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Figure A.19   Triply-coupled electrically connected Sym-Clock, in-phase CTW 

Connection of an almost entirely TW-dominated symmetric network with a purely clockwise 

network, with only black CTW patterns possible, via increasing electrical coupling of cells 1-to-

4, 2-to-5, and 3-to-6. Panels represent outcomes for both networks, spanning all (∆12, ∆13)-space 

ICs while beginning [456] in black CTW phase-lag, near (∆45, ∆46) = (1/3, 2/3), cells 1 and 4 in-

phase, with ∆14 = 0. System converges to nearly identical outcome as in Figure A.18, with purely 

counterclockwise inhibition in [456] resulting in immediate convergence to CTW behavior in 

both cases, which drives outcomes in [123]. Simultaneous CCTW observed previously is no 

longer possible. Parameters: Iapp = 0.45, gij = gkl = 0.008, gelec = 0.002, 0.005, 0.01. 
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Figure A.20   Triply-coupled electrically connected Sym-Clock, anti-phase CTW. 

Almost entirely TW-dominated symmetric network electrically coupled with a purely clockwise 

one, where only black CTW patterns exist, via connection of cells 1-to-4, 2-to-5, and 3-to-6. 

Panels represent outcomes spanning all (∆12, ∆13)-space ICs beginning [456] in black CTW 

phase-lag, near (∆45, ∆46) = (1/3, 2/3), in cells 1 and 4 anti-phase at ∆14 = 1/2. [123] results 

mostly in TW rhythms at weaker coupling due to CTW dominance of [456], but anti-phase 

initiation can drive both networks into CCTW rhythms. Small zones of possible green PM 

outcomes exist at lower coupling with complex boundaries. With stronger coupling, both 

networks are driven into full synchronicity and exhibit identical rhythm outcomes for all (∆12, 

∆13)-ICs. Parameters:  Iapp = 0.45, gij = gkl = 0.008, gelec = 0.002, 0.005, and 0.01. 
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Figure A.21   Very strong triple electrically-coupled symmetric-clock hybrid system 

Very strong coupling of a symmetric motif producing primarily TW rhythms with a purely 

clockwise network with only CTW initially, extensions on Figures A.20-22. All (∆12, ∆13)-space 

ICs are spanned for the [123]-motif. Strong electrical coupling of all three nodes in each network 

leads to full synchronicity and both networks identical rhythm outcomes for all (∆12, ∆13)-ICs. 

(A) When [456] begins in-phase BPM, (∆14, ∆45, ∆46) = (0, 0.5, 0.5), a larger zone of CCTW 

outcomes is possible. (B) When [456] begins in-phase CTW, (∆14, ∆45, ∆46) = (0, 0.33, 0.67), 

CCTW patterns diminish as full synchronicity beginning in CTW will typically remain there. (C) 

When [456] begins anti-phase in staggered CTW, (∆14, ∆45, ∆46) = (0.5, 0.17, 0.83), more 

complex boundaries between rhythm outcomes occur and it is possible for the system to stabilize 

to CCTW. Parameters: Iapp = 0.45, gij = gkl = 0.008, and gelec = 0.05. 
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