2,030 research outputs found

    On Nonoscillation of Mixed Advanced-Delay Differential Equations with Positive and Negative Coefficients

    Get PDF
    For a mixed (advanced--delay) differential equation with variable delays and coefficients x˙(t)±a(t)x(g(t))∓b(t)x(h(t))=0,t≥t0 \dot{x}(t) \pm a(t)x(g(t)) \mp b(t)x(h(t)) = 0, t\geq t_0 where a(t)≥0,b(t)≥0,g(t)≤t,h(t)≥t a(t)\geq 0, b(t)\geq 0, g(t)\leq t, h(t)\geq t explicit nonoscillation conditions are obtained.Comment: 17 pages; 2 figures; to appear in Computers & Mathematics with Application

    Chaotic Phenomenon in Nonlinear Gyrotropic Medium

    Full text link
    Nonlinear gyrotropic medium is a medium, whose natural optical activity depends on the intensity of the incident light wave. The Kuhn's model is used to study nonlinear gyrotropic medium with great success. The Kuhn's model presents itself a model of nonlinear coupled oscillators. This article is devoted to the study of the Kuhn's nonlinear model. In the first paragraph of the paper we study classical dynamics in case of weak as well as strong nonlinearity. In case of week nonlinearity we have obtained the analytical solutions, which are in good agreement with the numerical solutions. In case of strong nonlinearity we have determined the values of those parameters for which chaos is formed in the system under study. The second paragraph of the paper refers to the question of the Kuhn's model integrability. It is shown, that at the certain values of the interaction potential this model is exactly integrable and under certain conditions it is reduced to so-called universal Hamiltonian. The third paragraph of the paper is devoted to quantum-mechanical consideration. It shows the possibility of stochastic absorption of external field energy by nonlinear gyrotropic medium. The last forth paragraph of the paper is devoted to generalization of the Kuhn's model for infinite chain of interacting oscillators

    Oscillation criteria for nonlinear delay differential equations of second order

    Get PDF
    We prove oscillation theorems for the nonlinear delay differential equation (∣y′(t)∣α−2y′(t))′+q(t)∣y(τ(t))∣β−2y(τ(t))=0,t≥t∗>0,\left( \left\vert y^{\prime }(t)\right\vert ^{\alpha -2}y^{\prime}(t)\right) ^{\prime }+q(t)\left\vert y(\tau (t))\right\vert ^{\beta-2}y(\tau (t))=0, t\geq t_{\ast }>0, where β>1,\beta >1, α>1,\alpha >1, q(t)≥0q(t)\geq 0 and locally integrable on [t∗,∞),[t_{\ast },\infty ), τ(t)\tau (t) is a continuous function satisfiying 0<τ(t)≤t 0<\tau (t)\leq t and limt→∞τ(t)=∞._{t\rightarrow \infty }\tau (t)=\infty . The results obtained essentially improve the known results in the literature and can be applied to linear and half-linear delay type differential equations

    Dispersive and diffusive-dispersive shock waves for nonconvex conservation laws

    Get PDF
    We consider two physically and mathematically distinct regularization mechanisms of scalar hyperbolic conservation laws. When the flux is convex, the combination of diffusion and dispersion are known to give rise to monotonic and oscillatory traveling waves that approximate shock waves. The zero-diffusion limits of these traveling waves are dynamically expanding dispersive shock waves (DSWs). A richer set of wave solutions can be found when the flux is non-convex. This review compares the structure of solutions of Riemann problems for a conservation law with non-convex, cubic flux regularized by two different mechanisms: 1) dispersion in the modified Korteweg--de Vries (mKdV) equation; and 2) a combination of diffusion and dispersion in the mKdV-Burgers equation. In the first case, the possible dynamics involve two qualitatively different types of DSWs, rarefaction waves (RWs) and kinks (monotonic fronts). In the second case, in addition to RWs, there are traveling wave solutions approximating both classical (Lax) and non-classical (undercompressive) shock waves. Despite the singular nature of the zero-diffusion limit and rather differing analytical approaches employed in the descriptions of dispersive and diffusive-dispersive regularization, the resulting comparison of the two cases reveals a number of striking parallels. In contrast to the case of convex flux, the mKdVB to mKdV mapping is not one-to-one. The mKdV kink solution is identified as an undercompressive DSW. Other prominent features, such as shock-rarefactions, also find their purely dispersive counterparts involving special contact DSWs, which exhibit features analogous to contact discontinuities. This review describes an important link between two major areas of applied mathematics, hyperbolic conservation laws and nonlinear dispersive waves.Comment: Revision from v2; 57 pages, 19 figure

    The asymptotic nature of a class of second order nonlinear system

    Get PDF
    In this paper, we obtain some results on the nonoscillatory behaviour of the system (1), which contains as particular cases, some well known systems. By negation, oscillation criteria are derived for these systems. In the last section we present some examples and remarks, and various well known oscillation criteria are obtained
    • …
    corecore