Oscillation Criteria for Nonlinear Delay Differential Equations of Second Order*

Devrim Çakmak ${ }^{\dagger}$
Gazi University
Faculty of Education
Department of Mathematics Education
06500 Teknikokullar, Ankara, Turkey
dcakmak@gazi.edu.tr
Aydın Tiryaki
Izmir University
Faculty of Arts and Sciences
Department of Mathematics and Computer Sciences
35350 Uckuyular, Izmir, Turkey
aydin.tiryaki@izmir.edu.tr

Abstract

We prove oscillation theorems for the nonlinear delay differential equation $\left(\left|y^{\prime}(t)\right|^{\alpha-2} y^{\prime}(t)\right)^{\prime}+q(t)|y(\tau(t))|^{\beta-2} y(\tau(t))=0, \quad t \geq t_{*}>0$, where $\beta>1, \alpha>1, q(t) \geq 0$ and locally integrable on $\left[t_{*}, \infty\right), \tau(t)$ is a continuous function satisfiying $0<\tau(t) \leq t$ and $\lim _{t \rightarrow \infty} \tau(t)=\infty$. The results obtained essentially improve the known results in the literature and can be applied to linear and half-linear delay type differential equations.

AMS Subject Classification: 34C10, 34C15. Keywords: Oscillation; Second order; Ordinary differential equation; EmdenFowler equation; Delayed argument; Riccati transformation.

1 Introduction

In the last decades, there has been an increasing interest in obtaining sufficient conditions for the oscillation and/or nonoscillation of solutions for different classes of second order differential equations with or without deviating arguments. For interested readers we refer to the papers $[7,8,12,13,15]$ and the references quoted therein.

[^0]Before we continue with the description of the content of this paper, we present a short survey of the most basic results in the literature.

Let us consider the following linear differential equation

$$
\begin{equation*}
y^{\prime \prime}+q(t) y=0, \quad t \geq t_{0} \geq t_{*}>0 \tag{1}
\end{equation*}
$$

where $q(t) \geq 0$ is locally integrable on $\left[t_{0}, \infty\right)$.
In 1948, Hille [6] established the following results:
Theorem A. If $q \in L^{1}\left[t_{0}, \infty\right)$ and

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} t \int_{t}^{\infty} q(s) d s \leq \frac{1}{4} \tag{2}
\end{equation*}
$$

then equation (1) is nonoscillatory.
Theorem B. If $q \in L^{1}\left[t_{0}, \infty\right)$ and

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} t \int_{t}^{\infty} q(s) d s>\frac{1}{4} \tag{3}
\end{equation*}
$$

then equation (1) is oscillatory.
In 1997, Huang [7] obtained the following interval criteria:
Theorem C. If there exists $t_{0} \geq t_{*}$ such that for each $n \in \mathbb{N}_{0}=\{0,1,2, \ldots\}$, $q(t)$ satisfies

$$
\begin{equation*}
\int_{2^{n} t_{0}}^{2^{n+1} t_{0}} q(s) d s \leq \frac{\theta_{0}}{2^{n+1} t_{0}} \tag{4}
\end{equation*}
$$

where $\theta_{0}=3-2 \sqrt{2}$, then equation (1) is nonoscillatory.
Theorem D. If there exists $t_{0} \geq t_{*}$ such that for each $n \in \mathbb{N}_{0}=\{0,1,2, \ldots\}$, $q(t)$ satisfies

$$
\begin{equation*}
\int_{2^{n} t_{0}}^{2^{n+1} t_{0}} q(s) d s \geq \frac{\theta}{2^{n} t_{0}} \tag{5}
\end{equation*}
$$

where $\theta>\theta_{0}$, then equation (1) is oscillatory.
In 2004, by replacing the sequence $\left\{2^{n}\right\}$ in Theorems C and D by $\left\{\lambda^{n}\right\}$ with $\lambda>1$, Wong [15] generalized Theorems C and D as follows:
Theorem E. Let $\lambda>1$. If there exists some t_{0} such that for each $n \in \mathbb{N}_{0}=$ $\{0,1,2, \ldots\}, q(t)$ satisfies

$$
\begin{equation*}
\int_{\lambda^{n} t_{0}}^{\lambda^{n+1} t_{0}} q(s) d s \leq \frac{\theta}{(\lambda-1) \lambda^{n+1} t_{0}} \tag{6}
\end{equation*}
$$

where $\theta \leq k_{0}(\lambda)=(\sqrt{\lambda}-1)^{2}$, then equation (1) is nonoscillatory.
Theorem F. Let $\lambda>1$. If there exists some t_{0} such that for each $n \in \mathbb{N}_{0}=$ $\{0,1,2, \ldots\}, q(t)$ satisfies

$$
\begin{equation*}
\int_{\lambda^{n} t_{0}}^{\lambda^{n+1} t_{0}} q(s) d s \geq \frac{\theta}{(\lambda-1) \lambda^{n} t_{0}} \tag{7}
\end{equation*}
$$

where $\theta>k_{0}(\lambda)$, then equation (1) is oscillatory.
Furthermore, Wong [15] extended the oscillation criteria (3) and (7) for equation (1) to the following linear delay differential equation

$$
\begin{equation*}
y^{\prime \prime}(t)+q(t) y(\tau(t))=0, \quad t \geq t_{0} \tag{8}
\end{equation*}
$$

where $q(t) \geq 0$ and locally integrable on $\left[t_{0}, \infty\right)$, and $\tau(t)$ is a continuous function satisfying $0<\tau(t) \leq t$ and $\lim _{t \rightarrow \infty} \tau(t)=\infty$.

In 1987, Yan [16] proved the following result for equation (8), but Wong gave an alternative and simpler proof in [15].
Theorem G. Suppose that for all sufficiently large $t, q(t)$ satisfies

$$
\begin{equation*}
\int_{t}^{\infty} q(s) \frac{\tau(s)}{s} d s \geq \frac{\theta}{t} \tag{9}
\end{equation*}
$$

for some fixed constant $\theta>\frac{1}{4}$, then all solutions of equation (8) are oscillatory.
Wong also proved the extension of Theorem F for equation (8).
Theorem H. Let $\lambda>1$. If there exists $t_{0} \geq t_{*}$ and for each $n \in \mathbb{N}_{0}=$ $\{0,1,2, \ldots\}, q(t)$ satisfies

$$
\begin{equation*}
\int_{\lambda^{n} t_{0}}^{\lambda^{n+1} t_{0}} q(s) \frac{\tau(s)}{s} d s \geq \frac{\theta}{(\lambda-1) \lambda^{n} t_{0}} \tag{10}
\end{equation*}
$$

where $\theta>k_{0}(\lambda)$. Then all solutions of equation (8) are oscillatory.
Now, let us consider the following half-linear differential equation

$$
\begin{equation*}
\left(\left|y^{\prime}(t)\right|^{\alpha-2} y^{\prime}(t)\right)^{\prime}+q(t)|y(t)|^{\alpha-2} y(t)=0, \quad t \geq t_{0} \tag{11}
\end{equation*}
$$

where $\alpha>1, q(t) \geq 0$ is locally integrable on $\left[t_{0}, \infty\right)$.
In 1995, Kusano and Yoshida [9] generalized Theorems A and B as follows: Theorem I. If $q \in L^{1}\left[t_{0}, \infty\right)$, and

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} t^{\alpha-1} \int_{t}^{\infty} q(s) d s \leq \frac{(\alpha-1)^{\alpha-1}}{\alpha^{\alpha}} \tag{12}
\end{equation*}
$$

then equation (11) is nonoscillatory.
Theorem J. If $q \in L^{1}\left[t_{0}, \infty\right)$, and

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} t^{\alpha-1} \int_{t}^{\infty} q(s) d s>\frac{(\alpha-1)^{\alpha-1}}{\alpha^{\alpha}} \tag{13}
\end{equation*}
$$

then equation (11) is oscillatory.
In 2004, Yang [17] extended Theorems I and J as follows:
Theorem K. If $q \in L^{1}\left[t_{0}, \infty\right)$, and for large $t>t_{0}$,

$$
\begin{equation*}
t^{\alpha-1} \int_{t}^{\infty} q(s) d s \leq \frac{(\alpha-1)^{\alpha-1}}{\alpha^{\alpha}} \tag{14}
\end{equation*}
$$

then equation (11) is nonoscillatory.

Theorem L. If $q \in L^{1}\left[t_{0}, \infty\right)$, and for large $t>t_{0}$,

$$
\begin{equation*}
t^{\alpha-1} \int_{t}^{\infty} q(s) d s \geq \alpha_{0} \tag{15}
\end{equation*}
$$

where $\alpha_{0}>\frac{(\alpha-1)^{\alpha-1}}{\alpha^{\alpha}}$, then equation (11) is oscillatory.
In 2007, Kong [8] extended the results of Wong [15], namely Theorems E and F , for the linear differential equation (1) to the half-linear differential equation (11) as follows:

Theorem M. Let $\lambda>1$ and $\xi^{*}=\xi^{*}(\alpha)$. Assume there exists $t_{0} \in(0, \infty)$ such that for each $n \in \mathbb{N}_{0}=\{0,1,2, \ldots\}, q(t)$ satisfies

$$
\begin{equation*}
\left(\int_{\lambda^{n} t_{0}}^{\lambda^{n+1} t_{0}} q(s) d s\right)^{\frac{1}{\alpha-1}} \leq \frac{\xi^{*}}{(\lambda-1) \lambda^{n+1} t_{0}} \tag{16}
\end{equation*}
$$

then equation (11) is nonoscillatory.
Theorem N. Let $\lambda>1$ and $\xi^{*}=\xi^{*}(\alpha)$. Assume there exists $t_{0} \in(0, \infty)$ and $\xi>\xi^{*}$ such that for each $n \in \mathbb{N}_{0}=\{0,1,2, \ldots\}, q(t)$ satisfies

$$
\begin{equation*}
\left(\int_{\lambda^{n} t_{0}}^{\lambda^{n+1} t_{0}} q(s) d s\right)^{\frac{1}{\alpha-1}} \geq \frac{\xi}{(\lambda-1) \lambda^{n} t_{0}} \tag{17}
\end{equation*}
$$

then equation (11) is oscillatory.
In this paper, by using the same method in Wong [15], we extend Theorems G, H and N to the following nonlinear delay differential equation

$$
\begin{equation*}
\left(\left|y^{\prime}(t)\right|^{\alpha-2} y^{\prime}(t)\right)^{\prime}+q(t)|y(\tau(t))|^{\beta-2} y(\tau(t))=0, \quad t \geq t_{0} \tag{18}
\end{equation*}
$$

where $\beta>1, \alpha>1, q(t) \geq 0$ and locally integrable on $\left[t_{0}, \infty\right), \tau(t)$ is continuous function satisfying $0<\tau(t) \leq t$ and $\lim _{t \rightarrow \infty} \tau(t)=\infty$.

Note that the equation (18) with $\tau(t)=t$ is referred to as a super-half-linear equation, a sub-half-linear equation and an Emden-Fowler type equation for $\beta>\alpha, \beta<\alpha$ and $\beta \neq \alpha$, respectively. We refer the readers to the introductory books by Agarwal et al. [2] and by Došlý and R̆ehák [4] for the equation (18) with $\tau(t)=t$.

To present our results, we need the following lemma which is given by Erbe [5].
Lemma P. Assume that $\tau \in C\left(\left[t_{0}, \infty\right), \mathbb{R}^{+}\right), 0<\tau(t)<t$ for $t \geq t_{0}$ and $\lim _{t \rightarrow \infty} \tau(t)=\infty$. Let $y \in C^{2}\left(\left[t_{0}, \infty\right), \mathbb{R}^{+}\right)$be such that $y^{\prime \prime}(t) \leq 0$ for $t \geq T \geq$ t_{0}. Then for each constant $k \in(0,1)$, there is a $T_{k} \geq T$ such that

$$
\begin{equation*}
\frac{y(\tau(t))}{y(t)} \geq k \frac{\tau(t)}{t} \text { for } t \geq T_{k} \tag{19}
\end{equation*}
$$

2 Main Results

First, we obtain two theorems which concern the oscillatory behaviour of equation (18) with $\beta=\alpha$. Next, motivated by the ideas of Agarwal and Grace [1] and Çakmak [3], we present two other results for $\beta \neq \alpha$.

Theorem 1 Suppose that for all sufficiently large $t, q(t)$ satisfies

$$
\begin{equation*}
\int_{t}^{\infty} q(s)\left(\frac{\tau(s)}{s}\right)^{\alpha-1} d s \geq \frac{\alpha_{1}}{t^{\alpha-1}} \tag{20}
\end{equation*}
$$

for some fixed constant $\alpha_{1}>\frac{(\alpha-1)^{\alpha-1}}{\alpha^{\alpha}}$, then all solutions of equation (18) with $\beta=\alpha$ are oscillatory.

Proof. Assume on the contrary that equation (18) with $\beta=\alpha$ has a nontrivial nonoscillatory solution $y(t)$, we can assume without loss of generality that $y(t)>$ 0 for $t \geq t_{0}$. Since $\lim _{t \rightarrow \infty} \tau(t)=\infty$, there exists $t_{1} \geq t_{0}$ such that $y(\tau(t))>0$ for $t \geq t_{1}$. By equation (18) with $\beta=\alpha$, since $q(t) \geq 0,\left|y^{\prime}(t)\right|^{\alpha-2} y^{\prime}(t)$ is nonincreasing on $\left[t_{1}, \infty\right)$, so is $y^{\prime}(t)$. This implies that $y^{\prime}(t)>0$ and $y^{\prime \prime}(t) \leq 0$ for $t \geq t_{1}$. Define $w(t)=\frac{\left|y^{\prime}(t)\right|^{\alpha-2} y^{\prime}(t)}{|y(t)|^{\alpha-2} y(t)}$, then $w(t)$ satisfies the equation

$$
\begin{equation*}
w^{\prime}(t)+(\alpha-1)|w(t)|^{\frac{\alpha}{\alpha-1}}+q(t)\left(\frac{y(\tau(t))}{y(t)}\right)^{\alpha-1}=0 \tag{21}
\end{equation*}
$$

on $\left[t_{1}, \infty\right)$. Thus, by Lemma P , for each constant $k \in(0,1)$, there exists t_{2}, depending on k, such that for $t \geq t_{2} \geq t_{1}$,

$$
\begin{equation*}
\frac{y(\tau(t))}{y(t)} \geq k \frac{\tau(t)}{t} \tag{22}
\end{equation*}
$$

Substituting (22) into (21), we find

$$
\begin{equation*}
w^{\prime}(t)+(\alpha-1)|w(t)|^{\frac{\alpha}{\alpha-1}}+\left(k \frac{\tau(t)}{t}\right)^{\alpha-1} q(t) \leq 0 \tag{23}
\end{equation*}
$$

since $q(t) \geq 0$. It follows from the result of Li and Yeh [10, Theorem 3.2] that (23) implies the half-linear differential equation

$$
\begin{equation*}
\left(\left|u^{\prime}(t)\right|^{\alpha-2} u^{\prime}(t)\right)^{\prime}+\left(k \frac{\tau(t)}{t}\right)^{\alpha-1} q(t)|u(t)|^{\alpha-2} u(t)=0 \tag{24}
\end{equation*}
$$

is nonoscillatory for every $k, 0<k<1$. Note that $\mu=k^{\alpha-1} \in(0,1)$ for every $0<k<1$ and $\alpha>1$. Choose μ sufficiently close to 1 so that $\mu \alpha_{1}>\frac{(\alpha-1)^{\alpha-1}}{\alpha^{\alpha}}$ which is possible since $\alpha_{1}>\frac{(\alpha-1)^{\alpha-1}}{\alpha^{\alpha}}$; for example, choose $\mu=\frac{1}{2}+\frac{(\alpha-1)^{\alpha-1}}{2 \alpha^{\alpha} \alpha_{1}}<1$. Condition (20) implies

$$
\begin{equation*}
\mu \int_{t}^{\infty}\left(\frac{\tau(s)}{s}\right)^{\alpha-1} q(s) d s \geq \frac{\mu \alpha_{1}}{t^{\alpha-1}} \quad \text { and } \quad \mu \alpha_{1}>\frac{(\alpha-1)^{\alpha-1}}{\alpha^{\alpha}} \tag{25}
\end{equation*}
$$

which in turn implies the oscillation criteria (15) given by Yang [17] that equation (24) is oscillatory. This is a contradiction, hence equation (18) with $\beta=\alpha$ is oscillatory.

Using the same argument as in the proof of Theorem 1, we can also prove the following result.

Theorem 2 Let $\lambda>1$ and $\xi^{*}=\xi^{*}(\alpha)$. Assume there exists $t_{0} \in(0, \infty)$ and $\xi>\xi^{*}$ such that for each $n \in \mathbb{N}_{0}=\{0,1,2, \ldots\}, q(t)$ satisfies

$$
\begin{equation*}
\left(\int_{\lambda^{n} t_{0}}^{\lambda^{n+1} t_{0}} q(s)\left(\frac{\tau(s)}{s}\right)^{\alpha-1} d s\right)^{\frac{1}{\alpha-1}} \geq \frac{\xi}{(\lambda-1) \lambda^{n} t_{0}} \tag{26}
\end{equation*}
$$

Then all solutions of equation (18) with $\beta=\alpha$ are oscillatory.
Proof. We follow the proof of Theorem 1 and conclude that the existence of a nonoscillatory solution of (18) with $\beta=\alpha$ lead to the conclusion that the halflinear differential equation (24) is nonoscillatory for every $k, 0<k<1$. For every $0<k<1$ and $\alpha>1$, we can again choose $\mu=k^{\alpha-1} \in(0,1)$ sufficiently close to 1 so that $\mu \xi>\xi^{*}$. Now the coefficient function of equation (24) satisfies

$$
\begin{equation*}
\mu\left(\int_{\lambda^{n} t_{0}}^{\lambda^{n+1} t_{0}} q(s)\left(\frac{\tau(s)}{s}\right)^{\alpha-1} d s\right)^{\frac{1}{\alpha-1}} \geq \frac{\xi_{1}}{(\lambda-1) \lambda^{n} t_{0}} \tag{27}
\end{equation*}
$$

where $\xi_{1}=\mu \xi>\xi^{*}$, so we can apply Theorem N given by Kong [8] to equation (24) and conclude that it is oscillatory for such $\mu, 0<\mu<1$, but $\mu \xi>\xi^{*}$. This contradicts the fact that equation (24) is nonoscillatory for all $k, 0<k<1$. The proof is complete.

Remark 3 When $\alpha=2$, Theorems 1 and 2 reduce to Theorems G and H, respectively.

Remark 4 If the delayed argument is absent, i.e. $\tau(t)=t$, then Theorems 1 and 2 reduce to Theorems L and N, respectively. Furthermore, Theorem 1 is an extension of Theorem J.

Remark 5 Let $\alpha=2$ and $\tau(t)=t$. In this case, Theorem 1 is an extension of Theorem B. Moreover, Theorem 2 (or Theorem 2 with $\lambda=2$) reduces to Theorem F (or Theorem D).

Theorem 6 Suppose that for all sufficiently large $t, q(t)$ satisfies

$$
\begin{equation*}
c \int_{t}^{\infty} q(s)\left(\frac{\tau(s)}{s}\right)^{\beta-1} d s \geq \frac{\alpha_{1}}{t^{\alpha-1}} \tag{28}
\end{equation*}
$$

for some fixed constant $\alpha_{1}>\frac{(\alpha-1)^{\alpha-1}}{\alpha^{\alpha}}$ and any constant $c>0$, then the following assertions are true:
(i) all unbounded solutions of equation (18) with $\beta>\alpha$ are oscillatory.
(ii) all bounded solutions of equation (18) with $\beta<\alpha$ are oscillatory.

Proof. Assume on the contrary that equation (18) with $\beta \neq \alpha$ has a nontrivial nonoscillatory solution $y(t)$, we can assume without loss of generality that $y(t)>$ 0 for $t \geq t_{0}$. Since $\lim _{t \rightarrow \infty} \tau(t)=\infty$, there exists $t_{1} \geq t_{0}$ such that $y(\tau(t))>0$ for $t \geq t_{1}$. By equation (18) with $\beta \neq \alpha$, since $q(t) \geq 0,\left|y^{\prime}(t)\right|^{\alpha-2} y^{\prime}(t)$ is nonincreasing on $\left[t_{1}, \infty\right)$, so is $y^{\prime}(t)$. This implies that $y^{\prime}(t)>0$ and $y^{\prime \prime}(t) \leq 0$ for $t \geq t_{1}$. Define $w(t)=\frac{\left|y^{\prime}(t)\right|^{\alpha-2} y^{\prime}(t)}{|y(t)|^{\alpha-2} y(t)}$, then $w(t)$ satisfies the equation

$$
\begin{equation*}
w^{\prime}(t)+(\alpha-1)|w(t)|^{\frac{\alpha}{\alpha-1}}+q(t)\left(\frac{y(\tau(t))}{y(t)}\right)^{\beta-1}(y(t))^{\beta-\alpha}=0 \tag{29}
\end{equation*}
$$

on $\left[t_{1}, \infty\right)$. Next, we consider the following two cases:
(i) If $y(t)$ is an unbounded nonoscillatory solution of equation (18) with $\beta>\alpha$ for $t \geq t_{0}$, then there exist a constant $k_{1}>0$ and $t_{2} \geq t_{1} \geq t_{0}$ such that $y(t) \geq k_{1}$ for $t \geq t_{2}$. Therefore,

$$
\begin{equation*}
(y(t))^{\beta-\alpha} \geq k_{1}{ }^{\beta-\alpha}=c_{1} \text { for } t \geq t_{2}, \tag{30}
\end{equation*}
$$

where c_{1} is a constant. Using (30) in the equation (29), and proceeding as in the proof of Theorem 1, we arrive at the desired contradiction.
(ii) If $y(t)$ is a bounded nonoscillatory solution of equation (18) with $\beta<\alpha$ for $t \geq t_{0}$, then there exist a constant $k_{2}>0$ and $t_{2} \geq t_{1} \geq t_{0}$ such that $y(t) \leq k_{2}$ for $t \geq t_{2}$. Therefore,

$$
\begin{equation*}
(y(t))^{\beta-\alpha} \geq k_{2}{ }^{\beta-\alpha}=c_{2} \text { for } t \geq t_{2}, \tag{31}
\end{equation*}
$$

where c_{2} is a constant. The rest of the proof is similar to that of previous case and, hence omitted.

Combining some ingredients of the proofs of Theorems 2 and 6 , we give the following result for equation (18) with $\beta \neq \alpha$, the proof of which is similar to that of Theorem 6 , and hence omitted.

Theorem 7 Let $\lambda>1$ and $\xi^{*}=\xi^{*}(\alpha)$. Assume there exists $t_{0} \in(0, \infty)$ and $\xi>\xi^{*}$ such that for each $n \in \mathbb{N}_{0}=\{0,1,2, \ldots\}$ and any constant $c>0, q(t)$ satisfies

$$
\begin{equation*}
\left(c \int_{\lambda^{n} t_{0}}^{\lambda^{n+1} t_{0}} q(s)\left(\frac{\tau(s)}{s}\right)^{\beta-1} d s\right)^{\frac{1}{\alpha-1}} \geq \frac{\xi}{(\lambda-1) \lambda^{n} t_{0}} \tag{32}
\end{equation*}
$$

Then the following assertions are true:
(i) all unbounded solutions of equation (18) with $\beta>\alpha$ are oscillatory.
(ii) all bounded solutions of equation (18) with $\beta<\alpha$ are oscillatory.

Finally, we generalize above results for a class of more general nonlinear delay differential equations as follows:

Let $\alpha, \beta, q(t)$, and $\tau(t)$ be as above, and consider

$$
\begin{equation*}
\left(\left|y^{\prime}(t)\right|^{\alpha-2} y^{\prime}(t)\right)^{\prime}+f(t, y(\tau(t)))=0, \quad t \geq t_{0} \tag{33}
\end{equation*}
$$

EJQTDE, 2011 No. 84, p. 7
where the function f satisfies

$$
\begin{equation*}
s f(t, s) \geq q(t)|s|^{\beta} \quad \text { for } t \geq t_{0} \quad \text { and } s \in \mathbb{R} \tag{34}
\end{equation*}
$$

The proof of the following results are exactly as in that of above theorems and hence omitted.

Theorem 8 In addition to the conditions of Theorem 1 (or Theorem 2), if (34) with $\beta=\alpha$ holds, then all solutions of equation (33) are oscillatory.

Theorem 9 In addition to the conditions of Theorem 6 (or Theorem 7), if (34) with $\beta>\alpha$ holds, then all unbounded solutions of equation (33) are oscillatory.

Theorem 10 In addition to the conditions of Theorem 6 (or Theorem 7), if (34) with $\beta<\alpha$ holds, then all bounded solutions of equation (33) are oscillatory.

Remark 11 For another oscillation criteria contain for equation (18) with $\beta \geq$ α and (33) with $f(t, y(\tau(t)))=F(y(\tau(t)))$ under different sufficient conditions, the reader is referred to [13].

Remark 12 In case the delay is bounded, i.e., $0 \leq t-\tau(t) \leq M$, then $\frac{\tau(t)}{t}$ in conditions (20), (26), (28) and (32) can be replaced by 1. In other words, Hille's oscillation criterion (3) is also valid oscillation criteria for equations (18) and (33) with $\beta=\alpha=2$ and bounded delay; see [11, 14, 15].

References

[1] R.P. Agarwal and S.R. Grace, Second-order nonlinear forced oscillations, Dynam. Systems Appl. 10 (2001), no. 4, 455-464.
[2] R.P. Agarwal, S.R. Grace and D. O'Regan, Oscillation Theory for Second Order Linear, Half-linear, Superlinear and Sublinear Dynamic Equations, Kluwer, Dordrecht, 2002.
[3] D. Çakmak, Oscillation criteria for nonlinear second-order differential equations with damping, Ukrainian Math. J. 60 (2008), no. 5, 799-809.
[4] O. Došlý and P. Řehák, Half-linear Differential Equations, Mathematics Studies 202, North-Holland, 2005.
[5] L. Erbe, Oscillation criteria for second order nonlinear delay equations, Canad. Math. Bull. 16 (1973), no. 1, 49-56.
[6] E. Hille, Nonoscillation theorems, Trans. Amer. Math. Soc. 64 (1948), 234252.
[7] C. Huang, Oscillation and nonoscillation for second order linear differential equations, J. Math. Anal. Appl. 210 (1997), 712-723.
[8] Q. Kong, Nonoscillation and oscillation of second order half-linear differential equations, J. Math. Anal. Appl. 332 (2007), 512-522.
[9] K. Kusano and N. Yoshida, Nonoscillation theorems for a class of quasilinear differential equations of second order, J. Math. Anal. Appl. 189 (1995), 115-127.
[10] H.J. Li and C.C. Yeh, Sturmian comparison theorem for half-linear second order differential equations, Proc. Roy. Soc. Edin. 125A (1995), 1193-1204.
[11] W.E. Mahfoud, Oscillation theorems for a second order delay differential equation, J. Math. Anal. Appl. 63 (1978), 339-346.
[12] A. Tiryaki and Y. Başcı, Interval oscillation criteria for second-order quasilinear functional differential equations, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 16 (2009), 233-252.
[13] A. Tiryaki, Oscillation criteria for a certain second-order nonlinear differential equations with deviating arguments, E. J. Qualitative Theory of Diff. Equ. 61 (2009), 1-11.
[14] J.S.W. Wong, Second order oscillation with retarded arguments, in: L. Weiss (Ed.), Ordinary Differential Equations, 1971 NRL-MRC Conference, Academic Press, New York, 1972, pp. 581-596.
[15] J.S.W. Wong, Remarks on a paper of C. Huang, J. Math. Anal. Appl. 291 (2004), 180-88.
[16] J. Yan, Oscillatory property for second order linear differential equations, J. Math. Anal. Appl. 122 (1987), 380-384.
[17] X. Yang, Oscillation criterion for a class of quasilinear differential equations, Appl. Math. Comput. 153 (2004), 225-229.

[^0]: *Dedicated to Professor A. Okay Çelebi on the occasion of his 70th birthday
 ${ }^{\dagger}$ Corresponding author

