27 research outputs found

    MycoRRdb: A Database of Computationally Identified Regulatory Regions within Intergenic Sequences in Mycobacterial Genomes

    Get PDF
    The identification of regulatory regions for a gene is an important step towards deciphering the gene regulation. Regulatory regions tend to be conserved under evolution that facilitates the application of comparative genomics to identify such regions. The present study is an attempt to make use of this attribute to identify regulatory regions in the Mycobacterium species followed by the development of a database, MycoRRdb. It consist the regulatory regions identified within the intergenic distances of 25 mycobacterial species. MycoRRdb allows to retrieve the identified intergenic regulatory elements in the mycobacterial genomes. In addition to the predicted motifs, it also allows user to retrieve the Reciprocal Best BLAST Hits across the mycobacterial genomes. It is a useful resource to understand the transcriptional regulatory mechanism of mycobacterial species. This database is first of its kind which specifically addresses cis-regulatory regions and also comprehensive to the mycobacterial species. Database URL: http://mycorrdb.uohbif.in

    Emerging strengths in Asia Pacific bioinformatics

    Get PDF
    The 2008 annual conference of the Asia Pacific Bioinformatics Network (APBioNet), Asia's oldest bioinformatics organisation set up in 1998, was organized as the 7th International Conference on Bioinformatics (InCoB), jointly with the Bioinformatics and Systems Biology in Taiwan (BIT 2008) Conference, Oct. 20–23, 2008 at Taipei, Taiwan. Besides bringing together scientists from the field of bioinformatics in this region, InCoB is actively involving researchers from the area of systems biology, to facilitate greater synergy between these two groups. Marking the 10th Anniversary of APBioNet, this InCoB 2008 meeting followed on from a series of successful annual events in Bangkok (Thailand), Penang (Malaysia), Auckland (New Zealand), Busan (South Korea), New Delhi (India) and Hong Kong. Additionally, tutorials and the Workshop on Education in Bioinformatics and Computational Biology (WEBCB) immediately prior to the 20th Federation of Asian and Oceanian Biochemists and Molecular Biologists (FAOBMB) Taipei Conference provided ample opportunity for inducting mainstream biochemists and molecular biologists from the region into a greater level of awareness of the importance of bioinformatics in their craft. In this editorial, we provide a brief overview of the peer-reviewed manuscripts accepted for publication herein, grouped into thematic areas. As the regional research expertise in bioinformatics matures, the papers fall into thematic areas, illustrating the specific contributions made by APBioNet to global bioinformatics efforts

    HPIDB - a unified resource for host-pathogen interactions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein-protein interactions (PPIs) play a crucial role in initiating infection in a host-pathogen system. Identification of these PPIs is important for understanding the underlying biological mechanism of infection and identifying putative drug targets. Database resources for studying host-pathogen systems are scarce and are either host specific or dedicated to specific pathogens.</p> <p>Results</p> <p>Here we describe "HPIDB” a host-pathogen PPI database, which will serve as a unified resource for host-pathogen interactions. Specifically, HPIDB integrates experimental PPIs from several public databases into a single, non-redundant web accessible resource. The database can be searched with a variety of options such as sequence identifiers, symbol, taxonomy, publication, author, or interaction type. The output is provided in a tab delimited text file format that is compatible with Cytoscape, an open source resource for PPI visualization. HPIDB allows the user to search protein sequences using BLASTP to retrieve homologous host/pathogen sequences. For high-throughput analysis, the user can search multiple protein sequences at a time using BLASTP and obtain results in tabular and sequence alignment formats. The taxonomic categorization of proteins (bacterial, viral, fungi, etc.) involved in PPI enables the user to perform category specific BLASTP searches. In addition, a new tool is introduced, which allows searching for homologous host-pathogen interactions in the HPIDB database. </p> <p>Conclusions</p> <p>HPIDB is a unified, comprehensive resource for host-pathogen PPIs. The user interface provides new features and tools helpful for studying host-pathogen interactions. HPIDB can be accessed at <url>http://agbase.msstate.edu/hpi/main.html</url>.</p

    Simplified Method to Predict Mutual Interactions of Human Transcription Factors Based on Their Primary Structure

    Get PDF
    Background: Physical interactions between transcription factors (TFs) are necessary for forming regulatory protein complexes and thus play a crucial role in gene regulation. Currently, knowledge about the mechanisms of these TF interactions is incomplete and the number of known TF interactions is limited. Computational prediction of such interactions can help identify potential new TF interactions as well as contribute to better understanding the complex machinery involved in gene regulation. Methodology: We propose here such a method for the prediction of TF interactions. The method uses only the primary sequence information of the interacting TFs, resulting in a much greater simplicity of the prediction algorithm. Through an advanced feature selection process, we determined a subset of 97 model features that constitute the optimized model in the subset we considered. The model, based on quadratic discriminant analysis, achieves a prediction accuracy of 85.39 % on a blind set of interactions. This result is achieved despite the selection for the negative data set of only those TF from the same type of proteins, i.e. TFs that function in the same cellular compartment (nucleus) and in the same type of molecular process (transcription initiation). Such selection poses significant challenges for developing models with high specificity, but at the same time better reflects real-world problems. Conclusions: The performance of our predictor compares well to those of much more complex approaches for predicting TF and general protein-protein interactions, particularly when taking the reduced complexity of model utilisation into account

    Gene Ontology Function prediction in Mollicutes using Protein-Protein Association Networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many complex systems can be represented and analysed as networks. The recent availability of large-scale datasets, has made it possible to elucidate some of the organisational principles and rules that govern their function, robustness and evolution. However, one of the main limitations in using protein-protein interactions for function prediction is the availability of interaction data, especially for Mollicutes. If we could harness predicted interactions, such as those from a Protein-Protein Association Networks (PPAN), combining several protein-protein network function-inference methods with semantic similarity calculations, the use of protein-protein interactions for functional inference in this species would become more potentially useful.</p> <p>Results</p> <p>In this work we show that using PPAN data combined with other approximations, such as functional module detection, orthology exploitation methods and Gene Ontology (GO)-based information measures helps to predict protein function in <it>Mycoplasma genitalium</it>.</p> <p>Conclusions</p> <p>To our knowledge, the proposed method is the first that combines functional module detection among species, exploiting an orthology procedure and using information theory-based GO semantic similarity in PPAN of the <it>Mycoplasma </it>species. The results of an evaluation show a higher recall than previously reported methods that focused on only one organism network.</p

    POINeT: protein interactome with sub-network analysis and hub prioritization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein-protein interactions (PPIs) are critical to every aspect of biological processes. Expansion of all PPIs from a set of given queries often results in a complex PPI network lacking spatiotemporal consideration. Moreover, the reliability of available PPI resources, which consist of low- and high-throughput data, for network construction remains a significant challenge. Even though a number of software tools are available to facilitate PPI network analysis, an integrated tool is crucial to alleviate the burden on querying across multiple web servers and software tools.</p> <p>Results</p> <p>We have constructed an integrated web service, POINeT, to simplify the process of PPI searching, analysis, and visualization. POINeT merges PPI and tissue-specific expression data from multiple resources. The tissue-specific PPIs and the numbers of research papers supporting the PPIs can be filtered with user-adjustable threshold values and are dynamically updated in the viewer. The network constructed in POINeT can be readily analyzed with, for example, the built-in centrality calculation module and an integrated network viewer. Nodes in global networks can also be ranked and filtered using various network analysis formulas, i.e., centralities. To prioritize the sub-network, we developed a ranking filtered method (S3) to uncover potential novel mediators in the midbody network. Several examples are provided to illustrate the functionality of POINeT. The network constructed from four schizophrenia risk markers suggests that EXOC4 might be a novel marker for this disease. Finally, a liver-specific PPI network has been filtered with adult and fetal liver expression profiles.</p> <p>Conclusion</p> <p>The functionalities provided by POINeT are highly improved compared to previous version of POINT. POINeT enables the identification and ranking of potential novel genes involved in a sub-network. Combining with tissue-specific gene expression profiles, PPIs specific to selected tissues can be revealed. The straightforward interface of POINeT makes PPI search and analysis just a few clicks away. The modular design permits further functional enhancement without hampering the simplicity. POINeT is available at <url>http://poinet.bioinformatics.tw/</url>.</p

    Development of computational tools and resources for systems biology of bacterial pathogens

    Get PDF
    Bacterial pathogens are a major cause of diseases in human, agricultural plants and farm animals. Even after decades of research they remain a challenge to health care as they are known to rapidly evolve and develop resistance to the existing drugs. Systems biology is an emerging area of research where all of the components of the system, their interactions, and the dynamics can be studied in a comprehensive, quantitative, and integrative fashion to generate predictive models. When applied to bacterial pathogenesis, systems biology approaches will help identify potential novel molecular targets for drug discovery. A pre-requisite for conducting systems analysis is the identification of the building blocks of the system i.e. individual components of the system (structural annotation), identification of their functions (functional annotation) and identification of the interactions among the individual components (interaction prediction). In the context of bacterial pathogenesis, it is necessary to identify the host-pathogen interactions. This dissertation work describes computational resources that enable comprehensive systems level study of host pathogen system to enhance our understanding of bacterial pathogenesis. It specifically focuses on improving the structural and functional annotation of pathogen genomes as well as identifying host-pathogen interactions at a genome scale. The novel contributions of this dissertation towards systems biology of bacterial pathogens include three computational tools/resources. “TAAPP” (Tiling array analysis pipeline for prokaryotes) is a web based tool for the analysis of whole genome tiling array data for bacterial pathogens. TAAPP helps improve the structural annotation of bacterial genomes. “ISO-IEA” (Inferred from sequence orthology - Inferred from electronic annotation) is a tool that can be used for the functional annotation of any sequenced genome. “HPIDB” (Host pathogen interaction database) is developed with data a mining capability that includes host-pathogen interaction prediction. The new knowledge gained due to the implementation of these tools is the description of the non coding RNA as well as a computationally predicted host-pathogen interaction network for the human respiratory pathogen Streptococcus pneumoniae. In summary, the computation tools and resources developed in this dissertation study will enable building systems biology models of bacterial pathogens

    Structural similarity-based predictions of protein interactions between HIV-1 and Homo sapiens

    Get PDF
    Abstract Background In the course of infection, viruses such as HIV-1 must enter a cell, travel to sites where they can hijack host machinery to transcribe their genes and translate their proteins, assemble, and then leave the cell again, all while evading the host immune system. Thus, successful infection depends on the pathogen's ability to manipulate the biological pathways and processes of the organism it infects. Interactions between HIV-encoded and human proteins provide one means by which HIV-1 can connect into cellular pathways to carry out these survival processes. Results We developed and applied a computational approach to predict interactions between HIV and human proteins based on structural similarity of 9 HIV-1 proteins to human proteins having known interactions. Using functional data from RNAi studies as a filter, we generated over 2000 interaction predictions between HIV proteins and 406 unique human proteins. Additional filtering based on Gene Ontology cellular component annotation reduced the number of predictions to 502 interactions involving 137 human proteins. We find numerous known interactions as well as novel interactions showing significant functional relevance based on supporting Gene Ontology and literature evidence. Conclusions Understanding the interplay between HIV-1 and its human host will help in understanding the viral lifecycle and the ways in which this virus is able to manipulate its host. The results shown here provide a potential set of interactions that are amenable to further experimental manipulation as well as potential targets for therapeutic intervention

    In Silico

    Get PDF
    corecore