302 research outputs found

    Demand side management of plug-in electric vehicles and coordinated unit commitment: A novel parallel competitive swarm optimization method

    Get PDF
    Decreasing initial costs, the increased availability of charging infrastructure and favorable policy measures have resulted in the recent surge in plug-in electric vehicle (PEV) ownerships. PEV adoption increases electricity consumption from the grid that could either exacerbate electricity supply shortages or smooth demand curves. The optimal coordination and commitment of power generation units while ensuring wider access of PEVs to the grid are, therefore, important to reduce the cost and environmental pollution from thermal power generation systems, and to transition to a smarter grid. However, flexible demand side management (DSM) considering the stochastic charging behavior of PEVs adds new challenges to the complex power system optimization, and makes existing mathematical approaches ineffective. In this research, a novel parallel competitive swarm optimization algorithm is developed for solving large-scale unit commitment (UC) problems with mixed integer variables and multiple constraints typically found in PEV integrated grids. The parallel optimization framework combines binary and real-valued competitive swarm optimizers for solving the UC problem and demand side management of PEVs simultaneously. Numerical case studies have been conducted with multiple scales of unit numbers and various demand side management strategies of plug-in electric vehicles. The results show superior performance of proposed parallel competitive swarm optimization based method in successfully solving the proposed complex optimization problem. The flexible demand side management strategies of plug-in electric vehicles have shown large potentials in bringing considerable economic benefit

    Metaheuristic Algorithms in Artificial Intelligence with Applications to Bioinformatics, Biostatistics, Ecology and, the Manufacturing Industries

    Full text link
    Nature-inspired metaheuristic algorithms are important components of artificial intelligence, and are increasingly used across disciplines to tackle various types of challenging optimization problems. We apply a newly proposed nature-inspired metaheuristic algorithm called competitive swarm optimizer with mutated agents (CSO-MA) and demonstrate its flexibility and out-performance relative to its competitors in a variety of optimization problems in the statistical sciences. In particular, we show the algorithm is efficient and can incorporate various cost structures or multiple user-specified nonlinear constraints. Our applications include (i) finding maximum likelihood estimates of parameters in a single cell generalized trend model to study pseudotime in bioinformatics, (ii) estimating parameters in a commonly used Rasch model in education research, (iii) finding M-estimates for a Cox regression in a Markov renewal model and (iv) matrix completion to impute missing values in a two compartment model. In addition we discuss applications to (v) select variables optimally in an ecology problem and (vi) design a car refueling experiment for the auto industry using a logistic model with multiple interacting factors

    An Improvement of Load Flow Solution for Power System Networks using Evolutionary-Swarm Intelligence Optimizers

    Get PDF
    Load flow report which reveals the existing state of the power system network under steady operating conditions, subject to certain constraints is being bedeviled by issues of accuracy and convergence. In this research, five AI-based load flow solutions classified under evolutionary-swarm intelligence optimizers are deployed for power flow studies in the 330kV, 34-bus, 38-branch section of the Nigerian transmission grid. The evolutionary-swarm optimizers used in this research consist of one evolutionary algorithm and four swarm intelligence algorithms namely; biogeography-based optimization (BBO), particle swarm optimization (PSO), spider monkey optimization (SMO), artificial bee colony optimization (ABCO) and ant colony optimization (ACO). BBO as a sole evolutionary algorithm is being configured alongside four swarm intelligence optimizers for an optimal power flow solution with the aim of performance evaluation through physical and statistical means. Assessment report upon application of these standalone algorithms on the 330kV Nigerian grid under two (accuracy and convergence) metrics produced PSO and ACO as the best-performed algorithms. Three test cases (scenarios) were adopted based on the number of iterations (100, 500, and 1000) for proper assessment of the algorithms and the results produced were validated using mean average percentage error (MAPE) with values of voltage profile created by each solution algorithm in line with the IEEE voltage regulatory standards. All algorithms proved to be good load flow solvers with distinct levels of precision and speed. While PSO and SMO produced the best and worst results for accuracy with MAPE values of 3.11% and 36.62%, ACO and PSO produced the best and worst results for convergence (computational speed) after 65 and 530 average number of iterations. Since accuracy supersedes speed from scientific considerations, PSO is the overall winner and should be cascaded with ACO for an automated hybrid swarm intelligence load flow model in future studies. Future research should consider hybridizing ACO and PSO for a more computationally efficient solution model

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    Particle Swarm Optimization: Basic Concepts, Variants and Applications in Power Systems

    Get PDF
    Many areas in power systems require solving one or more nonlinear optimization problems. While analytical methods might suffer from slow convergence and the curse of dimensionality, heuristics-based swarm intelligence can be an efficient alternative. Particle swarm optimization (PSO), part of the swarm intelligence family, is known to effectively solve large-scale nonlinear optimization problems. This paper presents a detailed overview of the basic concepts of PSO and its variants. Also, it provides a comprehensive survey on the power system applications that have benefited from the powerful nature of PSO as an optimization technique. For each application, technical details that are required for applying PSO, such as its type, particle formulation (solution representation), and the most efficient fitness functions are also discussed

    Role of Metaheuristics in Optimizing Microgrids Operating and Management Issues::A Comprehensive Review

    Get PDF
    The increased interest in renewable-based microgrids imposes several challenges, such as source integration, power quality, and operating cost. Dealing with these problems requires solving nonlinear optimization problems that include multiple linear or nonlinear constraints and continuous variables or discrete ones that require large dimensionality search space to find the optimal or sub-optimal solution. These problems may include the optimal power flow in the microgrid, the best possible configurations, and the accuracy of the models within the microgrid. Metaheuristic optimization algorithms are getting more suggested in the literature contributions for microgrid applications to solve these optimization problems. This paper intends to thoroughly review some significant issues surrounding microgrid operation and solve them using metaheuristic optimization algorithms. This study provides a collection of fundamental principles and concepts that describe metaheuristic optimization algorithms. Then, the most significant metaheuristic optimization algorithms that have been published in the last years in the context of microgrid applications are investigated and analyzed. Finally, the employment of metaheuristic optimization algorithms to specific microgrid issue applications is reviewed, including examples of some used algorithms. These issues include unit commitment, economic dispatch, optimal power flow, distribution system reconfiguration, transmission network expansion and distribution system planning, load and generation forecasting, maintenance schedules, and renewable sources max power tracking

    Enhancement of Metaheuristic Algorithm for Scheduling Workflows in Multi-fog Environments

    Get PDF
    Whether in computer science, engineering, or economics, optimization lies at the heart of any challenge involving decision-making. Choosing between several options is part of the decision- making process. Our desire to make the "better" decision drives our decision. An objective function or performance index describes the assessment of the alternative's goodness. The theory and methods of optimization are concerned with picking the best option. There are two types of optimization methods: deterministic and stochastic. The first is a traditional approach, which works well for small and linear problems. However, they struggle to address most of the real-world problems, which have a highly dimensional, nonlinear, and complex nature. As an alternative, stochastic optimization algorithms are specifically designed to tackle these types of challenges and are more common nowadays. This study proposed two stochastic, robust swarm-based metaheuristic optimization methods. They are both hybrid algorithms, which are formulated by combining Particle Swarm Optimization and Salp Swarm Optimization algorithms. Further, these algorithms are then applied to an important and thought-provoking problem. The problem is scientific workflow scheduling in multiple fog environments. Many computer environments, such as fog computing, are plagued by security attacks that must be handled. DDoS attacks are effectively harmful to fog computing environments as they occupy the fog's resources and make them busy. Thus, the fog environments would generally have fewer resources available during these types of attacks, and then the scheduling of submitted Internet of Things (IoT) workflows would be affected. Nevertheless, the current systems disregard the impact of DDoS attacks occurring in their scheduling process, causing the amount of workflows that miss deadlines as well as increasing the amount of tasks that are offloaded to the cloud. Hence, this study proposed a hybrid optimization algorithm as a solution for dealing with the workflow scheduling issue in various fog computing locations. The proposed algorithm comprises Salp Swarm Algorithm (SSA) and Particle Swarm Optimization (PSO). In dealing with the effects of DDoS attacks on fog computing locations, two Markov-chain schemes of discrete time types were used, whereby one calculates the average network bandwidth existing in each fog while the other determines the number of virtual machines existing in every fog on average. DDoS attacks are addressed at various levels. The approach predicts the DDoS attack’s influences on fog environments. Based on the simulation results, the proposed method can significantly lessen the amount of offloaded tasks that are transferred to the cloud data centers. It could also decrease the amount of workflows with missed deadlines. Moreover, the significance of green fog computing is growing in fog computing environments, in which the consumption of energy plays an essential role in determining maintenance expenses and carbon dioxide emissions. The implementation of efficient scheduling methods has the potential to mitigate the usage of energy by allocating tasks to the most appropriate resources, considering the energy efficiency of each individual resource. In order to mitigate these challenges, the proposed algorithm integrates the Dynamic Voltage and Frequency Scaling (DVFS) technique, which is commonly employed to enhance the energy efficiency of processors. The experimental findings demonstrate that the utilization of the proposed method, combined with the Dynamic Voltage and Frequency Scaling (DVFS) technique, yields improved outcomes. These benefits encompass a minimization in energy consumption. Consequently, this approach emerges as a more environmentally friendly and sustainable solution for fog computing environments
    • …
    corecore