229 research outputs found

    3D Visibility Representations of 1-planar Graphs

    Full text link
    We prove that every 1-planar graph G has a z-parallel visibility representation, i.e., a 3D visibility representation in which the vertices are isothetic disjoint rectangles parallel to the xy-plane, and the edges are unobstructed z-parallel visibilities between pairs of rectangles. In addition, the constructed representation is such that there is a plane that intersects all the rectangles, and this intersection defines a bar 1-visibility representation of G.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Area, perimeter, height, and width of rectangle visibility graphs

    Get PDF
    A rectangle visibility graph (RVG) is represented by assigning to each vertex a rectangle in the plane with horizontal and vertical sides in such a way that edges in the graph correspond to unobstructed horizontal and vertical lines of sight between their corresponding rectangles. To discretize, we consider only rectangles whose corners have integer coordinates. For any given RVG, we seek a representation with smallest bounding box as measured by its area, perimeter, height, or width (height is assumed not to exceed width)

    Colored anchored visibility representations in 2D and 3D space

    Get PDF
    © 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/In a visibility representation of a graph G, the vertices are represented by nonoverlapping geometric objects, while the edges are represented as segments that only intersect the geometric objects associated with their end-vertices. Given a set P of n points, an Anchored Visibility Representation of a graph G with n vertices is a visibility representation such that for each vertex v of G, the geometric object representing v contains a point of P. We prove positive and negative results about the existence of anchored visibility representations under various models, both in 2D and in 3D space. We consider the case when the mapping between the vertices and the points is not given and the case when it is only partially given.Peer ReviewedPostprint (author's final draft

    Visibility Representations of Boxes in 2.5 Dimensions

    Full text link
    We initiate the study of 2.5D box visibility representations (2.5D-BR) where vertices are mapped to 3D boxes having the bottom face in the plane z=0z=0 and edges are unobstructed lines of sight parallel to the xx- or yy-axis. We prove that: (i)(i) Every complete bipartite graph admits a 2.5D-BR; (ii)(ii) The complete graph KnK_n admits a 2.5D-BR if and only if n≤19n \leq 19; (iii)(iii) Every graph with pathwidth at most 77 admits a 2.5D-BR, which can be computed in linear time. We then turn our attention to 2.5D grid box representations (2.5D-GBR) which are 2.5D-BRs such that the bottom face of every box is a unit square at integer coordinates. We show that an nn-vertex graph that admits a 2.5D-GBR has at most 4n−6n4n - 6 \sqrt{n} edges and this bound is tight. Finally, we prove that deciding whether a given graph GG admits a 2.5D-GBR with a given footprint is NP-complete. The footprint of a 2.5D-BR Γ\Gamma is the set of bottom faces of the boxes in Γ\Gamma.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    Edge Partitions of Optimal 22-plane and 33-plane Graphs

    Full text link
    A topological graph is a graph drawn in the plane. A topological graph is kk-plane, k>0k>0, if each edge is crossed at most kk times. We study the problem of partitioning the edges of a kk-plane graph such that each partite set forms a graph with a simpler structure. While this problem has been studied for k=1k=1, we focus on optimal 22-plane and 33-plane graphs, which are 22-plane and 33-plane graphs with maximum density. We prove the following results. (i) It is not possible to partition the edges of a simple optimal 22-plane graph into a 11-plane graph and a forest, while (ii) an edge partition formed by a 11-plane graph and two plane forests always exists and can be computed in linear time. (iii) We describe efficient algorithms to partition the edges of a simple optimal 22-plane graph into a 11-plane graph and a plane graph with maximum vertex degree 1212, or with maximum vertex degree 88 if the optimal 22-plane graph is such that its crossing-free edges form a graph with no separating triangles. (iv) We exhibit an infinite family of simple optimal 22-plane graphs such that in any edge partition composed of a 11-plane graph and a plane graph, the plane graph has maximum vertex degree at least 66 and the 11-plane graph has maximum vertex degree at least 1212. (v) We show that every optimal 33-plane graph whose crossing-free edges form a biconnected graph can be decomposed, in linear time, into a 22-plane graph and two plane forests

    Combinatorial Properties and Recognition of Unit Square Visibility Graphs

    Get PDF
    Unit square (grid) visibility graphs (USV and USGV, resp.) are described by axis-parallel visibility between unit squares placed (on integer grid coordinates) in the plane. We investigate combinatorial properties of these graph classes and the hardness of variants of the recognition problem, i.e., the problem of representing USGV with fixed visibilities within small area and, for USV, the general recognition problem
    • …
    corecore