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AREA, PERIMETER, HEIGHT, AND WIDTH OF
RECTANGLE VISIBILITY GRAPHS

JOHN S. CAUGHMAN, CHARLES L. DUNN, JOSHUA D. LAISON,
NANCY ANN NEUDAUER, AND COLIN L. STARR

Abstract. A rectangle visibility graph (RVG) is represented by
assigning to each vertex a rectangle in the plane with horizontal
and vertical sides in such a way that edges in the graph correspond
to unobstructed horizontal and vertical lines of sight between their
corresponding rectangles. To discretize, we consider only rectan-
gles whose corners have integer coordinates. For any given RVG,
we seek a representation with smallest bounding box as measured
by its area, perimeter, height, or width (height is assumed not to
exceed width).

We derive a number of results regarding these parameters. Using
these results, we show that these four measures are distinct, in the
sense that there exist graphs G1 and G2 with area(G1) < area(G2)
but perim(G2) < perim(G1), and analogously for all other pairs of
these parameters. We further show that there exists a graph G3

with representations S1 and S2 such that area(G3) = area(S1) <
area(S2) but perim(G3) = perim(S2) < perim(S1). In other words,
G3 requires distinct representations to minimize area and perime-
ter. Similarly, such graphs exist to demonstrate the independence
of all other pairs of these parameters.

Among graphs with n ≤ 6 vertices, the empty graph En requires
largest area. But for graphs with n = 7 and n = 8 vertices, we
show that the complete graphs K7 and K8 require larger area than
E7 and E8, respectively. Using this, we show that for all n ≥ 8,
the empty graph En does not have largest area, perimeter, height,
or width among all RVGs on n vertices.

1. Introduction

Let S be a set of rectangles in the plane, with vertical and horizontal
sides, whose interiors do not intersect. We say that two rectangles A
and B in S see each other if there is a vertical or horizontal line
segment intersecting the interiors of both A and B and intersecting no
other (closed) rectangles in S, like the dotted lines in Figure 1. We
refer to such segments as lines of sight, and under this definition we
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2 CAUGHMAN, DUNN, LAISON, NEUDAUER, AND STARR

may consider them to have small positive width. For example, there is
no line of sight between rectangles B and F in Figure 1, since a line of
sight needs positive width.

a

b

e

c d

A

B

C
D

E

F

f

Figure 1. A rectangle visibility graph and a corre-
sponding RV-representation with integer rectangles.

We construct a graph G with a vertex for every rectangle in S, and an
edge between two vertices if and only if their corresponding rectangles
see each other. We say that S is a rectangle visibility (RV-) rep-
resentation of G, and G is a rectangle visibility graph or RVG.
We allow rectangles in S to share edges.

A similar notion of rectangle visibility graph was first introduced in
1976 by Garey, Johnson and So [17] as a tool to study the design of
printed circuit boards. Their RVGs have only 1 × 1 squares, located
at a set of lattice points in a grid. Hutchinson continued work on this
problem in 1993 [19]. In [3], Bose, Dean, Hutchinson and Shermer
described the problem of two-layer routing in “very large-scale integra-
tion” (VLSI) design as follows:

In two-layer routing, one embeds processing components and

their connections (sometimes called wires) in two layers of

silicon (or other VLSI material). The components are em-

bedded in both layers. The wires are also embedded in both

layers, but one layer holds only horizontal connections, and

the other holds only vertical ones. If a connection must

be made between two components that are not cohorizontal

or covertical, then new components (called vias) are added

to connect horizontal and vertical wires together, resulting

in bent wires that alternate between the layers. However,

vias are large compared to wires and their use should be

minimized. In this setting, asking if a graph is a rectangle-

visibility graph is the same as asking if a set of components

can be embedded so that there is a two-layer routing of their

connections that uses no vias. Our requirement that visibil-

ity bands have positive width is motivated by the physical
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constraint that wires must have some minimum width. A

similar problem arises in printed-circuit board design, as

printed-circuit boards naturally have two sides, and con-

necting wires from one side to the other (the equivalent of

making vias) is relatively expensive.

In 1995, Dean and Hutchinson began the study of RVGs in their own
right. They focused on bipartite RVGs, and showed that Kp,q is an RVG
if and only if p ≤ 4, and that every bipartite RVG with n vertices has at
most 4n− 12 edges [9]. In 1996 Bose, Dean, Hutchinson, and Shermer
sought to characterize families of graphs that are RVGs. They proved
that every graph with maximum degree four is an RVG, and every
graph that can be decomposed into two caterpillar forests is an RVG,
among other results [3]. In 1999 Hutchinson, Shermer, and Vince [20]
proved that every RVG with n vertices has at most 6n− 20 edges, and
this bound is tight for n ≥ 8. RVGs have since been studied by many
other authors [1, 2, 5, 6, 10, 11, 8, 12, 24], including generalizations
to 3-dimensional boxes [4, 13, 16, 18], rectilinear polygons with more
than four edges [14, 23], and other variations.

In 1997, Kant, Liotta, Tamassia, and Tollis considered the minimum
area, height, and width required to represent a tree as an RVG, as
measured by the smallest bounding box containing all of the rectan-
gles in the RV-representation [21]. They obtained asymptotic bounds
on the area, width, and height of these representations and found a
linear-time algorithm to construct them. In this paper we consider a
similar problem, but seek exact bounds on the area, width, height, and
perimeter of an RV-representation of any graph with n vertices. We
say that area(G), perim(G), height(G), and width(G) are the minimum
area, perimeter, height, and width, respectively, of the bounding box
of any integer rectangle visibility representation of the graph G. These
are the objects of study in this paper.

In Section 2 we specify the rectangle visibility graphs we consider
and provide definitions and notation needed for the paper. We finish
the section with lemmas we will use in later sections.

In Section 3 we show that these four measures of size of a rectangle
visibility graph are all distinct, in the sense that there exist two graphs
G1 and G2 with area(G1) < area(G2) but perim(G2) < perim(G1), and
analogously for all other combinations of these parameters.

In Section 4 we show that these measures are not necessarily all
attained by the same representation; i.e., there is a graph G3 with two
RVG representations S1 and S2 with area(G3) = area(S1) < area(S2)



4 CAUGHMAN, DUNN, LAISON, NEUDAUER, AND STARR

but perim(G3) = perim(S2) < perim(S1), and analogously for all other
combinations of these parameters.

In Section 5 we characterize the graphs that have the smallest height,
width, area, and perimeter among all graphs with n vertices.

In Section 6 we investigate the graphs with largest height, width,
area, and perimeter. We show that, among graphs with n ≤ 6 vertices,
the empty graph En has largest area, and for graphs with 7 or 8 vertices,
the complete graphs K7 and K8 have larger area than E7 and E8,
respectively. Using this, we show that for all n ≥ 7, the empty graph
En does not have largest area among all RVGs on n vertices. The
graphs with more than 6 vertices that maximize these parameters are
still unknown.

In Section 7, we conclude with a number of open questions.

2. Basic Definitions and Results

A rectangle with horizontal and vertical sides whose corners are in-
teger lattice points is said to be an integer rectangle. We consider
only integer rectangles for the remainder of the paper. Each rectangle
is specified by the two x-coordinates and two y-coordinates of its cor-
ners. For a set S of rectangles, the smallest rectangle with horizontal
and vertical sides containing S is the bounding box of S.

Suppose G is an RVG with RV-representation S contained in the
bounding box R, and say R has corners with x-coordinates 0 and u and
y-coordinates 0 and v, with u, v ∈ Z. We can view R as a u × v grid,
with v rows and u columns, and with rectangles in S each contained in a
consecutive set of rows and columns. For example, in the representation
shown in Figure 1, rectangle A is contained in rows 3, 4, 5, and 6, and
column 1.

We use the convention that lower case letters are vertices of the
graph G, and the corresponding upper case letters are rectangles in
the RV-representation S of G; e.g., a is a vertex in G, and A is its
corresponding rectangle in S. For a given rectangle A in S, we denote
the x-coordinates of its vertical sides by xA

1 and xA
2 with xA

1 < xA
2 , and

the y-coordinates of its horizontal sides by yA1 and yA2 , with yA1 < yA2 .
In other words, as a Cartesian product of intervals, we have

A = [xA
1 , x

A
2 ]× [yA1 , y

A
2 ].

We also introduce notation to refer to the set of rectangles in S that
are above (respectively, below, to the left of, or to the right of) a given
rectangle A. Specifically, let the set of rectangles above (north of) A
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be denoted by

N (A) = {X ∈ S : yX1 ≥ yA2 and (xX
1 , x

X
2 ) ∩ (xA

1 , x
A
2 ) 6= ∅}.

Similarly define S(A), W(A), and E(A) (rectangles south, west, and
east of A, respectively). For example, in Figure 1, N (D) = {B,E},
while E(A) = {B,E,D} and S(A) = ∅. Note that A might not see
every rectangle in N (A) if there are other rectangles obstructing the
view (and similarly for rectangles in the other three sets).

Let R be the smallest bounding box having horizontal and vertical
sides and containing all the rectangles in a set of integer rectangles
S. For the remainder of the paper, we turn R so that height(R) ≤
width(R). Given a graph G, the area, perimeter, height, and width
of G are the minimums of the corresponding parameters taken over all
bounding boxes of RV-representations of G with height less than or
equal to width.

We conclude this section with some preliminary results. First we ex-
plore the extent to which we can focus on the parameters of connected
graphs, and in what ways the values for disconnected graphs are deter-
mined or bounded by the parameters of their connected components.

For convenience in stating the next result, we introduce the following
notation. For any positive integers h and w, let Fh,w denote the (finite)
set of graphs that have RV-representations in an h×w bounding box.

Lemma 2.1. If G is the disjoint union of graphs H and J , then:

(i). height(G) = height(H) + height(J),
(ii). perim(G) = perim(H) + perim(J),

(iii). width(G) = min{max{x + b, y + a} |H ∈ Fx,y, J ∈ Fa,b},
(iv). area(G) = min{(x + a)(y + b) |H ∈ Fx,y, J ∈ Fa,b}.

Proof. Suppose G is the disjoint union of graphs H and J . Given
any RV-representations S1 and S2 of H and J , we construct two RV-
representations of G. As indicated in Figure 2, we identify the upper
right corner of S1 with the lower left corner of either S2 or ST

2 , where
ST
2 denotes the RV-representation of J formed by transposing S2 across

its main (top left to lower right) diagonal. If S1 is x×y and S2 is a× b,
then it follows that G ∈ Fx+a,y+b ∩ Fx+b,y+a. This implies each of the
expressions in (i)-(iv) are upper bounds for the parameters of G.

To prove these expressions are also lower bounds, note that any RV-
representation S of G must have the rectangles corresponding to ver-
tices of H in separate rows and columns from the rectangles correspond-
ing to vertices of J . If S has height smaller than height(H)+height(J),
then either the rectangles in S corresponding to vertices of H must
form an RV-representation of H with height less than height(H) or
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the rectangles in S corresponding to vertices of J must form an RV-
representation of J with height less than height(J). Therefore no such
representation is possible. Similar arguments apply to the other pa-
rameters. �

Remark 2.2. The following example illustrates a subtlety captured by
the formula in Lemma 2.1(iv). Consider the graphs P4 + K1,4 and
K1,4 + K1,4. We have area(P4 + K1,4) = 27, obtained from a 1 × 4
RV-representation of P4 and a 2 × 5 RV-representation of K1,4. But
we also have area(K1,4 + K1,4) = 36, obtained from two copies of a
3× 3 RV-representation of K1,4 (both representations of K1,4 are given
in Figure 7). So the minimum area of H + K1,4 uses different repre-
sentations of K1,4 depending on H.

S1

S2

S1

S2T

Figure 2. Two options for a combined representation
of a disjoint union of two RVGs

Corollary 2.3. If G is the disjoint union of graphs H and J , then:

(i). width(G) ≤ width(H) + width(J),
(ii). area(G) ≤ (width(H) + width(J))2.

Proof. These both follow immediately from the construction in the
proof of Lemma 2.1 shown in Figure 2. �

Lemma 2.4. Suppose G is a graph with RV-representation S with
bounding box R. If height(G) = height(R) and width(G) = width(R),
then area(G) = area(R) and perim(G) = perim(R). In other words, if
S realizes the height and width of G, then S also realizes the area and
perimeter of G.

Proof. Any representation with smaller area or perimeter must have
smaller height or smaller width, which is impossible by hypothesis. �

Later (in Table 3), we will see that the hypotheses of Lemma 2.4
are necessary. In particular, G4 has two different representations for
minimizing area and perimeter.
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3. Height, Width, Area, and Perimeter induce distinct
orderings of RVGs

In this section, we consider the various notions of height, width,
perimeter, and area of RVGs. We show that these parameters rep-
resent independent measures of RVGs, in the sense that they do not
always give identical orderings of the sets of graphs on a given num-
ber of vertices. Examples to illustrate these results are summarized in
Tables 1 and 2. Graphs G1, G2, G3, and G4 in these tables are shown
in Figures 4 and 5. For each pair of parameters, there exists a pair of
graphs with an equal number of vertices that are oppositely ordered
by those parameters. We have verified the height, width, area, and
perimeter of all connected graphs with 6 or fewer vertices by computer
search [7] and the claims regarding P6, C6, G1, and G2 in Tables 1 and
2 follow easily, see Figures 3 and 4. The claims regarding G3 and G4,
each with 15 vertices, are proved in Theorems 3.1 and 3.2.

Graph Vertices Height Width Area Perimeter

P6 6 1 4 6 14
C6 6 2 3 8 12
G1 6 2 – 10 –
G2 6 3 – 9 –
G3 15 – 6 – 18
G4 15 – 5 – 20

Table 1. Separating examples for height, width, area,
and perimeter.

Perimeter Height Width

Area P6, C6 G1, G2 P6, C6

Perimeter – P6, C6 G3, G4

Height – – P6, C6

Table 2. Graph pairs that are oppositely ordered by
each of the parameter pairs.

Theorem 3.1. The graph G3 shown on the left in Figure 5 has perime-
ter 18 and width 6.

Proof. To find the perimeter of G3, we first consider its area. Let v
be the vertex of degree 10 in G3. In any RV-representation of G3, the
corresponding rectangle V must have perimeter at least 10, so its area is
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S1

S2
P6

C6
a
bc

d
e

a b
c

d e

a b
dc
e

a b

de

c

a b
de c

f

f
f

f
fa b

e

c

f
d

S1

S2

Figure 3. Graphs P6 and C6 show that height and area
order graphs differently than width and perimeter.

S1

S2
G1

G2
a
b

c d
ef

a b

d
e

c

f

a b
de
c

f

a
b

d
e

c f

a
b

c d
e

f

Figure 4. Graphs G1 and G2 show that height orders
graphs differently than area.

u

x

y

Figure 5. Graphs G3 and G4 show that width orders
graphs differently than perimeter.

at least 4. Together with the 14 other vertices, we see area(G3) ≥ 18.
Now suppose G3 can be represented in a bounding box of height h,
width w, and perimeter p = 2h + 2w. Such a rectangle has maximum
area when h = w = p/4, so area(R) ≤ p2/16. But area(R) ≥ 18, so
p ≥
√

18 · 16 > 16. Since p must be even, perim(G3) = 18 by Figure 5.
Next we consider width(G3). If width(G3) < 6, then G3 can be

represented in a 5× 5 box R. In a 5× 5 box with 14 other vertices, V
has area at most 11, and hence V must be 1 × 4, 1 × 5, 2 × 3, 2 × 4,
2× 5, or 3× 3. We rule out each possibility below.
• If V is 1 × 4, at least one unit of the perimeter of V is on the

boundary of R, and therefore V cannot represent a degree-10 vertex.
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V V

W

V
1

2

3 4 5 6

9

8

7

Figure 6. Diagrams illustrating several of the cases in
the proof of Theorem 3.1.

• If V is 1 × 5 or 2 × 5, it must touch opposite sides of R; thus V
must see 5 rectangles on each of its other two sides in order to have
degree 10. But then v is a cut vertex, and G3 has none.
• If V is 3 × 3, it cannot have an edge on the boundary of R and

represent a degree-10 vertex. In this case, V occupies the middle of
R as shown on the left in Figure 6. The four vertices not adjacent to
v must be represented by 1 × 1 squares in the corners of R. Among
these four, two (disjoint) pairs have a unique common neighbor in G3.
Locating the rectangles for these common neighbors in their respective
3 × 1 blocks of R, we see there now remain only 6 locations for the
other 8 vertices.
• If V is 2 × 4, it must (by symmetry) appear as in the middle of

Figure 6. To have degree 10, V must see a 1 × 1 square at W . But v
has no neighbor of degree less than 3.
• If V is 2 × 3, it must (by symmetry) appear as on the right of

Figure 6. To have degree 10, V must see distinct rectangles on each
unit of its perimeter. Numbering the locations in R as in the right of
Figure 6, if location 3 is empty, location 2 must contain a 1× 1 square,
but v has no neighbor of degree less than 3. If a 2 × 1 rectangle X
covers location 3, the rectangles in locations 1 through 6 form a path
P5 in the neighborhood of V , but G3 has no such subgraph. Thus,
locations 3 and (by symmetry) 7 contain 1×1 squares. But G3−v has
no vertices of degree 2 that are at distance 4. �

Theorem 3.2. The graph G4 shown on the right in Figure 5 has
perimeter 20 and width 5.

Proof. We use the labeling in Figure 5. We begin with perimeter. Note
that since G4 has 15 vertices, every RV-representation of G4 has area
at least 15. Then if perim(G4) < 20, it must have a representation that
fits in a 3× 6 or 4× 5 bounding box. But a 3× 6 box has area 18, so
the 3 vertices of degree more than four in G4 must be represented with
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1× 2 rectangles. But then all the vertices of G4 must have degree ≤ 6,
a contradiction.

Thus G4 must be representable in a 4 × 5 box. The two vertices
of degree 5 in G4 must each be represented with a rectangle of area
at least 2. In a 4 × 5 box R, U then has area 3 or 4 and cannot lie
in a corner. All vertices of G4 have degree at least 3, so no corner
of R has a 1 × 1 square. Therefore, each corner of R is either empty
or occupied by a rectangle of area at least 2. With 15 vertices, this
exceeds the total area of 20 in R: each vertex contributes at least one,
the four corners require at least one additional unit of area each, and U
needs two or three additional units of area not lying in a corner. Now
perim(G4) = 20 by Figure 5.

We next consider width. If width(G4) < 5, then G4 can be repre-
sented in a 4×4 box. But then it also has a 4×5 representation, which
we just proved impossible. By Figure 5, we see that width(G4) = 5. �

4. Minimizing Height, Width, Area, and Perimeter can
require distinct representations of an RVG

In this section, we further explore our four parameters and we ob-
serve that, even for a single RVG, it is possible that the set of rep-
resentations minimizing one of them may be disjoint from the set of
representations minimizing another. Examples to illustrate these re-
sults are summarized in Tables 3 and 4. For each pair of parameters,
there exists a graph that requires distinct representations to separately
minimize each parameter in that pair. Specifically, the star K1,4 has
representations minimizing height that are distinct from those mini-
mizing width, area, and perimeter; the graph G5 shown in Figure 7
has representations minimizing width that are distinct from those min-
imizing the other parameters; and the graph G6 shown in Figure 8 has
distinct representations minimizing area and perimeter. Since K1,4 has
fewer than 7 vertices, the claims regarding it are verified by our com-
puter search [7]. The claims regarding G5 and G6, each with 7 vertices,
are proved in Theorems 4.1 and 4.2 below.

Theorem 4.1. The graph G5 shown in Figure 7 has height 2, width 4,
area 10, and perimeter 14. Furthermore, minimizing width requires a
different RV-representation from height, area, or perimeter.

Proof. The representation S1 in Figure 7 has height 2, width 5, area
10, and perimeter 14. The representation S2 has height 4, width 4,
area 16, and perimeter 16.
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Graph (representation) Vertices Height Width Area Perimeter

K1,4 (S1) 5 2 5 10 14
K1,4 (S2) 5 3 3 9 12
G5 (S1) 7 2 5 10 14
G5 (S2) 7 4 4 16 16
G6 (S1) 7 2 7 14 18
G6 (S2) 7 4 4 16 16

Table 3. Graphs representations used to minimize
height, width, area, and perimeter.

Perimeter Height Width

Area G6 K1,4 G5

Perimeter – K1,4 G5

Height – – G5

Table 4. Graphs requiring different representations to
minimize area, perimeter, height, and width.

S1

S2

G5

a b
c
d
e

gf

K1,4
a b

de
c

a
b

d
e
c

a
b

c d
e

gf

a
b

c d e
g
fS1

S2

a b
e

c
d

Figure 7. Graphs K1,4 and G5 are shown. For K1,4, one
representation (S1) minimizes height and another (S2)
minimizes area, perimeter, and width. For G5, one rep-
resentation (S1) minimizes height, area, and perimeter,
and another (S2) minimizes width.

We claim G5 has no 3× 4 representation. Each of the 3-cycles in G5

must have at least 2 rows that occupy at least 2 units of area. This
implies that some row in a 3× 4 box has 2 units of each 3-cycle, which
therefore must see each other. Since G5 has no edges joining these
3-cycles, this is impossible.

It follows that G5 has no 3×3 or 2×4 representation. Since G5 is not a
path, height(G5) ≥ 2 and these facts together imply that G5 has height
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S1

S2

G6

a b
c
d
e

gf

a c d
e

a
b

c d e
g

f

f

g
b

Figure 8. Graph G6 with distinct representations min-
imizing area and perimeter.

2, width 4, area 10, and perimeter 14. Since the only representations
of G5 with width 4 are 4×4, any representation minimizing width does
not minimize height, area, or perimeter. �

Theorem 4.2. The graph G6 shown in Figure 8 has perimeter 16 and
area 14. Furthermore, minimizing perimeter requires a different RV-
representation than area.

Proof. The first representation in Figure 8 has perimeter 18 and area
14. The second has perimeter 16 and area 16.

The 4 vertices of degree 1 each require at least 3 units of length on
the perimeter with free lines of sight. The degree 2 vertex requires at
least 2 units, and the 2 degree 3 vertices each require at least 1 unit.
So perim(G6) = 16.

If area(G6) < 14, then G6 can be represented in a rectangle of area
7, 8, ..., or 13. Since G6 is not a path, prime areas are not possible,
so G6 must have height > 1. Since perim(G6) = 16, the only possible
bounding box must be 2×6. We claim this is impossible. Since G6 has
7 vertices, a box with 6 columns would force some column to contain
portions of 2 rectangles. Neither of these rectangles can represent a
vertex of degree 1, or else the remaining graph must be a path, so they
must have degrees 2 and 3, which implies that D has an empty hori-
zontal line of sight. But now, taken together, the 5 vertices of degree 1
or 2 require 5 empty horizontal lines of sight, while the bounding box
only has height 2, with at most 4 such lines.

The only rectangle with height > 1 and area 14 is 2 × 7, so the
perimeter and area must be achieved with distinct representations. �
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5. Graphs with small area, perimeter, height, and width

In this section, we address the question of which graphs on a given
number of vertices minimize each parameter.

For any real number x, we use dxe and bxc to denote the integer
ceiling and floor of x, respectively. We use [[x]] = bx + 1/2c to denote
x rounded to the nearest integer. Recall that, for any positive integers
h and w, we let Fh,w denote the (finite) set of graphs that have RV-
representations in an h× w bounding box.

Theorem 5.1. Let G be any graph with n vertices and suppose G has
an RV-representation. Then the following hold.

(i). The height of G satisfies

height(G) ≥ 1.

Equality holds if and only if G ∼= Pn, the path on n vertices.
(ii). The area of G satisfies

area(G) ≥ n.

Equality holds if and only if G ∼= Ph Pw, for some positive
integers h and w, where n = h · w.

(iii). The width of G satisfies

width(G) ≥ d
√
ne.

Equality holds if and only if G ∈ Fw,w where w = d
√
ne.

(iv). The perimeter of G satisfies

perim(G) ≥ 2 · [[
√
n]] + 2 · d

√
ne.

Equality holds if and only if G ∈ Fh,w for some positive integers
h and w, where h + w = [[

√
n]] + d

√
ne and hw ≥ n.

Proof. To see (i) and (ii), note that every RV-representation of a graph
must have height at least 1 and area at least n, since each vertex
requires at least a 1 × 1 rectangle. For G to have height exactly 1,
every rectangle in such a representation must be on the same row in
the representation, so G is a path. For G to have area exactly n, every
rectangle in such a representation must be 1× 1, with no empty space
in the bounding box R. Thus G is the grid Ph Pw, where h is the
height of R and w is the width of R.

We show (iii) by way of contradiction. Suppose G can be represented
in an a× b bounding box R, where a ≤ b < d

√
ne. Then b ≤ d

√
ne− 1,

so b <
√
n. But now the area of R is ab < n, which is impossible

since G has n vertices. It follows that width(G) = d
√
ne if and only if

G ∈ Fw,w where w = d
√
ne.
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We also show (iv) by way of contradiction. Suppose G can be repre-
sented in an a× b bounding box R, where a + b < [[

√
n]] + d

√
ne. By

(ii), we know ab ≥ n. We consider cases for whether
√
n rounds up or

down. In each case, we find that

(a + b)2 < 4n ≤ 4ab,

which implies that (a − b)2 < 0, a contradiction. It follows that
perim(G) = 2·[[

√
n]]+2·d

√
ne if and only if G ∈ Fh,w for some positive

integers h and w, where h + w = [[
√
n]] + d

√
ne and hw ≥ n. �

Remark 5.2. The condition for equality in Theorem 5.1(iv) restricts
the bounding box to be very nearly square. Specifically, we can say the
following. Let k denote the integer such that k2 < n ≤ (k + 1)2.

If k2 < n ≤ k(k + 1), then equality holds in Theorem 5.1(iv) if and
only if G ∈ Fk−t,k+1+t for some integer t where

0 ≤ t ≤
√

(k + 1
2
)2 − n− 1

2
.

If k(k + 1) < n ≤ (k + 1)2, then equality holds in Theorem 5.1(iv) if
and only if G ∈ Fk+1−t,k+1+t for some integer t where

0 ≤ t ≤
√

(k + 1)2 − n.

For example, any RVG with n = 70 vertices must have perimeter at
least 34, with equality only when G has a 7×10 or 8×9 representation.
Similarly, any RVG with n = 120 vertices must have perimeter at least
44, with equality only when G has a 10× 12 or 11× 11 representation.

6. Graphs with large area, perimeter, height, and width

In this section we turn to the question of which graphs on a given
number of vertices maximize our four parameters.

Recall that the empty graph En is the graph with n vertices and
no edges. Among small graphs (at most 6 vertices), the empty graphs
maximize each of the four parameters. When the number of vertices
is larger than 7, however, we will see that the empty graph no longer
reigns supreme. Our proof is constructive, as we will provide specific
graphs that we will prove are larger than En in each parameter. But
our results here leave open, perhaps for future work, the more difficult
question of which graphs on n vertices actually achieve the maximum
values for the four parameters.

We begin with the small graphs.

Theorem 6.1. For 1 ≤ n ≤ 6, among all graphs with n vertices, the
empty graph En has largest height, width, area, and perimeter.
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Figure 9. RV-representations of all connected graphs
with between 1 and 5 vertices.

Proof. By Lemma 2.1, the empty graph En has height n, width n,
area n2, and perimeter 4n. Figures 9 and 10 show RV-representations
of all connected graphs with at most 6 vertices. These figures show
that no other connected graphs with 2 ≤ n ≤ 6 vertices exceed any of
these values. For a disconnected graph G, Lemma 2.1 implies that, as
long as G has at least one component with more than one vertex, we
can combine the representations of the components as in Figure 2 to
obtain height less than n, area less than n2, and perimeter less than
4n. Because K2 has width 2, the graph K2 +En−2 has width n, but no
graph has larger width than En for n ≤ 6. �

Our next results focus heavily on the RV-representations of the com-
plete graph Kn. Let S be any set of rectangles representing Kn and let
R = [0, u] × [0, v] denote the smallest bounding box containing them.
We define the set TS of top rectangles of S as follows:

TS = {X ∈ S : yX1 ≥ yY1 for all Y ∈ S}.
We now prove that for Kn, TS contains a single rectangle when n ≥ 6.

Lemma 6.2. Suppose n ≥ 6 and let S be any rectangle visibility rep-
resentation of Kn. Then |TS| = 1.

Proof. By way of contradiction, suppose |TS| ≥ 2. Fix any distinct
rectangles A,B ∈ TS, and note that N (A) and N (B) are empty, as
illustrated by the example in Figure 11. Without loss of generality,
assume that xA

1 ≤ xB
1 and yA2 ≥ yB2 (i.e., the taller rectangle is on the

left). We observe the following:

• W(A) is empty: If F ∈ W(A), then F cannot see B.

• |E(B)| ≤ 1: Otherwise, fix I, J ∈ E(B) with xI
1 < xJ

1 , and note
that yI1 , y

J
1 ≤ yB1 . Then yI2 > yB2 since I must see A. But now J cannot

see B, a contradiction.

• S(A) = S(B): If C ∈ S(A) then yC2 ≤ yA1 = yB1 . But C sees B, so
C ∈ S(B). Thus S(A) ⊆ S(B) and, similarly, S(B) ⊆ S(A).
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Figure 10. RV-representations of all connected graphs
with 6 vertices, using the labeling from [22]. These rep-
resentations have smallest area, by computer search.

• |S(A)| > 1: Otherwise |E(A)| ≥ 4, since n ≥ 6 and N (A) and
W(A) are empty. Since |E(B)| ≤ 1, this implies |E(A) ∩ W(B)| ≥ 2.
Fix distinct G, H ∈ E(A) ∩W(B) with xG

1 ≤ xH
1 . Now yH2 > yG2 since

H sees A. But then G cannot see B, a contradiction.

• |S(A)| ≤ 1: Otherwise, fix distinct C,D ∈ S(A) with yC1 ≥
yD1 . Since S(A) = S(B), both C, D see A and B from below. Now
E(A)∩W(B) is empty, since if G ∈ E(A)∩W(B), then D cannot see G.
Since N (A) andW(A) are empty and n ≥ 6, it follows that |E(A)| ≥ 3
and thus E(B) ≥ 2, a contradiction.

Having shown that |S(A)| > 1 and |S(A)| ≤ 1, we have arrived at a
contradiction, and we conclude that |TS| = 1. �
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Figure 11. An example to illustrate the proof of Lemma 6.2

A

B

C

D

E F

G

S

f(A)

f(B)

f(C)

f(D)

f(E) f(F)

f(G)

S↑A

Figure 12. Applying the extracting operation S ↑ A.

Another operation that will be useful is an extraction operation
that can move a certain rectangle to the top row of the bounding
box. Specifically, for a rectangle visibility representation S of Kn with
bounding box R = [0, u] × [0, v] and a rectangle A ∈ TS, we define
S ↑ A to be the set of rectangles in R given by

S ↑ A = {f(X) : X ∈ S},
where f(A) = [0, u]× [v − 1, v], and where, for every X 6= A,

f(X) = [xX
1 , x

X
2 ]× [yX1 ,min{yX2 , v − 1}].

As illustrated in Figure 12, the function f maps the rectangle A to the
top row of R and maps no other rectangle to that row. Furthermore,
f(X) ⊆ X for all X 6= A, so the rectangles of S ↑ A do not overlap.

Lemma 6.3. For any n ≥ 1 let S be a rectangle visibility representation
of Kn with bounding box R = [0, u] × [0, v]. If TS = {A} then S ↑ A
also represents Kn and has bounding box R.
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Proof. Since f bijectively maps the n rectangles of S to the n rectangles
of S ↑ A, and since these representations share the same bounding box
R, it remains only to show that f preserves adjacency.

Since N (A) is empty and the graph is complete, S is partitioned as

S = {A} ∪ E(A) ∪W(A) ∪ S(A).

For any distinct X and Y in S, we claim f(X) and f(Y ) see each other:

Case 1. X = A and Y ∈ E(A). Since TS = {A}, note N (Y ) is
empty. So N (f(Y )) = {f(A)}, and f(Y ) sees f(X) vertically.

Case 2. X = A and Y ∈ S(A). Note S(f(A)) ⊇ S(A) and so f(Y )
sees f(X) vertically.

Case 3. X 6= A and Y ∈ S(A). Since TS = {A}, any line of sight
between X and Y must be contained in the region below the top row
of R. The only change to this region in S ↑ A is the removal of A, so
f(X) still sees f(Y ) along the original line of sight.

Case 4. {X, Y } ⊆ E(A). If X sees Y vertically, say with X above
Y , then y1(X) > y1(A) so that Y can see A. Since TS = {A}, X must
see Y horizontally. If the only line of visibility from X to Y were in
the top row of R, then yX2 = yY2 = v and one of X,Y could not see A.
Therefore, X must see Y in a lower row, and so f(X) still sees f(Y )
horizontally.

Case 5. X ∈ E(A) and Y ∈ W(A). Since TS = {A}, X must see
Y horizontally. If X sees Y in any row below the top row of R, then
f(X) still sees f(Y ) in that same row. If X only sees Y in the top row
of R, then yA2 < v. Since TS = {A}, both X,Y see A horizontally in
the top row of A. Since the bottom row of f(A) is above the top row
of A, now f(X) sees f(Y ) horizontally in what was the top row of A.

By symmetry, these cover all possible cases. �

Lemma 6.4. Assume n ≥ 6 and Kn has a rectangle visibility represen-
tation with bounding box R = [0, u] × [0, v]. Then Kn has a rectangle
visibility representation with bounding box R in which the boundary of
R is covered by 4 rectangles of height or width 1.

Proof. Apply Lemma 6.3 successively in each of the four directions.
Each time, a rectangle is brought to the corresponding boundary with-
out changing the bounding box R. �

Recall that a bar visibility graph G is a graph representable with
a set of disjoint horizontal bars in the plane, with edges between bars
that have vertical lines of sight between them. All bar visibility graphs
are planar [15, 25, 26].
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A

B

C

D

E

F
G

Figure 13. The seven rectangles in the proof of Theorem 6.6.

Lemma 6.5. Suppose S is an RV-representation for a graph G. If
we partition the edges of G into those with vertical lines of sight and
horizontal lines of sight in S, then the subgraphs GV (S) and GH(S) of
G with these edges are bar visibility graphs, and hence planar graphs.

Proof. Replace each rectangle A in S with a horizontal line segment
at the top edge of A. This is a bar visibility representation of GV .
Rotating S by 90 degrees and then replacing each rectangle by its new
top edge yields a bar visibility representation of GH . �

Theorem 6.6. The complete graph K7 has height(K7) = 7.

Proof. Suppose S is an RV-representation of K7 with minimum height.
By Lemma 6.4, we may assume the boundary of the bounding box R
is covered by 4 rectangles of height or width 1, as in Figure 13. Label
these A, B, C, and D clockwise from the top.

The remaining 3 rectangles E, F , and G in the interior induce a
3-clique. If the 3 edges of this clique all correspond to horizontal lines
of sight, then, together with rectangles B and D, the edges of a 5-
clique are represented entirely by horizontal lines of sight. This is a
5-clique in GH , which is impossible by Lemma 6.5. Similarly, the edges
among E, F , and G cannot all be vertical lines of sight. Rotating and
renaming if necessary, assume E sees F and G vertically and F sees
G horizontally. Then F and G must be on the same side of E and we
may assume F,G ∈ S(E) and G ∈ E(F ), as shown in Figure 13.

The following five horizontal lines of sight must occupy five distinct
rows in R: BD, BE, FG, BF , and DG. To see why, notice first
that edge BD must have its own row to reach all the way across the
representation. The row for BE must be distinct from FG, BF , and
DG since F,G ∈ S(E). Rows for FG and BF are distinct since B,G ∈
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E(F ). Rows for FG and DG are distinct since F,D ∈ W(G). Rows
for BF and DG are distinct since G ∈ E(F ).

Since A and C each take their own row by construction, it follows
that R has height at least 7. The representation of K7 in Figure 15
proves equality. �

Theorem 6.7. The complete graph K7 has width(K7) = 8.

Proof. If width(K7) = 7, then Lemma 5.1(iii) would guarantee an RV-
representation S in a 7 × 7 box R. By Lemma 6.4 and Theorem 6.6,
we may assume the boundary of R is covered by 4 rectangles of height
or width 1. Label these A,B,C,D clockwise from the top. As before,
assume F,G ∈ S(E) and G ∈ E(F ).

The following six vertical lines of sight must occupy six distinct
columns in R: AC,AF,EF,EG,AG,CE. To see why, note that edge
AC must have its own column to reach all the way across the repre-
sentation. Any column meeting F cannot meet G, since G ∈ E(F ).
Columns for CE,EF ,EG are distinct since C,F,G ∈ S(E). Columns
for EG,AG are distinct since A,E ∈ N (G). Columns for AF ,EF are
distinct since A,E ∈ N (F ). Columns for AF ,CE are distinct since
E ∈ N (F ). Columns for AG,CE are distinct since E ∈ N (G).

Thus R has width at least 8. By Figure 15, width(K7) = 8. �

Corollary 6.8. area(K7) = 56 and perim(K7) = 30.

Proof. Theorems 6.6 and 6.7 show that any representation of K7 re-
quires height at least 7 and width at least 8. Figure 15 shows a rep-
resentation of K7 with height 7 and width 8 exactly. Therefore this
representation also has smallest area and perimeter by Lemma 2.4. �

Theorem 6.9. The complete graph K8 has height(K8) = 10.

Proof. Suppose S is an RV-representation of K8 with minimum height.
By Lemma 6.4, we may assume the boundary of the bounding box R
is covered by 4 rectangles of height or width 1, as in Figure 6.4. Label
these A, B, C, and D clockwise from the top.

Rectangles E, F , G, and H in the interior must induce a 4-clique.
By Lemma 6.5, the edges in this clique that correspond to vertical lines
of sight must form a triangle-free subgraph (and similarly for the hor-
izontal edges). Up to isomorphism, there are only two decompositions
of K4 into a pair of triangle-free graphs, shown in Figure 14.

First we claim that the graph on the right of Figure 14 is impossible.
To see why, let the solid edges denote vertical lines of sight. Since FG
is horizontal and EF and EG are vertical, F and G are on the same
side of E. Assume F,G ∈ S(E). Since EH is horizontal and FH and
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Figure 14. The partition of the edges of K8 in Theorem 6.9.

GH are vertical, F,G ∈ S(H). Renaming if necessary, E ∈ E(H) and
F ∈ E(G). So xG

2 ≤ xF
1 . But xE

1 < xG
2 and xF

1 < xH
2 . It follows that

xE
1 < xH

2 , contradicting that E ∈ E(H). A similar argument elimates
the case when the solid edges denote horizontal lines of sight.

Next we claim that the graph on the left requires R to contain at least
10 rows. The graph is symmetric in solid and dotted edges, so assume
the solid edges denote vertical lines of sight. Since FG is horizontal
and EF and EG are vertical, F and G are on the same side of E.
Assume F,G ∈ S(E). Since EH is horizontal and EF and FH are
vertical, E and H are on the same side of F . So H ∈ N (F ). Since FH
is vertical and GH and FG are horizontal, F and H are on the same
side of G. Assume F,H ∈ W(G). Since EG is vertical and GH and
EH are horizontal, E and G are on the same side of H. So H ∈ W(E).

The following 8 horizontal lines of sight occupy distinct rows in R:

BD,DE,EH,BH,GH,DG,FG,BF.

Edge BD must have its own row to reach all the way across the repre-
sentation. Any row meeting E cannot meet F or G, since F,G ∈ S(E).
Any row meeting F cannot meet H, since H ∈ N (F ). Rows DE and
EH are distinct since D,H ∈ W(E). Rows EH and BH are distinct
since B,E ∈ E(H). Rows BH and GH are distinct since B,G ∈ E(H).
Rows GH and DG are distinct since D,H ∈ W(G). Rows DG and
FG are distinct since F,D ∈ W(G). Rows FG and BF are distinct
since B,G ∈ E(F ). Rows DE and BH are distinct since H ∈ W(E).
Rows BH and DG are distinct since H ∈ W(G). Rows DG and BF
are distinct since F ∈ W(G).

Since A and C each take their own row by construction, R has height
≥ 10. The representation of K8 shown in Figure 15 proves equality. �

Theorem 6.10. The complete graph K8 has width(K8) = 10.

Proof. Since, by definition, width(K8) ≥ height(K8) = 10, the repre-
sentation of K8 shown in Figure 15 proves equality. �
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Figure 15. A representation of K7 in a 7× 8 bounding
box, and a representation of K8 in a 10 × 10 bounding
box.

Corollary 6.11. The complete graph K8 has area(K8) = 100 and
perim(K8) = 40.

Proof. Theorems 6.9 and 6.10 show that any representation of K8 re-
quires height at least 10 and width at least 10. Figure 15 shows a rep-
resentation of K8 with height 10 and width 10 exactly. Therefore this
representation also has smallest area and perimeter by Lemma 2.4. �

Note that K8 is the largest complete RVG [20], so we can’t inves-
tigate the size of RV-representations of larger complete graphs. But
using the disjoint unions of complete graphs and Lemma 2.1, we can
construct graphs on n vertices whose RV-representations are larger
than the empty graph for all n ≥ 8, as follows.

Corollary 6.12. Fix any positive integer n and write n = 8q + r for
integers q and r with 0 ≤ r < 8. Define the graph Gn = qK8 + Er,
which has q disjoint copies of K8 and r isolated vertices. Then Gn has
n vertices, height(Gn) = width(Gn) = n + 2q, area(Gn) = (n + 2q)2

and perim(Gn) = 4n + 8q.

Proof. By Lemma 2.1, height(Gn) = q · height(K8) + height(Er). By
Theorem 6.9, height(K8) = 10, and again by Lemma 2.1, height(Er) =
r. So height(Gn) = 10q + r = n + 2q.

Since the bounding boxes of the representations of K8 and Er are
square, the same argument holds for width(Gn). Since the represen-
tations of Gn with minimum height and width are the same, these
representations also yield the minimum area and perimeter of Gn by
Lemma 2.4. �
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Corollary 6.13. Among all rectangle visibility graphs with n ≥ 7 ver-
tices, the empty graph En does not have the largest width, area, or
perimeter. Among all rectangle visibility graphs with n ≥ 8 vertices,
the empty graph En does not have the largest height.

7. Directions for Further Research

We conclude with a number of open problems and questions that
could further this line of research.

(1) We have established that for n = 7, 8 the complete graph exceeds
the empty graph in area, perimeter, height, and width. We have also
shown that for n > 8, the empty graph does not maximize any of these
parameters. Accordingly, it is natural to ask, in general, which rectan-
gle visibility graph(s) with n vertices have largest height, perimeter,
width, and area? Note that for n > 8, Kn is not a rectangle visibility
graph [20]. Furthermore, when r = 7 in Corollary 6.12, we can replace
E7 by K7 to obtain a graph with width n+ 2q+ 1. Are there any other
graphs that beat the graph in Corollary 6.12?

(2) Tables 1 and 2 show that, for each pair of parameters of area,
perimeter, height, and width, there are pairs of graphs that share the
same number of vertices, but that are ordered oppositely by that pair
of parameters. However, it does not consider triples and quadruples
of parameters. For example, is there a pair of graphs G1 and G2 for
which area(G1) < area(G2) but both height(G2) < height(G1) and
width(G2) < width(G1)?

(3) Tables 3 and 4 show that, for each pair of parameters of area,
perimeter, height, and width, there is a graph with two representations
that are ordered oppositely by that pair of parameters. However, it
does not consider triples and quadruples of parameters. For example,
is there a graph G that requires three distinct RV-representations to
minimize its area, perimeter, and height?

(4) Say that an RV-representation S is compressible if we can delete
a row or column of S and still have a representation of the same graph.
For a given number of vertices n, which graphs have the largest incom-
pressible representations, in terms of area, perimeter, height, or width?
How large are these values?

(5) We might consider additional measures of size in terms of the
rectangles in an RV-representation, rather than the bounding box. For
example, for an RV-representation S, say recarea(S) is the area of
the largest rectangle in S. Then recarea(G) is the smallest value of
recarea(S) for any RV-representation of G. Which graphs G with n
vertices have largest recarea(G)?
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(6) We conjecture that if height(G) = 2 then G is outerplanar. Is
this true? Can we characterize other families of graphs of specific area,
perimeter, height, or width?

(7) We can consider other dimensions. For dimension 1, what is
the minimum length of an integer bar visibility graph on n vertices?
For 3-dimensional box visibility graphs, there are many parameters
measuring the size of an integer box visibility representation. Which
graphs require the largest 3-dimensional representation, as measured
by these parameters? Note that in [16] Fekete and Meijer proved that
K56 is a 3-dimensional box visibility graph.
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