41,561 research outputs found

    Construction of scale models in industrial design: the irruption of additive manufacturing. Rubrics proposal for an objective evaluation

    Get PDF
    Comunicació presentada a EDULEARN2019, 11th International Conference on Education and New Learning Technologies (July 1-3, 2019, Palma, Mallorca, Spain).Recent studies corroborate the progressive implementation of Additive Manufacturing technologies (commonly known as 3D printing) in education, demonstrating several advantages. In the field of industrial design, the development of models during the design phase of product design helps designers in training to visualize their proposals. Today, 3D printing and traditional model-making techniques coexist in classrooms. With both techniques it is possible to achieve good results, but when it comes to evaluating them it is not so simple, since both ways of working are different and apparently the same evaluation criteria cannot be used in both cases, which could lead to comparative grievances. This work presents a series of rubrics that can help to evaluate the student's models in an objective way and under equal conditions, independently of the technique used: traditional o 3D printing. In order to do this, we started from a rubric made to evaluate traditional models, which was tested during a couple of academic years in other subject. This rubric was adapted to create a new rubric, which allowed to evaluate models made by 3D printing, looking for equivalent criteria with the previous rubric to guarantee a fair evaluation of both ways of working. The rubrics were tested experimentally in the subject ‘Prototypes: experimental workshop’, taught during the 4th year of the Bachelor's Degree in Industrial Design and Product Development Engineering at the Universitat Jaume I (Spain). Two groups of users assessed each work using these rubrics. The results showed, on the one hand, that both groups found it easy to evaluate the works using these rubrics, and on the other hand, that these rubrics allow for a fairly objective evaluation of the works, since the score obtained by both groups of users was very similar

    Survey on Additive Manufacturing, Cloud 3D Printing and Services

    Full text link
    Cloud Manufacturing (CM) is the concept of using manufacturing resources in a service oriented way over the Internet. Recent developments in Additive Manufacturing (AM) are making it possible to utilise resources ad-hoc as replacement for traditional manufacturing resources in case of spontaneous problems in the established manufacturing processes. In order to be of use in these scenarios the AM resources must adhere to a strict principle of transparency and service composition in adherence to the Cloud Computing (CC) paradigm. With this review we provide an overview over CM, AM and relevant domains as well as present the historical development of scientific research in these fields, starting from 2002. Part of this work is also a meta-review on the domain to further detail its development and structure

    Digital design of medical replicas via desktop systems: shape evaluation of colon parts

    Get PDF
    In this paper, we aim at providing results concerning the application of desktop systems for rapid prototyping of medical replicas that involve complex shapes, as, for example, folds of a colon. Medical replicas may assist preoperative planning or tutoring in surgery to better understand the interaction among pathology and organs. Major goals of the paper concern with guiding the digital design workflow of the replicas and understanding their final performance, according to the requirements asked by the medics (shape accuracy, capability of seeing both inner and outer details, and support and possible interfacing with other organs). In particular, after the analysis of these requirements, we apply digital design for colon replicas, adopting two desktop systems. ,e experimental results confirm that the proposed preprocessing strategy is able to conduct to the manufacturing of colon replicas divided in self-supporting segments, minimizing the supports during printing. ,is allows also to reach an acceptable level of final quality, according to the request of having a 3D presurgery overview of the problems. ,ese replicas are compared through reverse engineering acquisitions made by a structured-light system, to assess the achieved shape and dimensional accuracy. Final results demonstrate that low-cost desktop systems, coupled with proper strategy of preprocessing, may have shape deviation in the range of ±1 mm, good for physical manipulations during medical diagnosis and explanation

    From 3D Models to 3D Prints: an Overview of the Processing Pipeline

    Get PDF
    Due to the wide diffusion of 3D printing technologies, geometric algorithms for Additive Manufacturing are being invented at an impressive speed. Each single step, in particular along the Process Planning pipeline, can now count on dozens of methods that prepare the 3D model for fabrication, while analysing and optimizing geometry and machine instructions for various objectives. This report provides a classification of this huge state of the art, and elicits the relation between each single algorithm and a list of desirable objectives during Process Planning. The objectives themselves are listed and discussed, along with possible needs for tradeoffs. Additive Manufacturing technologies are broadly categorized to explicitly relate classes of devices and supported features. Finally, this report offers an analysis of the state of the art while discussing open and challenging problems from both an academic and an industrial perspective.Comment: European Union (EU); Horizon 2020; H2020-FoF-2015; RIA - Research and Innovation action; Grant agreement N. 68044

    Pushing the Limits of 3D Color Printing: Error Diffusion with Translucent Materials

    Full text link
    Accurate color reproduction is important in many applications of 3D printing, from design prototypes to 3D color copies or portraits. Although full color is available via other technologies, multi-jet printers have greater potential for graphical 3D printing, in terms of reproducing complex appearance properties. However, to date these printers cannot produce full color, and doing so poses substantial technical challenges, from the shear amount of data to the translucency of the available color materials. In this paper, we propose an error diffusion halftoning approach to achieve full color with multi-jet printers, which operates on multiple isosurfaces or layers within the object. We propose a novel traversal algorithm for voxel surfaces, which allows the transfer of existing error diffusion algorithms from 2D printing. The resulting prints faithfully reproduce colors, color gradients and fine-scale details.Comment: 15 pages, 14 figures; includes supplemental figure

    Influence of Print Orientation on Surface Roughness in Fused Deposition Modeling (FDM) Processes

    Get PDF
    In the present paper, we address the influence of print orientation angle on surface roughnessobtained in lateral walls in fused deposition modelling (FDM) processes. A geometrical model isdefined that considers the shape of the filaments after deposition, in order to define a theoreticalroughness profile, for a certain print orientation angle. Different angles were considered between 5¿and 85¿. Simulated arithmetical mean height of the roughness profile, Ra values, were calculated fromthe simulated profiles. The Ra simulated results were compared to the experimental results, whichwere carried out with cylindrical PLA (polylactic acid) samples. The simulated Ra values were similarto the experimental values, except for high angles above 80¿, where experimental roughness decreasedwhile simulated roughness was still high. Low print orientation angles show regular profiles withrounded peaks and sharp values. At a print orientation angle of 85¿, the shape of the profile changeswith respect to lower angles, showing a gap between adjacent peaks. At 90¿, both simulated andexperimental roughness values would be close to zero, because the measurement direction is parallelto the layer orientation. Other roughness parameters were also measured: maximum height ofprofile, Rz, kurtosis, Rku, skewness, Rsk, and mean width of the profile elements, Rsm. At high printorientation angles, Rz decreases, Rku shifts to positive, Rsk slightly increases, and Rsk decreases,showing the change in the shape of the roughness profiles.Postprint (published version

    Computer-aided position planning of miniplates to treat facial bone defects

    Full text link
    In this contribution, a software system for computer-aided position planning of miniplates to treat facial bone defects is proposed. The intra-operatively used bone plates have to be passively adapted on the underlying bone contours for adequate bone fragment stabilization. However, this procedure can lead to frequent intra-operatively performed material readjustments especially in complex surgical cases. Our approach is able to fit a selection of common implant models on the surgeon's desired position in a 3D computer model. This happens with respect to the surrounding anatomical structures, always including the possibility of adjusting both the direction and the position of the used osteosynthesis material. By using the proposed software, surgeons are able to pre-plan the out coming implant in its form and morphology with the aid of a computer-visualized model within a few minutes. Further, the resulting model can be stored in STL file format, the commonly used format for 3D printing. Using this technology, surgeons are able to print the virtual generated implant, or create an individually designed bending tool. This method leads to adapted osteosynthesis materials according to the surrounding anatomy and requires further a minimum amount of money and time.Comment: 19 pages, 13 Figures, 2 Table

    Towards Zero-Waste Furniture Design

    Get PDF
    In traditional design, shapes are first conceived, and then fabricated. While this decoupling simplifies the design process, it can result in inefficient material usage, especially where off-cut pieces are hard to reuse. The designer, in absence of explicit feedback on material usage remains helpless to effectively adapt the design -- even though design variabilities exist. In this paper, we investigate {\em waste minimizing furniture design} wherein based on the current design, the user is presented with design variations that result in more effective usage of materials. Technically, we dynamically analyze material space layout to determine {\em which} parts to change and {\em how}, while maintaining original design intent specified in the form of design constraints. We evaluate the approach on simple and complex furniture design scenarios, and demonstrate effective material usage that is difficult, if not impossible, to achieve without computational support
    • …
    corecore