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Abstract: In the present paper, we address the influence of print orientation angle on surface roughness
obtained in lateral walls in fused deposition modelling (FDM) processes. A geometrical model is
defined that considers the shape of the filaments after deposition, in order to define a theoretical
roughness profile, for a certain print orientation angle. Different angles were considered between 5◦

and 85◦. Simulated arithmetical mean height of the roughness profile, Ra values, were calculated from
the simulated profiles. The Ra simulated results were compared to the experimental results, which
were carried out with cylindrical PLA (polylactic acid) samples. The simulated Ra values were similar
to the experimental values, except for high angles above 80◦, where experimental roughness decreased
while simulated roughness was still high. Low print orientation angles show regular profiles with
rounded peaks and sharp values. At a print orientation angle of 85◦, the shape of the profile changes
with respect to lower angles, showing a gap between adjacent peaks. At 90◦, both simulated and
experimental roughness values would be close to zero, because the measurement direction is parallel
to the layer orientation. Other roughness parameters were also measured: maximum height of
profile, Rz, kurtosis, Rku, skewness, Rsk, and mean width of the profile elements, Rsm. At high print
orientation angles, Rz decreases, Rku shifts to positive, Rsk slightly increases, and Rsk decreases,
showing the change in the shape of the roughness profiles.

Keywords: Fused Deposition Modeling; roughness; Polylactic Acid; print orientation angle;
build angle

1. Introduction

In the fused deposition modelling (FDM) process, a filament is heated and then the material
is deposited by a nozzle onto a printing bed. FDM printed parts are used in different applications,
for example medical, electrical, aerospace, etc. For example, it allows printing patterns for investment
casting of biomedical implants [1]. In addition, highly metallic-filled conductive composites can be
prepared by FDM to be used in electromagnetic shielding, sensors, and circuit printing [2]. As for
aerospace, carbon fiber reinforced PLA printed composites can be used [3].

FDM allows a wide range of materials, and the printed parts have effective mechanical properties.
However, printing speed is low and the layer-by-layer building of parts leads to poor surface roughness
due to the stair stepping effect [4,5]. When the lateral walls of a certain workpiece are inclined, the use
of printing supports is required. In addition, the inclination of the lateral walls will have an effect on
surface roughness, since the wall will not be perpendicular to the layer plane.

Different authors have studied the effects of printing parameters on surface roughness. For example,
Pérez et al. [6] considered layer height, printing speed, temperature, printing path, and wall thickness.
They found that layer height and wall thickness had the greatest influence on arithmetical mean height,
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Ra. Reddy et al. [7] used layer thickness, material infill, and printing quality as factors. They also
considered build inclination. Both layer thickness and build inclination turned out to be the most
influential factors on roughness. Peng and Yan [8] optimized roughness and energy consumption.
They employed layer thickness, printing speed, and infill ratio as factors, with layer height being the
most important parameter influencing roughness. Kovan et al. [9] studied the effect of layer height
and printing temperature on surface roughness. You [10] studied infill ratio, printing temperature, and
printing speed. They found that roughness increases with printing speed and decreases with infill
ratio. Altan et al. [11] studied the effect of printing processes on surface roughness and tensile strength,
with layer thickness and deposition head velocity being the most influential parameters on roughness.
Mohamed et al. [12] investigated the effect of printing parameters on the dynamic mechanical properties
of polycarbonate–acrylonitrile butadiene styrene (PC-ABS) printed parts. The main factors were
layer height, air gap, and the number of contours. Luis studied Ra and Rq values obtained through
experimental tests in FDM processes [13].

Regarding previous geometrical models for roughness in FDM processes, Pandey et al. obtained
a semiempirical model for roughness, in which they took into account both layer thickness and build
orientation [14]. Ahn et al. considered the filaments to have the shape of elliptical curves which overlap
in the vertical direction [15]. Boschetto et al. approximated the roughness profiles of printed parts as
a sequence of circumference arcs [16]. Ding et al. obtained roughness profiles from the overlapping
of different surfaces representing beads [17]. Kaji and Barari obtained roughness profiles from the
cusp geometry of the lateral walls of parts, taking into account both straight lines and degree two
polynomial curves [18]. On the other hand, the Slic3r manual considers the shape of the cross section
of the deposited filaments to be a rectangle with round ends, in which the initial area of the filament
is equal to its final area [19]. A similar approach was employed by Jin et al. However, the length
of the rectangle in their cross-section model is calculated based on the volume conservation, taking
into account the plastic flow-rate and speed-rate [20]. From the assumptions made in [19], Buj et al.
calculated pore size from the nozzle diameter, infill, and layer height of printed samples [21]. Other
authors take into account the overlapping among filaments, due to diffusion when printing high
melting temperature thermoplastic polymers such as polyether ether ketone (PEEK) [22]. However,
this effect is not so important with low melting temperature polymers like polylactic acid (PLA) and
acrylonitrile butadiene styrene (ABS).

Regarding print orientation, Bottini and Boschetto investigated the effect of deposition angle
and interference grade on the assembly and disassembly forces in the interference fit of FDM printed
parts [23]. They found that assembly forces depend on both parameters, while disassembly forces do
not depend on deposition angle, as surface morphology is modified as a result of assembly. In addition,
different authors have studied the influence of print orientation on the mechanical strength of parts [24].
Domingo-Espín et al. studied six different orientations and determined stiffness and tensile strength
of polycarbonate (PC) samples [25]. They recommended that, when the yield strength of a material
is exceeded, the parts should be oriented in a way that the greater tensile stresses are aligned with
the direction of the longest contours, in order increase their tensile strength. Knoop et al. studied
the effect of building orientation on the tensile, flexural, and compressive strength of polyamide
(PA) parts [26]. As a general trend, they found higher tensile strength for build orientation X of the
tensile test specimens (on its edge), than for build orientation Y (flat lying), or Z (upright). Uddin et
al. studied the effect of print orientation on the tensile and compressive strength of ABS parts [27].
They obtained the highest stiffness and failure strength for layer thickness 0.09 mm, printing plane YZ
and horizontal print orientation. Chacón et al. [28] studied the influence of print orientation on the
tensile and flexural strength of PLA parts. They observed that low layer thickness and high feed rate
values improved mechanical performance. Sood et al. [29] investigated the effect of layer thickness,
build orientation, raster angle, raster width, and air gap on the compressive strength of parts. They
found that an artificial neural network (ANN) model was better for modeling compressive strength
than a regression model. The optimal value for layer orientation, giving higher compressive strength,
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was 0.036◦. McLouth et al. [30] analyzed the influence of print orientation and raster pattern on the
fracture toughness of ABS parts. They concluded that samples with layers that are parallel to the crack
plane turned out to have lower fracture toughness than samples with other print orientations. As for
the influence of print orientation on roughness, Chaudhari et al. studied the surface finish of ABS parts
printed with different layer thickness, infill, orientation, and postprocessing operation. They found
that infill and postprocessing had the greatest influence on roughness [31]. Thrimurthulu et al. [32]
simultaneously optimized surface roughness and build time, as a function of slice thickness and build
deposition orientation. Both parameters influenced roughness. Wang et al. [33] studied the effects
of: layer thickness, deposition style, support style, deposition orientation in the Z direction (build
angle), deposition orientation in the X direction (raster angle), and build location on the tensile strength,
dimensional accuracy, and surface roughness of printed parts. They observed that layer thickness was
the most influential parameter.

The aim of the present paper is to define a geometrical model for surface roughness in lateral
walls, in FDM printing processes. The model considers the different print orientations, with simulated
results being compared to experimental results. To do so, cylindrical samples are printed with different
print orientations of between 0◦ and 85◦, in PLA. Roughness is measured along the generatrix of the
samples, by means of a contact roughness meter. Then, the results from the model are compared to the
experimental results for different print orientation angles.

2. Materials and Methods

2.1. Geometrical Model

A geometrical model was defined to calculate roughness in lateral walls, for parts with different
print orientations. Two assumptions were made (Figure 1):

- The shape of the cross-section of the filaments after deposition is a rectangle with rounded edges,
with a semicircle at each side [19].

- There is no overlapping of adjacent filaments due to material diffusion, since processing
temperatures are not excessively high.
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determined and the figure is rotated until the tangent line becomes a horizontal line. Figure 
2 shows an example for print orientation angle of 45°. 

Figure 1. Schematic of the cross-section of two adjacent deposited filaments with print orientation
angle of 0◦ (the horizontal line corresponds to the printing bed).

Considering these assumptions, arithmetical mean height Ra values were calculated for each print
orientation, according to the following procedure:

1. The geometry of two deposited filaments (one on top of the other) is drawn for each print
orientation studied, using the Solid Woks 2017 software (Dassault Systèmes Solidworks
Corporation, Waltham, MA, USA). The tangent line at the edge of the two filaments is determined
and the figure is rotated until the tangent line becomes a horizontal line. Figure 2 shows an
example for print orientation angle of 45◦.
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with a contact roughness meter, the geometry of the roughness meter tip was added to the ideal 
geometry of the layers. Its cross-section was assumed to be an isosceles rectangle triangle of 1 mm 
height, with sharp edges. 

Two different cases were found: 

Figure 2. Schematic of the cross-section of two deposited filaments with print orientation angle of 45◦.

2. The shape of the edges of the two filaments is considered to be the theoretical roughness profile of
the lateral wall of the parts. In order to avoid profiles with negative draft angle from the vertical
direction (which are not found in experimental roughness profiles), vertical lines are drawn in
the area where the end of one filament adjoins the other filament, if necessary (see red line in
Figure 2).

3. The total measurement length of the profiles was defined as the distance between the centers of
the circumferences of the edges of the two layers (Figure 3).
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4. The center line of the profiles was found with Solid Works, taking into account the mean value
theorem for integrals. The center line divides a profile function into two parts, so that the areas
contained by the profile above and below the center line are equal (Figure 3). The first mean value
theorem for integrals says that for all continuous functions in the area [a, b] a point c exists within
the interval [a, b], which makes the area below the function equal to its image at point c for all the
interval length, according to Equation (1).

(b− a)· f (c) =
∫ b

a
f (x) dx. (1)

5. The arithmetical mean height roughness parameter Ra (in µm) was calculated according to
Equation (2).

Ra =
1
L

∫ L

0

∣∣∣ f (x)∣∣∣ dx (2)

where L is the measurement length in mm, and f (x) is the discrete function that defines the
roughness profile, in mm.

In order to compare the simulated results of the model with the experimental results obtained with
a contact roughness meter, the geometry of the roughness meter tip was added to the ideal geometry
of the layers. Its cross-section was assumed to be an isosceles rectangle triangle of 1 mm height, with
sharp edges.

Two different cases were found:
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(a) For print orientation angles lower or equal to 45◦, the tip leans on two surfaces, and a new profile
is obtained which shows shallower valleys than the previous one (Figure 4).
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Figure 4. Schematic of the printed layers with the roughness tip, for print orientation angles higher
than 45◦.

(b) For print orientation angles higher than 45◦, the tip leans on one of the two sides of the profile.
Moreover, it is not able to reach the lowest part of the profile (Figure 5). The modified valleys
have the same depth as the original ones, but the shape of the profile changes.
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Figure 5. Representation of the roughness tip with the printed layers, for print orientation angle higher
than 45◦.

New simulated Ra values were calculated from the modified profiles.

2.2. Printing Process

A double extruder Sigma printer from BCN3D Technologies (Barcelona, Spain) was used.
Cylindrical PLA samples were printed, of 12.7 mm diameter and 25.4 mm height, according to
a height-to-width ratio of 2.

Printing parameters are provided in Table 1 (Appendix A).

Table 1. Printing parameters of the experimental tests.

Parameter Values

Layer height (mm) 0.25
Infill ratio (%) 50

Nozzle diameter (mm) 0.4
Printing speed (mm/s) 60

Printing temperature (◦C) 205
Print orientation angle (◦) From 5 to 85

Layer height is the thickness of each deposited layer. Infill ratio is the amount of solid material
within the volume of a printed structure. Infill type was rectangular in all cases, with raster angle 0◦.
Air gap is the space between filaments, and depends on the infill ratio used. Shells are the layers that
are printed around the infill area. No shell was printed in this case.

Print orientation angle and build angle are complimentary angles. They are shown in Figure 6.
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Figure 6. Schematic of a printed part with the print orientation angle and the build angle.

2.3. Roughness Measurement

Roughness was measured in a contact Taylor Hobson Talysurf 2 roughness meter (AMETEK Inc.,
Berwyn, PA, USA), with two different Gaussian filters of cut-off 8 mm and 2.5 mm respectively. Several
roughness parameters were taken into account: arithmetical mean height, Ra, maximum height of the
profile, Rz, kurtosis, Rku, skewness, Rsk, and mean width of the profile elements, Rsm.

Measurement direction coincides with one generatrix of the cylinders, specifically the one that is
placed opposite the printing supports. As an example, the blue lines in Figure 7 show the measuring
direction of two specimens with different print orientation angles.
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If a print orientation angle of 0◦ were considered, there would be no need to use printing supports.
Thus, roughness would be measured along any generatrix of the specimen.

3. Results

3.1. Roughness Profiles

As an example, Figure 8 presents experimental roughness profiles for different print orientation
angles. A print orientation angle of 5◦ (Figure 8a) corresponds to a regular profile, with the typical
shape obtained in lateral walls when layers have no inclination, in FDM processes. The profile shows
rounded peaks and sharp valleys, and the peak width corresponds to the layer height employed.
As the angle increases, similar profiles are obtained, for example for a print orientation angle of 55◦

(Figure 8b). For a print orientation angle of 80◦, a sawtooth shape is observed for the profile. For a print
orientation angle of 85◦, the profile becomes more irregular, combining high peaks for the filament
edges with a transition flat area between consecutive peaks. The distance between peaks increases.
At a print orientation angle of 90◦, the layers would be parallel to the direction in which roughness is
measured. For this reason, the theoretical roughness value would be zero.
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Figure 9 shows a picture (plan view) of a sample manufactured with print angle of 85◦.
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As print orientation angle increases, the stair-stepping effect becomes more evident. It can be
observed that the high inclination of layers leads to a greater distance between crests, with wide
plateaus that provide lower roughness values. In addition, the measured roughness profile in this
case is more irregular than the rest of the profiles (Figure 8d), causing greater discrepancy between
experimental and simulated roughness values.

3.2. Roughness Values

Figure 10 presents the simulated Ra results, considering the tip geometry or not, as well as the
measured roughness with cut-off of either 8 mm or 2.5 mm. According to ISO 4288 standard [31], a
cut-off value of 2.5 mm is recommended for Ra values between more than 2 µm and 10 µm, and a
cut-off value of 8 mm is recommended for Ra values higher than 10 µm. Error bars correspond to ±
standard deviation values.
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In all cases, as expected, the roughness results simulated with the tip were lower than those
simulated without the tip, since the tip reduces the valley depth of the profile. As a general trend, the
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experimental values agree with the simulated values with tip up to a print orientation angle of 80◦.
The results agree with those of Reddy et al. [4], who found that Ra decreases with build angle, which is
the complimentary angle of the print orientation angle. They found maximum Ra values of 50 µm
for build angles of 10◦ (printing angle of 80◦). However, in the present work, at 85◦ the experimental
roughness decreases significantly with respect to 80◦. Such decrease is more important for the cut-off

of 2.5 mm than for the cut-off of 8 mm. This suggests that the abrupt transition from high simulated
roughness values at the print orientation angle of 80◦ to the zero simulated roughness value at the
print orientation angle of 90◦ is more gradual in the experimental tests.

In order to analyse the shape of the roughness profiles at high print orientation values, Table 2
provides the experimental values of other roughness parameters, Rz, Rsk, Rku, and Rsm, measured
with a cut-off of 8 mm.

Table 2. Rz, Rsk, Rku, and Rsm values.

Print
Angle (◦)

Mean
Value Rz

(µm)

Standard
Deviation
Rz (µm)

Mean
Value
Rsk

Standard
Deviation

Rsk

Mean
Value
Rku

Standard
Deviation

Rku

Mean
Value
Rsm
(µm)

Standard
Deviation

Rsm
(µm)

50 161.211 17.050 −0.433 0.091 2.032 0.092 388.588 2.344
55 169.910 19.409 −0.372 0.039 1.875 0.097 437.863 1.618
60 187.277 7.030 −0.201 0.033 1.742 0.040 501.911 1.214
65 183.679 12.237 −0.121 0.050 1.748 0.033 593.597 2.417
70 196.639 3.787 −0.258 0.012 1.872 0.002 728.450 3.314
75 225.699 20.530 −0.153 0.103 1.788 0.058 963.619 3.645
80 237.129 10.838 0.035 0.104 1.791 0.017 1428.000 4.048
85 211.161 27.924 0.050 0.137 2.312 0.034 1226.810 8.924

Rz increases with print orientation angle, as expected, up to 80◦, and then decreases at print
orientation angle of 85◦. Skewness shows negative values up to 70◦, corresponding to higher valleys
than peaks (Figure 8b). At 75◦ and 80◦ skewness values are close to zero, corresponding to symmetric
profiles (Figure 8c). At 85◦, skewness has a positive value, with higher peaks than valleys (Figure 8d).
Kurtosis is lower than 3 in all cases, pointing out that the peaks are sharper than those corresponding
to a normal distribution of heights. At print orientation angle of 85◦, the highest Rku value is obtained
of 2.312, corresponding to rounder peaks and valleys. Parameter RSm, mean width of the profile
elements, increases with print orientation angle, since the effective distance between layers increases.
However, at 85◦ the parameter decreases, because small roughness peaks are measured in the gaps
between adjacent peaks (Figure 8d).

4. Discussion

The proposed model allows simulating Ra values to be obtained in lateral walls of FDM
printed parts. Unlike other models, which take into account overlapping among adjacent deposited
filaments [15,17], the present model makes the assumption that printing temperature is low enough
to avoid overlapping. It also assumes that the shape of the cross-section of the deposited filament is
rectangular with rounded edges [19,20].

Experimental Ra values are similar to simulated ones at low print orientation angles, and they
increase with print orientation angle as reported by Reddy et al. [7]. However, at high angles above
80◦, the experimental roughness values are lower than the simulated ones. This suggests a gradual
decrease in the experimental roughness between 80◦ and 90◦. At 90◦, the printing direction would be
parallel to the measuring direction and, for this reason, the experimental roughness values would be
close to zero.

At low print orientation angles, regular profiles are obtained with round peaks and sharp valleys,
which are typical of FDM processes [34]. At a high print orientation angle of 85◦, the distance between
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consecutive peaks increases, leading to a flat area or gap. In this case, not only the arithmetical mean
height of the profile Ra decreases but the maximum height of profile Rz and the mean width of the
profile Rsm. Skewness parameter Rsk becomes positive and kurtosis parameter Rku increases, noting
the change in the profile shape [35].

In the future, a similar methodology using the mean value theorem for integrals, can will be
applied to calculate simulated Ra in other manufacturing processes, either additive manufacturing
processes or subtractive processes, provided that the theoretical geometry of the roughness profile can
be obtained.

5. Conclusions

This paper presents a geometrical model for the simulation of roughness profiles obtained with
different print orientation angles in FDM processes, in order to determine the mean height of the
roughness profile, Ra. In addition, experimental tests were performed. The main conclusions of the
paper are as follows:

• Use of the mean value theorem for integrals allows calculating Ra from the geometrical model of
the roughness profile in a simple way. This methodology is also valid in case the assumptions of
the model need to be varied, or even for other manufacturing processes.

• At low print orientation angles, regular profiles are obtained, in which peak amplitude corresponds
to layer height. At high print orientation angles, peak width increases, with a flat area or gap
between consecutive peaks.

• As a general trend, both simulated and experimental amplitude roughness values increase with
print orientation angle, as the stair-stepping effect is accentuated. However, simulated roughness
results decrease abruptly (simulated roughness would be zero at 90◦ because the roughness
measurement direction coincides with the direction of the printed layers), while experimental
results show a more gradual decrease starting at around 85◦.

• At a high print orientation angle of 85◦, skewness parameter Sku becomes positive, kurtosis
parameter Rku increases, and the mean width of the profile Rsm shows a slight decrease with
respect to 80◦, thus noticing the change in the shape of the roughness profile.
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Appendix A

List of printing parameters

[profile]

layer_height = 0.25

wall_thickness = 1.2

retraction_enable = True

solid_layer_thickness = 1.2

fill_density = 50
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print_speed = 60

print_temperature = 205

print_temperature2 = 205

print_temperature3 = 0

print_temperature4 = 0

print_temperature5 = 0

print_bed_temperature = 65

support = Everywhere

platform_adhesion = Raft

support_dual_extrusion = First extruder

wipe_tower = False

wipe_tower_volume = 50

ooze_shield = False

filament_diameter = 2.85

filament_diameter2 = 2.85

filament_diameter3 = 0

filament_diameter4 = 0

filament_diameter5 = 0

filament_flow = 100

nozzle_size = 0.4

retraction_speed = 40

retraction_amount = 6.8

retraction_dual_amount = 3

retraction_min_travel = 1.5

retraction_combing = No Skin

retraction_minimal_extrusion = 0

retraction_hop = 0.08

bottom_thickness = 0.2

layer0_width_factor = 100

object_sink = 0

overlap_dual = 0.15

travel_speed = 200

bottom_layer_speed = 35

infill_speed = 35

solidarea_speed = 35
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inset0_speed = 35

insetx_speed = 35

cool_min_layer_time = 5

fan_enabled = True

skirt_line_count = 2

skirt_gap = 2

skirt_minimal_length = 150.0

fan_full_height = 0.5

fan_speed = 85

fan_speed_max = 100

cool_min_feedrate = 10

cool_head_lift = False

solid_top = True

solid_bottom = True

fill_overlap = 15

perimeter_before_infill = True

support_type = Lines

support_angle = 20

support_fill_rate = 50

support_xy_distance = 0.6

support_z_distance = 0.15

spiralize = False

simple_mode = False

brim_line_count = 5

raft_margin = 3.0

raft_line_spacing = 3.0

raft_base_thickness = 0.3

raft_base_linewidth = 1.0

raft_interface_thickness = 0.28

raft_interface_linewidth = 0.6

raft_airgap_all = 0.0

raft_airgap = 0.22

raft_surface_layers = 2

raft_surface_thickness = 0.15

raft_surface_linewidth = 0.4
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fix_horrible_union_all_type_a = True

fix_horrible_union_all_type_b = False

fix_horrible_use_open_bits = False

fix_horrible_extensive_stitching = False

plugin_config = (lp1

(dp2

S’params′

p3

(dp4

sS′filename′

p5

S’RingingRemover.py′

p6

sa.

object_center_x = −1

object_center_y = −1
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