922 research outputs found

    Simulation and Design of an Orientation Mechanism for Assembly Systems

    Get PDF
    The article focuses on methods for designing modular cable-driven orientation mechanisms that can be attached to robot systems that lack on rotational degrees of freedom. The approach yields assembly systems for high speed handling applications by reducing moving masses. For this purpose, a classification of feasible kinematic structures are given and resulting characteristics, like the orientation workspace, dexterity or its homogeneity, are analyzed. The mechanical design of a first prototype is subsequently presented along with a universal simulation tool for determining task-adapted powertrains using cables. Finally, results of first tests and possibilities for future developments are presented. © 2016 The Authors

    Mechanisms of two-color laser-induced field-free molecular orientation

    Get PDF
    Two mechanisms of two-color (\omega + 2\omega) laser-induced field-free molecular orientation, based on the hyperpolarizability and ionization depletion, are explored and compared. The CO molecule is used as a computational example. While the hyperpolarizability mechanism generates small amounts of orientation at intensities below the ionization threshold, ionization depletion quickly becomes the dominant mechanism as soon as ionizing intensities are reached. Only the ionization mechanism leads to substantial orientation (e.g. on the order of || > 0.1). For intensities typical of laser-induced molecular alignment and orientation experiments, the two mechanism lead to robust, characteristic timings of the field-free orientation wave-packet revivals relative to the the alignment revivals and the revival time. The revival timings can be used to detect the active orientation mechanism experimentally

    Sensitive elements of basic direction «East - West» with oscillating mass for a gravitational-inertial compass

    Get PDF
    Manufacturing of devices for tool orientation based on action of Koriolis force on mass which oscillates along the vertical of a place is considered. Possibility of technical realization of sensitive elements of a gravitational-inertial compass on the basis of the orientation mechanism of alive organisms is shown

    Optical and Electrical Measurements Reveal the Orientation Mechanism of Homoleptic Iridium-Carbene Complexes

    Get PDF
    Understanding and controlling the driving forces for molecular alignment in optoelectronic thin-film devices is of crucial importance for improving their performance. In this context, the preferential orientation of organometallic iridium complexes is in the focus of research to benefit from their improved light-outcoupling efficiencies in organic light-emitting diodes (OLEDs). Although there has been great progress concerning the orientation behavior for heteroleptic Ir complexes, the mechanism behind the alignment of homoleptic complexes is still unclear yet. In this work, we present a sky-blue phosphorescent dye that shows variable alignment depending on systematic modifications of the ligands bound to the central iridium atom. From an optical study of the transition dipole moment orientation and the electrically accessible alignment of the permanent dipole moment, we conclude that the film morphology is related to both the aspect ratio of the dye and the local electrostatic interaction of the ligands with the film surface during growth. These results indicate a potential strategy to actively control the orientation of iridium-based emitters for the application in OLEDs

    Field-free molecular orientation by THz laser pulses at high temperature

    Full text link
    We investigate to which extend a THz laser pulse can be used to produce field-free molecular orientation at high temperature. We consider laser pulses that can be implemented with the state of the art technology and we show that the efficiency of the control scheme crucially depends on the parameters of the molecule. We analyze the temperature effects on molecular dynamics and we demonstrate that, for some molecules, a noticeable orientation can be achieved at high temperature.Comment: 13 pages, 7 figure

    Multi-line Stokes inversion for prominence magnetic-field diagnostics

    Full text link
    We present test results on the simultaneous inversion of the Stokes profiles of the He I lines at 587.6 nm (D_3) and 1083.0 nm in prominences (90-deg scattering). We created datasets of synthetic Stokes profiles for the case of quiescent prominences (B<200 G), assuming a conservative value of 10^-3 of the peak intensity for the polarimetric sensitivity of the simulated observations. In this work, we focus on the error analysis for the inference of the magnetic field vector, under the usual assumption that the prominence can be assimilated to a slab of finite optical thickness with uniform magnetic and thermodynamic properties. We find that the simultaneous inversion of the two lines significantly reduces the errors on the inference of the magnetic field vector, with respect to the case of single-line inversion. These results provide a solid justification for current and future instrumental efforts with multi-line capabilities for the observations of solar prominences and filaments.Comment: 14 pages, 5 figures, 1 tabl
    corecore