4 research outputs found

    Automatic 3D City Modeling Using a Digital Map and Panoramic Images from a Mobile Mapping System

    Get PDF
    Three-dimensional city models are becoming a valuable resource because of their close geospatial, geometrical, and visual relationship with the physical world. However, ground-oriented applications in virtual reality, 3D navigation, and civil engineering require a novel modeling approach, because the existing large-scale 3D city modeling methods do not provide rich visual information at ground level. This paper proposes a new framework for generating 3D city models that satisfy both the visual and the physical requirements for ground-oriented virtual reality applications. To ensure its usability, the framework must be cost-effective and allow for automated creation. To achieve these goals, we leverage a mobile mapping system that automatically gathers high-resolution images and supplements sensor information such as the position and direction of the captured images. To resolve problems stemming from sensor noise and occlusions, we develop a fusion technique to incorporate digital map data. This paper describes the major processes of the overall framework and the proposed techniques for each step and presents experimental results from a comparison with an existing 3D city model

    Map-Based Localization for Unmanned Aerial Vehicle Navigation

    Get PDF
    Unmanned Aerial Vehicles (UAVs) require precise pose estimation when navigating in indoor and GNSS-denied / GNSS-degraded outdoor environments. The possibility of crashing in these environments is high, as spaces are confined, with many moving obstacles. There are many solutions for localization in GNSS-denied environments, and many different technologies are used. Common solutions involve setting up or using existing infrastructure, such as beacons, Wi-Fi, or surveyed targets. These solutions were avoided because the cost should be proportional to the number of users, not the coverage area. Heavy and expensive sensors, for example a high-end IMU, were also avoided. Given these requirements, a camera-based localization solution was selected for the sensor pose estimation. Several camera-based localization approaches were investigated. Map-based localization methods were shown to be the most efficient because they close loops using a pre-existing map, thus the amount of data and the amount of time spent collecting data are reduced as there is no need to re-observe the same areas multiple times. This dissertation proposes a solution to address the task of fully localizing a monocular camera onboard a UAV with respect to a known environment (i.e., it is assumed that a 3D model of the environment is available) for the purpose of navigation for UAVs in structured environments. Incremental map-based localization involves tracking a map through an image sequence. When the map is a 3D model, this task is referred to as model-based tracking. A by-product of the tracker is the relative 3D pose (position and orientation) between the camera and the object being tracked. State-of-the-art solutions advocate that tracking geometry is more robust than tracking image texture because edges are more invariant to changes in object appearance and lighting. However, model-based trackers have been limited to tracking small simple objects in small environments. An assessment was performed in tracking larger, more complex building models, in larger environments. A state-of-the art model-based tracker called ViSP (Visual Servoing Platform) was applied in tracking outdoor and indoor buildings using a UAVs low-cost camera. The assessment revealed weaknesses at large scales. Specifically, ViSP failed when tracking was lost, and needed to be manually re-initialized. Failure occurred when there was a lack of model features in the cameras field of view, and because of rapid camera motion. Experiments revealed that ViSP achieved positional accuracies similar to single point positioning solutions obtained from single-frequency (L1) GPS observations standard deviations around 10 metres. These errors were considered to be large, considering the geometric accuracy of the 3D model used in the experiments was 10 to 40 cm. The first contribution of this dissertation proposes to increase the performance of the localization system by combining ViSP with map-building incremental localization, also referred to as simultaneous localization and mapping (SLAM). Experimental results in both indoor and outdoor environments show sub-metre positional accuracies were achieved, while reducing the number of tracking losses throughout the image sequence. It is shown that by integrating model-based tracking with SLAM, not only does SLAM improve model tracking performance, but the model-based tracker alleviates the computational expense of SLAMs loop closing procedure to improve runtime performance. Experiments also revealed that ViSP was unable to handle occlusions when a complete 3D building model was used, resulting in large errors in its pose estimates. The second contribution of this dissertation is a novel map-based incremental localization algorithm that improves tracking performance, and increases pose estimation accuracies from ViSP. The novelty of this algorithm is the implementation of an efficient matching process that identifies corresponding linear features from the UAVs RGB image data and a large, complex, and untextured 3D model. The proposed model-based tracker improved positional accuracies from 10 m (obtained with ViSP) to 46 cm in outdoor environments, and improved from an unattainable result using VISP to 2 cm positional accuracies in large indoor environments. The main disadvantage of any incremental algorithm is that it requires the camera pose of the first frame. Initialization is often a manual process. The third contribution of this dissertation is a map-based absolute localization algorithm that automatically estimates the camera pose when no prior pose information is available. The method benefits from vertical line matching to accomplish a registration procedure of the reference model views with a set of initial input images via geometric hashing. Results demonstrate that sub-metre positional accuracies were achieved and a proposed enhancement of conventional geometric hashing produced more correct matches - 75% of the correct matches were identified, compared to 11%. Further the number of incorrect matches was reduced by 80%

    公共空間における移動サービスの実現に向けた知能化移動プラットフォームの開発

    Get PDF
    本研究は,自律移動パーソナルヴィークルによる多様な移動サービス研究を行うための移動プラットフォーム開発に関するものである.現在,多くの研究機関で自律移動システムの研究が行われているが,それが送迎サービス等の実用的な移動サービスアプリケーションの研究開発まで至った例は多くない.これは,それらの研究で利用されている市販の移動プラットフォームや研究用プラットフォームでは,移動サービスアプリケーションの研究開発が容易でないことが要因の一つとなっている.また個々のパーソナルヴィークルのロボット化技術やナビゲーション機能の研究成果が共有できていない面が有り,移動サービス研究に耐えうる移動プラットフォームが構築できていないことも一つの要因であると考えられる.本研究では,上記の問題を解決するため,様々な移動サービスアプリケーション開発が行え,様々な移動サービスに関する研究成果を利用することが可能な仕組みを持ち,さらに基本的なナビゲーション機能を備える「知能化移動プラットフォーム」のシステム構成を文献調査や事例研究により明らかにした.またそれに基づき実際に知能化移動プラットフォームを構築し,その有用性を実証するとともにその構築方法についても明示した.第二章では,知能化移動プラットフォームに求められるシステム要件を設定し,関連研究・文献調査(829件)・「つくばチャレンジ」などの実証実験の事例観察からシステム要件を満たす知能化移動プラットフォームのシステム構成を明らかにした.第三章では,提案したシステム構成について,背景で述べた問題点を解決する評価指標を設定し,関連する研究事例や市販の移動プラットフォームと比較することで優位性を示した.第四章では,提案したシステム構成に基づき,使用場面に応じた二つの知能化移動プラットフォームを開発した.一つ目として屋外での移動サービスを想定し,所属研究室でこれまで開発されてきた走行性能が高い電動カートをベースとしたプラットフォーム開発を行った.基本ナビゲーション機能には当研究室での共同研究成果を搭載した.動作検証を学内及びつくばロボット特区で行い約1㎞以上の自律走行能力を有していることを確認し,提案したシステム構成が有効であることを確認した.二つ目として屋内外でシームレスな移動サービスを想定して,屋内における移動性能を重視した車椅子ベースの知能化移動プラットフォームを開発した.上記と同様のコンセプトで開発し学内において同様の動作検証を行いその自律走行能力を確認した.第五章では,開発した知能化移動プラットフォームを用いた移動サービスに関する研究成果(文献11件)に関して,設定したシステム要件を満たす実装がどのようにそれらの研究実績に繋がった考察を行い,設定したシステム要件と提案したシステム構成が有効であることを確認した.本研究の成果は,様々な移動サービス研究に用いることのできる移動プラットフォームのシステム要件を明らかにし,その構築に有効なシステム構成を示したこと,および実際に移動プラットフォームを開発し,その有用性を実際に示したことである.またその開発過程で述べたハードウェア及びソフトウェアのそれぞれに関する実装そのものも有効な知見として述べた.上記の成果は,多くの研究機関が移動サービス研究に従事するにあたり移動プラットフォーム開発の指針とすることができ,今後,移動サービス実現に向けて該当分野の研究がより推進されることが期待できる.電気通信大学201

    Localización y mapeado simultáneos en robótica mediante visión omnidireccional

    Get PDF
    Algoritmos de localización y SLAM para cámaras omnidireccionales que utilizan como balizas las luces del entorno, capaces de operar en tiempo real y bajo oclusiones frecuentes y severas
    corecore