14,168 research outputs found

    A Study of Attack Detection and Localization Scheme Using Enhanced Hash Technique

    Get PDF
    Security plays an vital role in wireless sensor networks. The nodes are deployed in the physical environment. Hackers may easily access the data. In order to provide security, The Advanced Encryption Standard (AES) algorithm has developed into an option for various security services. Sensor nodes collect the data from the environment and send to sink. But attackers corrupt data while transmitting therefore data security is main concern of wireless sensor network (WSN). Owing to the increasing popularity of wireless sensor networks, they have become attractive targets for malicious attacks. Due to the ad-hoc nature and openness of wireless sensor networks, they are susceptible to the identity based attack. In this paper, we study on a process of named Attack Detection and Localization Scheme to detect and localize the identity based attacks. An improved algorithm for hashing has been proposed. We named it as Effective Hashing Technique (EHT).It generates the Hash keys to differentiate an attacker from a normal node and to reduce the occurrences of any false positives or negatives. Also, our localization algorithm efficiently finds out the position estimates for the nodes

    Sparse Localization with a Mobile Beacon Based on LU Decomposition in Wireless Sensor Networks

    Get PDF
    Node localization is the core in wireless sensor network. It can be solved by powerful beacons, which are equipped with global positioning system devices to know their location information. In this article, we present a novel sparse localization approach with a mobile beacon based on LU decomposition. Our scheme firstly translates node localization problem into a 1-sparse vector recovery problem by establishing sparse localization model. Then, LU decomposition pre-processing is adopted to solve the problem that measurement matrix does not meet the re¬stricted isometry property. Later, the 1-sparse vector can be exactly recovered by compressive sensing. Finally, as the 1-sparse vector is approximate sparse, weighted Cen¬troid scheme is introduced to accurately locate the node. Simulation and analysis show that our scheme has better localization performance and lower requirement for the mobile beacon than MAP+GC, MAP-M, and MAP-M&N schemes. In addition, the obstacles and DOI have little effect on the novel scheme, and it has great localization performance under low SNR, thus, the scheme proposed is robust

    Quarantine region scheme to mitigate spam attacks in wireless sensor networks

    Get PDF
    The Quarantine Region Scheme (QRS) is introduced to defend against spam attacks in wireless sensor networks where malicious antinodes frequently generate dummy spam messages to be relayed toward the sink. The aim of the attacker is the exhaustion of the sensor node batteries and the extra delay caused by processing the spam messages. Network-wide message authentication may solve this problem with a cost of cryptographic operations to be performed over all messages. QRS is designed to reduce this cost by applying authentication only whenever and wherever necessary. In QRS, the nodes that detect a nearby spam attack assume themselves to be in a quarantine region. This detection is performed by intermittent authentication checks. Once quarantined, a node continuously applies authentication measures until the spam attack ceases. In the QRS scheme, there is a tradeoff between the resilience against spam attacks and the number of authentications. Our experiments show that, in the worst-case scenario that we considered, a not quarantined node catches 80 percent of the spam messages by authenticating only 50 percent of all messages that it processe

    Dead Reckoning Localization Technique for Mobile Wireless Sensor Networks

    Full text link
    Localization in wireless sensor networks not only provides a node with its geographical location but also a basic requirement for other applications such as geographical routing. Although a rich literature is available for localization in static WSN, not enough work is done for mobile WSNs, owing to the complexity due to node mobility. Most of the existing techniques for localization in mobile WSNs uses Monte-Carlo localization, which is not only time-consuming but also memory intensive. They, consider either the unknown nodes or anchor nodes to be static. In this paper, we propose a technique called Dead Reckoning Localization for mobile WSNs. In the proposed technique all nodes (unknown nodes as well as anchor nodes) are mobile. Localization in DRLMSN is done at discrete time intervals called checkpoints. Unknown nodes are localized for the first time using three anchor nodes. For their subsequent localizations, only two anchor nodes are used. The proposed technique estimates two possible locations of a node Using Bezouts theorem. A dead reckoning approach is used to select one of the two estimated locations. We have evaluated DRLMSN through simulation using Castalia simulator, and is compared with a similar technique called RSS-MCL proposed by Wang and Zhu .Comment: Journal Paper, IET Wireless Sensor Systems, 201

    Lower bounds for Arrangement-based Range-Free Localization in Sensor Networks

    Full text link
    Colander are location aware entities that collaborate to determine approximate location of mobile or static objects when beacons from an object are received by all colanders that are within its distance RR. This model, referred to as arrangement-based localization, does not require distance estimation between entities, which has been shown to be highly erroneous in practice. Colander are applicable in localization in sensor networks and tracking of mobile objects. A set S⊂R2S \subset {\mathbb R}^2 is an (R,ϵ)(R,\epsilon)-colander if by placing receivers at the points of SS, a wireless device with transmission radius RR can be localized to within a circle of radius ϵ\epsilon. We present tight upper and lower bounds on the size of (R,ϵ)(R,\epsilon)-colanders. We measure the expected size of colanders that will form (R,ϵ)(R, \epsilon)-colanders if they distributed uniformly over the plane
    • …
    corecore