9 research outputs found

    Order on Order Types

    Get PDF
    Given P and P\u27, equally sized planar point sets in general position, we call a bijection from P to P\u27 crossing-preserving if crossings of connecting segments in P are preserved in P\u27 (extra crossings may occur in P\u27). If such a mapping exists, we say that P\u27 crossing-dominates P, and if such a mapping exists in both directions, P and P\u27 are called crossing-equivalent. The relation is transitive, and we have a partial order on the obtained equivalence classes (called crossing types or x-types). Point sets of equal order type are clearly crossing-equivalent, but not vice versa. Thus, x-types are a coarser classification than order types. (We will see, though, that a collapse of different order types to one x-type occurs for sets with triangular convex hull only.) We argue that either the maximal or the minimal x-types are sufficient for answering many combinatorial (existential or extremal) questions on planar point sets. Motivated by this we consider basic properties of the relation. We characterize order types crossing-dominated by points in convex position. Further, we give a full characterization of minimal and maximal abstract order types. Based on that, we provide a polynomial-time algorithm to check whether a point set crossing-dominates another. Moreover, we generate all maximal and minimal x-types for small numbers of points

    Packing Plane Spanning Trees and Paths in Complete Geometric Graphs

    Get PDF
    We consider the following question: How many edge-disjoint plane spanning trees are contained in a complete geometric graph GKnGK_n on any set SS of nn points in general position in the plane? We show that this number is in Ω(n)\Omega(\sqrt{n}). Further, we consider variants of this problem by bounding the diameter and the degree of the trees (in particular considering spanning paths).Comment: This work was presented at the 26th Canadian Conference on Computational Geometry (CCCG 2014), Halifax, Nova Scotia, Canada, 2014. The journal version appeared in Information Processing Letters, 124 (2017), 35--4

    Massively winning configurations in the convex grabbing game on the plane

    Get PDF
    The convex grabbing game is a game where two players, Alice and Bob, alternate taking extremal points from the convex hull of a point set on the plane. Rational weights are given to the points. The goal of each player is to maximize the total weight over all points that they obtain. We restrict the setting to the case of binary weights. We show a construction of an arbitrarily large odd-sized point set that allows Bob to obtain almost 3/4 of the total weight. This construction answers a question asked by Matsumoto, Nakamigawa, and Sakuma in [Graphs and Combinatorics, 36/1 (2020)]. We also present an arbitrarily large even-sized point set where Bob can obtain the entirety of the total weight. Finally, we discuss conjectures about optimum moves in the convex grabbing game for both players in general

    Orientation Preserving Maps of the Square Grid

    Get PDF

    An Improved Lower Bound on the Minimum Number of Triangulations

    Get PDF
    Upper and lower bounds for the number of geometric graphs of specific types on a given set of points in the plane have been intensively studied in recent years. For most classes of geometric graphs it is now known that point sets in convex position minimize their number. However, it is still unclear which point sets minimize the number of geometric triangulations; the so-called double circles are conjectured to be the minimizing sets. In this paper we prove that any set of n points in general position in the plane has at least Omega(2.631^n) geometric triangulations. Our result improves the previously best general lower bound of Omega(2.43^n) and also covers the previously best lower bound of Omega(2.63^n) for a fixed number of extreme points. We achieve our bound by showing and combining several new results, which are of independent interest: (1) Adding a point on the second convex layer of a given point set (of 7 or more points) at least doubles the number of triangulations. (2) Generalized configurations of points that minimize the number of triangulations have at most n/2 points on their convex hull. (3) We provide tight lower bounds for the number of triangulations of point sets with up to 15 points. These bounds further support the double circle conjecture

    An Optimal Algorithm for Reconstructing Point Set Order Types from Radial Orderings

    Get PDF
    Abstract. Given a set P of n labeled points in the plane, the radial system of P describes, for each p ∈ P , the radial ordering of the other points around p. This notion is related to the order type of P , which describes the orientation (clockwise or counterclockwise) of every ordered triple of P . Given only the order type of P , it is easy to reconstruct the radial system of P , but the converse is not true. Aichholzer et al. (Reconstructing Point Set Order Types from Radial Orderings, in Proc. ISAAC 2014) defined T (R) to be the set of order types with radial system R and showed that sometimes |T (R)| = n − 1. They give polynomial-time algorithms to compute T (R) when only given R. We describe an optimal O(n 2 ) time algorithm for computing T (R). The algorithm constructs the convex hulls of all possible point sets with the given radial system, after which sidedness queries on point triples can be answered in constant time. This set of convex hulls can be found in O(n) time. Our results generalize to abstract order types

    Order on Order Types

    No full text
    Given P and P′ , equally sized planar point sets in general position, we call a bijection from P to P′ crossing-preserving if crossings of connecting segments in P are preserved in P′ (extra crossings may occur in P′ ). If such a mapping exists, we say that P′ crossing-dominates P, and if such a mapping exists in both directions, P and P′ are called crossing-equivalent. The relation is transitive, and we have a partial order on the obtained equivalence classes (called crossing types or x-types). Point sets of equal order type are clearly crossing-equivalent, but not vice versa. Thus, x-types are a coarser classification than order types. (We will see, though, that a collapse of different order types to one x-type occurs for sets with triangular convex hull only.) We argue that either the maximal or the minimal x-types are sufficient for answering many combinatorial (existential or extremal) questions on planar point sets. Motivated by this we consider basic properties of the relation. We characterize order types crossing-dominated by points in convex position. Further, we give a full characterization of minimal and maximal abstract order types. Based on that, we provide a polynomial-time algorithm to check whether a point set crossing-dominates another. Moreover, we generate all maximal and minimal x-types for small numbers of points.ISSN:0179-5376ISSN:1432-044

    Order on order types

    No full text
    Given P and P', equally sized planar point sets in general position, we call a bijection from P to P' crossing-preserving if crossings of connecting segments in P are preserved in P' (extra crossings may occur in P'). If such a mapping exists, we say that P' crossing-dominates P, and if such a mapping exists in both directions, P and P' are called crossing-equivalent. The relation is transitive, and we have a partial order on the obtained equivalence classes (called crossing types or x-types). Point sets of equal order type are clearly crossing-equivalent, but not vice versa. Thus, x-types are a coarser classification than order types. (We will see, though, that a collapse of different order types to one x-type occurs for sets with triangular convex hull only.) We argue that either the maximal or the minimal x-types are sufficient for answering many combinatorial (existential or extremal) questions on planar point sets. Motivated by this we consider basic properties of the relation. We characterize order types crossing-dominated by points in convex position. Further, we give a full characterization of minimal and maximal abstract order types. Based on that, we provide a polynomial-time algorithm to check whether a point set crossing-dominates another. Moreover, we generate all maximal and minimal x-types for small numbers of points.ISSN:1868-896
    corecore