17,239 research outputs found

    Complexity Classifications via Algebraic Logic

    Get PDF
    Complexity and decidability of logics is an active research area involving a wide range of different logical systems. We introduce an algebraic approach to complexity classifications of computational logics. Our base system GRA, or general relation algebra, is equiexpressive with first-order logic FO. It resembles cylindric algebra but employs a finite signature with only seven different operators, thus also giving a very succinct characterization of the expressive capacities of first-order logic. We provide a comprehensive classification of the decidability and complexity of the systems obtained by limiting the allowed sets of operators of GRA. We also discuss variants and extensions of GRA, and we provide algebraic characterizations of a range of well-known decidable logics

    Adding an Implication to Logics of Perfect Paradefinite Algebras

    Full text link
    Perfect paradefinite algebras are De Morgan algebras expanded with a perfection (or classicality) operation. They form a variety that is term-equivalent to the variety of involutive Stone algebras. Their associated multiple-conclusion (Set-Set) and single-conclusion (Set-Fmla) order-preserving logics are non-algebraizable self-extensional logics of formal inconsistency and undeterminedness determined by a six-valued matrix, studied in depth by Gomes et al. (2022) from both the algebraic and the proof-theoretical perspectives. We continue hereby that study by investigating directions for conservatively expanding these logics with an implication connective (essentially, one that admits the deduction-detachment theorem). We first consider logics given by very simple and manageable non-deterministic semantics whose implication (in isolation) is classical. These, nevertheless, fail to be self-extensional. We then consider the implication realized by the relative pseudo-complement over the six-valued perfect paradefinite algebra. Our strategy is to expand such algebra with this connective and study the (self-extensional) Set-Set and Set-Fmla order-preserving logics, as well as the T-assertional logics of the variety induced by the new algebra. We provide axiomatizations for such new variety and for such logics, drawing parallels with the class of symmetric Heyting algebras and with Moisil's `symmetric modal logic'. For the Set-Set logic, in particular, the axiomatization we obtain is analytic. We close by studying interpolation properties for these logics and concluding that the new variety has the Maehara amalgamation property

    Lattices of quasi-equational theories as congruence lattices of semilattices with operators, Part I

    Get PDF
    We show that for every quasivariety K of structures (where both functions and relations are allowed) there is a semilattice S with operators such that the lattice of quasi-equational theories of K (the dual of the lattice of sub-quasivarieties of K) is isomorphic to Con(S,+,0,F). As a consequence, new restrictions on the natural quasi-interior operator on lattices of quasi-equational theories are found.Comment: Presented on International conference "Order, Algebra and Logics", Vanderbilt University, 12-16 June, 2007 25 pages, 2 figure

    First-order Nilpotent Minimum Logics: first steps

    Full text link
    Following the lines of the analysis done in [BPZ07, BCF07] for first-order G\"odel logics, we present an analogous investigation for Nilpotent Minimum logic NM. We study decidability and reciprocal inclusion of various sets of first-order tautologies of some subalgebras of the standard Nilpotent Minimum algebra. We establish a connection between the validity in an NM-chain of certain first-order formulas and its order type. Furthermore, we analyze axiomatizability, undecidability and the monadic fragments.Comment: In this version of the paper the presentation has been improved. The introduction section has been rewritten, and many modifications have been done to improve the readability; moreover, numerous references have been added. Concerning the technical side, some proofs has been shortened or made more clear, but the mathematical content is substantially the same of the previous versio

    Super-\L ukasiewicz logics expanded by Δ\Delta

    Full text link
    Baaz's operator Δ\Delta was introduced (by Baaz) in order to extend G\"odel logics, after that this operator was used to expand fuzzy logics by H\'ajek in his celebrated book. These logics were called Δ\Delta-fuzzy logics. On the other hand, possibility operators were studied in the setting of \L ukasiewicz-Moisil algebras; curiously, one of these operators coincide with the Baaz's one. In this paper, we study the Δ\Delta operator in the context of (nn-valued) Super-\L ukasiewicz logics. An algebraic study of these logics is presented and the cardinality of Lindembaun-Tarski algebra with a finite number of variables is given. Finally, as a by-product, we present an alternative axiomatization of H\'ajek's \L ukasiwicz logic expanded with Δ\Delta

    Characteristic formulas over intermediate logics

    Full text link
    We expand the notion of characteristic formula to infinite finitely presentable subdirectly irreducible algebras. We prove that there is a continuum of varieties of Heyting algebras containing infinite finitely presentable subdirectly irreducible algebras. Moreover, we prove that there is a continuum of intermediate logics that can be axiomatized by characteristic formulas of infinite algebras while they are not axiomatizable by standard Jankov formulas. We give the examples of intermediate logics that are not axiomatizable by characteristic formulas of infinite algebras. Also, using the Goedel-McKinsey-Tarski translation we extend these results to the varieties of interior algebras and normal extensions of S

    Stone-Type Dualities for Separation Logics

    Get PDF
    Stone-type duality theorems, which relate algebraic and relational/topological models, are important tools in logic because -- in addition to elegant abstraction -- they strengthen soundness and completeness to a categorical equivalence, yielding a framework through which both algebraic and topological methods can be brought to bear on a logic. We give a systematic treatment of Stone-type duality for the structures that interpret bunched logics, starting with the weakest systems, recovering the familiar BI and Boolean BI (BBI), and extending to both classical and intuitionistic Separation Logic. We demonstrate the uniformity and modularity of this analysis by additionally capturing the bunched logics obtained by extending BI and BBI with modalities and multiplicative connectives corresponding to disjunction, negation and falsum. This includes the logic of separating modalities (LSM), De Morgan BI (DMBI), Classical BI (CBI), and the sub-classical family of logics extending Bi-intuitionistic (B)BI (Bi(B)BI). We additionally obtain as corollaries soundness and completeness theorems for the specific Kripke-style models of these logics as presented in the literature: for DMBI, the sub-classical logics extending BiBI and a new bunched logic, Concurrent Kleene BI (connecting our work to Concurrent Separation Logic), this is the first time soundness and completeness theorems have been proved. We thus obtain a comprehensive semantic account of the multiplicative variants of all standard propositional connectives in the bunched logic setting. This approach synthesises a variety of techniques from modal, substructural and categorical logic and contextualizes the "resource semantics" interpretation underpinning Separation Logic amongst them

    Canonical formulas for k-potent commutative, integral, residuated lattices

    Full text link
    Canonical formulas are a powerful tool for studying intuitionistic and modal logics. Actually, they provide a uniform and semantic way to axiomatise all extensions of intuitionistic logic and all modal logics above K4. Although the method originally hinged on the relational semantics of those logics, recently it has been completely recast in algebraic terms. In this new perspective canonical formulas are built from a finite subdirectly irreducible algebra by describing completely the behaviour of some operations and only partially the behaviour of some others. In this paper we export the machinery of canonical formulas to substructural logics by introducing canonical formulas for kk-potent, commutative, integral, residuated lattices (kk-CIRL\mathsf{CIRL}). We show that any subvariety of kk-CIRL\mathsf{CIRL} is axiomatised by canonical formulas. The paper ends with some applications and examples.Comment: Some typo corrected and additional comments adde
    corecore