2,814 research outputs found

    Car-Parrinello Molecular Dynamics on excited state surfaces

    Full text link
    This paper describes a method to do ab initio molecular dynamics in electronically excited systems within the random phase approximation (RPA). Using a dynamical variational treatment of the RPA frequency, which corresponds to the electronic excitation energy of the system, we derive coupled equations of motion for the RPA amplitudes, the single particle orbitals, and the nuclear coordinates. These equations scale linearly with basis size and can be implemented with only a single holonomic constraint. Test calculations on a model two level system give exact agreement with analytical results. Furthermore, we examined the computational efficiency of the method by modeling the excited state dynamics of a one-dimensional polyene lattice. Our results indicate that the present method offers a considerable decrease in computational effort over a straight-forward configuration interaction (singles) plus gradient calculation performed at each nuclear configuration

    Gradient type optimization methods for electronic structure calculations

    Full text link
    The density functional theory (DFT) in electronic structure calculations can be formulated as either a nonlinear eigenvalue or direct minimization problem. The most widely used approach for solving the former is the so-called self-consistent field (SCF) iteration. A common observation is that the convergence of SCF is not clear theoretically while approaches with convergence guarantee for solving the latter are often not competitive to SCF numerically. In this paper, we study gradient type methods for solving the direct minimization problem by constructing new iterations along the gradient on the Stiefel manifold. Global convergence (i.e., convergence to a stationary point from any initial solution) as well as local convergence rate follows from the standard theory for optimization on manifold directly. A major computational advantage is that the computation of linear eigenvalue problems is no longer needed. The main costs of our approaches arise from the assembling of the total energy functional and its gradient and the projection onto the manifold. These tasks are cheaper than eigenvalue computation and they are often more suitable for parallelization as long as the evaluation of the total energy functional and its gradient is efficient. Numerical results show that they can outperform SCF consistently on many practically large systems.Comment: 24 pages, 11 figures, 59 references, and 1 acknowledgement

    Generalized Unitary Coupled Cluster Wavefunctions for Quantum Computation

    Get PDF
    We introduce a unitary coupled-cluster (UCC) ansatz termed kk-UpCCGSD that is based on a family of sparse generalized doubles (D) operators which provides an affordable and systematically improvable unitary coupled-cluster wavefunction suitable for implementation on a near-term quantum computer. kk-UpCCGSD employs kk products of the exponential of pair coupled-cluster double excitation operators (pCCD), together with generalized single (S) excitation operators. We compare its performance in both efficiency of implementation and accuracy with that of the generalized UCC ansatz employing the full generalized SD excitation operators (UCCGSD), as well as with the standard ansatz employing only SD excitations (UCCSD). kk-UpCCGSD is found to show the best scaling for quantum computing applications, requiring a circuit depth of O(kN)\mathcal O(kN), compared with O(N3)\mathcal O(N^3) for UCCGSD and O((Nη)2η)\mathcal O((N-\eta)^2 \eta) for UCCSD where NN is the number of spin orbitals and η\eta is the number of electrons. We analyzed the accuracy of these three ans\"atze by making classical benchmark calculations on the ground state and the first excited state of H4_4 (STO-3G, 6-31G), H2_2O (STO-3G), and N2_2 (STO-3G), making additional comparisons to conventional coupled cluster methods. The results for ground states show that kk-UpCCGSD offers a good tradeoff between accuracy and cost, achieving chemical accuracy for lower cost of implementation on quantum computers than both UCCGSD and UCCSD. Excited states are calculated with an orthogonally constrained variational quantum eigensolver approach. This is seen to generally yield less accurate energies than for the corresponding ground states. We demonstrate that using a specialized multi-determinantal reference state constructed from classical linear response calculations allows these excited state energetics to be improved

    Daubechies Wavelets for Linear Scaling Density Functional Theory

    Get PDF
    We demonstrate that Daubechies wavelets can be used to construct a minimal set of optimized localized contracted basis functions in which the Kohn-Sham orbitals can be represented with an arbitrarily high, controllable precision. Ground state energies and the forces acting on the ions can be calculated in this basis with the same accuracy as if they were calculated directly in a Daubechies wavelets basis, provided that the amplitude of these contracted basis functions is sufficiently small on the surface of the localization region, which is guaranteed by the optimization procedure described in this work. This approach reduces the computational costs of DFT calculations, and can be combined with sparse matrix algebra to obtain linear scaling with respect to the number of electrons in the system. Calculations on systems of 10,000 atoms or more thus become feasible in a systematic basis set with moderate computational resources. Further computational savings can be achieved by exploiting the similarity of the contracted basis functions for closely related environments, e.g. in geometry optimizations or combined calculations of neutral and charged systems
    corecore