959 research outputs found

    Transform Ranking: a New Method of Fitness Scaling in Genetic Algorithms

    Get PDF
    The first systematic evaluation of the effects of six existing forms of fitness scaling in genetic algorithms is presented alongside a new method called transform ranking. Each method has been applied to stochastic universal sampling (SUS) over a fixed number of generations. The test functions chosen were the two-dimensional Schwefel and Griewank functions. The quality of the solution was improved by applying sigma scaling, linear rank scaling, nonlinear rank scaling, probabilistic nonlinear rank scaling, and transform ranking. However, this benefit was always at a computational cost. Generic linear scaling and Boltzmann scaling were each of benefit in one fitness landscape but not the other. A new fitness scaling function, transform ranking, progresses from linear to nonlinear rank scaling during the evolution process according to a transform schedule. This new form of fitness scaling was found to be one of the two methods offering the greatest improvements in the quality of search. It provided the best improvement in the quality of search for the Griewank function, and was second only to probabilistic nonlinear rank scaling for the Schwefel function. Tournament selection, by comparison, was always the computationally cheapest option but did not necessarily find the best solutions

    Clustering of Steel Strip Sectional Profiles Based on Robust Adaptive Fuzzy Clustering Algorithm

    Get PDF
    In this paper, the intelligent techniques are applied to enhance the quality control precision in the steel strip cold rolling production. Firstly a new control scheme is proposed, establishing the classifier of the steel strip cross-sectional profiles is the core of the system. The fuzzy clustering algorithm is used to establish the classifier. Secondly, a novel fuzzy clustering algorithm is proposed and used in the real application. The results, under the comparisons with the results obtained by the conventional fuzzy clustering algorithm, show the new algorithm is robust and efficient and it can not only get better clustering prototypes, which are used as the classifier, but also easily and effectively detect the outliers; it does great help in improving the performances of the new system. Finally, it is pointed out that the new algorithm's efficiency is mainly due to the introduction of a set of adaptive operators which allow for treating the different influences of data objects on the clustering operations; and in nature, the new fuzzy algorithm is the generalized version of the existing fuzzy clustering algorithm

    Depth Data Denoising in Optical Laser Based Sensors for Metal Sheet Flatness Measurement: A Deep Learning Approach

    Get PDF
    Surface flatness assessment is necessary for quality control of metal sheets manufactured from steel coils by roll leveling and cutting. Mechanical-contact-based flatness sensors are being replaced by modern laser-based optical sensors that deliver accurate and dense reconstruction of metal sheet surfaces for flatness index computation. However, the surface range images captured by these optical sensors are corrupted by very specific kinds of noise due to vibrations caused by mechanical processes like degreasing, cleaning, polishing, shearing, and transporting roll systems. Therefore, high-quality flatness optical measurement systems strongly depend on the quality of image denoising methods applied to extract the true surface height image. This paper presents a deep learning architecture for removing these specific kinds of noise from the range images obtained by a laser based range sensor installed in a rolling and shearing line, in order to allow accurate flatness measurements from the clean range images. The proposed convolutional blind residual denoising network (CBRDNet) is composed of a noise estimation module and a noise removal module implemented by specific adaptation of semantic convolutional neural networks. The CBRDNet is validated on both synthetic and real noisy range image data that exhibit the most critical kinds of noise that arise throughout the metal sheet production process. Real data were obtained from a single laser line triangulation flatness sensor installed in a roll leveling and cut to length line. Computational experiments over both synthetic and real datasets clearly demonstrate that CBRDNet achieves superior performance in comparison to traditional 1D and 2D filtering methods, and state-of-the-art CNN-based denoising techniques. The experimental validation results show a reduction in error than can be up to 15% relative to solutions based on traditional 1D and 2D filtering methods and between 10% and 3% relative to the other deep learning denoising architectures recently reported in the literature.This work was partially supported by by FEDER funds through MINECO project TIN2017-85827-P, and ELKARTEK funded projects ENSOL2 and CODISAVA2 (KK-202000077 and KK-202000044) supported by the Basque Governmen

    Design of Cooling Units for Heat Treatment

    Get PDF

    Process Modeling in Pyrometallurgical Engineering

    Get PDF
    The Special Issue presents almost 40 papers on recent research in modeling of pyrometallurgical systems, including physical models, first-principles models, detailed CFD and DEM models as well as statistical models or models based on machine learning. The models cover the whole production chain from raw materials processing through the reduction and conversion unit processes to ladle treatment, casting, and rolling. The papers illustrate how models can be used for shedding light on complex and inaccessible processes characterized by high temperatures and hostile environment, in order to improve process performance, product quality, or yield and to reduce the requirements of virgin raw materials and to suppress harmful emissions

    Modeling and Simulation of Heat Transfer Phenomena

    Get PDF

    The Integrated Realization of Materials, Products and Associated Manufacturing Processes

    Get PDF
    Problem: A materials design revolution is underway in the recent past where the focus is to design (not select) the material microstructure and processing paths to achieve multiple property or performance requirements that are often in conflict. The advancements in computer simulations have resulted in the speeding up of the process of discovering new materials and has paved way for rapid assessment of process-structure-property-performance relationships of materials, products, and processes. This has led to the simulation-based design of material microstructure (microstructure-mediated design) to satisfy multiple property or performance goals of the product/process/system thereby replacing the classical material design and selection approaches. The foundational premise for this dissertation is that systems-based materials design techniques offer the potential for tailoring materials, their processing paths and the end products that employ these materials in an integrated fashion for challenging applications to satisfy conflicting product and process level property and performance requirements. The primary goal in this dissertation is to establish some of the scientific foundations and tools that are needed for the integrated realization of materials, products and manufacturing processes using simulation models that are typically incomplete, inaccurate and not of equal fidelity by managing the uncertainty associated. Accordingly, the interest in this dissertation lies in establishing a systems-based design architecture that includes system-level synthesis methods and tools that are required for the integrated design of complex materials, products and associated manufacturing processes starting from the end requirements. Hence the primary research question: What are the theoretical, mathematical and computational foundations needed for establishing a comprehensive systems-based design architecture to realize the integrated design of the product, its environment, manufacturing processes and material as a system? Major challenges to be addressed here are: a) integration of models (material, process and product) to establish processing-structure-property-performance relationships, b) goal-oriented inverse design of material microstructures and processing paths to meet multiple conflicting performance/property requirements, c) robust concept exploration by managing uncertainty across process chains and d) systematic, domain-independent, modular, reconfigurable, reusable, computer interpretable, archivable, and multi-objective decision support in the early stages of design to different users. Approach: In order to address these challenges, the primary hypothesis in this dissertation is to establish the theoretical, mathematical and computational foundations for: 1) forward material, product and process workflows through systematic identification and integration of models to define the processing-structure-property-performance relationships; 2) a concept exploration framework supporting systematic formulation of design problems facilitating robust design exploration by bringing together robust design principles and multi-objective decision making protocols; 3) a generic, goal-oriented, inverse decision-based design method that uses 1) and 2) to facilitate the systems-based inverse design of material microstructures and processing paths to meet multiple product level performance/property requirements, thereby generating the problem-specific inverse decision workflow; and 4) integrating the workflows with a knowledge-based platform anchored in modeling decision-related knowledge facilitating capture, execution and reuse of the knowledge associated with 1), 2) and 3). This establishes a comprehensive systems-based design architecture to realize the integrated design of the product, its environment, manufacturing processes and material as a system. Validation: The systems-based design architecture for the integrated realization of materials, products and associated manufacturing processes is validated using the validation-square approach that consists of theoretical and empirical validation. Empirical validation of the design architecture is carried out using an industry driven problem namely the ‘Integrated Design of Steel (Material), Manufacturing Processes (Rolling and Cooling) and Hot Rolled Rods (Product) for Automotive Gears’. Specific sub-problems are formulated within this problem domain to address various research questions identified in this dissertation. Contributions: The contributions from the dissertation are categorized into new knowledge in four research domains: a) systematic model integration (vertical and horizontal) for integrated material and product workflows, b) goal-oriented, inverse decision support, c) robust concept exploration of process chains with multiple conflicting goals and d) knowledge-based decision support for rapid and robust design exploration in simulation-based integrated material, product and process design. The creation of new knowledge in this dissertation is associated with the development of a systems-based design architecture involving systematic function-based approach of formulating forward material workflows, a concept exploration framework for systematic design exploration, an inverse decision-based design method, and robust design metrics, all integrated with a knowledge-based platform for decision support. The theoretical, mathematical and computational foundations for the design architecture are proposed in this dissertation to facilitate rapid and robust exploration of the design and solution spaces to identify material microstructures and processing paths that satisfy conflicting property and performance for complex materials, products and processes by managing uncertainty

    Effect of residual stresses in roll forming process of metal sheets

    Full text link

    Annual Report 2018-2019

    Get PDF
    It contains the statement of R&D works undertaken, achievement made and the expenditure by the laboratory during the financial year 2018-2019

    Hot mill process parameters impacting on hot mill tertiary scale formation.

    Get PDF
    For high end steel applications surface quality is paramount to deliver a suitable product. A major cause of surface quality issues is from the formation of tertiary scale. The scale formation depends on numerous factors such as thermo-mechanical processing routes, chemical composition, thickness and rolls used. This thesis utilises a collection of data mining techniques to better understand the influence of Hot Mill process parameters on scale formation at Port Talbot Hot Strip Mill in South Wales. The dataset to which these data mining techniques were applied was carefully chosen to reduce process variation. There are several main factors that were considered to minimise this variability including time period, grade and gauge investigated. The following data mining techniques were chosen to investigate this dataset: Partial Least Squares (PLS); Logit Analysis; Principle Component Analysis (PCA); Multinomial Logistical Regression (MLR); Adaptive Neuro Inference Fuzzy Systems (ANFIS). The analysis indicated that the most significant variable for scale formation is the temperature entering the finishing mill. If the temperature is controlled on entering the finishing mill scale will not be formed. Values greater than 1070 °C for the average Roughing Mill and above 1050 °C for the average Crop Shear temperature are considered high, with values greater than this increasing the chance of scale formation. As the temperature increases more scale suppression measures are required to limit scale formation, with high temperatures more likely to generate a greater amount of scale even with fully functional scale suppression systems in place. Chemistry is also a significant factor in scale formation, with Phosphorus being the most significant of the chemistry variables. It is recommended that the chemistry specification for Phosphorus be limited to a maximum value of 0.015 % rather than 0.020 % to limit scale formation. Slabs with higher values should be treated with particular care when being processed through the Hot Mill to limit scale formation
    corecore