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Abstract: Surface flatness assessment is necessary for quality control of metal sheets manufactured
from steel coils by roll leveling and cutting. Mechanical-contact-based flatness sensors are being
replaced by modern laser-based optical sensors that deliver accurate and dense reconstruction of
metal sheet surfaces for flatness index computation. However, the surface range images captured
by these optical sensors are corrupted by very specific kinds of noise due to vibrations caused by
mechanical processes like degreasing, cleaning, polishing, shearing, and transporting roll systems.
Therefore, high-quality flatness optical measurement systems strongly depend on the quality of
image denoising methods applied to extract the true surface height image. This paper presents a
deep learning architecture for removing these specific kinds of noise from the range images obtained
by a laser based range sensor installed in a rolling and shearing line, in order to allow accurate
flatness measurements from the clean range images. The proposed convolutional blind residual
denoising network (CBRDNet) is composed of a noise estimation module and a noise removal module
implemented by specific adaptation of semantic convolutional neural networks. The CBRDNet is
validated on both synthetic and real noisy range image data that exhibit the most critical kinds
of noise that arise throughout the metal sheet production process. Real data were obtained from
a single laser line triangulation flatness sensor installed in a roll leveling and cut to length line.
Computational experiments over both synthetic and real datasets clearly demonstrate that CBRDNet
achieves superior performance in comparison to traditional 1D and 2D filtering methods, and state-
of-the-art CNN-based denoising techniques. The experimental validation results show a reduction in
error than can be up to 15% relative to solutions based on traditional 1D and 2D filtering methods
and between 10% and 3% relative to the other deep learning denoising architectures recently reported
in the literature.

Keywords: laser triangulation; metal sheet flatness measurement; smooth surface reconstruction;
depth data denoising; Convolutional Neural Networks; deep learning, residual learning

1. Introduction

Increasingly stringent specifications in terms of flatness and surface quality in the
manufacture of sheet metal products are becoming more demanding of real-time 100%
quality-control processes. The end customer expects not only excellent mechanical and
processing properties but also a high long-term value and a high quality of modern metallic
materials. To meet these high expectations, the steel industry needs intelligent quality-
control systems endowed with high-precision in-line sensors for real-time measurements.

In the manufacture of parts and assemblies, especially when parts are required to be
assembled over a surface, flatness is a critical specification requirement. Any flatness defect
will cause an undesirable optical effect and impact the overall appearance of the assembly.
This need for zero defect manufacturing arises in areas as varied as the manufacture of
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stainless steel sheets used in professional kitchens, metal panels for exterior decoration in
architectural projects, or the manufacture of aluminum sheets in the automotive industry.
For this reason, it is highly desirable to carry out a quality control in real time during the
metal sheet manufacturing covering 100% of its surface in order to ensure that the required
industry quality standards are met.

With the advances in computer vision technology, optical flatness sensors have became
widespread [1] allowing manufacturing line human operators to measure manifest flatness,
i.e., flatness not hidden by tension, at high line speeds, thus enabling real-time monitoring
as well as a high degree of automation in the production phase. Most optical surface flatness
inspection systems used in the metal sheet industry are based on the laser triangulation
principle [2–4].

The large real-time inspection capabilities of these optical sensors are impeded by the
non-linear high-frequency fluctuations induced in the steel sheet surface by the mechanical
processes that take place in the manufacturing line, the juddering of the metal strip due
to forward traction, as well as the shearing processes that cut to length the sheet. Under
these circumstances, achieving a highly accurate flatness measurement requires a high
performance signal denoising method to be applied to the height profile captured by the 3D
sensor, removing the noise corresponding to such non-linear high-frequency fluctuations.
The literature [5–11] presents different sensors based on laser triangulation, requiring the
use of two or more laser lines to filter out external noise sources and reconstruct an accurate
and smooth continuous 3D map of the metal sheet surface.

The main contribution of this paper is a novel deep learning architecture for the
reconstruction of the range image captured by the 3D sensor removing the high-frequency
noise due to mechanical processes in order to allow accurate flatness measurements for
quality control. This deep learning architecture is inspired in the U-Net [12], originally
developed for semantic segmentation. Instead of returning as output an decomposition
of the image into regions, our architecture returns the noise-free range image by using a
noise estimation module. The architecture is validated against synthetic and real range
images that exhibit the most significant noise modalities produced by the mechanical
processing induced vibrations on the steel sheet surface. Real data have been collected
from an industrial roll leveling and cut-to-length line where the developed 3D sensor is
installed. Moreover, the architecture is compared against image denoising deep learning
architectures reported in the literature. To this end, we have retrained these architectures
with our data from scratch.

The remainder of this paper is organized as follows: Section 2 reviews the indus-
trial context regarding techniques and devices used to measure metal sheets flatness.
Section 3 describes our noise model for the generation of synthetic data. Section 4 re-
views computational approaches for image denoising, setting the stage for our proposal.
Sections 5 and 6 present the proposed deep learning architecture for range image denoising
and the collected Dataset, respectively. Section 7 reports the experimental results. Finally,
Section 8 gives our conclusions and directions of future work.

2. Industrial Context

In order to inspect rolled products achieving accurate measurements and classification
of flatness defects, it is necessary to capture the geometry of the steel sheet as it moves
through the processing line. With sheet feeding rates reaching speeds of up to 120 m/min,
real-time inspection imposes very strict requirements for accurate surface flatness quality
control. The most typical flatness defects are wavy edges, centre buckles, and bow defects,
which appear as low-frequency variations in the metal strip surface height.

On account of the strict requirements for real time quality control of surface flat-
ness, the time efficiency of noise filtering methods poses a major challenge. Most of the
literature [7,9,11] addresses this problem relying on the use of traditional filtering methods
or explicit noise modeling, requiring extensive fine-tuning to adequately adapt to different
noise levels, struggling in preserving details, and leading to local (sensor-specific) solutions.
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Several successful applications of machine learning and fuzzy systems modeling for the
detection of surface defects in flat steel products can be found in the literature [13–15],
but they do not extend to the categorization of flatness defects. There are even machine
learning approaches to link different types of defects with their causes [16,17].

Contrary to traditional hand crafted filtering methods, Convolutional Neural Net-
works (CNNs) are tuned by automated learning techniques guided by error minimization
carried out by stochastic gradient descent and backpropagation algorithm. They have
improved sensor data interpretation, analysis and control algorithms, being capable of
dealing with non-linearities, noise, and uncertainty. In this regard, CNNs have become the
state-of-the-art machine learning approach in many applications [18–22]. Recently, CNNs
have been applied to classify surface defects in cold-rolled strips [23], and flatness measure
prediction [24] from measurements of contact sensors attached to the roll mill instead of
optical or range images of the surface. In order to adapt their 1D data from the sensor
readings they fold these vectors into small images (5 × 8 or 20 × 20) which are the input
for the CNNs, following the convention that CNNs are image classifiers or regressors. Note
that the goal in [24] is the prediction of an overall measure of flatness from linear sensor
readings.

However, to the best of the authors knowledge, there are no studies yet on CNN or
other deep-learning-based methods to filter data obtained from optical flatness sensors in
order to accurately reconstruct the surface of metal strips. In this regard, we are specifically
interested in assessing the denoising performance of deep learning architectures when the
input range image data contain high levels of non-linear noise.

Actual Sensor Installation

The flatness data were acquired with a simplified version of the optical flatness sensor
described in [10]. The flatness sensor is comprised of a single illuminating linear laser
source perpendicular to the metal sheet translation axis and a CCD camera capturing the
area illuminated by the laser. In this simplified sensor version, the baseline separation
between camera and the laser source is ∆B = 900 mm, and the triangulation angle is
α = 45◦ so that the center of the camera captures the middle of the laser line at Z = 0 mm.
The laser line emitter is collimated, and its wavelength is λ = 450 nm, while its line aperture
is 90◦. The camera features a 2048 × 2048 matrix CCD sensor, and the focal length of the
lens is f = 6 mm, placed at Z = 1140 mm over a moving steel strip. Figure 1 shows the
scheme of the sensor.

Figure 1. The flatness sensor scheme used for data acquisition, consisting of a single laser line laser
triangulation scheme.

Figure 2 shows the scheme of the production line and the placement of the optical
flatness sensor. Steel coils which are reduced to a specific thicknesses by rolling and
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annealing and wound into a roll. These steel coils are further processed in a roll leveling
and shearing line where they are cut to length. The range sensor was placed before the
cutting tool, so the steel sheet surface propagates the vibrations induced by the cutting
shocks. Each type of steel coil possesses different mechanical properties and thickness. As
a result, they exhibit different propagation responses to the vibrations induced in the metal
sheet during the leveling and cutting processes. This fact adds variability and robustness
requirements to the proposed network.

Figure 2. The experimental production line scheme and the optical flatness sensor placement. Blue
and Red lines refer to laser planes used for pseudo-groundtruth calculation in real data experiments.
Blue line refers to the laser plane which is further used for training, validation, and testing the
proposed CBRDNet.

3. Noise Model for Synthetic Data Generation

Generating physically consistent surface data are crucial to train the proposed CBRD-
Net and increase its denoising generalization capability. However, modeling such metal
surfaces is impeded by the lack of accurate experimental data. Custom metrology devices,
such as coordinate measuring machines (CMM), rely on static measuring conditions and,
thus, fail to retrieve the most characteristic surface deformation caused by the tensile
and trachle stresses occurring at the metal strip roll leveling and cut to length processes.
To cope with this lack of data, our synthetic samples rely on a model of experimentally
reconstructed surface data shown in [10], which reproduce the most common defects in a
roll leveler processing line, as well as the coupling noise produced by mechanical elements,
such as cutting stage.

We model the range image captured by our sensor from metal surface data by a
function that combines a high-frequency and high-amplitude bump produced by the
cutting stage, modeled as a local Gaussian signal ψ(x, y), a superposition of a set of
stationary waves ϕ(x, y), a low-frequency carrier θ(y) and a Gaussian noise term ρ(x, y)
modeling the data acquisition electronics error,

S(x, y) = ϕ(x, y) + ψ(x, y) + θ(y) + ρ(x, y) (1)

where
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is a real-valued 2D Fourier series, where the amplitudes α = δ = [0, 5] and β = γ = 0.
λx = λy = [0, 0.1] are the wavelengths in the x and y directions,

ψ(x, y) =
sin( fbyAb)

1 + 4
[
(y−y0)

Lb

]2 (3)

is a high-frequency, high-amplitude Gaussian wave mixed with a low-frequency carrier
modeling the bump produced by the cutting device, where fb = 5 represents the bump
carrier frequency, Ab = [1, 3] stands for the bump amplitude, Lb = [10, 20] is the bump
wave attenuation, and

θ(y) = Accos(Kcy) (4)

is a low-frequency carrier that sets the offset of the surface data along the transversal
y-direction, where Ac = [0, 0.5] is the carrier amplitude and Kc = [0, 0.1] represents the
frequency in the y direction. Finally, ρ(x, y) is the electronic noise that arises during data
acquisition caused by the discrete nature of radiation, i.e., the fact that the optical sensor
captures an image by collecting photons. Considering some assumptions, this noise can
be approximated by an additive model in which the noise has a zero-mean Gaussian
distribution determined by its variance σ2

n = [0.1, 0.35]. That is, each value in the noisy
data is the sum of the real value and a random, Gaussian distributed noise value. The
defined intervals of variation and constant values for these variables have been selected in
order to obtain synthetic data that are as close as possible to that acquired by the sensor in
real experiments. We disregarded strict boundary conditions, such as Dirichlet conditions
due to the free form nature of the unrolled metal coils on the machine. A synthetic surface
generated using this model is shown in Figure 3.
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Figure 3. Synthetic flatness sensor data. (Color Online).

As shown in Figure 3, the proposed noise model allows us to generate synthetic data
that are very similar to that acquired by the sensor in real experiments. The degree of
concordance between our model and experimental data have been qualitatively validated
by visual inspection. We cannot tune the model quantitatively because the noise source is
not observable. We cannot observe the noise separated from the actual metal sheet surface,
and the wave propagation and dumping properties are dependent of the actual metal sheet
mechanical properties. We postulate that the success of the denoising system trained on
the synthetic data are indirect proof of the validity of the model.

4. Deep Learning Denoising Approaches

An autoencoder is an unsupervised neural network architecture that is trained to
reproduce the input as its output. It has a typical structure as a pair of funnels attached by
the short end. The first funnel compresses the input data into a lower-dimension encoding,
while the second funnel decompresses the encoding trying to recover the original input
data. The encoder seeks to obtain a robust latent representation of the original data, which
is often used for other purposes, such as features for another classification module. Autoen-
coders have been a popular field of study in neural networks in recent decades. The first
applications of this type of neural networks date back to the 1980s [25–27]. Autoencoders
have been used for classification, clustering, anomaly detection, dimensionality reduction,
and signal denoising [28].



Sensors 2021, 21, 7024 6 of 21

Proposed by Vincent et al. [29], the Denoising Autoencoders (DAEs) are an extension
of classic autoencoders where the model is taught to predict original uncorrupted data
from corrupted input data, i.e., the decoder attempts to reconstruct a clean version of the
corrupted input from the autoencoder latent representation.

The encoder function f takes an input x̃ and maps it to a hidden representation y
computed as:

y = fθ(x̃) = h(Wx̃ + b) (5)

where h is a typically nonlinear transfer function, W and b are the encoder network
parameters, and θ = (W, b).

The output x, having a similar form to x̃, is reconstructed from y by the decoder g

x = gθ′(y) = h′(W’y + b’) (6)

where h′ is similar to h, W’ and b’ are the decoder network parameters, and θ′ = (W’, b’).
The DAE training procedure consists on learning the parameters W, W’, b, and b’

that minimise the autoencoder reconstruction error between the groundtruth x and the
reconstruction gθ′( fθ(x̃)), using a suitable cost function. Typically, the function is minimised
using Stochastic Gradient Descent (SGD) [30] for small batches of corrupted and clean
sample pairs.

Convolutional Denoising Autoencoders (CDAEs) are Denoising Autoencoders imple-
mented using convolutional encoding and decoding layers. Because CDAEs use CNNs for
extracting high-order features from images, CDAEs differ from standard DAEs in that their
parameters are shared across all input image patches to maintain spatial locality. Different
studies show that CDAEs achieve better image processing performance when compared to
standard DAEs [31,32].

The U-Net [12] has a encoding–decoding architecture inspired in the autoencoder with
skip connections [33] that transfer the data from the encoder layers to the decoding layers.
Input–output pairs are images and their desired semantic pixel labelling providing segmen-
tation of the image in one shot. It has shown exceptional results for image segmentation
and image restoration tasks [34–36]. Depending on the architectural modifications made
to U-Net, it can be used to achieve different tasks beyond segmentation. Isola et al. [37]
used U-Net as a generator to perform image-to-image translation tasks such as in the case
of aerial images and their correspondence in maps or the conversion of gray-scale images
to color images through adversarial learning. Jansson et al. [38] investigated the use of
U-Net as a voice separator, using the magnitude of the spectrogram of the audio containing
the mix of different singing voices as the input. Zhang et al. [39] modified U-Net with a
residual block and proposed it as a tool for extracting roads from aerial maps.

State-of-the-art 2D deep learning image denoising methods that will be compared
with our proposal are CBDNet [40], NERNet [41], BRDNet [42], FFDNet [43], and CD-
nCNN_B [44]. CBDNet is a convolutional blind denoising network [40] that is composed
of a noise estimation module and a non-blind denoising module that accepts the noise
estimation to compute the clean image. The noise estimation module is a CNN without
pooling (i.e., no dimension reduction), while the denoising module is a U-shaped network
as discussed above. The work reported in [40] uses a realistic noise model that includes in-
camera processing to generate synthetic images with known noise component for network
training. The noise estimation and removal network NERNet [41] inherits the two module
structure of CBDNet. The noise estimation module is enriched with a pyramidal feature
fusion block that provides multi-scale noise estimation, while the CNN components are
dilated convolutions. The noise removal module is U-shaped using dense convolution
and dilation selective blocks. The synthetic images were generated adding white Gaussian
noise (AWGN). In the batch renormalization denoising network BRDNet [42], the batch
renormalization is claimed to address the internal covariate shift and small mini-batch
problems. The network is composed of upper and lower networks. Upper network is
composed of residual learning modules with batch renormalization, while the lower net-
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work includes also dilated convolution blocks. Contrary to the previous networks, no
explicit noise estimation module is designed. Noise is assumed to be AWGN. The fast and
flexible denoising network FFDNet [43] is also designed for cleaning AWGN corrupted
images. FFDNet is a CNN whose inputs are downsampled subimages and a noise level
map, it does not have a module to estimate the noise. The denoising convolutional neural
network (DnCNNs) [44] is able to handle Gaussian denoising with unknown noise level.
The DnCNN uses residual learning in order to estimate the noise component of the image,
which is later removed from the noisy image to obtain the clean image.

5. Proposed Deep Learning Image Denoising Architecture

We apply of U-Net architecture as a generalized denoising method for surface recon-
struction from noisy range images. The proposed network should be capable of denoising
the degraded range images as an alternative to traditional image denoising techniques
like spatial filtering, transform domain filtering, or wavelet thresholding methods [45].
A denoising method should remove high- and low-frequency noises, reconstructing the
original surface. Results presented in the literature show that CNNs outperform traditional
techniques for denoising tasks [46,47]. Furthermore, once trained, CNNs are computa-
tionally very efficient as they may be run on high-performance graphic processing units
(GPUs) [48,49].

Our study proposes a convolutional blind residual denoising network model (CBRD-
Net) based on the U-Net architecture for denoising flatness sensor data. Since in real-world
scenarios only noisy input data are provided, correct estimation of the noise level has
proven to be challenging [40]. Therefore, incorporating a noise estimation block, can en-
hance the network generalization capabilities as shown by Lan et al. [50] and Guo et al. [41].
Besides that, the combination of both synthetic and real noisy data in the model training is
expected to improve the network’s denoising efficiency [51].

The structure and denoising functionality of the proposed network are described
within the following sub-section.

5.1. Network Architecture

The proposed CBRDNet architecture consists of mainly two stages, a blind residual
noise estimation subnetwork (NE-SNet) and a noise removal subnetwork (NR-SNet). The
overall scheme of the proposed network is shown in Figure 4

Concatenate Split NE-SNet NR-SNet

256x256

256x256

256x256
256x256

256x256

256x256

1
InputLayer

Split 

NR-SNet

1
OutputLayer

1 2
NE-SNet Concatenate

1

1

Figure 4. Overall scheme of the proposed CBRDNet network for close to real-time flatness data
denoising.

The NE-SNet subnetwork takes a noisy observation and produces an estimated noise
level map. It is composed of residual learning blocks that were first proposed as part of the
ResNet architecture [52]. The layers of this subnetwork will increasingly separate image
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structure from noise, creating a noise map that will be used later in the denoising stage.
The NE-SNet is composed of five residual blocks with no pooling, each of which has two
convolutional (Conv2D) layers with Batch Normalization (BN) and Rectified Linear Unit
(ReLU) layers. The number of feature channels in each Conv2D layer is set to 64, and the
filter size is set to 3× 3. The scheme of the NE-SNet subnetwork is shown in Figure 5.

256x256

256x256256x256

256x256

256x256

256x256

256x256

1
InputLayer

1
Conv2D

64
Residual 

Block

64
Residual 

Block

64
Residual 

Block

64
Residual 

Block

64
Residual 

Block

256x256

256x256 1
OutputLayer

BN ReLU Split

=

Residual Block
AddConv2D

Figure 5. The proposed Noise Estimation Subnetwork NE-SNet composed of residual learning
blocks.

The NR-SNet subnetwork is based on a traditional U-Net. This subnetwork is divided
into two major paths: contracting (encoder) and expanding (decoder). The contracting path
is comprised of downsampling layers consisting of a MaxPooling2D layer and two Conv2D
layers with a filter size of 3× 3 and “same” padding configuration. Each contracting block
halves the size of feature maps and doubles the number of feature channels, starting with
64 channels in the first stage and ending with 512 channels in the last. The bottleneck
connects both the expanding path and the contracting path; herein, the data has been
resized to 32× 32× 512. Similarly, the expanding path also comprises four upsampling
blocks, which are composed of two Conv2D layers followed by a Conv2D Transpose.
Each expanding block doubles the size of feature maps and halves the number of feature
channels. We used concatenation layers to merge the feature maps in the expanding path
with the corresponding feature maps in the contracting path. The last layer is a 1× 1
Conv2D. The original U-Net architecture for image segmentation uses a sigmoid activation
function in this last layer. Instead, our proposed architecture uses a linear activation
function in order to recover the denoised image. The scheme of the NR-SNet subnetwork
is given in Figure 6.
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InputLayer

Contracting Path Bottleneck

256x256
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Contracting Block

===

MaxPooling2D

Figure 6. The proposed Noise Removal Subnetwork NR-SNet following a U-net architecture.

5.2. Training the Model

Given a 3D dataset encompassing data recovered from the laser based optical flatness
sensor and synthetic 3D data described in Section 6, we generate a set of depth images,
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which are decomposed into patches for processing. Using this dataset of local patches, we
train our network to reconstruct the denoised versions of input depth images. In order
to train the CBRDNet, we use the ADAM [53] algorithm with β = 0.9. Following most
CNN-based data denoising methods, our network adopts the mean squared error (MSE) as
the loss function and the initialization strategy of He [54]. The mini-batch size is 10, and
each patch size is 256× 256 pixels. The mini-batch size has been selected as a trade-off
between our limited computational capabilities and the desired network generalization
performance. Experimental results demonstrate that small batch sizes with small learning
rates result in more reliable and stable training, better generalization performance, and
a much lower memory footprint [55,56]. The model is trained for 100 epochs, with the
learning rate for the first 20 epochs set to 10e−3 and the learning rate 10e−4 used to fine-tune
the model. These settings are the same for all experiments discussed in this paper for
uniformity. Besides that, both ReLU and LeakyReLu [57] have been tested as output layer
activation functions in the CBRDNet training, the obtained results were almost identical
and are shown in Section 7. We trained all the networks in this paper on a single NVIDIA®

Geforce® RTX 2080 Super GPU with an on-board frame buffer memory of 8GB GDDR6,
3072 CUDA® Cores operating at 1815 MHz, compute capability 7.5, and Turing Generation
microarchitecture, CUDA® 10.1 and CUDNN 7.6.1). The machine is equipped with an
Intel® Core i9-10900K CPU @ 3.70GHz processor with 10 cores and 32 GB of RAM.

6. Dataset

The dataset used for both training and testing of the proposed architecture is composed
of real production line and synthetic range image samples of steel coils from a roll levelling
and shearing line. The synthetic data are used as a kind of data augmentation aiming to
improve the network denoising performance because of the difficulties faced collecting a
real dataset comprising a wide range of representative samples. Additionally, in real-world
measurements the metal sheet is not free from tensile stresses during the manufacturing
processes causing its elongation. After cutting the metal strip in single smaller sheets, the
tensile stress release results in surface deformations. Thus, measurements obtained by an
offline precision measuring device like a coordinate measuring machine (CMM) cannot
be used as a validation ground truth for online measurement methods, whereas synthetic
samples do.

In this paper, we generate 5500 synthetic noisy data samples using the noise model
described in Section 3 together with 5500 real noisy samples from six different coils which
are described in Section 6.1. The dataset is divided into a training set (80%), a validation
set (10%) and a test set (10%).

6.1. Real Production Line Data

The experimental data coming from the real production line consists of 5500 samples
from six different steel coils.

The specifications of the six steel coils are as follows: Two S235JR coils, a carbon (non-
alloy) steel formulated for primary forming into wrought products with thicknesses of
3 mm, 8 mm and 1200 mm width, respectively, Young modulus E = 205 GPa, Poisson ratio
µ = 0.301, yield stress σ = 215 MPa, annealed and skin passed. One S420ML coil, a special
structural steel with a thickness of 7 mm and 2000 mm width, Young modulus E = 190
GPa, Poisson ratio µ = 0.29, yield stress σ = 410 MPa, it is an iron alloy steel manufactured
by rolling. One S355M coil, an alloy steel formulated for primary forming into wrought
products with a thickness of 3 mm and 1500 mm width, Young modulus E = 190 GPa,
Poisson ratio µ = 0.29, yield stress σ = 360 MPa, a middle carbon steel manufactured
by rolling, annealing and skin passing. Two S500MC coils, a hot-rolled, high-strength
low-alloy (HSLA) with excellent engineering bending and cutting characteristics with a
thickness of 3 mm, 6 mm and 2200 mm width, respectively, Young modulus E = 210 GPa,
Poisson ratio µ = 0.304, yield stress σ = 500 MPa, produced through thermomechanical
rolling. A summary is given in Table 1.
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Table 1. Steel coils used for collecting real data and their specifications.

Coil w × h (mm) Young (GPa) Poisson Yield Stress (MPa)

S235JR 1050 × 3 205 0.301 215
S235JR 2000 × 8 205 0.301 215

S420ML 1650 × 7 190 0.290 410
S355M 1500 × 3 190 0.290 360

S500MC 1050 × 3 210 0.304 500
S500MC 1850 × 6 210 0.304 500

The coils are roughly 800 m long. In each measurement cycle, the optical flatness
system senses 9000 mm. High-amplitude disruptive noises from the cutting station, as well
as the mechanical processes carried out during the manufacturing greatly contaminate the
flatness information generating noisy ripples on the metal strip sensor data. Additionally,
the conveyor system generates high-frequency waves as a result of the metal strip advance.
This interference patterns result in a complex spatial waveform, causing flatness informa-
tion and surface defects difficult to detect. A raw depth data sample from one of these steel
coils, captured by the optical flatness sensor, is visualised in Figure 7.
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Figure 7. Raw optical flatness sensor data. (Color online).

7. Results

In this section, we assess the proposed CBRDNet for denoising both synthetic sheet
samples and real data from the 3D flatness sensor. The proposed denoising network
is employed to reconstruct both simulated and real data in order to test its ability to
remove non-linear noises caused by mechanical manipulation of the metal sheet during
the manufacturing process.

The metal sheet’s flatness corresponds to its levelness when it is tension free. The
I-Unit [58] is widely used as the standardized measurement unit of flatness. For the I-Unit
calculation in a metal sheet with a sinusoidal surface, a series of virtual lines are drawn to
model the surface profile. The I-Unit is computed over them and the reported flatness is
the average over all lines. For this reason we compare our 2D methods with 1D denoising
methods. We recall that the aim of the present work is to provide a CNN-based denoising
method to be be applied to range images obtained by optical sensors installed in metal
sheet leveling and shearing production lines. The denoised surface range data will be
used to carry out the necessary flatness measurement. Accordingly, the results provided
below compare the denoised synthetic sheet samples and real ones with its corresponding
groundtruth. The error measurements are expressed in millimeters.

7.1. Synthetic Data Results

We conducted three different comparative analyses. First, we apply some traditional
1D filtering methods such as Moving Average, Butterworth IIR [59,60], Savitzky-Golay
FIR [61,62], Chebyshev Type II [63], and piecewise cubic Hermite interpolation [10] filters.
Secondly, we apply 2D wavelet-based denoising methods. Specifically, we compute results
using Daubechies, Symlets, Meyer, Coiflets, and Fejer-Korovkin wavelets [64–66]. Finally,
we compare the performance of CBRDNet against some state-of-art 2D deep learning image
denosing methods, specifically NERNet [41], CBDNet [40], BRDNet [42], FFDNet [43], and
CDnCNN_B [44]. Instances of synthetic data denoising results are shown in Figures 8 and 9,
where (a) is the noise-free sample, (b) is the noisy surface data and, finally, (c) is the denoised
surface estimated using our method.
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Figure 8. An instance of the denoising result on a synthetic strip. (a) Depicts the noise-free ground
truth surface, (b) shows the noise corrupted surface, and (c) represents the denoised surface recon-
structed using the proposed network. (Color online).
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Figure 9. An instance of the denoising result on a synthetic strip. (a) Depicts the noise-free ground
truth surface, (b) shows the noise corrupted surface, and (c) represents the denoised surface recon-
structed using the proposed network. (Color online).

For the comparative analysis with traditional 1D filtering methods we divided the
resulting metal sheet surface in virtual longitudinal strips, also called fibers [58,67]. For
each fiber, we applied the following 1D denoising approaches:

A Butterworth IIR filter. This filter provides the optimum balance of attenuation and
phase response. It has no rippling effect in the passband or stopband, and as a result, it is
frequently referred to as a maximally flat filter. The Butterworth filter provides flatness
at the cost of a somewhat broad transition area from passband to stopband, with typical
transitory characteristics. It has the following characteristics: a smooth monotonic response
(no ripple), it has the slowest roll-off for equivalent order filters, and a more linear passband
phase response than other methods. A Butterworth IIR third-order digital filter with a
cutoff frequency of 6 dB below the passband value of 0.01 specified in normalized frequency
units is used.

A Savitzky-Golay FIR smoothing filter, which is a variation of the FIR average filter that
can effectively retain the targeted signal’s high-frequency content while still not eliminating
as much noise as a FIR average. Savitzky-Golay filters maintain various moment orders
better than other smoothing approaches, which generally retain peak widths and heights.
It has the following characteristics: a computation time proportional to window width,
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it preserves the area, position and width of peaks, and flattens peaks less than moving
average with same window width. A third-order Savitzky-Golay FIR smoothing filter with
a frame length of 99 samples is used in our experiments.

A Moving Average filter was also applied, which is a method used to smooth data
by calculating a series of averages of different subsets of the entire dataset. It is a form of
finite impulse response filter with the following characteristics: an optimal approach for
reducing random noise while retaining a sharp step response, in general term is a good
smoother filter, conceptually it is the simplest to implement, but on the contrary has a poor
low-pass filter (frequency domain) and a slow roll-off and terrible stopband attenuation
characteristics. A moving-average filter with a 33-sample-long sliding window is used for
the comparison experiments.

A Chebyshev Type II filter has been applied. This filter is also known as an inverse
filter, it does not roll off and has no ripple in the passband, but it has equiripple in the
stopband. The main characteristics of this filter are: it is maximally flat in the passband
and has a faster roll-off than Butterworth but slower roll-off than Chebyshev Type I. We
used a third-order low-pass Chebyshev Type II filter with a stopband attenuation of 33 dB
and a stopband edge frequency of 0.02 specified in normalised frequency units.

Finally, a piecewise cubic Hermite interpolation filter has been used. This filter
uses both the height surface information and its derivative calculated from a dual laser
sensor data series. It is continuous in shape and its derivative. In comparison to the
Savitzky–Golay, Butterworth, Chebyshev, and Average Mean filters used for surface recon-
struction in [10], this method achieved a 41 percent improvement.

Because we have the ground truth surface, we can compute the error of our denoising
process. Table 2 shows the comparative results of the denoising approaches described above
when applied to the synthetic surface. MAE improvements achieved by our method range
from three times better when compared to the Hermite filtering approach to 6 times better
when compared to the Chebyshev filter approach. Similar improvements are achieved in
term of RMSE.

In addition, we conducted 2D wavelet-based denoising methods. The number of van-
ishing moments N and the denoising threshold are the metaparameters for this approach.
According to the current research, disregarding the computational cost of the wavelet trans-
form (WT), higher vanishing moments would yield better performance [68,69]. We selected
the following wavelets: Daubechies (dbN), N = 4, Symlets (symN) N = 8, Meyer (dmey),
Coiflets (coi f N), N = 4, and Fejer-Korovkin ( f kN), N = 4. We performed the WT of data
samples up to 8 levels. For denoising, wavelet transform coefficients below an empirically
selected WT threshold are set to zero. An inverse wavelet transform is used after that to
transform the processed signal back to the original spatial domain. Because the wavelet
coefficients are affected by values outside the extent of the signal under consideration, to
avoid boundary effects, the first and last 4 samples were removed in the processed input
data. Table 2 shows the comparative results. MAE improvements achieved by our method
range from 2.5 times better when compared to the Fejer-Korovkin filtering approach to
1.3 times better when compared to the Symlets filter approach. Similar improvements are
achieved in term of RMSE. For a graphical representation of these results, we provide the
denoising results on five data samples in Figure 10.
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Table 2. Comparative results of our approach with both traditional 1D and 2D denoising approaches and 2D denoising
CNN methods. MAE = mean absolute error; MaxAE = maximum absolute error; STD = standard deviation of the absolute
error; RMSE = root mean squared error. Best results presented in bold font.

Method CNN-2D/1D/2D Blind/Non Blind MAE * MaxAE * STD * RMSE *

CBRDNet-ReLu (ours) CNN-2D Blind 0.140 0.376 0.136 0.147
CBRDNet-LeakyReLu (ours) CNN-2D Blind 0.160 0.466 0.154 0.172

CBDNet CNN-2D Blind 0.172 0.520 0.162 0.185
NERNet CNN-2D Blind 0.184 0.499 0.175 0.195
BRDNet CNN-2D Blind 0.198 0.659 0.184 0.212
FFDNet CNN-2D Non Blind 0.224 0.501 0.201 0.252

CDnCNN_B CNN-2D Blind 0.312 0.840 0.308 0.342

Sym8 2D NA 0.176 0.543 0.170 0.188
Coif4 2D NA 0.180 0.591 0.179 0.190
Db8 2D NA 0.181 0.622 0.179 0.201

Dmey 2D NA 0.256 0.942 0.282 0.291
Fk8 2D NA 0.390 1.998 0.588 0.390

Hermite 1D NA 0.413 1.150 0.380 0.459
Butterworth 1D NA 0.760 4.423 0.735 0.781

Savitzky-Golay 1D NA 0.842 6.436 0.779 0.853
Moving Average 1D NA 0.801 5.463 0.928 0.865

Chebyshev Type II 1D NA 0.828 5.040 0.828 0.903

* Measurements are expressed in millimeters (mm).
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Figure 10. Comparison of our proposed CBRDNet with 2D wavelet-based denoising techniques.
Noisy synthetic samples have very low SNR, hence the the groundtruth surface of the samples is
almost lostt in some samples. To facilitate the comparison with the denoised samples, the color scale
of the images corresponding to the first column, i.e., noisy sample, is clipped. Color scale values are
expressed in millimeters (mm). (Color online).

Finally, we compared the architecture presented in this article to the five earlier stated
CNN-based approaches. Comparing various deep learning algorithms is a challenging task
because of the large number of hyperparameters that must be appropriately tuned during
the network training process. Notwithstanding, the aforementioned architectures were
trained and assessed 100 times on the same dataset to obtain the statistical results listed
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in Table 2. Furthermore, for a clearer graphical representation of denoising performance,
we provide the outcomes of these methods on five data samples, see Figure 11. When
compared to the groundtruth the CBRDNet results are very close to the real ones, MAE
improvements range from 2.5 times better when compared to CDnCNN_B and 1.2 times
better when compared to CBDNet. Similar improvements are measured in terms of RMSE.

Groundtruth CBRDNet CBDNet NERNet BRDNet FFDNet CDnCNN_BNoisy 
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Figure 11. Comparison of our proposed CBRDNet with other methods on five different samples.
Note that because of the low SNR, the geometrical surface of the samples is hidden by the induced
perturbations. To facilitate the comparison with the denoised samples, the color scale of the images
corresponding to the first column, i.e., noisy sample, is clipped. Color scale values are expressed in
millimeters (mm). (Color online).

7.2. Real Data Results

Measuring results from a specimen tested out of the roll levelling system with a CMM
cannot be fairly compared to those obtained by our method, as has been previously dis-
cussed in Section 6. Results obtained with the double laser line sensor and the Hermite
filtering method proposed by Alonso et al. [10] have been used as groundtruth in order to
evaluate the improvement of the proposed method in an industrial environment. Exper-
imental results with real data are shown in Figures 12 and 13, where (a) is the denoised
data using Hermite cubic interpolation, (b) is the raw data retrieved from the sensor and,
finally, (c) is the denoised surface obtained using our method. The proposed CBRDNet
architecture effectively recovers the smooth reconstructed surface after the noisy waves
have been filtered, as seen in the figures.

The results shows graphically that the proposed method is capable of accurately
reconstructing the surface of the metal sheet. When compared to state-of-the-art techniques,
it achieves equivalent or better visually appealing results, as a real ground truth is always
lacking in real experiments. Figure 14 depicts a longitudinal fibre, with unfiltered data
collected directly from the sensor in blue, Hermite filtering in red, 2D Symlet wavelet-
based filtering results in yellow, and the results from the CNN proposed in this work
in green. It can be seen that the method is capable of reconstructing the sheet’s surface
preserving the sinusoidal characteristics of the metal sheet, specially in areas where the
cutting effect occurs.
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Figure 12. An instance of a real metal sheet surface denoising. Plate thickness: 3 mm; yield point Re:
215 MPa; Dimension of the mother plate—length: 9 m; width: 1050 mm. (a) Hermite filter denoised
ground truth surface, (b) noise corrupted surface and (c) denoised reconstructed surface using the
proposed network. (Color online).
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Figure 13. An instance of a real metal sheet surface denoising. Plate thickness: 6mm; yield point Re:
500 MPa; Dimension of the mother plate—length: 9 m; width: 1050 mm. (a) Hermite filter denoised
ground truth surface, (b) noise corrupted surface and (c) denoised reconstructed surface using the
proposed network. (Color online).
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Figure 14. An instance of longitudinal fiber reconstruction, the blue line represents the raw 1D data
from a fiber extracted from Figure 13, the red line shows the Hermite interpolation result, the yellow
line shows Symlet results, and finally the green line depicts the CBRDNet denoised result. The inset
provides a better detail of the results achieved by both Hermite and CBRDNet in the highlighted area.
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7.3. Ablation Studies

Several ablation studies have been carried out in order to analyse the effects of both
the noise estimation module (NE-SNet subnetowk) and training the network with synthetic,
real, and mixed datasets.

7.3.1. Effect of the NE-SNet Subnetwork

An ablation study was conducted to better understand the contribution of the NE-SNet
subnetwork component to the overall system. This research has revealed that the overall
performance of the proposed system is highly dependant on the NE-SNet subnetwork,
increasing the accuracy of the proposed network up to 10%. Quantitative results of this
study are shown in Table 3. Besides that, noise prediction experiments reveal that the
NE-SNet achieves an accuracy of nearly a 85% extracting the noise both in synthetic and
real data. Figure 15 depicts some results obtain by the NE-SNet subnetwok over both
synthetic and real metal strip patches. The mean absolute error (MAE), maximum absolute
error (MaxAE), standard deviation of the absolute error (STD), and root mean squared error
(RMSE) were evaluated over a 500 sample dataset, results are as follows, MAE = 0.420 mm,
MaxAE = 1.105 mm, STD = 0.124, and RMSE = 0.480 mm.
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Figure 15. Results of the proposed NE-SNet subnetwork estimating the noise level map over a set of
real and synthetic data samples. Noisy Sample stands for the corrupted noisy data, groundtruth is
the known noise level map, finally NE-SNet is the estimated noise output. Color scale values are
expressed in millimeters (mm). (Color online).

Table 3. Comparative results of our NE-SNet subnetwork ablation study with the full model and the
best CNN and conventional denoising approaches. MAE = mean absolute error; MaxAE = maximum
absolute error; STD = standard deviation of the absolute error; RMSE = root mean squared error. Best
results presented in bold font.

Method CNN-2D/1D/2D MAE * MaxAE * STD * RMSE *

CBRDNet (Full Model) CNN-2D 0.140 0.376 0.136 0.147
CBRDNet (No NE-SNet) CNN-2D 0.305 1.043 0.284 0.385

CBDNet CNN-2D 0.172 0.520 0.162 0.185
Sym8 2D 0.176 0.543 0.170 0.188

Hermite 1D 0.413 1.150 0.380 0.459
* Measurements are expressed in millimeters (mm).
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7.3.2. Effect of Synthetic and Real Data

We have developed the following approaches. First, we trained our proposed CBRD-
Net on synthetic data exclusively. Second we trained CBRDNet on real data only. On
the one hand, the experiments carried out demonstrate that CBRDNet (Synth) achieve
worse results than CBRDNet (Real) and CBRDNet removing the existing real noise. This
fact occurs even when trained on large amount of synthetic data samples, mainly because
real noise cannot be accurately described by the defined noise model at 3. On the other
hand, CBRDNet (Real) produces not so accurate results in comparison to CBRDNet, as a
result of the impact of insufficiently noise-free real data. At the same time, CBRDNet has
proved to be more effective in dealing with real noise while maintaining an accurate surface
information. Quantitative results of the three strategies are shown in Table 4 on 500 sample
synthetic, real, and mixed datasets. CBRDNet obtains better results than CBRDNet(Synth)
and CBRDNet(Real) except in the synthetic dataset, but we dismiss these results as they
are not directly applicable to a real production environment where real noise is present.

Table 4. Comparative results of training data ablation studies. MAE = mean absolute error; MaxAE
= maximum absolute error; STD = standard deviation of the absolute error; RMSE = root mean.
(Synth) = trained on synthetic dataset; (Real) = trained on real dataset squared error. Best results
presented in bold font.

Method MAE * MaxAE * STD * RMSE *

Mixed dataset results

CBRDNet 0.140 0.376 0.136 0.147
CBRDNet (Synth) 0.260 0.496 0.248 0.265
CBRDNet (Real) 0.180 0.401 0.175 0.186

Synthetic dataset results

CBRDNet 0.190 0.410 0.181 0.195
CBRDNet (Synth) 0.110 0.206 0.128 0.129
CBRDNet (Real) 0.280 0.526 0.254 0.292

Real dataset results

CBRDNet 0.147 0.386 0.142 0.154
CBRDNet (Synth) 0.282 0.366 0.265 0.291
CBRDNet (Real) 0.159 0.396 0.155 0.161

* Measurements are expressed in millimeters (mm).

8. Conclusions and Future Work

In this paper, we present a novel denoising deep learning architecture for filtering
range image sensor data that can be used for accurate flatness measurement in the context
of metal sheet manufacturing, named CBRDNet.

This network is able to filter out the non-linear noise components in the range images
that hinder accurate surface reconstruction and thus surface flatness measurements. It has
been trained using both real and synthetic samples of steel coils from a roll leveling cut to
length line. This combination improves the network’s denoising capabilities. Furthermore,
synthetic data not only provided a wide range of representative samples for training, but
also a groundtruth for quantitative evaluation of the accuracy of the denoised flatness
measurements. We carried out different experiments to validate the proposed filtering
strategy.

In the first place, results obtained denoising synthetic data have proved that our
method outperforms traditional 1D filtering techniques, namely Hermite, Savitzky-Golay,
Chebyshev, and Butterworth filters. Compared to them, we achieved an improvement of
up to 6 times in terms of accuracy, particularly in surface regions where high amplitude
noises are induced by the mechanical processes carried out in the production line, e.g.,
cutting the metal strip to the desired length. In the second place, the proposed CBRDNet
achieves slightly better results in comparison with 2D wavelet-based filtering techniques.
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We achieved an error reduction up to 1.3 times when compared to the best performing
wavelet in our study, i.e., Symlets (Sym8), although in some sample regions there was no
clear improvement in terms of precision. Wavelet denoising results must be taken with a
grain of salt, because an optimal wavelet class and order selection might improve them,
while we report results of a necessarily limited empirical exploration. To this date we do not
know of such a data driven optimal wavelet design process. In the third place, experiments
with synthetic data show that the CBRDNet architecture is able to obtain better results than
state-of-the-art deep learning denoising architectures for the specific kind of noise that we
are dealing with. Compared to these methods we obtain improvements ranging from 1.2
up to 2.5 times in terms of surface reconstruction accuracy. This improvement is clearly
visible in the areas of the metal sheet where the noise due to metal strip cutting occurs.

Finally, results with real data obtained from an industrial leveling cut to length line
have shown that the proposed method is capable of accurately reconstructing metal sheet
surfaces. The conducted experiments have shown a surface reconstruction error reduction
than can be down to 15% relative to solutions based on conventional interpolation methods.
Numerical results have shown that the proposed CBRDNet achieves a mean absolute
error (MAE) of 0.140mm a maximum absolute error (MaxAE) of 0.376 mm, a standard
deviation of the absolute error (STD) of 0.136 mm, and a root mean squared error (RMSE)
of 0.147 mm.

Future research will explore deep denoising architectures in the frequency domain.
Although in some cases it is difficult to differentiate a signal from noise in the spatial
domain, this task might be easier in the frequency domain because noisy signals can be
comprised of a set of sine wave signals represented in the frequency domain with different
frequencies, phases, and amplitudes. We intend to implement and compare these possible
enhancements to the network outlined in this paper in future works. Moreover, when
larger data sets are needed but the access to real data is restricted in some way, for example,
when data becomes sensitive to its distribution, or simply when access to real data is
challenging, the development of tools capable of generating synthetic data would provide a
solution to this data shortage. GANs are computational structures that employ two neural
networks, competing with each other, to create new synthetic data samples that may be
used as surrogates for real data. To further our research we plan to explore the potential
of using GANs architectures instead of the current noise model to generate larger dataset
with more likelihood to real data.
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