10 research outputs found

    Hardware architectures for compact microwave and millimeter wave cameras

    Get PDF
    Millimeter wave SAR imaging has shown promise as an inspection tool for human skin for characterizing burns and skin cancers. However, the current state-of-the-art in microwave camera technology is not yet suited for developing a millimeter wave camera for human skin inspection. Consequently, the objective of this dissertation has been to build the necessary foundation of research to achieve such a millimeter wave camera. First, frequency uncertainty in signals generated by a practical microwave source, which is prone to drift in output frequency, was studied to determine its effect on SAR-generated images. A direct relationship was found between the level of image distortions caused by frequency uncertainty and the product of frequency uncertainty and distance between the imaging measurement grid and sample under test. The second investigation involved the development of a millimeter wave imaging system that forms the basic building block for a millimeter wave camera. The imaging system, composed of two system-on-chip transmitters and receivers and an antipodal Vivaldi-style antenna, operated in the 58-64 GHz frequency range and employed the ω-k SAR algorithm. Imaging tests on burnt pigskin showed its potential for imaging and characterizing flaws in skin. The final investigation involved the development of a new microwave imaging methodology, named Chaotic Excitation Synthetic Aperture Radar (CESAR), for designing microwave and millimeter wave cameras at a fraction of the size and hardware complexity of previous systems. CESAR is based on transmitting and receiving from all antennas in a planar array simultaneously. A small microwave camera operating in the 23-25 GHz frequency was designed and fabricated based on CESAR. Imaging results with the camera showed it was capable of basic feature detection for various applications --Abstract, page iv

    Sparse emission source microscopy for rapid emission source imaging

    Get PDF
    In Paper I, Sparse Emission Source Microscopy (ESM) methodology will be introduced and discussed for the localization of major EMI radiation sources in complex and large systems. Traditional ESM method takes abundant and uniformly-distributed scanning points on the scanning plane using a robotic system, which can provide high-quality source images but consumes too much time. This section presents a sparse and nonuniform sampling technique for ESM, which is more time-efficient in identifying major radiation sources, even though the image quality is sacrificed. The feasibility of sparse sampling is mathematically proved, and it is shown that increasing number of points increases the signal-to-noise ratio (SNR) of reconstructed images. What\u27s more, a nearest neighbor interpolation method is utilized to estimate the radiated power in real-time scanning. Thus, back-propagated images and estimated radiated power can be obtained in real-time measurement, which can efficiently and instantaneously provide the locations and the radiation strengths of the most significant emission sources. In Paper II, EMI coupling paths and mitigation of optical transceiver modules are investigated. Optical transceiver modules are commonly used in telecommunication and data communication systems, and are significantly troublesome at their operation frequencies and/or harmonics. In this section, simulations and measurements are performed on optical transceiver modules, and total radiated power (TRP) is also measured, to identify and characterize the EMI coupling paths. Currents on the silicon photonic sub-assembly conductor housing and optical fiber connection ferrule are identified as a dominant radiating source. EMI mitigation methods are developed and shown to be effective in reducing the radiated emissions from real product hardware --Abstract, page iv

    Microwave detection of surface breaking cracks in metallic structures under heavy corrosion and paint

    Get PDF
    We live in the world of aging infrastructures . In this environment, critical and heavily utilized infrastructure, i.e. ships, planes, bridges, etc., are operating at or beyond their designed age. Replacement is no longer an option and retirement for cause is the current approach to maintenance and replacement. Consequently, there is an ever-increasing demand for efficient and robust nondestructive evaluation (NDE) methods that can determine the physical health of these structures. Large structures, which are primarily made of metals, either steel or aluminum, are susceptible to high-stress cracking and corrosion. Stress-induced cracks in heavily corroded steel, used in bridges, railroads, storage tanks, etc., are extremely difficult to detect. Current methods have limitations that render inspection to take longer either than it should or risk not detecting an existing crack. Microwave signals readily penetrate through dielectric materials such as paint and corrosion byproducts (i.e., rust), while conducting materials (i.e., metals) strongly reflect microwave signals. Therefore, interrogating a metal surface for surface-breaking cracks is readily possible even in the presence of a relatively thick layer of corrosion or paint. Normally, surface-breaking cracks are very small and the perturbations they cause to an irradiating microwave signal are small in amplitude unless the detection is performed very close to the surface. In this thesis, the implementation of a microwave imaging system that utilizes a synthetic aperture radar (SAR) approach to detect surface-breaking cracks in metallic structures under heavy corrosion and corrosion preventive paints is investigated. The resulting SAR images were analyzed and compared to numerical simulations to identify real-world capabilities and theoretical limitations --Abstract, page iii

    Optimum Two-Dimensional Uniform Spatial Sampling for Microwave SAR-based NDE Imaging Systems

    No full text
    Microwave imaging systems for nondestructive evaluation, based on 3-D synthetic aperture radar (SAR) techniques, utilize either a real aperture, composed of many antennas mounted next to one another, or a synthetic aperture, generated by raster scanning a single antenna. To obtain a quality SAR image, the spatial sampling must be dense enough to accurately sample the electric field reflected from a target. Conversely, the quantity of spatial samples may be optimally reduced, resulting in reduced system complexity and required resources for systems employing real apertures and reduced imaging time for synthetic aperture systems. In the literature, it has been reported that the optimum sampling step size is equal to the theoretical resolution, as per the Nyquist rate. It has also been reported that an image generated using a sampling step size equal to the theoretical resolution may not possess the same spatial resolution as predicted. Also, as expected and reported, resolution is dependent upon the distance between the target and the aperture, aperture dimensions, and antenna beamwidth. However, existing formulations of SAR resolution do not account for all of the physical characteristics of a measurement (e.g., 2-D limited-size aperture, electric field decreasing with distance from the measuring antenna, etc.). This paper presents a theoretical formulation of resolution and a study into optimum uniform spatial sampling by analyzing simulated 3-D SAR images according to metrics representing image quality, namely, half-power resolution and RMS error between practically sampled images and an ideally sampled image. The results of this simulation demonstrate optimum sampling given design requirements that fully explain resolution dependence on sampling step size. Also, it is found that there is additional widening of the 2-D spectral estimation of the data due to the aperture-limited nature of the measurements, which further influences the choice of sampling step size. Subsequently, the simulated results are compared to experimental results corroborating the efficacy of the formulation. Finally, design curves and procedures are proposed for selecting sampling step size as per resolution requirements

    Erratum: Optimum Two-Dimensional Uniform Spatial Sampling for Microwave SAR-Based NDE Imaging Systems

    No full text
    The radii in Fig. 4 should be divided by two. Equations (10) and (13) should be edited..

    Design of a microwave imaging system for rapid wideband imaging

    Get PDF
    An imaging system composed of two linear arrays of antennas is designed through full-wave simulation and fabricated for use in synthetic aperture radar imaging. The arrays electronically scan along their antenna elements and are mechanically moved along a second orthogonal direction for scanning large two-dimensional areas quickly. Each linear array is printed on a circuit board where the antenna elements are integrated into the edge of the board as tapered slot-line antennas operating at 22 to 27 GHz. A multiplexer circuit is printed onto each linear array to transmit wideband signals to each antenna in the array. Receivers are printed onto the radiating end of the antennas on the edge of the circuit board. These receivers are less complex than traditional microwave receivers, and they require no phase calibration for synthetic aperture radar processing. A controller board is designed and fabricated to facilitate electronic scanning along the arrays and route measurement data to a PC for storage. The linear arrays and controller board are mounted on a small mechanical scanning table for moving the arrays along one direction. All receivers are calibrated for variations in voltage outputs among the elements by scanning a known target and applying an equalization matrix. Several targets are scanned by the final imaging system, and the resulting images show the ability of the system to detect dielectric contrast under the surface of dielectric materials. The tapered slot-line antenna is redesigned and improved for -10 dB reflection coefficient across the operating frequency band and higher voltage output of the receivers with respect to the original antenna design. Imaging results of the redesigned antenna show how refabricating the imaging system with the improved antenna will improve overall image quality of the system--Abstract, page iii

    Compressive sensing for 3D microwave imaging systems

    Get PDF
    Compressed sensing (CS) image reconstruction techniques are developed and experimentally implemented for wideband microwave synthetic aperture radar (SAR) imaging systems with applications to nondestructive testing and evaluation. These techniques significantly reduce the number of spatial measurement points and, consequently, the acquisition time by sampling at a level lower than the Nyquist-Shannon rate. Benefiting from a reduced number of samples, this work successfully implemented two scanning procedures: the nonuniform raster and the optimum path. Three CS reconstruction approaches are also proposed for the wideband microwave SAR-based imaging systems. The first approach reconstructs a full-set of raw data from undersampled measurements via L1-norm optimization and consequently applies 3D forward SAR on the reconstructed raw data. The second proposed approach employs forward SAR and reverse SAR (R-SAR) transforms in each L1-norm optimization iteration reconstructing images directly. This dissertation proposes a simple, elegant truncation repair method to combat the truncation error which is a critical obstacle to the convergence of the CS iterative algorithm. The third proposed CS reconstruction algorithm is the adaptive basis selection (ABS) compressed sensing. Rather than a fixed sparsifying basis, the proposed ABS method adaptively selects the best basis from a set of bases in each iteration of the L1-norm optimization according to a proposed decision metric that is derived from the sparsity of the image and the coherence between the measurement and sparsifying matrices. The results of several experiments indicate that the proposed algorithms recover 2D and 3D SAR images with only 20% of the spatial points and reduce the acquisition time by up to 66% of that of conventional methods while maintaining or improving the quality of the SAR images --Abstract, page iv

    Optimized techniques for real-time microwave and millimeter wave SAR imaging

    Get PDF
    Microwave and millimeter wave synthetic aperture radar (SAR)-based imaging techniques, used for nondestructive evaluation (NDE), have shown tremendous usefulness for the inspection of a wide variety of complex composite materials and structures. Studies were performed for the optimization of uniform and nonuniform sampling (i.e., measurement positions) since existing formulations of SAR resolution and sampling criteria do not account for all of the physical characteristics of a measurement (e.g., 2D limited-size aperture, electric field decreasing with distance from the measuring antenna, etc.) and nonuniform sampling criteria supports sampling below the Nyquist rate. The results of these studies demonstrate optimum sampling given design requirements that fully explain resolution dependence on sampling criteria. This work was then extended to manually-selected and nonuniformly distributed samples such that the intelligence of the user may be utilized by observing SAR images being updated in real-time. Furthermore, a novel reconstruction method was devised that uses components of the SAR algorithm to advantageously exploit the inherent spatial information contained in the data, resulting in a superior final SAR image. Furthermore, better SAR images can be obtained if multiple frequencies are utilized as compared to single frequency. To this end, the design of an existing microwave imaging array was modified to support multiple frequency measurement. Lastly, the data of interest in such an array may be corrupted by coupling among elements since they are closely spaced, resulting in images with an increased level of artifacts. A method for correcting or pre-processing the data by using an adaptation of correlation canceling technique is presented as well --Abstract, page iii

    Synthetic aperture radar-based techniques and reconfigurable antenna design for microwave imaging of layered structures

    Get PDF
    In the past several decades, a number of microwave imaging techniques have been developed for detecting embedded objects (targets) in a homogeneous media. New applications such as nondestructive testing of layered composite structures, through-wall and medical imaging require more advanced imaging systems and image reconstruction algorithms (post-processing) suitable for imaging inhomogeneous (i.e., layered) media. Currently-available imaging algorithms are not always robust, easy to implement, and fast. Synthetic aperture radar (SAR) techniques are some of the more prominent approaches for image reconstruction when considering low loss and homogeneous media. To address limitations of SAR imaging, when interested in imaging an embedded object in an inhomogeneous media with loss, two different methods are introduced, namely; modified piecewise SAR (MPW-SAR) and Wiener filter-based layered SAR (WL-SAR). From imaging system hardware point-of-view, microwave imaging systems require suitable antennas for signal transmission and data collection. A reconfigurable antenna which its characteristics can be dynamically changed provide significant flexibility in terms of beam-forming, reduction in unwanted noise and multiplicity of use including for imaging applications. However, despite these potentially advantageous characteristics, the field of reconfigurable antenna design is fairly new and there is not a methodical design procedure. This issue is addressed by introducing an organized design method for a reconfigurable antenna capable of operating in several distinct frequency bands. The design constraints (e.g., size and gain) can also be included. Based on this method, a novel reconfigurable coplanar waveguide-fed slot antenna is designed to cover several different frequency bands while keeping the antenna size as small as possible --Abstract, page iii
    corecore