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ABSTRACT

Compressed sensing (CS) image reconstruction techniques are developed and ex-

perimentally implemented for wideband microwave synthetic aperture radar (SAR)

imaging systems with applications to nondestructive testing and evaluation. These

techniques significantly reduce the number of spatial measurement points and, conse-

quently, the acquisition time by sampling at a level lower than the Nyquist-Shannon

rate. Benefiting from a reduced number of samples, this work successfully imple-

mented two scanning procedures: the nonuniform raster and the optimum path.

Three CS reconstruction approaches are also proposed for the wideband mi-

crowave SAR-based imaging systems. The first approach reconstructs a full-set of raw

data from undersampled measurements via L1-norm optimization and consequently

applies 3D forward SAR on the reconstructed raw data. The second proposed ap-

proach employs forward SAR and reverse SAR (R-SAR) transforms in each L1-norm

optimization iteration reconstructing images directly. This dissertation proposes a

simple, elegant truncation repair method to combat the truncation error which is a

critical obstacle to the convergence of the CS iterative algorithm. The third pro-

posed CS reconstruction algorithm is the adaptive basis selection (ABS) compressed

sensing. Rather than a fixed sparsifying basis, the proposed ABS method adaptively

selects the best basis from a set of bases in each iteration of the L1-norm optimization

according to a proposed decision metric that is derived from the sparsity of the image

and the coherence between the measurement and sparsifying matrices. The results of

several experiments indicate that the proposed algorithms recover 2D and 3D SAR

images with only 20% of the spatial points and reduce the acquisition time by up to

66% of that of conventional methods while maintaining or improving the quality of

the SAR images.
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1. INTRODUCTION

1.1. BACKGROUND

Microwave and millimeter wave imaging are effective nondestructive testing and

evaluation (NDT&E) methods with important applications in testing critical struc-

tures such as spacecraft tiles, airplane coating, bonding of either adhesive or compos-

ite materials, etc. [1] They have the potential to both inspect and evaluate a wide

range of non-conducting (i.e., dielectric) materials and composites [2]. These NDT&E

methods are varied and may be implemented in many different ways depending on

the type of indication, properties of the structure, desired measurement resolution,

etc.

Microwave synthetic aperture radar (SAR) imaging techniques have shown great

potential for a variety of NDT applications. These applications involve the detection

of discontinuities and defects in many critical structures [1,3–6]. Because of the high

resolution imaging capability of synthetic aperture radar technology, a wideband 3D

SAR imaging system is capable of detecting tiny defects of millimeter size embedded

within the specimen under test (SUT) without compromising either the usefulness

or utility of the SUT [7]. The wideband SAR is capable of determining the depth of

discontinuities and providing 3D images of SUTs.

Conventionally, the microwave SAR imaging techniques used for nondestructive

testing applications utilize raster scanning. The scanning system uses a single antenna

probe (commonly an open-ended waveguide) over the SUT [1, 4, 5]. In this method,

the scanner begins measurements at one point on the SUT and scans on a 2D spatial

grid of uniform points in a raster way while collecting coherent (magnitude and phase)

reflection coefficient data. Subsequently, using a robust SAR algorithm, either 2D or
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3D SAR images of the SUT are produced. Focusing on the target location using the

SAR algorithm at a single frequency results in a 2D image of the SUT at that location.

Image quality can be significantly improved by coherently averaging focused data from

several frequencies. Alternatively, 3D SAR images (i.e., holographical images) may

be produced using wideband measured data from the SUT.

The schematic of a SAR imaging system inspecting an SUT in an XYZ-Cartesian

space is given in Fig. 1.1. In this figure, the probe is scanning the SUT where a

stratified medium is assumed. This medium consists of two layers with a relative

permittivity of ε̄r and εr, respectively. The standoff distance between the probe

and the surface of the SUT is Z0. The raster scanner moves along X and Y with

uniform steps. The scanner stops at each (xf , yf) location. The probe then measures

the complex reflection coefficients for each angular frequency ωı, uniformly spaced in

[ωmin, ωmax], with a step size of ∆ω.

rε
rε

Probe

Target
Free-space

0z

X

Y

Z

SUT

Figure 1.1: The schematic of a SAR-based microwave imaging system.

The measured reflection coefficients are denoted f(x, y, ω), with (x, y, ω) taken

from the set Sf = {(xq, yq, ωq)}Nf

q=1, where Nf is the number of uniformly spaced

measurements. To reconstruct the image from the full-set measurements, a phase

adjustment operator I is used to convert the measurement to the ω − k space. The
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ω − k space data is corresponding to the surface of the second layer of the stratified

medium as

F (kx, ky, ω) = I[f(x, y, ω)] = F2D {f(x, y, ω)} exp
[

−jz0
√

(2ω/ν)2 − k2
x − k2

y

]

(1)

where (kx, ky, ω) is also in the set {(kx,q, ky,q, ωq)}Nf

q=1, F2D{·} is the two dimensional

discrete Fourier transform (DFT), ν = c/
√
εr is the wave propagation speed in the

first layer (with c being the propagation speed of light in free-space), and kx-ky (and

kz) are the frequency components in the X-Y (and Z) dimensions, respectively.

Once these measurements have been converted, a forward SAR transform com-

putes the high-resolution, uniformly-spaced volumetric image s(x, y, z) from F (kx, ky, ω)

by the NUFFT-based SAR algorithm [8–10]

s(x, y, z) = F−1
2D

{

F−1
NU {F (kx, ky, ω)}

}

(2)

where F−1
2D {·} is the two dimensional inverse DFT and F−1

NU{·} is the one dimensional

inverse NUFFT along kz. The image s(x, y, z) in (2) is defined on the set of Ns

uniformly sampled locations (x, y, z) ∈ {(xr, yr, zr)}Ns

r=1. It is vectorized as s, where

Ns is the number of SAR image voxels. The forward SAR transform is formulated

into a matrix form as

s = Ωf (3)

where f ∈ C
Nf is the vectorized measurement f(x, y, ω) and Ω ∈ C

Ns×Nf is the

forward SAR transform matrix for the stratified medium, combining the operators I,

F−1
2D {·}, and F−1

NU{·}. Note that the XY-coordinates (xs, ys) in the image space may be
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selected consistently with (xf , yf) in the measurement space. The SAR transform may

also be implemented by other ω − k algorithms, such as the Stolt transform [11–13].

1.2. PROBLEM STATEMENT

Although SAR imaging has tremendous applicability for NDT applications, con-

ventionally it requires a significant amount of time to acquire the coherent reflection

coefficients while scanning the region of interest. This long acquisition time is a result

of the spatial movement of the probe acquiring the reflection coefficients from uniform

spatial points with small step size for high spatial resolution. This acquisition time is

further exasperated when wideband measurements are taken to produce 3D images

(i.e., longer time to also step through the measured frequency band). For example, a

120 mm × 180 mm SUT requires a data acquisition time of approximately 50 minutes

if uniform spacing with a step size of 2 mm is used. For a relatively large SUT, the

data acquisition might require hours of acquisition time. Therefore, it is of practical

interest to reduce the acquisition time.

Reducing the number of spatial samples significantly helps decrease the ac-

quisition time. Spatial sample reduction, however, leads to a reduction in spatial

resolution. Recently, compressed sensing (CS) has been used to reduce the sampling

rate below the Nyquist rate while guaranteeing perfect recovery from sub-Nyquist

measurements if the required conditions are satisfied [14–18]. In this research, we

proposed incorporating compressed sensing theory to significantly reduce the number

of spatial samples needed to produce both 2D and 3D SAR images. This results in a

substantially shorter data acquisition time.

In compressed sensing theory, the sub-Nyquist sampling of a signal is achieved by

utilizing a sparse representation of the signal with an orthogonal basis. Consider signal

f ∈ C
N and its transform coding c with an orthonormal basis Ψ = [ψ1ψ2 . . .ψN ],

such that f = Ψc. If most of the signal’s information is contained within only a few
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elements of the transformed signal c, signal f is called S-sparse in basis Ψ if only S

of its coefficients are significant and the rest (N −S) coefficients are zero. Therefore,

a fixed signal support T of size |T | = S can form an S-sparse signal such that

S = ‖c‖0 (4)

where ‖.‖0 is the ℓ0 pseudo-norm operator and counts the nonzero elements of the

vector of coefficients c.

In compressed sensing, the sparsity of the signal is used to sample the signal

f more efficiently by measuring M < N linear combinations. Let us define the

measurement matrix ΦΩ ∈ RM×N by selecting the rows of a measurement matrix

Φ ∈ RN×N on a set Ω ⊂ {1, 2, · · · , N} with the size |Ω| = M where Φ is modeling the

linear measurement procedure. The linear measurement procedure can be modeled

in matrix form as

y = ΦΩf (5)

where y is the measured signal. The inverse problem involves recovering the original

signal from linear measurements. In general, this inverse problem is underdetermined

with infinite solutions which satisfy (5). In compressed sensing, the sparsity of the

signal is used to find a unique sparse solution for this problem.

Compressed sensing is similar to the decoding procedure in transform coding;

both estimate the signal by applying the inverse of the encoder orthonormal basis Ψ

on the sparse coefficients c supported on set T . CS differs from transform coding as

both the location of support T and the value of the coefficients at these locations cT

are unknown. The only known variable is a sampled linear combination of the signal.

The sparsity of the signal helps solve the system of equations (5) by searching

for the sparsest coefficients c which matches the incomplete measurement signal y.
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By defining both A = ΦΨ and AΩ = ΦΩΨ, this process can be formulated as

min
c∈CN

‖c‖1 subject to y = AΩc. (6)

Convex optimization (6) is guaranteed to recover f with a high probability from

linear measurements if some conditions are satisfied [16]. The minimum number of

linear measurements guaranteeing perfect recovery is related to both the sparsity of

the signal and the coherence between the measurement and sparsifying bases. The

coherence µ(Φ,Ψ) between the measurement matrix Φ and transform matrix Ψ is

defined as

µ(Φ,Ψ) =
√
N max

1≤u,v≤N
|〈φu,ψv〉| . (7)

The coherence is an indication of how correlated the measurement and the sparsifying

bases are.

Three CS approaches are proposed for reconstruction of the wideband microwave

SAR-based imaging systems. The first approach reconstructs a full-set of raw data

from undersampled measurements via L1-norm optimization. It then applies 3D for-

ward SAR on the reconstructed raw data as post-processing to form the 3D SAR im-

age. The second proposed approach employs forward SAR and reverse SAR (R-SAR)

transforms in each L1-norm optimization iteration reconstructing images directly.

The truncation error, along with the SAR and R-SAR transform error, is identified

as a critical obstacle to the convergence of the CS iterative algorithm and the quality

of the reconstructed images. This dissertation proposes a simple, elegant truncation

repair method to combat the truncation error. It utilizes a nonuniform fast Fourier

transform (NUFFT) to reduce the SAR and R-SAR transform errors. The third pro-

posed CS reconstruction algorithm is the adaptive basis selection (ABS) compressed

sensing. Rather than a fixed sparsifying basis, the proposed ABS method adaptively
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selects the best basis from a set of bases in each iteration of the L1-norm optimization

according to a proposed decision metric that is derived from the sparsity of the image

and the coherence between the measurement and sparsifying matrices.

1.3. SUMMARY OF CONTRIBUTIONS

This dissertation addresses the technical challenges of applying compressed sens-

ing on microwave and millimeter wave SAR-based 3D imaging systems. This research

has been presented in two conference papers, one journal publication, and two journal

submissions listed under publications list. The published and expected contributions

include the following:

1. Compressed sensing methodology is successfully applied to a 3D SAR imag-

ing system. Several sets of experiments are performed on different specimens

to evaluate the performance of the CS algorithm. Benefiting from a reduced

number of samples, we propose two scanning procedures, namely nonuniform

raster and optimum path. Our experiments show that a 120 mm × 180 mm

SUT requires data acquisition time of approximately 50 minutes to measure

5551 points if uniform spacing is used with step size of 2 mm. In contrast, our

proposed CS technique measuring 20% of random spatial points uniformly se-

lected from the full dataset requires only 17 minutes of scanning and achieving

comparable quality as the one obtained using the full dataset.

2. A new compressed sensing image reconstruction method is proposed for high-

resolution wideband 3D SAR imaging systems. In contrast to existing CS SAR

methods that employ only a forward SAR transform in pre- or post-processing,

the proposed method employs both forward SAR and reverse SAR (R-SAR)

transforms in each CS iteration to improve the quality of reconstructed images.

The truncation error, along with both the SAR and R-SAR transform error, is
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identified as a critical obstacle to the convergence of the CS iterative algorithm

and the quality of the reconstructed images. This study proposes a simple and

elegant truncation repair method to combat the truncation error. It utilizes

NUFFT to reduce both the SAR and R-SAR transform errors. The proposed

CS SAR method is applied to microwave and millimeter wave imaging systems

for the nondestructive evaluation of materials embedded in stratified media.

The results of the CS reconstructed images show that the proposed method

improves the quality of the final SAR images. Also, it reduces the background

artifacts in comparison with the images reconstructed from the original fully

sampled measurements.

3. In this research, the adaptive basis selection (ABS) compressed sensing method

is proposed. In contrast to conventional compressed sensing with fixed spar-

sifying basis, the proposed ABS method adapts the basis to the image as the

image evolves during the algorithm iterations. In this method, the sparsifying

basis is selected from a set of bases based on information from incomplete mea-

surements without any a priori knowledge of a proper basis. The algorithm

benefits from the ability to search through a diverse set of bases for unknown

signals. A decision metric is introduced based on both the sparsity of the image

and the coherence between the measurement and sparsifying matrices. This

decision metric makes the adapting process possible for practical applications.

The results of our experiments show that the proposed algorithm is capable of

recovering 2D SAR images very well without compromising the complexity of

the recovery process. Additionally, the algorithm indicates promising results

for k-space imaging techniques.

4. The proposed compressed sensing method for random sample reduction is both

qualitatively and quantitatively compared with conventional nonuniform fast
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Fourier transform (NUFFT) undersampling method. The results of our study

show that CS-based undersampling significantly improves the quality of 3D SAR

images. Solving the ℓ1 norm minimization for CS, however, increases the overall

complexity of SAR image reconstruction. Therefore, the SAR image quality

improvement using CS is with the cost of higher computational complexity.
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PAPER

I. IMPROVING EFFICIENCY OF MICROWAVE WIDEBAND

IMAGING USING COMPRESSED SENSING TECHNIQUES

Hamed Kajbaf, Yahong Rosa Zheng, and Reza Zoughi

ABSTRACT—A compressed sensing (CS) technique is developed for wideband mi-

crowave synthetic aperture radar (SAR) imaging techniques, particularly suitable

for nondestructive testing applications. This technique helps to significantly reduce

the number of spatial measurement points and consequently the acquisition time by

sampling at lower than the Nyquist-Shannon rate. The reduced measurement data

are processed to reconstruct SAR images via basis pursuit and orthogonal matching

pursuit using discrete cosine transform sparse representation. Benefiting from a re-

duced number of samples, we propose two scanning procedures, namely; nonuniform

raster and optimum path. Two sets of experiments are conducted to show the per-

formance of the proposed method. The first set of experiments is performed on a

120mm× 180mm area with thin rubber and copper patches placed on foam posts in

the 18 GHz to 26.5 GHz frequency band (K-band) using conventional raster scanning

and the proposed CS sampling methods. Conventional raster scanning with step size

of 2 mm requires 2947 seconds to measure the 5551 points. In contrast, the proposed

CS technique measuring 20% of random spatial points uniformly selected from the

full dataset requires only 1020 seconds of scanning and achieves comparable quality

as the one obtained using the full dataset. Another set of experiments is performed

on corrosion under paint sample. The results of this experiment show that we can

detect the corrosion very well by measuring only 20% of the full dataset. This paper

describes the CS algorithm as well as the measurement technique and the obtained

results.
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1. INTRODUCTION

Microwave nondestructive testing (NDT) techniques have shown tremendous po-

tential for inspecting and evaluating a wide range of non-conducting (i.e., dielectric)

materials and composites [2]. These techniques are varied and may be implemented in

many different ways depending on the type of indication, properties of the structure,

desired measurement resolution, etc. Incorporation of imaging techniques gives vi-

sual information that may also be analyzed for property characterization. To this end,

microwave synthetic aperture radar (SAR) imaging techniques have shown great po-

tential for a variety of NDT applications involving the detection of discontinuities and

defects in many critical structures [1, 3–6]. Conventionally, microwave SAR images

are produced by raster scanning the measurement probe (commonly an open-ended

waveguide) over the specimen under test (SUT), with uniform spatial step size, while

coherent (magnitude and phase) reflection coefficient data is collected. Subsequently,

using a robust SAR algorithm, 2D or 3D SAR images of the SUT are produced. Fo-

cusing on the target location using a SAR algorithm at a single frequency results in a

2D image of the SUT at that location. Image quality can be significantly improved by

coherently averaging focused data from several frequencies. Alternatively, 3D SAR

images (i.e., holographical images) may be produced using wideband measured data

from the SUT. The schematic of a SAR imaging system, which uniformly raster scans

a composite structure is shown in Figure 1. Although SAR imaging has tremendous

applicability for NDT applications, it conventionally requires a significant amount of

time to acquire the coherent reflection data. This is further exasperated when wide-

band measurements are conducted for producing 3D images (i.e., longer time to also

step through the measured frequency band).

In this paper we propose incorporating compressed sensing (CS) methodology

to significantly reduce the number of spatial samples that is needed to produce 2D
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and 3D SAR images, resulting in a substantially shorter data acquisition time. In

addition, the implementation of nonuniform and optimum path raster scanning can

further aid in reducing this time. Finally, basis pursuit (BP) and stagewise orthogonal

matching pursuit (StOMP) methods are used to recover the data from the nonuni-

form/random measurements [14, 19]. To illustrate the performance of the proposed

methods, two sets of experimental tests are performed on two different samples. The

first sample consists of small rubber and copper patches placed on construction foam

posts producing a SUT with three dimensional geometrical variations. Subsequently,

the performance of CS on 2D and 3D SAR imaging on this sample is qualitatively

and quantitatively compared to show that the proposed method reduces the acquisi-

tion time significantly without compromising of the quality of the images. The other

sample consists of a painted steel panel with a localized area of corrosion under the

paint. The imaging results for this sample shows the performance of the proposed

method for real world application of microwave SAR imaging.

Figure 1: Schematic of synthetic aperture radar system imaging a flaw inside a com-
posite using uniform raster scanning.
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2. EXPERIMENTAL PROCEDURE

In the conventional uniform raster scanning approach for imaging the SUTs,

the probe starts movement from point (x0, y0) and scans the scene with uniform step

size by stopping at each (xa, xb) location to acquire the data. By incorporating the

CS methodology, we are capable of scanning the same scene with a far less amount

of measured data using nonuniform/random measurements and reconstructing the

missing data using BP or OMP methods. This results in the number of measured data

samples being much less than the uniformly sampled data (typically 70 to 80 percent

less, as shown in this paper). In this paper we propose two scanning procedures called

nonuniform raster (NUR) and optimum path (OptP) scanning which take advantage

of undersampled measurements to significantly reduce the required time for scanning

the SUTs. In both methods the probe acquires the data at random locations, which

are designed and modeled by the measurement matrix, Φ, which will be introduced

in the Compressed Sensing for SAR Imaging section. In nonuniform raster scanning,

the measurement probe follows the raster path and stops only at random locations

that are determined in advance. On the other hand, the optimum path method uses a

genetic algorithm (GA) to find the shortest traveled distance by solving the ”travelling

salesman” problem. Using this approach further decreases the total scanning time

and reduces the number of needed measurement points. Figure 2 shows the NUR

along X, NUR along Y, and OptP scanning procedures for a 120mm × 180mm scan

area with step size of multiples of 2 mm. For better illustration, in this figure, we

have only shown the path for acquiring only 5% of the needed measurement points.

An experimental setup is prepared to verify the performance of the proposed

method. The SUT consists of eight thin rubber (Rbr) patches and one thin copper

(Cu) patch placed on construction foam substrates with different heights, as shown

in Figure 3a (sample 1). The top view and side view schematics of the sample are
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shown in Figure 3b and Figure 3c, respectively. The imaging probe is a K-band

open-ended waveguide, with an aperture dimension of 4.32 mm by 10.67 mm, located

at 28 mm above the tallest target along the Z-axis. Since the sample substrate is

located at 104 mm below the probe aperture (maximum range), the maximum fre-

quency step size to image this scene is ∆f = c/(4Rmax) = 0.7 GHz [13]. In our

experiments, the measurements are performed using a swept-frequency approach [5],

covering a range from 18 GHz to 26.5 GHz (K-band) with a frequency step size of 0.6

GHz. An area of 120mm× 180mm is scanned and the calibrated coherent reflections

are received by the same probe. Subsequently, the baseband complex-valued reflec-

tion coefficients are measured and recorded by an HP8510C vector network analyzer.

The scanning platform is programmed and controlled by a PC through a National

Instrument PCI-6254 data acquisition (DAQ) card. A LabVIEW program is used

to perform the scan over the desired area by uniform raster, nonuniform raster, or

optimum path scanning procedures. The LabVIEW program also performs the re-

quired synchronization between the scanner and the network analyzer. Finally, the

acquired data is processed by CS processors to reconstruct the missing (or not mea-

sured) data and SAR processors are used to form the 2D or 3D images, respectively.

3. 2D AND 3D SAR IMAGING

Consider the antenna probe located at (x′, y′, z0) transmitting a single frequency

signal and illuminating a target. A general point, (x, y, z), on the target reflects back

the signal with round trip delay. The distance between the probe and the target

point, R is then given by

R =
√

(x− x′)2 + (y − y′)2 + (z − z0)2. (1)
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The same probe acquires the backscattered microwave coherent reflection coefficients

f(x′, y′) which is the superposition of microwave reflections from all points in the

illuminated area

f(x′, y′) =

∫∫

s(x, y)e−jkR dx dy (2)

where k = ω
c
is the wavenumber with ω being the temporal angular frequency and c

the propagation speed. s(x, y) is the 2D SAR image and is defined as the reflectivity

function of the target, which is the ratio of the reflected to the incident field.

After decomposing the propagating spherical waves into superposition of sev-

eral plane wave components, dropping the distinction between primed and unprimed

coordinates, and solving for s(x, y) we have [13]

s(x, y) = F−1
2D

{

F2D {f(x, y)} e−j
√

4k2−k2x−k2yz0
}

(3)

where kx and ky are the Fourier transform variables corresponding to x and y, respec-

tively, z0 is the standoff distance of the probe which is the distance between the probe
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Figure 2: Scan path for 5% of the spatial points (red dots are measurement points
and blue lines are traveled path by the probe) (a) nonuniform raster scan along X,
(b) nonuniform raster scan along Y, (c) optimum scan.
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aperture and the targets, and F2D{.} and F−1
2D {.} denote the 2D Fourier transform

and the 2D inverse Fourier transform, respectively [13]. To improve the quality of an

image, we measure the reflection coefficients, f(x′, y′, ω) , for a range of frequencies,

as mentioned earlier. Then, we average over all focused images, s(x, y, ωm, zn) , for

(a)

(b) (c)

Figure 3: Photo and schematic of sample 1 (a) photo, (b) top view schematic, (c)
side view schematic (unit in figures is mm).
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different distances of the probe to the targets, zn

s(x, y, zn) =
1

Nω

Nω
∑

N=1

s(x, y, ωm, zn) (4)

where Nω is the number of measured frequency points.

Expanding (2) to the case of wideband measurements we have

s(x, y, z) = F−1
3D

{

F2D {f(x, y, ω)} e−j
√

4k2−k2x−k2yz0
}

. (5)

where s(x, y, z) is the 3D SAR image of the SUT and F−1
3D is the 3D inverse Fourier

transform.

The temporal angular frequency, ω, is uniformly sampled in the frequency

band and the probe scans at uniform spatial step size. Consequently, the Kz’s are

nonuniformly distributed and Stolt interpolation is usually used to achieve uniform

Kz’s [9, 12, 13, 20]. Alternatively, the nonuniform fast Fourier transform (NUFFT)

can be exploited to improve the performance and accuracy of SAR imaging since

it is a good approximation of the nonuniform discrete Fourier transform [8, 21–24].

Therefore, (5) becomes

s(x, y, z) = F−1
2D

{

F−1
NU

{

F2D {f(x, y, ω)} e−j
√

4k2−k2x−k2yz0
}}

. (6)

where F−1
NU{.} is the one dimensional inverse NUFFT operator in the kz domain.

4. COMPRESSED SENSING FOR SAR IMAGING

Modern digital signal processing technology is based on the well-known Nyquist-

Shannon sampling theorem, which states that the sampling rate must be at least

twice the maximum frequency present in a band-limited signal for perfect recovery.
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In practice, acquiring the signal with the Nyquist rate might be time-consuming,

expensive, or inefficient. A better approach to acquire a signal is to measure it with

the rate of its sparsity (i.e., information contained in the signal) rather than the rate

of changes. Here, sparsity means that a few of the coefficients in the sparse domain are

significant and the rest of them are zero or very close to zero. Recently, a theory called

compressed sensing (CS) was developed to help data acquisition hardware measure

the signal with the rate of sparsity [17, 18, 25–27].

Suppose that we need to measure the reflection coefficients, f(x, y, ω), vectorized

in a vector of reflection coefficients, f , by uniform raster scanning of a specimen under

test. Consider an orthonormal basis

Ψ = [ψ1,ψ2, · · · ,ψN ] (7)

consisting of the N × 1 vectors ψu vectors as bases. The signal, f , can be expanded

in this basis as

f = Ψc (8)

where c is vector of atoms

cr = 〈f ,ψu〉 = ψH
u f (9)

and (.)H denoting conjugate transpose. The signal f is called S-sparse if it can be

represented by S most significant cr coefficients. In this paper the 2D discrete cosine

transform (DCT) is used as the sparsifying transform for the 2D SAR imaging and

the 3D discrete cosine transform is used for wideband measurements to form the 3D

images.
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We designed an M × N linear measurement matrix Φ with M < N to under-

sample f . This matrix is designed to have a “one” randomly placed in each row with

the rest of elements being zero. The ones are uniformly distributed according to the

corresponding (x, y) probe location. This means the measurement probe only stops

at a fractional number of (x, y) points that are required by full sampling of conven-

tional methods. For each selected location, we use all of the frequency points in f

because reducing the number of frequency points does not save measurement time

but complicates the data acquisition control and increases the complexity of image

reconstruction. The measurement and sparsifying procedure can then be modeled as

y = Φf = ΦΨc = Ac (10)

where y is the undersampled measured signal and A = ΦΨ is the measurement and

sparsifying matrix together.

Now the problem is to solve the underdetermined system of equations (10)

for c. Using (8) we can find the original signal f . In general an underdetermined

system of equations has infinite solutions, but if S ≪ N , Ψ and Φ are incoherent,

and matrix A has restricted isometry property (RIP) we can find f perfectly [17].

This can be done through a range of techniques from linear programming to greedy

algorithms. In this paper we use two recovery techniques: basis pursuit (BP) [19]

and orthogonal matching pursuit (OMP) [14]. BP is a linear programming algorithm

which minimizes the ℓ1 norm of coefficients c with the constraint that the solution

matches the undersampled measurements

min
c∈CN

‖c‖1 subject to y = Ac (11)

where ‖.‖1 denotes the ℓ1 norm and is defined as the sum of absolute values. It is

shown that if c is sparse; the minimization (11) recovers the signal f with very high
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probability. The probability of the recovery is directly related to the sparsity of c

and to the coherence µ(Ψ,Φ) between Ψ and Φ defined as

µ(Ψ,Φ) =
√
N max

1≤u,v≤N
|〈ψu,φv〉| (12)

where ψu and φv are the columns of Ψ and Φ , respectively. The probability of

recovery increases, if sparsity S and coherence µ decrease at the same time [17]. In

this paper we use alternating direction method (ADM) to solve the dual of the ℓ1 norm

minimization (11) by minimizing the augmented Lagrangian of the problem [28]. On

the other hand OMP methods are greedy algorithms which try to find an approximate

sparse solution of y = Ac iteratively. OMP methods usually have significantly lower

computational complexity than BP, but typically need more signal samples to achieve

the BP performance. In this paper we use stagewise orthogonal matching pursuit

(StOMP). This method builds up a sequence of approximates of sparse solution c

by removing detected structure from a sequence of residual vectors through a hard

thresholding scheme [14]. Two thresholding strategies are used in this paper based on

constant false alarm rate (CFAR) and constant false discovery rate (CFDR). After the

CS algorithm reconstructs the full data vector f from undersampled measurements,

the SAR image is formed via (5).

5. EXPERIMENTAL RESULTS AND DISCUSSIONS

5.1. 2D EXPERIMENTS

Specimen 1 is imaged by the 2D SAR technique using the full dataset with

uniform raster scanning procedure. Then, the same SUT is scanned using 30% and

20% random spatial points. The undersampled measurements are recovered using
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basis pursuit and stagewise orthogonal matching pursuit. The thresholding strategy

for 2D imaging is CFDR. For this data CFAR does not converge especially for lower

percentages. The resulting 2D images for the full dataset, 30%, and 20% random

measurements are shown in Figure 4. This figure shows the SAR images focused on

three different levels of the targets and images from substrate level. Since the recovery

technique is independent of scanning procedure the images of nonuniform raster and

optimum path scanning are exactly the same and are not shown here. This is while

the scan time of the optimum path method is substantially less than the nonuniform

raster scan for these percentages of data.

5.2. 3D EXPERIMENTS

The same specimen is imaged by the 3D SAR technique. Thirty percent and

20% random measurements are recovered by BP and StOMP techniques. For StOMP

method, CFAR thresholding converges very well for data percentages below 60%.

For larger data percentages, we need to switch to the CFDR thresholding strategy

in order to achieve good convergence. This is due to different behavior of the two

thresholding strategies as CFAR attempts to control the total number of false alarms

and CFDR attempts to maintain the number of false discoveries below a fixed fraction

of all discoveries. The resulting volumetric images of the full dataset, 30%, and 20%

random measurements are shown in Figure 5. To see the details of the 3D images,

slices of the images are shown in Figure 6. This figure shows the slices from three

different levels of the targets and one slice from substrate level which has very low

power.

5.3. FIGURES OF MERIT

Each data recovery method is evaluated in terms of image quality and compu-

tational complexity. Five metrics are defined to evaluate the image quality. The first
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(a) Original, z = −28 (b) BP, 30%, z = −28 (c) BP, 20%, z = −28 (d) OMP, 30%,z = −28 (e) OMP, 20%, z = −28

(f) Original, z = −46 (g) BP, 30%, z = −46 (h) BP, 20%, z = −46 (i) OMP, 30%, z = −46 (j) OMP, 20%, z = −46

(k) Original, z = −67 (l) BP, 30%, z = −67 (m) BP, 20%, z = −67 (n) OMP, 30%,z = −67 (o) OMP, 20%, z = −67

(p) Original, z = −104 (q) BP, 30%, z = −104 (r) BP, 20%, z = −104 (s) OMP, 30%,z =
−104

(t) OMP, 20%, z =
−104

Figure 4: 2D SAR images of sample 1 from full-set data, 30%, and 20%random points
reconstructed by BP and OMP (CFDR).
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metric is the normalized root mean squared (NRMS) error of the reflection coefficients

that is the Euclidean distance between the full-set data and the estimated one

ǫf =
∥

∥

∥
f − f̃

∥

∥

∥

2
/ ‖f‖2 (13)

where ‖.‖2 is the ℓ2 norm operator, f is the vectorized full-set reflection coefficients,

and f̃ is the vectorized estimated reflection coefficients from incomplete data. The

second metric is the NRMS of the SAR images

ǫs = ‖s− s̃‖2 / ‖s‖2 (14)

(a)

(b) (c)

(d) (e)

Figure 5: 3D SAR images of sample 1 (a) full-set data, (b) 30% random points using
BP, (c) 30% random points using OMP (CFAR), (d) 20% random points using BP,
(e) 20% random points using OMP (CFAR).
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(a) Original, z = −28 (b) BP, 30%, z = −28 (c) BP, 20%, z = −28 (d) OMP, 30%, z = −28 (e) OMP, 20%, z = −28

(f) Original, z = −46 (g) BP, 30%, z = −46 (h) BP, 20%, z = −46 (i) OMP, 30%, z = −46 (j) OMP, 20%, z = −46

(k) Original, z = −67 (l) BP, 30%, z = −67 (m) BP, 20%, z = −67 (n) OMP, 30%, z = −67 (o) OMP, 20%, z = −67

(p) Original, z = −104 (q) BP, 30%, z = −104 (r) BP, 20%, z = −104 (s) OMP, 30%,z = −104 (t) OMP, 20%,z = −104

Figure 6: Slices of 3D SAR images of sample 1 from full-set data, 30%, and 20%
random points reconstructed by BP and OMP (CFAR).
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where s is the vectorized full-set image and s̃ is the vectorized image from incomplete

data.

The third, fourth, and fifth metrics each quantify the SAR image from incom-

plete data in comparison to itself in terms of two types of contrast and signal-to-noise

ratio (SNR). The contrast definitions used are Weber and root mean squared (RMS)

contrasts. Weber contrast is usually used in cases where small targets are presented

on a wide uniform background and is defined as the normalized difference between

target and background intensity

Cω = |st − sb| /sb (15)

where st is the target intensity and sb is the plain background intensity [29]. On the

other hand, RMS contrast does not use the spatial distribution of contrast since it is

defined as the standard deviation of voxels intensity

Crms =

[

1

n− 1

n
∑

i=1

(si − s̄)

]1/2

(16)

where si is the intensity of each voxel , s̄ is the mean of voxels intensity, and n is the

number of voxels in the image. SNR is the last metric utilized. It is defined as the

ratio of the target intensity to background noise intensity in dB scale

SNR = 20 log10

[

smax − smin

σs

]

(17)

where σs is the standard deviation of the image. The defined metrics are calculated

for 2D and 3D SAR images. Figure 7 shows these metrics for 2D and 3D images for

different recovery techniques.

The two approaches are also compared in terms of computational complexity

and time required to estimate the image. The data processing is performed on a
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 7: Figures of merit for SAR images of sample 1 (a) NRMS error of the raw
data (2D), (b) NRMS error of the raw data (3D), (c) NRMS error of images (2D),
(d) NRMS error of images (3D), (e) SNR of images (2D), (f) SNR of images (3D), (g)
Weber contrast of images (2D), (h) Weber contrast of images (3D), (i) RMS contrast
of images (2D), RMS contrast of images (3D).
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personal computer with an Intel Core 2 Duo 3.33 GHz CPU and 8 GB Ram. For

different percentages of data, Figure 8a-d illustrates the number of iterations and

CPU time needed for data recovery for 2D and 3D SAR imaging. It can be seen that

StOMP needs much fewer iterations than BP and recovers the data faster.

The scanning procedures performance is evaluated based on the time needed for

scanning the whole SUT. Figure 8e illustrates the traveled distance by the scanner to

scan the scene for different percentages of data. It also shows the traveled distance

(a) (b)

(c) (d)

(e) (f)

Figure 8: CS processor and scanner performance for sample 1 (a) number of iterations
for 2D imaging, (b) number of iterations for 3D imaging, (c) CPU time for 2D imaging,
(d) CPU time for 3D imaging, (e) traveled distance by the probe, (f) total scan time
(NUR is along X).
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which is reduced by incorporating the proposed scanning procedures. Figure 8f shows

the scan time and the corresponding saved time for different percentages of data. It

can be seen that scan time is reduced from 2947 seconds to 1020 seconds for 20% of

measurement points using optimum path scanning. Because of hardware limitations,

the measurement probe could not move diagonally and was limited to movement along

x and y directions. Assuming that the probe could move diagonally, the acquisition

time would have been reduced to as low as 722 seconds for 20% of measurement

points.

5.4. CORROSION UNDER PAINT EXPERIMENT

To show the practical application of the proposed method two additional ex-

periments are conducted on a corrosion under paint sample (sample 2). Figure 9a

shows a steel sheet with a 40mm×40mm area of corrosion in it. The thickness of the

corrosion layer is measured to be approximately 0.08 mm. This sample has a paint

thickness of 0.60 mm of common spray paint, sprayed as uniformly as possible, as

shown in Figure 9b. A complete description of the specimen can be found in [30].

The sample is measured at 18 GHz to 26.5 GHz with frequency step size of 0.6 GHz

using an open-ended waveguide probe. The first experiment is conducted at a stand-

off distance of 1 mm while the second experiment is performed at standoff distance

of 32 mm.

An 80mm×80mm area of the specimen is scanned with uniform raster, nonuni-

form raster, and optimum path procedures with a step size of multiples of 2 mm.

Figure 9c-g show the 2D SAR images of both full and reconstructed from undersam-

pled datasets for a standoff distance of 1 mm. Figure 9h-l show the same results for

a standoff distance of 32 mm. It can be seen that basis pursuit with 2D DCT sparse

representation has recovered the images very will even with 20% of data points. The

uniform raster scan took 1029 seconds for this specimen. Measuring 30% of this data
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takes 446 seconds and 460 seconds using nonuniform raster and optimum path, re-

spectively. For 20% of the data, nonuniform raster and optimum path took 364 and

290 seconds, respectively.

(a) (b)

(c) Original, z = −1 (d) BP, 30%, z = −1 (e) BP, 20%, z = −1 (f) OMP, 30%, z = −1 (g) OMP, 20%, z = −1

(h) Original, z = −32 (i) BP, 30%, z = −32 (j) BP, 20%, z = −32 (k) OMP, 30%, z = −32 (l) OMP, 20%, z = −32

Figure 9: Corrosion under paint experiment (sample 2) (a) photo of the sample before
paint, (b) photo of the specimen after paint, (c)-(g) 2D SAR images for probe standoff
distance of 1 mm of full-set data, 30%, and 20% random points reconstructed by BP
and OMP (CFDR), (h)-(l) 2D SAR images for probe standoff distance of 32 mm of
full-set data, 30%, and 20% random points reconstructed by BP and OMP (CFDR).
Figure 9a is reproduced from: Research in Nondestructive Evaluation, Vol. 9, No. 4,
1997, pp. 201-212, copyright American Society for Nondestructive Testing, 1997.
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6. CONCLUSION

The results of experimental tests show that compressed sensing can be suc-

cessfully applied to 2D and 3D microwave SAR imaging for nondestructive testing

applications. Using the proposed methods, we can significantly reduce the acquisi-

tion time and keep the computational complexity of the post processing low while

producing very similar images. Due to truncation errors occurring in each iteration

of data recovery, the 3D SAR sparse representation failed to converge. In the future,

we plan to address this issue by reducing the effect of truncation error to produce

high-quality 3D images from undersampled measurements.
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II. COMPRESSED SENSING FOR SAR-BASED WIDEBAND 3D

MICROWAVE IMAGING SYSTEM USING NONUNIFORM FFT

Hamed Kajbaf, Joseph T. Case, Zengli Yang, and Yahong Rosa Zheng

ABSTRACT—A new compressed sensing (CS) image reconstruction method is pro-

posed for high-resolution wideband 3D synthetic aperture radar (SAR) imaging sys-

tems. In contrast to existing CS SAR methods that employ only a forward SAR

transform in pre- or post-processing, the proposed method employs both forward

SAR and reverse SAR (R-SAR) transforms in each CS iteration to improve the qual-

ity of reconstructed images. The truncation error, along with the SAR and R-SAR

transform error, is identified as a critical obstacle to the convergence of the CS it-

erative algorithm and the quality of the reconstructed images. This paper proposes

a simple and elegant truncation repair method to combat the truncation error and

utilizes the nonuniform fast Fourier transform (NUFFT) to reduce the SAR and R-

SAR transform errors. The proposed CS SAR method is applied to microwave and

millimeter wave imaging systems for nondestructive evaluation of materials embed-

ded in stratified media. Three different specimens under test (SUTs) are randomly

under-sampled with 20% or 30% spatial points to show the efficacy of the proposed

method. The results of the CS reconstructed images show that the proposed method

improves the quality of the final SAR images and reduces the background artifacts in

comparison with the images reconstructed from the original fully sampled measure-

ments.

1. INTRODUCTION

Wideband 3D synthetic aperture radar (SAR) imaging systems have been suc-

cessfully developed for nondestructive evaluation (NDE) of materials and structures
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[1, 5]. These systems employ wideband microwave or millimeter waves to raster scan

targets that are placed in air (free-space) or embedded in a dielectric medium. Then,

the wideband complex reflection coefficients are measured by the same antenna probe

and high-resolution volumetric images are reconstructed from the measurements via

the SAR transform. With a frequency bandwidth of several tens of GHz and the

step size of raster scanner on the order of a millimeter, the 3D imaging systems can

achieve resolution on the order of a millimeter and enable detection and quantification

of small flaws or targets in a specimen under test (SUT). Therefore, the wideband

3D imaging systems have found important applications to nondestructive testing and

evaluation of industrial materials.

Unfortunately, high spatial resolution requires a small step size of the raster

scanner and thus the data acquisition time can be relatively long for large SUTs. For

example, a SUT of size 120 mm × 180 mm requires data acquisition time of about

50 minutes if uniform spacing is used with step a size of 2 mm. Therefore, it is of

practical interest to reduce the number of required spatial samples and consequently

reduce the acquisition time.

Recently, compressed sensing (CS) has been used to reduce the sampling rate

below the Nyquist rate while guaranteeing perfect recovery from sub-Nyquist mea-

surements if the required conditions are satisfied [14, 16, 18]. Compressed sensing

techniques have been successfully applied to Magnetic Resonance Imaging (MRI)

and radar systems by using ℓ1 norm optimization algorithms for image reconstruc-

tion. Specifically for 3D SAR-based radar imaging systems, several approaches have

been proposed in the literature. In [31], the ω-k algorithm with Stolt interpolation is

used first to convert the raw measurement into images as a preprocessing step. Then,

an iterative recovery algorithm is applied to the incomplete SAR images to reconstruct

the full images. This method benefits from the low complexity of Stolt interpolation

and reduces the overall complexity of the algorithm. On the other hand, [32] uses the
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forward SAR and reverse SAR (R-SAR) transforms in each iteration of the CS recov-

ery algorithm along with total variation (TV) penalty. The ω-k algorithm with Stolt

interpolation is employed in both SAR and R-SAR to enforce the convergence of the

CS iterative algorithm by exploiting TV penalty. In [22], CS is applied to incomplete

measurements without SAR transform to yield an estimate of the full measurement

domain data first. Then, the ω-k algorithm using nonuniform fast Fourier transform

(NUFFT) is used as postprocessing to transform the recovered measurement domain

data to 3D SAR images. In all the three methods, the CS algorithm uses sparse repre-

sentation of measurements or images in a well-known orthogonal basis such as discrete

Fourier transform (DFT), discrete cosine transform (DCT), etc. While these methods

have been shown to recover images with good quality, artifacts are often seen in the

CS recovered images in comparison with those created from full-set measurements.

In this paper, we propose a new 3D CS imaging reconstruction method that

utilizes the accurate NUFFT and inverse NUFFT algorithms in both reverse SAR

(R-SAR) and forward SAR in each CS iteration. Although the NUFFT-based SAR

algorithms have been shown to achieve higher accuracy with slightly higher compu-

tational complexity than the Stolt interpolation [8–10, 33], we discover that utilizing

both NUFFT and inverse NUFFT in each CS iteration results in significant errors

due to an inherent truncation window applied in the inverse NUFFT of the forward

SAR. If not compensated, the error is accumulated via NUFFT in the reverse SAR

in each iteration of the CS, and it results in non-convergence of the CS algorithm

for reconstruction of high resolution volumetric images. Therefore, we propose a new

truncation repair algorithm that deconvolves the windowing effect in the R-SAR, thus

drastically reducing the truncation error. The proposed CS algorithm can enhance

the quality of recovered images by reducing artifacts without using TV penalty, so

that weak, small targets can also be well preserved.
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The proposed CS image reconstruction algorithm is also capable of recovering

SAR images from incomplete measurements for targets in stratified media that have

different propagation velocities (ν̄ and ν). A forward-reverse referencing scheme is

proposed to convert the incomplete measurement data and R-SAR transformed data

to the second medium where the targets reside. The referencing scheme is applied in

combination with the proposed CS image reconstruction algorithms. Several experi-

mental tests are conducted for three different SUTs to demonstrate the efficacy of the

proposed method. The first specimen consists of nine small rubber pads embedded in

layers of construction foam. The second specimen consists of small rubber pads em-

bedded in dry sand at different heights, which is an example of a stratified structure.

The third specimen consists of steel rebar in cement-based mortar laid parallel to the

measurement plane, which is a stratified structure similar to the second specimen but

with embedded targets not sparse in the image domain. The raster scanner randomly

samples 20% or 30% spatial points with uniform-spaced frequency points. The under-

sampled measured data are reconstructed into 3D images using the proposed method.

It is worth noting that randomly undersampled frequency points may also be used

in the measurements. However, reduction in the number of frequency points affects

acquisition time very little. Therefore, we choose uniform sampling in the frequency

domain. The results of the experiments show that the proposed algorithm is capable

of recovering high quality images from incomplete measurements.

2. CS ALGORITHMS FOR 3D SAR

Consider a wideband 3D SAR imaging system inspecting an SUT in an XYZ-

Cartesian space, as shown in Fig. 1, where a stratified medium is assumed, that

consists of two layers with relative permittivity of ε̄r and εr, respectively. In our

experiments, the second layer of the medium is backed by free-space. For full-set
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measurements and without CS, the microwave probe, mounted on a raster scanner,

stops at all points on a uniform grid of (xf , yf) and performs stepped frequency

reflection coefficient measurements with angular frequencies ωı uniformly spaced in

[ωmin, ωmax] with step size of ∆ω. Meanwhile, the reflection from the SUT is measured

by the probe and the received complex measurements (i.e. magnitude and phase) are

denoted f(x, y, ω) with (x, y, ω) taken from the set Sf = {(xq, yq, ωq)}Nf

q=1, where Nf

is the number of uniformly spaced measurements. To reconstruct the image from

the full-set measurements, a phase adjustment operator I is used to convert the

measurement to the ω − k space corresponding to the surface of the second layer of

the stratified medium as

F (kx, ky, ω) = I[f(x, y, ω)] = F2D {f(x, y, ω)} exp
[

−jz0
√

(2ω/ν)2 − k2
x − k2

y

]

(1)

where (kx, ky, ω) is also in the set {(kx,q, ky,q, ωq)}Nf

q=1, F2D{·} is the two dimensional

discrete Fourier transform (DFT), ν = c/
√
εr is the wave propagation speed in the

first layer with c being the propagation speed of light in free-space, and kx-ky (and

kz) are the frequency components in the X-Y (and Z) dimensions, respectively.

rε
rε

Probe

Target
Free-space

0z

X

Y

Z

SUT

Figure 1: The schematic of a SAR-based microwave imaging system.
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Then, a forward SAR transform computes the high-resolution, uniformly-spaced

volumetric image s(x, y, z) from F (kx, ky, ω) by the NUFFT-based SAR algorithm

[8–10]

s(x, y, z) = F−1
2D

{

F−1
NU {F (kx, ky, ω)}

}

(2)

where F−1
2D {·} is the two dimensional inverse DFT, and F−1

NU{·} is the one dimensional

inverse NUFFT along kz. The image s(x, y, z) in (2) is defined on the set of Ns

uniformly sampled locations (x, y, z) ∈ {(xr, yr, zr)}Ns

r=1 and is vectorized as s, where

Ns is the number of SAR image voxels. The forward SAR transform is formulated in

matrix form as

s = Ωf (3)

where f ∈ CNf is the vectorized measurement f(x, y, ω), and Ω ∈ CNs×Nf is the

forward SAR transform matrix for the stratified medium combining the operators I,

F−1
2D {·}, and F−1

NU{·}. The approximate matrix formulation of Ω is detailed in the

Appendix. Note that the XY-coordinates (xs, ys) in the image space may be selected

consistently with (xf , yf) in the measurement space and the SAR transform may also

be implemented by other ω − k algorithms such as the Stolt transform [11–13].

To apply CS to the 3D imaging system, the probe stops at undersampled random

points on the XY-plane and the measured signal vector becomes y = Φf , where Φ

is an Ny × Nf linear undersampling measurement matrix with Ny < Nf . Each row

of Φ contains all zeros but only one element with value one. Ny is the number of

undersampled measurements y. The ones in Φ are uniformly distributed along the

columns corresponding to the selected random probing points on the XY-plane. For

each selected probing point, we use all equi-spaced angular frequencies because the

vector network analyzer used in the imaging system sweeps the frequency very fast
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and reducing frequency points does not save acquisition time. An optimal path may

be designed for the raster scanner with the Traveling Salesman Algorithm (TSA) and

an example path with 5% randomly selected points is shown in Fig. 2, where the lines

show the path of the probe and the dots are the selected random sampling points in

the XY plane. Figures 2a and 2b show the optimal path and nonuniform raster scan

for a 120 × 180 scan area. Our experiments show that by random undersampling

and using the optimum scanning method, we can reduce the acquisition time from

50 minutes for full-set measurement to 17 minutes for a typical random sampling of

20% of spatial points.

To reconstruct the image s from the undersampled measurement signal y, we

use the ℓ1 norm CS approach

min
s∈CNs

‖Ψs‖1 subject to y = ΦΩ−1s (4)

where ‖ · ‖1 denotes ℓ1 norm, Ψ is the sparsifying transform and Ns is the number of

voxels in the 3D image s.
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Figure 2: Optimal path vs. raster scanning path for 5% random undersampling.
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Adding a total variation (TV) penalty, (4) can be solved by minimizing the cost

function

J (s) = λℓ ‖Ψs‖1 + λtTV(s) +
∥

∥y −ΦΩ−1s
∥

∥

2

2
(5)

where ‖ · ‖2 denotes ℓ2 norm and the λℓ and λt are weighting factors to determine

the penalty on the ℓ1 norm and TV, respectively. The operator Ω−1 is a matrix rep-

resentation of the reverse SAR (R-SAR) transform and is a pseudo-inverse of matrix

Ω. However, for implementation, we use the accurate SAR and R-SAR transforms

that will be detailed in Sec. 3.

Many algorithms can be used to minimize (5) iteratively, for example, the

majorization-minimization algorithm [34], alternative direction method (ADM) [35],

and nonlinear conjugate gradient descent (CGD) algorithm [36]. In this work, we

use the CGD with backtracking line search. The algorithm is listed in Algorithm 1,

where Re{·} is the real part of a complex variable, ∆si is the change of si at the i-th

iteration, and ∇J is the derivative of J with respect to s and is calculated as

∇J (s) = λℓ∇‖Ψs‖1 + λt∇TV(s) + 2ΩΦH(ΦΩ−1s− y). (6)

In (6), the TV penalty and the gradient of the penalty are calculated as in [37]. Also,

since the absolute value function in ℓ1 norm in not differentiable, the approximation

|sr| ≈
√

sHr sr + ζ is used, where ζ is a positive smoothing parameter. Therefore,

d
dsr
≈ sr√

sHr sr+ζ
.

As it can be seen from Algorithm 1, the conjugate gradient requires the com-

putation of the forward SAR transform Ω and reverse SAR transform Ω−1 in each

iteration at line 9. However, the original NUFFT and inverse NUFFT introduce

truncation errors that accumulate quickly after several iterations and cause the CS

algorithm to never reach the convergence condition of ‖∇Ji‖ < ρ. For this rea-
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son, we propose an accurate R-SAR transform in Section 3 that utilizes a technique

called “truncation repair” to reduce the truncation error; thereby preventing error

accumulation and ensuring the convergence of the CS algorithm.

Algorithm 1 CGD with backtracking line search

% Parameters:

β and ζ – line search parameters

ρ – stopping parameter by gradient magnitude

% Reconstruction Algorithm

1: s0 := ΩΦHy , ∇J0 := ∇J (s0) , ∆s0 := −∇J0

2: i := 0

3: repeat

4: t := 1

5: repeat

6: t := βt

7: until J (si + t∆si) < J (si) + ζtRe{(∇Ji)
H∆si}

8: si+1 := si + t∆si

9: ∇Ji+1 := ∇J (si+1)

10: ∆si+1 := −∇Ji+1 +
‖∇Ji+1‖

2

‖∇Ji‖2
∆si

11: i := i+ 1

12: until ‖∇Ji‖ < ρ
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3. ACCURATE SAR AND R-SAR TRANSFORMS

In this section, we first illustrate the truncation errors introduced by the NUFFT

of the forward SAR transform and then propose a new truncation repair scheme for the

R-SAR transform to achieve the accuracy required for the iterative CS reconstruction

Algorithm 1.

For the forward SAR transform, we modify the standard NUFFT algorithm

[8–10] to include stratified media, with details shown on the left side of Fig. 3, where

the exponential term in (1) is referred to as “Reference Forward” and the phase

adjustment operator (I) is followed by a conversion from F (kx, ky, ω) to k-space data

F (kx, ky, kz). For each pair of (kx, ky), kz is drawn from the nonuniformly spaced set

{kz,ı}Nω

ı=1 with

kz,ı =

√

(

2ωı

ν

)2

− k2
x − k2

y (7)

where ν is the propagation speed in the second layer that has a dielectric constant

εr, and ν = c/
√
εr.

The next step of the SAR algorithm is the inverse NUFFT algorithm that trans-

forms the F (kx, ky, kz) data nonuniformly spaced in kz into

S(kx, ky, z) = F−1
NU{F (kx, ky, kz)} (8)

with z sampled at (2Nz + 1) uniformly spaced locations {zn}Nz

n=−Nz
. Since the wide-

band 3D imaging system uses a frequency band of [ωmin, ωmax] with step size ∆ω, the

number of frequency points is Nω and the resolution in z is determined by

δz =
νπ

ωmax − ωmin
. (9)
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We assume that the uniform step size of zn for the inverse NUFFT satisfies ∆z ≤ δz.

Note that the inverse NUFFT is a fast and accurate approximation to the inverse

nonuniform discrete Fourier transform (NDFT) [23, 38]

F (kx, ky, kz)
FNDFT←→ S(kx, ky, z) =

Nω
∑

ı=1

F (kx, ky, kz,ı)e
jzkz,ı (10)

where kz,ı’s are nonuniformly spaced. While the computational complexity of the

inverse NDFT is O(NzNω), the complexity of the inverse NUFFT is

O (σ(2Nz + 1) log(σ(2Nz + 1)) + (2p+ 1)Nω)
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where σ is the oversampling factor for the Gaussian kernel in the calculation of the

inverse NUFFT and p is the overlapping factor. The Gaussian kernel is defined as

G(kz) = (πb)−1/2e−
(σ(2Nz+1)kz)

2

b (11)

where b = 2σp
π(2σ−1)

. Let us define

H(kz) = F (kz) ∗G(kz) (12)

and its discrete Fourier transform of h(zn) where ∗ denotes convolution. Then, the

values of S(zn) can be approximated by the NUFFT as

S(zn) =
h(zn)

σ(2Nz + 1)g(zn)
(13)

where g(zn) is the inverse discrete Fourier transform of G(kz) [23].

However, by using NUFFT, a truncation in z occurs since computing an un-

bounded image in the Z domain is practically infeasible. Thus, the inverse NUFFT

should maximally be computed in the range −Zmax ≤ zn ≤ Zmax, where Zmax is the

maximum unambiguous range for the propagating wave along the Z axis from the

measurement plane, and it is defined as

Zmax =
νπ

2∆ω
(14)

The truncation in z can result in significant error in the estimate of the spectrum

from the NUFFT of the reverse SAR transform. Truncation repair has to be inserted

between the NUFFT and coordinate mapping of ωı =
ν
2

√

k2
x + k2

y + k2
z,ı, as shown on

the right side of Fig. 3, where F ′(kx, ky, kz) and F (kx, ky, kz) are the k-space data
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before and after the truncation repair, respectively. Since truncation error occurs only

for the z and kz dimensions, we simplify the nomenclature from S(kx, ky, z) defined

in (8) to S(zn) for truncated zn and S∞(zn) for −∞ < zn < +∞. Similarly, we also

reduce F (kx, ky, kz) to F (kz) and F ′(kx, ky, kz) to F ′(kz). The truncated S(zn) can

be represented in terms of S∞(zn) as

S(zn) = m(zn)S∞(zn) (15)

where the mask function is defined as

m(zn) =















1, −Zmax ≤ zn ≤ Zmax

0, otherwise.

(16)

Furthermore, F (kz) and F ′(kz) are related with S∞(zn) and S(zn), respectively,

as the discrete-time Fourier transform (DTFT) pairs

S∞(zn)
FDTFT←→ F (kz) (17)

S(zn)
FDTFT←→ F ′(kz). (18)

Also, let m(zn)
FDTFT←→ M(kz). Then we have [39]

M(kz) =
∞
∑

zn=−∞

m(zn)e
−jznkz

=
sin(∆zkz(2Nz + 1)/2)

sin(∆zkz/2)
(19)

and

F ′(kz) = M(kz) ∗ F (kz). (20)
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The difference between F (kz) and F ′(kz) is the truncation error due to nonuni-

form kz sampling and truncation in z. The truncation error is illustrated in Fig. 4,

where four nonuniform points kz,ı are selected as {kz,ı}4ı=1 = [−0.1/π, 0, 0.1π, 0.76/π],

and the corresponding {F (kz,ı)}4ı=1 = [0.3−0.3j, 1−0.8j, 0.5+0.75j,−0.8+ j]. Since

the main lobe width ofM(kz) is 0.05π, it is clear that the main lobes of F (kz,1)M(kz−

kz,1) and F (kz,2)M(kz−kz,2) overlap and a significant error is introduced into F ′(kz,1)

due to F (kz,2)M(kz − kz,2) because F ′(kz,1) =
∑4

ı=1 F (kz,ı)M(kz − kz,ı). Meanwhile,

F (kz,3)M(kz−kz,3) and F (kz,4)M(kz−kz,4) contribute small errors to F ′(kz,1) because

the sampling points kz,3 and kz,4 are far apart from kz,1. The resulting F ′(kz) values

are shown in stems in Figs. 4a and 4b for the real and imaginary parts, respectively.

It is also interesting to note that F (kz,2) and F (kz,3) introduce no errors to each other

because their sampling points are spaced at precisely twice the main lobe width. If

kz is uniformly spaced in integer multiples of the main lobe width, then truncation

in z will yield no errors between F (kz) and F ′(kz). Figure 4c illustrates F (kz) and

F ′(kz) in vector form for the nonuniformly spaced kz and the difference between the

corresponding vectors are clearly shown in terms of magnitude and phase.

The truncation error may be reduced by several error minimization methods

[23, 40]. However, the computational complexity of these methods is unnecessarily

high and we propose a simple and direct deconvolution method for recovering F (kz)

from F ′(kz). To deconvolve the effect of truncation efficiently, let us formulate the

convolution in (20) in matrix form

F′ = MF (21)

where F and F′ are the vectorized F (kz) and F ′(kz) sampled at nonuniform locations

of {kz,ı}Nω

ı=1, as calculated in (7), and M is the Nw ×Nw convolution matrix with its
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element at row r and column c being

Mr,c = M(kz,r − kz,c). (22)

It should be noted that for some pairs of (kx, ky), the kz values become complex and

are invalid as it can be seen from (7). The inverse NUFFT along kz is calculated

only for valid ks’s and the dimension of M is smaller than Nw × Nw for the pairs of

(kx, ky) corresponding to invalid kz’s. Figure 5 shows the nonuniform mapping of kz

where ky is set to zero and kx and ω are uniformly spaced. The invalid kz’s are the

ones corresponding to the area inside the inner circle and outside the outer circle.

If M is invertible, the original signal F can be recovered exactly by deconvolving

the spectrum representation of the mask function by matrix inversion

F = M−1F′. (23)

To ensure that M is invertible, the following three requirements must be met.

1. Frequencies of Measurement Must be Known – The frequencies ω used in the

measurement f(x, y, ω) must be known so that the contributions of these fre-

quencies in the SAR image s(x, y, z) can be determined. This is in contrast

to the more general problem for which the frequencies of the system may be

unknown. In short, the SAR imaging system must be well defined so that SAR

and R-SAR form an accurate pair.

2. Support Functions Cannot Overlap – The main lobes of the function M(kz) in

(19) as referred to by Mrc in (22) must not overlap. Given that kz is determined

by (7), the minimum spacing in kz varies for each pair of (kx, ky), as shown in

Fig. 5. When kx > 0, the spacing of kz increases as ω decreases. The minimum

spacing for a given (kx, ky) pair, denoted ∆kz,ı, increases as kx or ky increases.
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minı(∆kz,ı) occurs at kx = ky = 0 and we have minı(∆kz,ı) =
2∆ω
ν

. Given that

Zmax − Zmin ≈ ∆z(2Nz + 1), (24)

it can be shown that the following condition gaurantees that the main lobe of

M(kz) for all pairs of (kx, ky) do not overlap

Zmax − Zmin ≥
νπ

∆ω
= 2Zmax. (25)

3. Sampling of SAR Image Along z Must Satisfy the Nyquist Rate – The uniform

discrete image sampling increment ∆z must be less than or equal to half that

of the range resolution to satisfy the Nyquist rate

∆z ≤ δz
2

=
νπ

2(ωmax − ωmin)
(26)

This requirement prevents the aliasing error in the NUFFT for the R-SAR

transform.

It is worth noting that M−1 may be calculated and stored for all combinations of

(kx, ky, ω) beforehand and used for all subsequent iterations of CS image reconstruc-

tion. Since the number of frequencies Nω is usually much smaller than the number

of spatial samples (2Nz + 1) in z, the truncation repair in the R-SAR transform can

be performed accurately without significant increase in computational complexity.

Denoting T {·} as the truncation repair in (23), we have

F (kx, ky, kz) = T {FNU {S(kx, ky, z)}} . (27)

With truncation repair, the accurate NUFFT-based SAR/R-SAR pair can be used in

the CS iterations repeatedly with negligible cumulative error and lead to convergence
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of the CGD algorithm at very stringent conditions such as ρ = 10−5. However, if the

truncation error is ignored in the R-SAR transform, the CGD iterative algorithm will

fail to converge due to the cumulative error, as demonstrated in Fig. 6, where the

cumulative normalized root mean square (NRMS) error between the full-set measured

data f(x, y, ω) and the estimate of measured data f̂(x, y, ω) calculated from R-SAR

transform (without undersampling) after iterations are computed for different values

of NUFFT parameters,

NRMS =
‖f(x, y, ω)− f̂(x, y, ω)‖2

‖f(x, y, ω)‖2
. (28)

The dB values of NRMS error without truncation repair increase almost linearly with

the number of iterations and the CS algorithm fails to converge. When the truncation

repair is applied, the oversampling factor σ and overlapping factor p, also play critical

roles on keeping the NUFFT accuracy. The approximate slopes of the NRMS error

curves after initial transition are compared in Table 1 for these NUFFT parameters,

kz

kx

ω

∆kz,1

∆kz,2

∆kz,3

∆kz,4

∆kz,5

Figure 5: Illustration of nonuniform mapping of kz with ky = 0 and uniformly spaced
kx and ω.
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where smaller NRMS slope indicates higher accuracy. The two cases with σ = 2, and

p = 6 or p = 12 guarantee the convergence of the CS algorithm, but other cases do

not meet the CS convergence requirements. In practice, the oversampling of σ = 1

is usually avoided due to its poor accuracy. For larger values of oversampling factor

(σ > 2), we increase the accuracy unnecessarily with the cost of high computational

complexity.
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Figure 6: Accumulated errors in f(x, y, ω) after each SAR and R-SAR transform pair
using NUFFT with and without truncation repair.

Table 1: Slope of NRMS error curves vs. iteration

σ p Slope (dB/iteration) Converge for ρ = 10−5

2
12 0.081 Yes
6 0.081 Yes
2 0.013 No

1
12 0.560 No
6 1.066 No
2 2.204 No
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4. EXPERIMENTS AND RESULTS

Three sets of experiments were performed to verify the performance of the pro-

posed method. In this section, we explain the experimental configurations and the

results of applying CS for SAR imaging. For each experiment, we considered four

recovery configurations of the CS method labeled Cases 1 through 4. Each case has

its own CS parameters as shown in Table 2 where the notation EYE indicates the

identity matrix and DCT is the 3D discrete cosine transform. Cases 1-3 used the

proposed CS recovery model with different parameters and Case 4 used the recovery

model proposed in [22] that does not utilize SAR in the CS iterations. In contrast

to Cases 1-3 that minimize (5), Case 4 applies CS to the undersampled measurement

vector y without TV to recover an estimate of the full measurement space data f

first, then performs only one forward SAR transform to reconstruct the image. Fig-

ure 7 shows the iterations between the orthogonal basis and its inverse followed by an

NUFFT-based SAR transform. Specifically, this approach solves the linear program

min
c∈CNu

‖c‖1 subject to y = ΦΨHc (29)

where c is the sparse representation of the measurement f in the transform domain

Ψ such that c = Ψf , and Nu is the number of non-zero coefficients of c. The image

is then reconstructed by s = ΩΨHc.

4.1. RUBBER PADS IN FOAM - SPECIMEN 1

4.1.1. Experiment. The first set of experiments was performed on a piece of

foam with dimensions 120mm×180mm×80mm. The SUT consisted of three layers of

construction foam taped together. On each layer of the foam, three round rubber pads

of 5 mm diameter and 2 mm height were embedded at different locations as shown in
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Fig. 8. The distance between the aperture and the surface of SUT (standoff distance)

was 34 mm. The measurements was performed for discrete frequencies between 35.04

GHz and 44.96 GHz (Q-band). Since the distance between the measurement probe

and the bottom layer of the SUT (Zmax) was 114 mm, the maximum frequency step

size was ∆ω/(2π) = c/(4Zmax) = 0.66 GHz [13]. In our experiment, the measurements

were performed with frequency steps of 0.56 GHz. The spatial steps should follow

the λmin/2 = 3.3 mm rule for targets far from the aperture and λmin/4 = 1.7 mm

for targets near the aperture where λmin was the smallest wavelength corresponding

to the maximum frequency (ωmax). Consequently, the spatial steps were chosen to

be 2 mm along X and Y dimensions prior to undersampling. The complex reflection

coefficients were measured and recorded by the vector network analyzer used in [7].

4.1.2. Results. Slices of 3D SAR images of the first specimen are shown

in Fig. 9. The left column of the figure shows the SAR images from a full-set of
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measurements for each height of interest (z = 34, 66, and 82). The recovered images

from 20% of measurements are shown for the proposed methods by minimizing (5)

in columns 2-4. The details for each case are defined in Table 2. By reducing the

measurement points to 20% of the full-set data, the average distance between the

spatial points was approximately 2λmin/3 = 4.4 mm and the acquisition time was

Table 2: CS model parameters for three sets of experiments

Experiment Case CS Model λℓ λt Ψ

Rubber in foam

1 Eq. (5) 2 0 EYE on s
2 Eq. (5) 2 0.8 EYE on s
3 Eq. (5) 2 0.8 DCT on s
4 Eq. (29) 0.5 0 DCT on f

Rubber in sand

1 Eq. (5) 0.5 0 EYE on s
2 Eq. (5) 0.5 0.3 EYE on s
3 Eq. (5) 0.5 0.3 DCT on s
4 Eq. (29) 0.5 0 DCT on f

Rebar in mortar

1 Eq. (5) 0.5 0 EYE on s
2 Eq. (5) 0.5 0.5 EYE on s
3 Eq. (5) 0.5 0.5 DCT on s
4 Eq. (29) 0.5 0 DCT on f
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Figure 8: Schematic of the rubber pads in the scanned area of Specimen 1, where
unit in figure is mm, and z is the distance from the probe (not to scale).
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reduced from 50 minutes to 17 minutes. It can be seen that Cases 1-3 have noticeably

reduced the level of background artifacts. Case 4 on the other hand has increased the

level of background artifacts. Case 2 has the best performance in terms of artifact

removal as it benefits from both 3D SAR sparse representation and TV penalty while

Case 3 has best maintained the shape of the targets during the recovery process which

might be of interest for certain nondestructive evaluation applications.

(a) Original, z = 34 (b) Case 1, z = 34 (c) Case 2, z = 34 (d) Case 3, z = 34 (e) Case 4, z = 34

(f) Original, z = 66 (g) Case 1, z = 66 (h) Case 2, z = 66 (i) Case 3, z = 66 (j) Case 4, z = 66

(k) Original, z = 82 (l) Case 1, z = 82 (m) Case 2, z = 82 (n) Case 3, z = 82 (o) Case 4, z = 82

Figure 9: Slices of 3D SAR images of Specimen 1 from complete data and recovered
data from 20% randomly selected points.
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4.2. RUBBER PADS IN SAND - SPECIMEN 2

4.2.1. Experiment. The second set of experiments was performed on the

SUT consisting of eight rubber pads embedded in dry sand at 5 different heights, as

shown in Fig. 10. The rubber pads were of size 10 × 10 × 3 mm3. The distance

between the aperture and the surface of sand was 5 mm. The frequency range for

this set of experiments was from 8.2 GHz to 12.4 GHz (X-band) with steps of 0.21

GHz. An area of 300 × 300mm2 was scanned uniformly with steps of 3 mm along X

and Y dimensions prior to undersampling. The reflection coefficients were measured

and recorded by an HP8510C vector network analyzer.

4.2.2. Results. Figure 11 shows the results of the second set of experiments

consisting of the images from the full-set measurements and the images recovered

from 30% of the measurements. Sizing of the rubber pads is relatively the same for

all cases. It can be seen that even images from the full-set of measurements have a
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Figure 10: Schematic of the rubber pads in sand in the scanned area of Specimen 2,
where unit in figure is mm, and z is the distance from the probe (not to scale).
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high level of background artifacts mainly attributed to sand being an inhomogeneous

media due to local variations in sand density. However, it can be seen that Cases 2

and 3 have removed the background artifacts since they both benefit from sparsity

information of SAR images and TV penalty. Case 4 again has the highest level of

background noise since it does not benefit from the SAR transform in the recovery

process.

(a) Original, z = 55 (b) Case 1, z = 55 (c) Case 2, z = 55 (d) Case 3, z = 55 (e) Case 4, z = 55

(f) Original, z = 80 (g) Case 1, z = 80 (h) Case 2, z = 80 (i) Case 3, z = 80 (j) Case 4, z = 80

(k) Original, z = 95 (l) Case 1, z = 95 (m) Case 2, z = 95 (n) Case 3, z = 95 (o) Case 4, z = 95

(p) Original, z = 115 (q) Case 1, z = 115 (r) Case 2, z = 115 (s) Case 3, z = 115 (t) Case 4, z = 115

Figure 11: Slices of 3D SAR images of Specimen 2 from complete data and recovered
data from 30% randomly selected points.
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4.3. REBAR IN CEMENT-BASED MATERIALS - SPECIMEN 3

4.3.1. Experiment. The third and last set of experiments were performed

on a mortar block with four rebars embedded in it. The rebars were placed in parallel

at a distance 18 mm from surface of the block, as illustrated in Fig. 12. More details

of this SUT may be found in [41]. The distance between the aperture and the surface

of the block was 8 mm. An area of 260× 240 mm2 was scanned with steps of 2 mm

along X and Y dimensions. The reflection coefficients were measured and recorded

by an HP8510C vector network analyzer.

Y

9.5

15

10

60

60 Defect

Rebar

X 260 mm

240 mm

Figure 12: Schematic of the rebars in mortar in the scanned area of Specimen 3,
where unit in figure is mm (not to scale).

4.3.2. Results. The results of the third set of experiments are illustrated

in Fig. 13 consisting of the images from full-set measurements and the images recov-

ered from 30% of the full-set data. It can be seen that Case 1 recovered the SAR

images with low quality due to two main factors in the recovery process: sparsity and

coherence [15, 16]. The SAR images are only sparse along two dimensions (X and Z)

while they are not sparse along the Y dimension. Besides, the coherence between the
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measurement and sparsifying matrices is high. Since the rebars are strong scatterers

and were placed very close to the probe, the SAR images appear to be very similar

to the measurement data. These two reasons reduce the probability of detecting the

rebars using identity as the sparsifying domain and causes the algorithm to recover

the targets with low quality. Using TV penalty in Case 2 decreased the background

artifact level at the cost of losing the texture of targets. However, Case 3 recovered

the rebars with good quality while reducing the background artifacts since Ψ was the

DCT. Fewer textures on the rebars were blurred in the images as compared to Case 2.

Finally, Case 4 maintained these textures with better quality, thanks to good sparse

representation in DCT domain, albeit with a higher background artifact level.

(a) Original, z = 26 (b) Case 1, z = 26 (c) Case 2, z = 26 (d) Case 3, z = 26 (e) Case 4, z = 26

Figure 13: Slices of 3D SAR images of Specimen 3 from complete data and recovered
data from 30% randomly selected points.

5. CONCLUSION

In this paper, we propose a new 3D image reconstruction method for compressed

sensing microwave imaging using NUFFT-based SAR. High quality SAR images are

recovered from incomplete measurements by exploiting an accurate SAR and R-SAR

transform pair allowing the forward and reverse SAR to be applied in each iteration

of CS and ensuring the convergence of the CS algorithm. A new low-complexity
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truncation repair method is also proposed to reduce the truncation error in practical

application of the NUFFT algorithm in the reverse SAR transform. The performance

of the proposed algorithm is demonstrated using three experiments. It is shown

that the proposed model recovers the sparse targets very well and at the same time

better removes the background artifacts than using conventional full-set measurement

approach.

6. APPENDIX (MATRIX REPRESENTATION OF SAR TRANSFORM)

Although SAR and R-SAR involve nonlinear mapping of kz points, they are

linear operators and can be represented as matrix operation. For 2D SAR we have

Ω2D = WH
2D × (E2D ◦W2D) (30)

where × denotes the matrix product, ◦ denotes the Hadamard product, W2D is the

2D discrete Fourier transform matrix, and matrix E2D is defined as

E2D = ē⊗
[

1 1 · · · 1

]

1×(NXNY )

(31)

with ⊗ denoting Kronecker product and NX and NY being the number of samples

along X and Y dimensions, respectively. Vector ē is calculated as

ē =

[

eH1 eH2 · · · eHl · · · eHNX

]H

(32)

where the NY × 1 vector el is the column of matrix e defined as

exy(ı, ) =
[

e−jz
√

4k2ı−k2x−k2y
]

xy
. (33)
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In (30), W2D, the 2D DFT matrix, is defined as

W2D = WX
1D ⊗WY

1D (34)

where WX
1D is the 1D discrete Fourier transform matrix along X dimension and is

defined as

WX
1D =

1√
NX



























1 1 1 · · · 1

1 w w2 · · · w(NX−1)

1 w2 w4 · · · w2(NX−1)

...
...

...
...

1 w(NX−1) w2(NX−1) · · · w(NX−1)(NX−1)



























(35)

with w = e
− 2πj

NX . Matrix WY
1D is defined similarly as 1D discrete Fourier transform

matrix along Y dimension.

For 3D SAR, the equation (30) could be modified to

Ω = WH
3D × (E3D ◦W2D) (36)

where the E3D represents the exponential term in (1). Equation (36) is an approx-

imate matrix representation of the SAR algorithm as explained in Section 3. Since

nonuniform samples are utilized in the calculation of WH
3D, the SAR algorithm is

usually calculated using accurate NUFFT’s.
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III. ADAPTIVE BASIS SELECTION COMPRESSED SENSING

Hamed Kajbaf and Yahong Rosa Zheng

ABSTRACT—An adaptive basis selection (ABS) algorithm is proposed for com-

pressed sensing (CS) image reconstruction. In contrast to conventional compressed

sensing with a fixed sparsifying basis, the proposed ABS method adapts the basis to

the image as the image evolves during the algorithm iterations. In this method, the

sparsifying basis is selected from a set of bases based on information from incomplete

measurements without any a priori knowledge of proper basis. The algorithm bene-

fits from the ability to search through a diverse sets of bases for unknown signals. A

decision metric is introduced based on both the sparsity of the image as well as the

coherence between the measurement and sparsifying matrices. This decision metric

makes the adapting process possible for practical applications. The results from our

experiments indicate that the proposed algorithm is capable of recovering 2D syn-

thetic aperture radar (SAR) images very well without compromising the complexity

of the recovery process. In addition, the algorithm shows promising results for k-space

imaging techniques.

1. INTRODUCTION

Both the sparse representation and compressibility of signals have previously

been studied very well under data coding. Transform coding has shown very inter-

esting results in sparsely representing signals and is widely used in data compression.

Recently, compressed sensing (CS) theory has combined the approach of first sam-

pling the signal and then compressing it by measuring the signal with the rate of

sparsity [14, 15, 17]. In compressed sensing theory, sub-Nyquist sampling of a signal

is achievable by utilizing the sparse representation of the signal with an orthogonal

basis.
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Consider a signal f ∈ C
N and its transform coding c with an orthonormal basis

Ψ = [ψ1ψ2 . . .ψN ], such that f = Ψc. If most of the information of the signal f

is contained in only a few elements of the transformed signal c, signal f is called

S-sparse in basis Ψ if only S of its coefficients are significant and the rest (N − S)

coefficients are zero. Therefore, a fixed signal support T of size |T | = S can form an

S-sparse signal:

S = ‖c‖0 (1)

where ‖.‖0 is the ℓ0 pseudo-norm operator and counts the nonzero elements of the

vector of coefficients c.

In compressed sensing, the sparsity of the signal is used to sample the signal f

more efficiently by measuring M < N linear combinations of the signal. Let us define

the measurement matrix ΦΩ ∈ RM×N by selecting the rows of a measurement matrix

Φ ∈ RN×N on a set Ω ⊂ {1, 2, · · · , N} with size |Ω| = M where Φ models the linear

measurement procedure. This procedure can be modeled in matrix form as

y = ΦΩf (2)

where y is the measured signal. The inverse problem is to recover the original signal

from linear measurements. In general, this inverse problem is underdetermined with

infinite solutions which satisfy (2). In compressed sensing, the sparsity of the signal

is used to find a unique sparse solution for this problem.

Compressed sensing is similar to the decoding procedure in transform coding;

both estimate the signal by applying the inverse of encoder orthonormal basis Ψ, on

the sparse coefficients c, supported on set T . CS differs from transform coding in that

both the location of support T and the value of the coefficients at these locations cT

are unknown. The only known variable is a sampled linear combination of the signal.
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Proper sparse representation in CS is essential for an accurate recovery of the

signal. Conventionally, a fixed basis is used in CS to recover data from an incomplete

measurement. In this scenario, it is assumed we know the proper basis in advance.

This assumption is not very accurate for many practical applications, especially when

we have an incomplete set of data available.

Available literature proposes both dictionary learning and best basis selection

compressed sensing. These methods address the issue of selecting the proper basis

by evolving the best basis during the recovery procedure [42–47]. These methods

systematically develop a dictionary without any assumption of a global sparse repre-

sentation. In this way, the dictionary adapts itself to the signal as the signal is recov-

ered using CS. The systematic approach for either learning a dictionary or selecting

bases is usually used to decrease the complexity of basis searching algorithms. The

algorithm, however, loses diversity of search requiring some assumptions on sparse

representation of the signal.

In this paper, a new adaptive basis selection (ABS) algorithm is proposed to

address the issue of selecting a proper basis without compromising the complexity of

the recovery process. In this approach, the proper basis is selected from a set of bases

according to both its sparsifying capability and its incoherence with the measurement

domain. As the signal is recovered iteratively and a more accurate estimation of

the signal is available, the algorithm selects the proper basis more accurately. This

proposed method can benefit from a diverse set of bases. In other words, for an

unknown signal, a diverse set of bases can be used for a better sparse representation

and, consequently, increasing the chance of recovery.
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1.1. APPLICATIONS

We need to know the sparsifying basis from only incomplete measurements for

a perfect recovery of an unknown signal. A proper basis can be determined in ad-

vance for applications in which the sparsity characteristics of the desired signal is

not changing in different experiments. One possible method involves calibrating the

recovering process using a given test signal for one experiment in a different basis and

then comparing the recovered signals. For other experiments, we use a fixed basis

(as determined in the calibration procedure) assuming that the sparsity characteris-

tics are not changed. This assumption, however, is not always accurate. Thus, the

adaptive basis selection compressed sensing is proposed in this paper to address this

issue.

In this paper, two applications of the proposed method are presented and the

performance and results are discussed. The first application is synthetic aperture

radar (SAR) imaging for nondestructive testing of materials. The second application

is k-space imaging for situations in which the frequency components of the image are

available for measurement.

Microwave SAR imaging is a high resolution technique that can be exploited to

detect discontinuities in critical structures. It does so by raster scanning a specimen

under test (SUT) using a single antenna probe (e.g., an open-ended waveguide). This

scanning procedure is very time consuming; a relatively large SUT might require hours

of data acquisition. Random spatial measurements have been used to significantly

reduce this acquisition time. The signal is then recovered using ℓ1-norm minimization

with different orthogonal bases [21, 22]. The drawback to this technique is that the

proper sparsifying basis is determined by first trying different bases and then choosing

the one with the best SAR image quality. This approach is not desired in practice as

the proper basis could be different for different SUTs. In contrast, the adaptive basis
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selection approach chooses the proper basis iteratively as the signal is evolved using

ℓ1-norm minimization. This application is discussed in detail in Section 2.

The other application of the adaptive basis selection is in k-space imaging using

compressed sensing. In this imaging method, frequency components of an image

are measured randomly. A basis is then selected from a priori knowledge of the

proper basis and the image is recovered using the fixed basis. Adaptive basis selection

compressed sensing is exploited to recover the images without any knowledge of the

proper basis. This application is discussed in Section 5.

2. FIXED BASIS AND BEST BASIS CS FOR IMAGE PROCESSING

2.1. FIXED BASIS

The sparsity of the signal helps solve the system of equations (2) by searching

for the sparsest vector of coefficients c which matches the incomplete measurement

signal y. By defining both A = ΦΨ and AΩ = ΦΩΨ, this can be formulated as

min
c∈CN

‖c‖1 subject to y = AΩc. (3)

Convex optimization (3) is proved to recover f with a high probability from linear

measurements if some conditions are satisfied [16]. The minimum number of linear

measurements guaranteeing a perfect recovery is related to both the sparsity of the

signal and the coherence between the measurement and sparsifying bases. The co-

herence µ(Φ,Ψ) between the measurement matrix Φ and the transform matrix Ψ is

defined as

µ(Φ,Ψ) =
√
N max

1≤u,v≤N
|〈φu,ψv〉| (4)
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which is an indication of how correlated the measurement and the sparsifying bases

are.

Finite differences are usually used as a sparsifying transform for a 2D signal if

variations of the signal are very sharp with small variation in the background. The

objective function in (3) is then replaced by total variation (TV). The TV penal-

ized objective function can be combined with other sparsifying bases. This can be

interpreted as requiring the image to be sparse by both the specific basis and finite

differences at the same time. In this case, (3) can be written as

min
c∈CN

λℓ ‖c‖1 + λtTV(Ψc) + ‖y −AΩc‖2 (5)

where λℓ and λt are weighting factor to determine the emphasize on ℓ1-norm or TV

penalty, respectively [36].

The basis Ψ is fixed and is assumed to be known in advance for recovering

a signal from incomplete measurements. Otherwise, one should find c by guessing

the basis Ψ. If the results are not satisfying, another basis should be tried and the

signal is recovered in the new basis. This procedure is repeated until a proper basis

is found which sparsifies the signal well and, at the same time, is incoherent with the

measurement basis. This approach might be very computationally complex and, for

some applications, impossible in practice.

2.2. BEST BASIS AND DICTIONARY LEARNING

The problem of selecting a proper basis prior to data recovery using CS is

discussed in the literature under both best basis selection and dictionary learning.

The method of best basis compressed sensing has been proposed to address the issue

of selecting a proper basis in fixed basis compressed sensing [43]. In this approach,

the best basis is optimized to obtain the best possible approximation of the signal
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for a given sparsity. The problem is solved through the unconstrained optimization

problem by minimizing a Lagrangian

κ⋆ = argmin
κ∈K
E(c,Bκ, t)

E(c,Bκ, t) = min
cκ∈CN

1

2
‖y −ΦΨc‖22 + t ‖c‖1 (6)

where Bκ is an orthonormal basis and t is the Lagrange multiplier. A tree structure is

then proposed to produce the set of bases B. While this approach solves the problem

of selecting a proper basis, it suffers from a high computationally complex algorithm

due to optimizing two objective functions at the same time.

A dictionary learning compressed sensing method is proposed in [46] for k-space

MR imaging. In this method, the dictionary is adapted to a particular image and, at

the same time, determines the missing k-space components. A patch-based approach

is used for learning the dictionaries. The image is then recovered in a two-step

alternating scheme. In the first step, the dictionary is updated while the image is

kept fixed. In the second step, the dictionary is fixed while the image is updated.

Other methods have been proposed [42] for joint design and optimization for learning

the dictionary and measurement matrix. In this approach, a training data set is used

for the simultaneous learning of sparse representation and measurement matrix.
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3. ADAPTIVE BASIS SELECTION (ABS) COMPRESSED SENSING

In this section, we introduce the proposed adaptive basis selection compressed

sensing method. In this method, the proper basis is selected from a set of bases

based on the proposed decision metric. The signal is then recovered using ℓ1-norm

minimization with an iterative approach. A more accurate estimation of the desired

signal is available in each iteration of the signal recovery. Consequently, the decision

metric can estimate the proper basis more accurately,causing the algorithm to switch

to a new basis if the initial guess is not the best one. As the signal evolves during the

iterations, the basis keeps updating until the algorithm converges.

We discuss both the proposed ABS compressed sensing method and the pro-

posed strategy for solving the problem of finding the proper basis. To solve the

problem, we propose two algorithms. These algorithms are based on the alternat-

ing direction method (ADM) and the nonlinear conjugate gradient descent (CGD)

with a backtracking line search. We also discuss the computational complexity of the

proposed algorithms and compare it with the complexity of the existing fixed basis

methods. Finally, we propose a practical decision metric to be used with adaptive

basis selection method.

3.1. STRATEGY

Consider a set of NK bases B = {Ψκ}κ∈K , K = {1, 2, ..., NK}, with the κ-th

orthogonal basis denoted as Ψκ. The signal f can be represented in each Ψκ basis as

cκ, with the support set T κ of size |T κ| = Sκ. The best basis for recovering the signal

from incomplete measurements y is the Ψκ with the smallest Sκ. Before solving (3),

however, we have no a priori knowledge of which Ψκ to choose for a given, incomplete

measurement.
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We define η as

η(cκ) = µ2(Φ,Ψκ)|T κ|. (7)

This metric can be considered a measure of how well a sparsifying basis candidate Ψκ

is able to recover the signal. Also, it can play the role of a decision metric. Therefore,

during the recovery process (3), by searching for the smallest η, we will find the best

sparse representation κ⋆ in the set K

κ⋆ = argmin
κ∈K

η(cκ). (8)

Using incomplete measurements to determine the best sparse representation typically

produces inaccurate results. This search, however, can result in more accurate results

if it is performed iteratively while solving either (3) or (5). We proposed a new

iterative algorithm which solves either (3) or (5) and, at the same time, finds the best

basis using (8).

We assume that the signal is sampled with a random sequence δ1, δ2, · · · , δN
independent identically distributed Bernoulli distribution with probability

p (δk) =
M

N
. (9)

The measurement matrix ΦΩ is then produced by rows from the identity matrix

randomly sampled on the set Ω.

The proposed algorithm benefits from being able to add diversity to the set of

bases for a better recovery of an unknown signal. In this way, the sparsifying basis is

not limited to any class of basis. Additionally, different classes can be compared with

the same metric. For example, both the discrete Fourier transform (DFT) and the

discrete cosine transform (DCT) sparsify highly oscillating images very well. On the
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contrary, wavelet-based transforms are more suitable for images which are sparsely

represented with spatial-frequency transforms. As the set of bases A is arbitrary and

completely user-defined, the proposed algorithm is able to select from a diverse sets

of bases. This property is in contrast to other basis selecting compressed sensing

algorithms, such as [43], which require searching through one class of dictionary to

avoid computational complexity overhead.

3.2. PROPOSED ABS ALGORITHM

In this section, we introduce the proposed algorithm for solving the adaptive

basis selection compressed sensing. This algorithm is based on iteratively solving the

basis pursuit problem and updating the sparsifying basis in each iteration based on

the sparsity information of the signal. As the algorithm goes through the iterations,

a better approximation of the original signal increases the chance of selecting the

proper sparsifying basis. Reciprocally, selecting the proper sparsifying basis leads to

a higher chance of recovery compared to fixed basis CS.

Algorithm 2 illustrates the iterative procedure for solving the proposed method,

where Ie is an integer and a user-defined parameter for stopping the basis update

procedure. If the sparsifying basis is kept unchanged for Ie iterations, the algorithm

stops updating the basis to decrease the overall computational complexity of the

recovery process. Typically, Ie is a small number and the basis update procedure

stops after the first few iterations.

Two iterative algorithms are developed to investigate the performance of the pro-

posed algorithm. The first algorithm uses the alternating direction method (ADM),

as proposed in [28], to solve the ℓ1 minimization problem. The second algorithm uses

the nonlinear conjugate gradient descent (CGD) approach with a backtracking line

search, as proposed in [36].
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According to the general framework of ADM, the augmented Lagrangian sub-

problem of (3) for a given κ ∈ K is

min
cκ∈CN

λℓ ‖cκ‖1 + λtTV(Ψ
κcκ) + Re(zH(Aκcκ − y)) +

β

2
‖Aκcκ − y‖2 (10)

where z ∈ CM is a multiplier and β > 0 is a penalty parameter. Reformulating (10),

we have

min
cκ∈CN

λℓ ‖cκ‖1 + λtTV(Ψ
κcκ) +

β

2
‖Aκcκ − y − z/β‖2. (11)

Algorithm 2 Adaptive Basis Selection (ABS)

1: κ0 := argminκ∈K η((Aκ
Ω)

Hy)

2: c0 := (Aκ0
Ω )Hy

3: i := 0

4: repeat

5: Update cκi

i+1 based on cκi

i

6: if κ is changed during the last Ie consecutive itera-

tions then

7: κi+1 := argminκ∈K η(cκi+1)

8: c
κi+1

i+1 := (Ψκi+1)HΨκicκi

i+1

9: else

10: κi+1 := κi

11: c
κi+1

i+1 := cκi

i+1

12: end if

13: i := i+ 1

14: until stopping criteria is met
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The proposed method, as in Algorithm 2, with the ADM approach, can be

approximated to

κi = argmin
κ∈K

η(cκi−1)

min
cκi∈CN

λℓ ‖cκ‖1 + λtTV(Ψ
κcκ) + β

(

Re(∇H
i (c

κi − cκi

i )) +
1

2τ
‖cκi − cκi

i ‖2
)

(12)

where τ > 0 is a proximal parameter and

∇i , (Aκ
Ω)

H(Aκ
Ωc

κ
i − y− zi/β) (13)

is the gradient of the quadratic term in (11) at point cκi

i , with i indicating the iteration

number. To solve the problem without a TV penalty, we can simply set λℓ = 1 and

λt = 0. The minimization (12) can be explicitly solved by

cκi

i+1 = shrink

(

cκi

i − τ∇i,
τ

β

)

, max

(

|cκi

i − τ∇i| −
τ

β
, 0

)

cκi

i − τ∇i

|cκi

i − τ∇i|
(14)

with all of the operations being performed element-wise. Line 5 of Algorithm 2 is then

substituted by the following two lines:

cκi

i+1 := shrink(cκi

i −∇i, τ/β)

zi+1 := zi − ξβ(Aκi

Ω c
κi

i+1 − y)

where ξ > 0 is a constant.

The second approach uses nonlinear CGD with a backtracking line search. For

simplicity, we set the objective function as

C = λℓ ‖cκ‖1 + λtTV(Ψ
κcκ) + ‖Aκ

Ωc− y‖2 (15)
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The conjugate gradient of the objective function is then calculated by

∇C = λℓ∇‖cκ‖1 + λt∇TV(Ψκcκ) + 2(Aκ
Ω)

H(Aκ
Ωc− y). (16)

As the absolute value function in ℓ1 is not differentiable, the approximation |cr| ≈
√

cHr cr + ν is used where ν is a smoothing parameter. Therefore, d
dcr
≈ cr√

cHr cr+ν
. Con-

sequently, line 5 of Algorithm 2 is substituted by:

t := 1

repeat

t := ςt

until C(cκi

i + t∆cκi

i ) > C(cκi

i ) + ζtRe{∇CHi ∆cκi

i }

cκi

i+1 := cκi

i + t∆cκi

i

∆cκi

i+1 := −∇Ci+1 +
‖∇Ci+1‖2

‖∇Ci‖2
∆cκi

i

where ς and ζ are the line search parameters.

3.3. COMPUTATIONAL COMPLEXITY

In this section, we discuss the computational complexity of the proposed algo-

rithms and will compare it with that of fixed basis compressed sensing. Both for fixed

basis compressed sensing and proposed method, it is a common practice to calculate

the matrix multiplication f = Ψκc with an implicit function. Let us assume that the

computing time of this implicit function is Xκ(N) with biggest order of computation

O(Xκ(N)) or simply Oκ.

The order of computations per iteration for fixed basis compressed sensing using

the ADM approach is 2Oκ, where κ ∈ K is a candidate basis. By repeating the

recovery process using all bases and finding the best recovered signal, the order of

computations will be 2
∑|K|

κ=1Oκ. This is while the order of computations for the

proposed adaptive basis selection method using ADM approach is Oκi+1 + 2Oκi +
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∑|K|
κ=1Oκ for i ≤ Ie and is 2Oκ⋆

for i > Ie. To compare the complexity of fixed basis

CS with ABS, assume that we sort the bases, κ ∈ {1, 2, · · · , |K|}, with respect to

their order of complexity with ascending order. The worst case for ABS occurs when

the best basis in the set has the highest order of complexity, O|K|. In practice, for

|K| > 3, the order of complexity per iteration for ABS is less than that of fixed basis

applied on all bases. In other words, if the number of candidate bases is larger than

three, ABS needs fewer computations than fixed bases repeated for all bases. Note

that this is the worst case study and if the best basis is not the most complex one,

the order of computations of ABS might be much less than fixed basis. Also, the

basis updating procedure stops after Ie iterations.

Assume that fixed basis CS using κ ∈ K candidate basis converges in Iκ itera-

tions. The overall computational time for all bases is then 2
∑|K|

κ=1OκIκ. On the other

hand, ABS converges in Iκ
⋆

+ Ie with κ⋆ being the best candidate basis and Ie being

the number of iterations needed to find the best basis. Therefore, the overall computa-

tional time for worst case study of ABS algorithm is
(

3O|K| +
∑|K|

κ=1Oκ
)

Ie+2Oκ⋆

Iκ
⋆

.

In practice, Ie ≪ Iκ, ∀κ ∈ K and the overall complexity of the proposed algorithm is

much less than the fixed basis algorithm repeated over different bases.

With the same discussion, we can study the computational complexity of CGD

approach. The order of complexity of fixed basis CS with CGD algorithm repeated

for all bases is 4
∑|K|

κ=1Oκ. On the other hand, the order of complexity of ABS is

5Oκi +
∑|K|

κ=1Oκ. Again, for practical applications and for |K| > 2, the order of

complexity of ABS is less than that of fixed basis applied on all bases.

3.4. SPARSITY METRIC

As discussed earlier, the sparsity of a signal plays a critical role in performance

of data recovery techniques. In practice, most signals have S significant coefficients

and the rest of the coefficients are close to zero, but not exactly zero. The ℓ1-norm
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optimization is capable of recovering these kinds of signals with good approximation

despite the fact that they are not strictly sparse as defined in (1). Therefore, the

definition of sparsity as in (1) is not a proper sparsity metric in practice.

Several measures of sparsity are proposed in the literature to measure the spar-

sity of a signal for practical purposes [48–50]. These measures include ℓp-norm, kur-

tosis, impulsiveness, pq-mean, and the Gini index. After evaluating these measures of

sparsity, we selected impulsiveness based on its reliability and computational complex-

ity. As the sparsity increases, impulsiveness of the signal increases. The Gini index

is also a reliable sparsity metric [48–51], but it has higher computational complexity.

As ABS selects the best basis in each iteration based on the sparsity metric, we need

a low complexity measure and the Gini index is not suitable for this application.

Impulsiveness is typically used in characterization of impulsive noise and is

defined as [52]

γim(c
κ) =

E{|cκr |2}
1
2

E{|cκr |}
. (17)

When the exact statistics of cr’s are not available, the estimate of impulsiveness

reduces to the special case of pq-mean with p = 2 and q = 1 defined as

γpq(c
κ) =

( 1
N

∑N
r=1 |cκr |

p)
1
p

( 1
N

∑N
r=1 |cκr |

q)
1
q

p < q (18)

where the negative sign is removed from the definition to make the sparsity measure

positive.

It should be noted that all cr’s must be available to calculate these measures of

sparsity. However in compressed sensing applications, only incomplete measurements

are available. Therefore, we need to estimate the sparsity metric from an incomplete

set of data.
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In this paper two measurement methods are used for two different sets of data.

The first measurement method is the spatial sampling for which the measurement

matrix is a matrix of spikes. The second measurement method is the frequency

domain sampling and the measurement matrix is the incomplete Fourier matrix. We

have noticed that for spatial sampling bilinear interpolation of the signal results in

the best estimate of measures of sparsity. On the other hand, for frequency domain

sampling, zero padding the missing Fourier coefficients results in the best estimate of

measures of sparsity.

3.5. COHERENCE

Besides sparsity, coherence between the measurement matrix and transform

matrix is one of the factors which determine the sufficient number of samples to

recover a signal [15, 16]. In this paper, we proposed a decision metric based on both

sparsity and coherence (4), to select between different bases. The metric is defined as

η̃(cκ)κ =
µ2(Φ,Ψκ)

γ(cκ)
(19)

4. APPLICATION TO WIDEBAND 2D SAR IMAGING

In this section, two applications of the proposed method are discussed and

the results are presented. The first application is synthetic aperture radar (SAR)

imaging for nondestructive testing of materials. The second application is k-space

imaging for the situations where the frequency components of the image are available

for measurement.

For the SAR imaging application, the hardware system performs the measure-

ment in the spatial domain and the measurement matrix is a matrix of spikes. On the
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other hand, the k-space imaging application performs the measurement in frequency

domain and the measurement matrix is the incomplete Fourier matrix. Five trans-

form bases are selected for each measurement method to show the performance of the

proposed algorithm. For spatial sampling which is used for the SAR imaging appli-

cation, the selected bases are: 2D SAR, 2D discrete Fourier transform, 2D discrete

cosine transform, 2D Daubechies 1 wavelet with one level decomposition (DB1(1)),

and 2D DB1 with two level decomposition (DB1(2)). For frequency domain sampling

which is used for k-space imaging application, the identity matrix (EYE) is used in-

stead of 2D SAR. The rest of the bases are the same as spatial sampling. Table 1

lists the set of bases which are used in this paper.

Table 1: Sets of bases

❳
❳
❳
❳
❳
❳
❳
❳
❳
❳
❳
❳

Application
Basis

1 2 3 4 5

SAR Imaging SAR DFT DCT DB1 (1) DB1 (2)
k-space Imaging EYE DFT DCT DB1 (1) DB1 (2)

4.1. SYNTHETIC APERTURE RADAR IMAGING

Microwave synthetic aperture radar (SAR) imaging is a nondestructive method

for inspecting materials and detecting defects and discontinuities in critical structures.

Conventionally, a specimen under test (SUT) is raster scanned with an antenna probe

to form high resolution images of the SUT. The cost of high resolution images is the

time spent for scanning and acquiring the data with very small spatial steps.

In SAR imaging, a microwave probe illuminates an area of the SUT and the

hardware device measures the backscattered complex-valued reflection coefficients,

f(x′, y′, ωs), which are the superposition of reflections from all points in the illuminated
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area with x′ and y′ being the probe location and ωs being the swept temporal angular

frequency. The reflection coefficients

f(x′, y′, ωs) =

∫∫

s(x, y, ωs, zt)e
−j2ks
√

(x−x′)2+(y−y′)2+z2t dx dy (20)

are superposition of reflections from all points in the illuminated area where ks =
ωs

c
is

the wavenumber and s(x, y, ωs, zt) is the reflectivity function of the target at location

x and y and distance zt from the probe.

After decomposing the spherical wave propagation into a superposition of plane

wave components and dropping the distinction between primed and unprimed coor-

dinates, the estimate of the range migration formula becomes

s(x, y, ωs, zt) = F−1
2D

{

F2D {f(x, y, ωs)} e−jzt
√

4k2s−k2x−k2y
}

(21)

where F2D {.} and F−1
2D {.} are the 2D Fourier and inverse Fourier transform operators,

respectively, kx and ky are the Fourier transform variables corresponding to x and

y, respectively, and c is the speed of light [5, 12, 13, 20]. To improve the quality of

images, the reflection coefficients, f(x, y, ωs), are measured for a range of frequencies.

Then, all focused images are averaged for a given distance of the probe to the target

zt,

s(x, y, zt) =
1

Nω

Nω
∑

s=1

s(x, y, ωs, zt) (22)

where Nω is the number of frequency points.

The scan time can be reduced by randomly selecting spatial acquisition points

from a uniform grid and optimizing the scan path to minimize the total traveling

distance. In the compressed sensing SAR imaging technique, the reflection coefficients

are sampled randomly from a uniform grid along the X and Y dimensions. Then, CS
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is exploited to recover the uniform grid data and (21) and (22) are used to form 2D

images of the target at different heights [21, 22].

The 2D SAR transform is calculated using (21) and can be expressed in matrix

format

ΨSAR = ΨH
2DFT × (E ◦Ψ2DFT ) (23)

where × denotes the matrix product, ◦ denotes the Hadamard product, ΨSAR is the

2D SAR matrix, and Ψ2DFT is the 2D Fourier transform matrix and is formed by

Ψ2DFT = ΨFT ⊗ΨFT (24)

where ⊗ denotes Kronecker product and ΨFT is the 1D Fourier transform matrix.

The exponential factor in (21) is denoted by matrix E and is calculated as

E(s, t) = ē⊗
[

1 1 · · · 1

]

1×N

(25)

where

ē =

[

eT1 eT2 · · · eTl

]T

(26)

with el being the columns of matrix e defined as

emn(s, t) =
[

e−jzt
√

4k2s−k2xm−k2yn
]

mn
. (27)

The 2D transform matrices for other bases are the Kronecker product of 1D

bases

Ψ2D = Ψ1D ⊗Ψ1D (28)
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where Ψ1D is the 1D basis matrix corresponding to each 2D basis matrix, Ψ2D.

4.2. RESULTS

The goal in adaptive basis selection compressed sensing SAR imaging is to find

a proper sparse representation of f(x, y, ωs) from incomplete measured reflection coef-

ficients, y(x, y, ωs). The hardware system is designed to randomly measure the reflec-

tion coefficients and the a priori knowledge of proper representation is not available

from incomplete data. On the other hand, the proper sparse representation might be

different for different SUTs. Using the proposed algorithm, the proper representation

is selected adaptively as the signal is evolved during the recovery process. Spatial

sampling is selected for SAR imaging because of hardware specifications. Therefore,

the decision metric is based on bilinear interpolation of y(x, y, ωs)’s.

To show the efficacy of the proposed method, experimental tests were conducted

on an SUT which was eight rubber (Rbr) patches and one copper (Cu) patch fixed on

a substrate at different heights using pieces of construction foams as physical support.

The imaging probe is operating at 18 GHz to 26.5 GHz with frequency steps of 0.6

GHz. An area of 120mm× 180mm is scanned and the reflections are received by the

same antenna probe. The complex-valued reflection coefficients are measured and

recorded by an HP 8510C vector network analyzer.

The ADM approach is used to recover the SAR images. To see the effect of the

sparsifying basis on signal recovery, we have recovered SAR images using different

bases. The results of the recovered images for z = −28 are shown in Fig. 1. It can

be seen that different bases have recovered the images with different qualities. The

closest one in terms of normalized root mean square (NRMS) error to the original

image with complete measurement points is the one recovered using 2D DFT basis.

The worse basis in terms of error is 2D DB1(1).
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The same SAR images are recovered using the proposed algorithm with the

ADM approach. The algorithm has detected the sparsest basis for all pairs of (ωs, zt)

correctly and has evolved the signal in the correct basis. The resulting 2D compressed

y (mm)

x
 (

m
m

)

0 30 60 90 120

0

30

60

90

120

150

180

(a) Original

y (mm)

x
 (

m
m

)

0 30 60 90 120

0

30

60

90

120

150

180

(b) SAR

y (mm)

x
 (

m
m

)

0 30 60 90 120

0

30

60

90

120

150

180

(c) DFT

y (mm)

x
 (

m
m

)

0 30 60 90 120

0

30

60

90

120

150

180

(d) DCT

y (mm)

x
 (

m
m

)

0 30 60 90 120

0

30

60

90

120

150

180

(e) DB1 (1)

y (mm)

x
 (

m
m

)

0 30 60 90 120

0

30

60

90

120

150

180

(f) DB1 (2)

Figure 1: 2D SAR images of the SUT from complete data and recovered using fixed
bases from 20% randomly selected points at z = −28.
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sensing SAR images of the SUT using the proposed method is shown in Fig. 2 with

20% of the points used in the complete data. These figures show the SAR images

focused on three different levels of the targets and images from substrate level.

The convergence of the proposed algorithm is studied for this set of images.

Figure 3 illustrates the error and the decision metric behavior of the algorithm on the

same plot. It can be seen that as the algorithm converges, it selects the best basis

(DFT) and converges to the desired signal with this basis. The algorithm also selects

DB1(1) as the worst basis and sorts all other bases in between these two bases. The

initial guess for the sparsifying basis is based on initialization in Algorithm 2.

The robustness of the algorithm to initial basis is studied by forcing the algo-

rithm to select a wrong initial basis. Figure 4 shows how the algorithm selects the

best basis with different initialization. The numbers on the vertical axis indicate the

bases according to Table 1. The maximum number of iterations for basis convergence,

Ie, is 20. From the figure, it can be seen that the algorithm selects the best basis

after the first iteration for all basis except SAR. When the sparsifying transform is

selected as SAR for initialization, the algorithm selects SAR after 7 iterations as the

best basis which is the second best basis in the set of bases.

5. APPLICATION TO K-SPACE IMAGING

5.1. K-SPACE IMAGING

The Shepp-Logan phantom is sampled in the frequency domain and is recovered

using different sparsifying bases. The samples are randomly selected from frequency

coefficients of the image with more concentration on lower frequencies. The images

are recovered using fixed basis compressed sensing with TV penalty as in (5). The

results of the image recovery using 30% of the frequency coefficients are shown in Fig.
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Figure 2: 2D SAR images of the SUT from complete data and recovered data from
20% randomly selected points using ABS.
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5. From the figure, it can seen that the best recovery is by using the identity matrix.

The worst basis is 2D DFT as it is the same as the measurement basis and has the

highest coherence.

5.2. RESULTS

To evaluate the performance of the proposed algorithm on k-space imaging the

same image is recovered using the proposed algorithm with the CGD approach with
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Figure 3: Decision metric and error vs. number of iterations for SAR data.
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initialization.
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TV penalty. The algorithm selected the best basis as the identity matrix and the

resulting image is shown in Fig. 6. The convergence of the algorithm is studied with

respect to the changes in decision metric in Fig. 7. It can be seen that the algorithm

has selected the best basis for recovery and has sorted all other bases correctly. Figure

(a) Original (b) EYE

(c) DFT (d) DCT

(e) DB1 (1) (f) DB1 (2)

Figure 5: Shepp-Logan phantom images from complete data and recovered using fixed
bases from 30% randomly selected frequency points.
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8 shows the results of the study on robustness to initialization. It can be seen that

initializations with all bases have converged to the identity matrix after the first

iteration.

(a) (b)

Figure 6: Shepp-Logan phantom images from complete data and recovered data from
30% randomly selected frequency points.
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Figure 7: Decision metric and error vs. number of iterations for Shepp-Logan phan-
tom data.
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6. CONCLUSION

Recently developed compressed sensing theory has proposed a more efficient

acquisition of signals by sampling below the conventional Nyquist rate. However,

there is a need for selecting a proper basis for the recovering of signals using sparse

representation. This is while no a priori knowledge of the proper basis is available

before the signal is recovered. On the other hand, the proper basis should be selected

based on incomplete measurements.

In this paper we proposed a low-computationally-complex algorithm called adap-

tive basis selection compressed sensing to recover images from incomplete measure-

ment without any knowledge of the proper sparse representation. To detect the best

basis from a set of bases, a decision metric is introduced to select between the bases as

the signal is evolved during the iterations of the algorithm. The 2D synthetic aperture

radar images and Shepp-Logan phantom data were used in this paper to show the

performance of the proposed method. The results of our experiments showed that the

proposed algorithm successfully selected the best basis adaptively and was capable of

recovering the images with high accuracy.
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IV. QUANTITATIVE AND QUALITATIVE COMPARISON OF SAR

IMAGES FROM INCOMPLETE MEASUREMENTS USING

COMPRESSED SENSING AND NONUNIFORM FFT

Hamed Kajbaf, Joseph T. Case, Yahong Rosa Zheng, Sergey Kharkovsky, and Reza

Zoughi

ABSTRACT—In this paper the performance of two wideband synthetic aperture

radar (SAR) imaging methods from incomplete data sets are compared quantita-

tively and qualitatively. The first approach uses nonuniform fast Fourier transform

(NUFFT) SAR to form images from nonuniform spatial and frequency data points.

The second approach benefits from the emerging compressed sensing (CS) method-

ology to recover raw data from undersampled measurements. The results of our ex-

perimental tests show that CS has a better performance in terms of error and image

contrast while NUFFT SAR has lower computational complexity.

1. INTRODUCTION

Microwave synthetic aperture radar (SAR) imaging is a high resolution nonde-

structive testing and evaluation (NDT&E) technique which can be exploited to detect

discontinuities in critical structures by raster scanning using a single antenna probe

(e.g. an open-ended waveguide) [1, 4, 5]. Wideband SAR is capable of determin-

ing depth of discontinuities and providing 3D images of specimens under test (SUT)

such as spacecraft tiles, airplane coating, bonding of adhesive or composite materials.

However, the drawback of microwave SAR imaging for NDT&E applications is the

time needed for scanning the region of interest, which for a relatively large SUT might

be hours of data acquisition. Reducing the number of spatial samples significantly

helps in decreasing the acquisition time.
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The emerging compressed sensing (CS) theory has introduced a method of reduc-

ing the number of samples by sampling below the conventional Nyquist rate [14, 17].

Nonuniform fast Fourier transform (NUFFT) SAR is another method for forming

SAR images from incomplete data with low computational requirements. In this pa-

per the performance of sample reduction in SAR imaging using CS and NUFFT SAR

are compared in terms of metrics indicating the quality of the SAR images.

2. NUFFT SAR

Suppose that an antenna probe located at (x′, y′, z0) illuminates a target and a

general point on the target, (x, y, z), reflects back the pulse. The same probe receives

the backscattered coherent signal, f(x′, y′, ω), which is the superposition of reflection

from all points in the illuminated area

f(x′, y′, ω) =

∫∫∫

s(x, y, z)e−jkR dx dy dz (1)

where R is the range between the probe and the target point

R =
√

(x− x′)2 + (y − y′)2 + (z − z0)2

, k = ω
c
is the wavenumber, c is the propagation speed, and s(x, y, z) is the reflec-

tivity function of the target, which is the ratio of the reflected field to the incident

field. Decomposing the spherical wave propagation into a superposition of plane wave

components, we can rewrite (1) in 3D Fourier transform form [13]
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f(x′, y′, ω) =
∫∫

[
∫∫∫

s(x, y, z)e−j(kx′x+ky′y+kzz) dx dy dz

]

×ej(kx′x′+ky′y
′+kzz0) dkx′ dky′ (2)

where kx′ and ky′ are Fourier transform variables corresponding to x′ and y′, respec-

tively, and the one corresponding to z is kz =
√

4k2 − k2
x − k2

y. The triple integral

in (2) is the 3D Fourier transform of s(x, y, z). Solving this equation and dropping

the distinction between primed and unprimed coordinates, the 3D image is formed

by [13]

s(x, y, z) = F−1
3D

{

F2D {f(x, y, ω)} e−j
√

4k2−k2x−k2yz0
}

(3)

where F {.} and F−1 {.} are the Fourier and inverse Fourier transform operators,

respectively. Since in (3) the frequencies are uniformly sampled in the frequency band

and the probe scans at uniform step size along X-Y dimensions, kz’s are nonuniformly

distributed and Stolt interpolation is normally used to interpolate the uniform points

in kz [20]. It has been shown that NUFFT can be exploited to improve the accuracy

of SAR imaging [8] since it is a good approximation of the nonuniform discrete Fourier

transform (NDFT) [23, 38]. Using NUFFT, (3) becomes

s(x, y, z) =

F−1
2D

{

F−1
NU

{

F2D {f(x, y, ω)} e−j
√

4k2−k2x−k2yz0
}}

(4)

where F−1
NU {.} is one dimensional inverse NUFFT operator in the kz domain.

Now, consider the case where spatial and frequency samples are nonequispaced

and randomly distributed. The two dimensional Fourier transform in (4) is no longer

applied to uniform X-Y grids. Assuming that we know the sample locations, we can
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use the two dimensional NUFFT as an accurate approximation to the two dimensional

NDFT. This is also known as an unbiased spectrum estimator with uniform weights

[53]. Therefore, (4) becomes

s(x, y, z) =

F−1
2D

{

F−1
NU

{

F2DNU {f(x, y, ω)} e−j
√

4k2−k2x−k2yz0
}}

(5)

where F2DNU {.} is the two dimensional NUFFT operator applied along X-Y dimen-

sions.

3. DATA RECOVERY USING CS

Let us consider a complex valued column vector f ∈ CN containing all reflection

coefficients f(x, y, ω) where N is the number of measured reflection coefficients. This

vector expands in an orthonormal basis of N × 1 vectors, {ψi}Ni=1, that forms N ×

N dictionary matrix, Ψ = [ψ1ψ2 . . .ψN ]. The signal can then be expressed as

f = Ψc, where c is the vector of atoms, ci = 〈f ,ψi〉 = ψ
H
i f , with (.)H denoting

conjugate transpose. The signal f is called S-sparse if it can be represented with only

S significant ci coefficients. Our experiments show that three dimensional discrete

cosine transform (DCT) applied on 3D matrix of reflection coefficients sparsifies the

signal very well and is a very good candidate to be used in CS.

Random samples of f are chosen using the measurement matrix, Φ, of size

M × N with M < N . The undersampled vector, y, can be expressed in matrix

format y = Φf = ΦΨc. This equation for solving f is ill-conditioned in general and

does not have a unique solution. However, if the matrix A = ΦΨ obeys restricted

isometry property (RIP), we can recover the signal, f , with high probability using

M ≥ KS log(N/S) measurements for some constant K [17]. To make hardware
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implementation feasible and satisfy the RIP for matrix A, we choose Φ a matrix of

spikes by randomly placing a one in each row of the matrix such that the matrix

selects samples at the corresponding (x, y) locations. For each selected location, the

matrix samples frequency point from a full set of swept frequencies. To reconstruct

high resolution images from the incomplete samples, y, we use the standard Basis

Pursuit (BP) method [19]

min
c̃∈CN

‖c̃‖1 subject to y = ΦΨc̃ (6)

where ‖.‖1 is the ℓ1 norm operator and c̃ is the estimate of c. After recovering the

full set of reflection coefficients, we use (4) to reconstruct the 3D image.

4. EXPERIMENTAL TESTS AND RESULTS

Wideband SAR experiments were conducted at the Applied Microwave Non-

destructive Testing Laboratory (amntl) at the Electrical and Computer Engineering

Department of the Missouri University of Science and Technology (Missouri S&T).

A sample was prepared with eight rubber (Rbr) patches of different sizes and one

copper (Cu) patch. As shown in Fig. 1, the targets were fixed on a substrate at dif-

ferent heights using pieces of construction foam as physical support. The microwave

imaging antenna probe was an open-ended waveguide located at 30 mm above the

highest target along Z direction. Since the substrate was located at 106 mm below the

probe (maximum range), frequency step size of at most ∆f = c/(4Rmax) = 0.7 GHz

was needed to image the whole range [13]. In our experiments, the swept frequency

imaging system operated at K-band (18–26.5 GHz) with frequency step size of 0.6

GHz. An area of 120 mm × 140 mm of the SUT was raster scanned using spatial

step sizes of 2 mm in both X and Y directions and the reflections were received by
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the same antenna probe. The baseband complex-valued raw data were measured and

recorded by an HP 8510C vector network analyzer. Having a complete set of raw

data, several incomplete sample sets were chosen using uniform random sampling.

Then NUFFT SAR and CS were applied separately to produce the SAR images of

the SUT.
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Figure 1: Schematic of scanned area of SUT, where unit in figure is mm.

To evaluate the performance of each method, four different quantitative metrics

are used on the reconstructed SAR image. The first metric is the normalized root

mean square (RMS) error that is the normalized Euclidean distance between the full

data set image and the estimated one

ε =
‖s− s̃‖
‖s‖ (7)

where ‖.‖ is the ℓ2 norm operator, s is the vectorized image of full data set, and s̃ is

the vectorized estimated image of incomplete data set. The second, third, and forth
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metrics each quantify the SAR image from incomplete data in comparison to itself in

terms of two types of contrast and signal-to-noise ratio (SNR). The contrast definitions

used are Weber contrast and root mean square (RMS) contrast. Weber contrast is

usually used in cases where small targets are presented on a wide uniform background
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Figure 2: Normalized RMS error for 3D images reconstructed from experimental data
using CS and NUFFT.
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Figure 3: Weber contrast of 3D images reconstructed from experimental data using
CS and NUFFT.
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and is defined as the normalized difference between target and background intensity

Cw =
|st − sb|

sb
(8)

where st is the target intensity and sb is the plain background intensity [29]. On the

other hand, RMS contrast does not use the spatial distribution of contrast since it is
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Figure 4: RMS contrast of 3D images reconstructed from experimental data using CS
and NUFFT.
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defined as the standard deviation of voxels intensity

Crms =

[

1

n− 1

n
∑

i=1

(si − s)

]1/2

(9)

where si is the intenity of each voxel, s is the mean of voxels intensity, and n is the

number of voxels. SNR is the last metric utilized. It is defined as the ratio of target

intensity to background noise intensity in dB

SNR = 20 log10(
smax − smin

σs

) (10)

where σs is the standard deviation of the image.

Figure 2 illustrates the RMS error for different percentages of data selected

from the full data set. It can be seen that CS have performed better than NUFFT

SAR in terms of error. The Weber contrast of the generated images for different

percentages of raw data is shown in Fig. 3. It can be seen that Weber contrast

is a good figure of merit to quantify the sparsity in images. CS resulted in higher

contrast images and targets are more distinguishable as compared to NUFFT SAR.

Figure 4 shows RMS contrast for the same data set. Since RMS contrast is defined

globally, CS and NUFFT SAR have almost the same performance especially in higher

percentages. The SNR of images from NUFFT SAR and CS for different percentages

of incomplete data is shown in Fig. 5. The two algorithms have almost the same

performance in terms of SNR.

The two approaches are also compared in terms of computational complexity and

time required to estimate the image. To solve the optimization problem in (5), we used

Alternating Direction Method (ADM) recently proposed in [28] and provided by the

YALL1 Matlab package. Because of its iterative nature, CS is more computationally

intensive and it took about 100 seconds to converge while NUFFT SAR uses the fast
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Fourier transform and can be computed in fraction of a second using a Dell Optiplex

760 with an Intel Core 2 Duo 3.33 GHz CPU.

To compare the two methods qualitatively, volumetric images of the SUT are

plotted and compared to the image of the full data set. Figure 6 shows the 3D images

of the targets from the original and incomplete data sets using CS and NUFFT

SAR with different percentages of spatial and frequency points. It can be seen for

images from 30% (40% X-Y and 75% frequency points) and 24.5% (35% X-Y and 70%

frequency points) of data that all targets are distinguishable in images recovered using

CS while the small rubber target at z = −69 mm can not be easily seen in NUFFT

SAR images because of background artifacts added to the image. Both methods fail

to detect this small rubber pads for 10% (18% X-Y and 56% frequency points) of

data.

To see the details of each figure, slices of the 3D image are also shown. Figure 7

illustrates slices of SAR image from full data set. It shows slices from three different

levels of targets and one slice from substrate level which has very low signal power.

Figures 8 and 9 show slices of images produced from different percentages of raw data

using CS and NUFFT SAR respectively. From the slices it can be seen that NUFFT

have added more artifacts to the image especially at z = −30 mm.
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(a)

(b) (c)

(d) (e)

(f) (g)

Figure 6: Wideband SAR images of (a) full data set, (b) 30% of data using CS,
(c) 30% of data using NUFFT (d) 24.5% of data using CS, (e) 24.5% of data using
NUFFT, (f) 10% of data using CS, and 10% of data using NUFFT (unit in figure is
mm).
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Figure 7: Slices of wideband SAR images of full data set (unit in the figure is mm).
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Figure 8: Slices of wideband SAR images from incomplete data using CS (unit in the
figure is mm).
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5. CONCLUSION

CS and NUFFT SAR are both capable of forming SAR images from an incom-

plete set of data. Quantitative and qualitative metrics show that CS performs better

than NUFFT SAR for the same set of data and causes fewer artifacts during data

recovery.
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Figure 9: Slices of wideband SAR images from incomplete data using NUFFT SAR
(unit in the figure is mm).

In terms of computational complexity, NUFFT SAR have much better perfor-

mance than CS and is more suitable for real-time applications.
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V. 3D IMAGE RECONSTRUCTION FROM SPARSE

MEASUREMENT OF WIDEBAND MILLIMETER WAVE SAR

EXPERIMENTS

Hamed Kajbaf, Joseph T. Case, and Yahong Rosa Zheng

ABSTRACT—Nonuniform random sampling is applied to a wideband 3D synthetic

aperture radar (SAR) imaging system to reduce the number of measurement points

in both frequency and space domains. Experimental tests were performed on a con-

struction foam specimen using uniformly sampled Q-band frequencies in 35.04 GHz to

44.96 GHz and at a grid of two millimeter step sizes. Using discrete Fourier transform

(DFT) or discrete cosine transform (DCT) sparse representations, the 3D images can

be reconstructed from 7% random samples of the experimental data achieving com-

parable quality as the one from original full-set data. This can translate to significant

time reduction of measurement from more than one hour to less than 20 minutes.

1. INTRODUCTION

Microwave and millimeter wave imaging are effective nondestructive testing and

evaluation (NDT&E) methods that have found important applications in testing crit-

ical structures such as spacecraft tiles, airplane coating, bonding of adhesive or com-

posite materials, etc [1]. Using synthetic aperture radar (SAR) technology, the wide-

band 3D SAR imaging system developed at the Missouri University of Science and

Technology (Missouri S&T) is capable of detecting tiny defects of millimeter sizes em-

bedded within the specimen under test (SUT) without compromising the usefulness

and utility of the SUT [7]. However, using the conventional sampling method in both

space and frequency domains, the imaging system currently suffers from slow sensing
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speed due to slow sweeping oscillators available in current microwave technology as

well as small step sizes needed for spatial resolution.

The emerging compressed sensing (CS) methodology [14, 17] provides a great

potential for solving this problem. In this paper, we successfully develop the CS

method for reconstruction of wideband 3D images from as low as 7% of the measure-

ment samples required by Nyquist sampling rate. Experimental results have been

obtained using nonuniform random sampling [17, 36] with discrete Fourier transform

(DFT) and discrete cosine transform (DCT) as the sparsifying domain. The recon-

structed 3D images achieve similar quality as that of conventional method using the

full-set data. This work distinguishes itself from existing CS research on radar ap-

plications in that we deal with wideband 3D SAR rather than narrowband synthetic

3D imaging such as the ones in [18, 27, 54, 55]. This allows us to reduce the number

of measured frequency points in addition to reducing the number of spatial points.

2. WIDEBAND MONOSTATIC SAR IMAGING

A typical configuration of a wideband 3D SAR imaging system is shown in Fig.

1. The antenna probe located at (x′, y′, z0) transmits a short pulse, Re{p(t)ejωt}, onto

the SUT with a wide aperture antenna, where t is the time and ω is the temporal

angular frequency. A point on the target at (x, y, z) reflects back the pulse and the

probe receives an echo with round trip phase delay. The demodulated baseband echo

is then p(t− 2R
c
)ejω

2R
c , where c is the propagation speed and R is the range between

the probe and the target point R =
√

(x− x′)2 + (y − y′)2 + (z − z0)2.

The complex signal received at the probe, f(x′, y′, ω), is the superposition of

back-scattered pulses from all points of the target within the aperture [13]

f(x′, y′, ω) =

∫∫∫

s(x, y, z)e−jkR dx dy dz (1)
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where k = ω
c
is the wavenumber and s(x, y, z) is the reflectivity function of the target,

which is the ratio of the reflected field to the incident field. Decomposing the spherical

wave propagation into a superposition of plane wave components, we can rewrite (1)

in 3D Fourier transform form [13]

f(x′, y′, ω) =
∫∫

[
∫∫∫

s(x, y, z)e−j(kx′x+ky′y+kzz) dx dy dz

]

×ej(kx′x′+ky′y
′+kzz0) dkx′ dky′ (2)

where kx′ and ky′ are Fourier transform variables corresponding to x′ and y′, respec-

tively, and the one corresponding to z is kz =
√

4k2 − k2
x − k2

y. The triple integral in

(2) is the 3D Fourier transform of s(x, y, z). Solving this equation and dropping the

distinction between primed and unprimed coordinates and benefiting from wideband

measurement, the 3D image is formed by [13]

s(x, y, z) = F−1
3D

{

F2D {f(x, y, ω)} e−j
√

4k2−k2x−k2yz0
}

(3)

where F {.} and F−1 {.} are the Fourier and inverse Fourier transform operators,

respectively.

Target

X

Y

Z

R

(x’,y’,0)

Probe

(x,y,z)

Figure 1: Schematic of imaging system setup configuration.
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In (3), the frequencies are uniformly sampled in the frequency band and the

probe scans at uniform step size along X-Y dimensions, hence, uniform k, kx, and

ky. Consequently, the kz’s are nonuniformly distributed and Stolt interpolation is

usually used to interpolate the uniform points in kz. Alternatively, it has been shown

that the nonuniform fast Fourier transform (NUFFT) improves the performance and

accuracy of SAR imaging since it is a good approximation of the nonuniform discrete

Fourier transform (NDFT) [24]. Using NUFFT, (3) becomes

s(x, y, z) =

F−1
2D

{

F−1
NU

{

F2D {f(x, y, ω)} e−j
√

4k2−k2x−k2yz0
}}

(4)

where F−1
NU {.} is one dimensional inverse NUFFT operator in the kz domain.

3. APPLICATION OF CS TO WIDEBAND SAR

To develop CS method for the wideband SAR imaging system, we first formulate

the uniformly sampled reflection coefficients f(x, y, ω) into a N × 1 column vector f .

Assuming this vector expands in an orthonormal basis of N × 1 vectors {ψi}Ni=1,

we form an N × N dictionary matrix Ψ = [ψ1ψ2 . . .ψN ] and express the signal as

f = Ψc, where c is the vector of atoms ci = 〈f ,ψi〉 = ψ
H
i f with (.)H denoting

conjugate transpose (Hermitian). The signal f is called S-sparse if only S of its ci

coefficients are significant and the rest of (N−S) coefficients are zero or close to zero.

In practice, we can use DFT, DCT, wavelet, and other dictionaries as matrix Ψ to

represent the data.

Then we choose a random measurement matrix, Φ, of sizeM×N withM < N to

undersample the signal f and obtain the compressed measurement y = Φf = ΦΨc.To

ease the hardware implementation, we choose uniformly distributed random (x, y)
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locations and set the corresponding coefficient of Φ to one. Other coefficients of Φ

are set to zero. For each selected (x, y) location, a set of frequency points are also

selected randomly from the full-set of swept frequencies.

To reconstruct high resolution images from the incomplete samples, y, we use

the standard Basis Pursuit (BP) method [19]

min
c̃∈CN

‖c̃‖1 subject to y = ΦΨc̃ (5)

where c̃ is the estimate of c. Consequently, the high resolution signal f can be

recovered, and the 3D image is reconstructed using (4).

4. EXPERIMENTAL TESTS AND RESULTS

The wideband SAR experiments were conducted by the Applied Microwave Non-

destructive Testing Laboratory (amntl) at the Electrical and Computer Engineering

Department of the Missouri University of Science and Technology. The SUT was a

cubic blue foam of size 120×180×80 mm3 supported on a wooden frame with two thin

metal strips. The SUT was made from three layers of construction foam. The layers

of foam were taped together and each layer had three round rubber pads (defects) of

5 mm diameter and 2 mm height embedded at different locations, as shown in Fig.

2. The millimeter wave imaging probe was located 34 mm above the SUT (standoff

distance). The imaging system operated with 125 uniformly swept frequencies in the

Q-band (35.04 – 44.96 GHz) and with a spatial step size of 2 mm in the X and Y

dimensions. The reflected backscatters were received by the same antenna probe and

a matched filter receiver. The baseband complex-valued raw data were recorded by

a vector network analyzer. Other details of the experiment are found in [7].
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To apply CS method for image reconstruction, an undersampled data set was

chosen from the acquired raw data with 35% of points randomly selected in the X-Y

plane. For each spatial location, 20% frequency points from the full data set were

randomly selected. This resulted in 7% of the data used in image reconstruction

which could reduce the measurement time from more than an hour to less than 20

minutes.

(a) z = 34mm (b) z = 65mm (c) z = 81mm

Figure 2: Locations of the rubber pads in the scanned area of SUT, where unit in
figure is mm, and z is the distance from the SAR probe.

The optimization problem in (5) was solved using the Alternating Direction

Method (ADM) recently proposed in [28] and provided by the YALL1 Matlab package,

thanks to its capability of handling complex coefficients. We tried several transform

domains (matrix Ψ), such as the DFT, DCT, wavelet, SAR transform (the image

domain), etc. We found that the DCT domain provided the best performance and

convergence with the experimental data.

The CS reconstructed 3D image achieved similar quality as the one from the

original full-set raw data. The reconstructed volumetric images from the DFT CS and
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DCT CS methods were compared to the one from the original full data set, as shown

in Fig. 3. The nine defects in three different layers were clearly shown in all images,

while the DFT CS method produced two strips on the boundary of the aperture at

depth z = 0 mm. Alternatively, Fig. 4 illustrates slices of the reconstructed 3D SAR

images at different heights from the probe. The defects on all three layers were clearly

identified by both DFT and DCT domain methods, even though some artifacts in the

lower layer (z = 81 mm) were presented in all three images from the original, DFT

CS, and DCT CS methods. The images at z = 120 mm height shows the bottom

supporting material.

The performance of DCT was better in terms of root mean square (RMS) error

of the estimates, as shown in Fig. 5. When different percentages of data were used,

the DCT CS achieved less reconstruction error than the DFT CS method, especially

at low percentages. Also, the algorithm converged faster in DCT domain as shown

in Fig. 6 since the reflection coefficients were sparser in this domain.

Despite the good performance of CS reconstruction using 2D SAR as sparse

representation, reconstruction failed to converge for wideband 3D SAR representation

(sparse domain). The reason was due to truncation errors occurring in each iteration

(a) (b) (c)

Figure 3: Wideband SAR images of (a) full data set, (b) 7% of data using DFT
sparse representation, and (c) 7% of data using DCT sparse representation. Unit in
the figure is mm.
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Figure 4: Slices of reconstructed wideband SAR images using measured data as in
Fig. 3. Unit in the figure is mm.



110

of solving (5). In the future, we are going to correct this truncation error and use 3D

SAR sparse representation to decrease the acquisition time.
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Figure 5: Normalized RMS error for 3D images reconstructed by the DFT and DCT
CS methods.
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Figure 6: Number of iterations for 3D images reconstructed by the DFT and DCT
CS methods.
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5. CONCLUSION

The random sampling method has been successfully applied to a wideband

3D SAR imaging system to reduce the number of measurement samples to 7% of

the full-set, thus in turn reducing the measurement time significantly. The Basis

Pursuit method has been used with DFT and DCT as the sparsifying domain to

reconstruct volumetric images from the undersampled measurements. Experimen-

tal results demonstrated that both discrete Fourier transform and discrete cosine

transform achieve low estimation error and fast convergence, while 3D SAR sparse

representation failed to converge for 3D images.

6. ACKNOWLEDGMENT

We wish to thank Drs. Sergey Kharkovsky and Reza Zoughi for providing the

blue foam experiment data.



112

SECTION

2. CONCLUSIONS

In this dissertation, the compressed sensing (CS) methodology is applied to

a 3D SAR imaging system. Several sets of experiments are performed on different

specimens to evaluate the performance of the proposed CS algorithms.

The results of experimental tests indicate that compressed sensing can be suc-

cessfully applied to 2D and 3D microwave SAR imaging for nondestructive testing

applications. Using the proposed methods, the acquisition time is significantly re-

duced and the computational complexity of the post-processing is kept low while the

images are produced with comparable quality. The results of our experiments indi-

cate that one can reduce the acquisition time by up to 66% of that of conventional

methods while maintaining the quality of the SAR images by randomly selecting 20%

of spatial points.

CS and NUFFT SAR are both capable of forming SAR images from an incom-

plete set of data. Both quantitative and qualitative metrics show that CS performs

better than NUFFT SAR for the same set of data and causes fewer artifacts during

data recovery. In terms of computational complexity, NUFFT SAR demonstrated a

much better performance than did CS and is more suitable for real-time applications.

We propose a new 3D image reconstruction method for compressed sensing mi-

crowave imaging using NUFFT-based SAR. High quality SAR images are recovered

from incomplete measurements by exploiting an accurate SAR and R-SAR transform

pair allowing the forward and reverse SAR to be applied in each iteration of CS and

ensuring the convergence of the CS algorithm. A new, low-complexity truncation

repair method is also proposed to reduce the truncation error in the practical appli-

cation of the NUFFT algorithm in the reverse SAR transform. It is shown that the
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proposed model recovers the sparse targets very well and, at the same time, removes

the background artifacts better than the conventional full-set measurement approach.

Finally, we propose a low-computationally-complex algorithm called adaptive

basis selection (ABS) compressed sensing to recover images from incomplete mea-

surement without any knowledge of the proper sparse representation. To detect the

best basis from a set of bases, a decision metric is introduced to select between the

bases as the signal is evolved during the iterations of the algorithm. The 2D syn-

thetic aperture radar images and the Shepp-Logan phantom data were used to show

the performance of the proposed method. The results of our experiments indicate

that the proposed algorithm successfully selected the best basis adaptively and was

capable of recovering the images with high accuracy.
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[43] G. Peyré, “Best basis compressed sensing,” IEEE Trans. Signal Process., vol. 58,
no. 5, pp. 2613–2622, May 2010.

[44] H. W. Chen, L. W. Kang, and C. S. Lu, “Dictionary learning-based distributed
compressive video sensing,” in Picture Coding Symp. (PCS), Dec. 2010, pp. 210–
213.

[45] A. Soni and J. Haupt, “Efficient adaptive compressive sensing using sparse hier-
archical learned dictionaries,” ArXiv e-prints, pp. 1–5, Nov. 2011.

[46] S. Ravishankar and Y. Bresler, “MR image reconstruction from highly under-
sampled k-space data by dictionary learning,” IEEE Trans. Med. Imag., vol. 30,
no. 5, pp. 1028–1041, May 2011.

[47] J. J. Thiagarajan, K. N. Ramamurthy, and A. Spanias, “Multilevel dictionary
learning for sparse representation of images,” in Digital Signal Processing Work-
shop and IEEE Signal Processing Education Workshop (DSP/SPE), Jan. 2011,
pp. 271–276.

[48] S. Rickard, “Sparse sources are separated sources,” in Proc. 16th Annu. European
Signal Process. Conf., Florence, Italy, 2006.



119

[49] C. M. Akujuobi, O. O. Odejide, A. Annamalai, and G. L. Fudge, “Sparseness
measures of signals for compressive sampling,” in IEEE Int. Symp. on Signal
Process. and Inform. Technology, Dec. 2007, pp. 1042–1047.

[50] N. Hurley and S. Rickard, “Comparing measures of sparsity,” IEEE Trans. Inf.
Theory, vol. 55, no. 10, pp. 4723–4741, Oct. 2009.

[51] D. Zonoobi, A. A. Kassim, and Y. V. Venkatesh, “Gini index as sparsity measure
for signal reconstruction from compressive samples,” IEEE J. Sel. Topics Signal
Process., vol. 5, no. 5, pp. 927–932, Sep. 2011.

[52] T. A. Schonhoff and A. A. Giordano, Detection and Estimation Theory and Its
Applications. Prentice Hall, 2006.

[53] A. Tarczynski and N. Allay, “Spectral analysis of randomly sampled signals:
Suppression of aliasing and sampler jitter,” IEEE Trans. Signal Process., vol. 52,
no. 12, pp. 3324–3334, Dec. 2004.

[54] R. Baraniuk and P. Steeghs, “Compressive radar imaging,” in Proc. 2007 IEEE
Radar Conf., Boston, MA, Apr. 2007, pp. 128–133.

[55] A. Budillon, A. Evangelista, and G. Schirinzi, “Three-dimensional SAR focus-
ing from multipass signals using compressive sampling,” IEEE Trans. Geosci.
Remote Sens., vol. 49, no. 1, pp. 488–499, Jan. 2011.



120

VITA

Hamed Kajbaf received a BS degree in Electrical Engineering from Shiraz Uni-

versity, Shiraz, Iran, in 2006. He received an MS degree in Biomedical Engineering-

Bioelectric from Tarbiat Modares University, Tehran, Iran, in 2009. He began his

PhD study in August 2009 in the Electrical and Computer Engineering department

at Missouri University of Science and Technology, Rolla, MO, USA.

His research interests include digital signal and image processing, sensing and

imaging systems optimization, microwave and acoustic imaging, and array signal

processing. His current area of research is on compressed sensing and its applications

to microwave imaging systems.


	Compressive sensing for 3D microwave imaging systems
	Recommended Citation

	Dissertation_Kajbaf.dvi

