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Abstract

The University of Manchester; Agung Tjahjo Nugroho;
PhD Electrical and Electronic; Microwave Tomography; 08/10/2015

This thesis reports on the research carried out in the area of Microwave
Tomography (MWT) where the study aims to develop inversion algorithms to
obtain cheap and stable solutions of MWT inverse scattering problems which
are mathematically formulated as nonlinear ill posed problems.

The study develops two algorithms namely Inexact Newton
Backtracking Method (INBM) and Newton Iterative-Conjugate Gradient on
Normal Equation (NI-CGNE) which are based on Newton method. These
algorithms apply implicit solutions of the Newton equations with unspecific
manner functioning as the regularized step size of the Newton iterative.

The two developed methods were tested by the use of numerical
examples and experimental data gained by the MWT system of the University
of Manchester. The numerical experiments were done on samples with
dielectric contrast objects containing different kinds of materials and lossy
materials. Meanwhile, the quality of the methods is evaluated by comparing
them with the Levenberg Marquardt method (LM).

Under the natural assumption that the INBM is a regularized method
and the CGNE is a semi regularized method, the results of experiments show
that INBM and NI-CGNE improve the speed, the spatial resolutions and the
quality of direct regularization method by means of the LM method. The
experiments also show that the developed algorithms are more flexible to the

effect of noise and lossy materials compared with the LM algorithm..



Contents

DECIATAtION ...t 2

Copyright StAtEMENT .....uuneeiiiiiiiiiieee e e e e e e e e e e e e eaaaaeeaaes 3

ADOUL the AULNOT .......iiiiiieeiiee e 4

ACKNOWIEAZEMENL .....cooiiiiiiiiiiiie e e 5

ADSTIACE ...t e e et e e et e e ettt e e e a b e e eaaaans 7

COMLEEIILS ..ttt e e e ettt e e e e et e e e ettt e e e e eaaa e e e eeetaneeeeaennnaaeees 8

LSt Of FIGUIES ...t e e e e e e 12

LASt Of TaDIES .vvueeiiiiiiee e e et e e e e b e e e e eaa e eeees 20

List of AIOTItRMS ....vvvniiiiiee et 22

List Of SYMDOLS ....coovviiiiiiiiee e 23

List Of ADDIEVIALION .....ceeiieiiiiiiiiiieeeeeee et e e e e et e e e e e e e e e e e e 25

1 INtrOAUCHION ... 27

1.1  Electromagnetic TOMOZIaphy .........c.uoveviiiiiiieeiiiiiieeeiiiiiieeeeiiieeeeeens 27

1.2  Microwave Tomography Inverse problem ................ccoeeeeiiiiinneenn. 28

1.3 ODJECHIVES vvveneiiiiiieeee et e e e e et e e e e e e ee e e e e e e e aaaeeeeees 31

1.4 CONLIIDULIONS ...coeiiiiiiiiiiieeeee et e e e e et e e e e e e e e eeaaa e e eeeeas 33

2 Microwave IMaging.............coeeiiiiiiieeiiiiiieee e 35

2.1  Brief Overview of Electromagnetic Imaging .................cccceeeeevvvnenn... 35

2.1.1 Diffraction tomoOgraphy..........coevvvvuiiiieeeeeeiiiiiiiiiiiieeeeeeeeeeenns 36

2.1.2 Terahertz iMaging...........coeeevvvuuieeeeiiiiieeeeiiiiieeeeeieeeeeeerinnnn 37

2.1.3 Millimeter-wave IMagINg ..........cceeererveieeeririieeeeiriieeeaeereennnns 39

2.1.4 MICIOWAVE IMAZING ....cevvvrnerriiiieeeriiiieeeeeriaeeseerineeaersnennnns 40

2.2 Microwave Tomography Method ..............ceeiiiiiiiiiiiiiiiiee . 42
2.3 Nonlinear Methods to Solve Microwave Tomography Inverse

PrODIEMS ... e 43

2.3.1 Gradient Method ............oeeiiiiiiiiiiiiie e, 44

2.3.2 Newton's Method ...........cooeiiiiiiiieiiiiiiiie e, 49

2.3.3 Newton Kantorovich method.................cooovviiiiiiiiiineeinnnnnnn, 53

2.3.4 Inexact Newton method............ccccceeeieeeeiiiiiiiiiiiiiie e 55

3 Direct Scattering for Microwave Tomography ...........cccceeevvvveneeennnnen. 58

3.1 INtrOdUCHION c..ouveiiiiiie e 58

3.2 The Method of Moment Solution for Direct Scattering Problem .....60

3.2.1 Direct scattering in two-dimensional....................ceeeeerrnnenn... 60

3.2.2 Solving direct scattering using the method of moment.......... 64

3.3  Numerical EXperiment ...........ccccovviiiiiiiiiiieeeeiieiiiiicieeee e e e 68

3.3.1 MethOdS ...ooeiiiieiiiiiee e 68



3.4

4.1
4.2
4.3
4.4

4.5

4.6
4.7
4.8

5.4

3.5

6.1
6.2

6.3

3.3.2 Numerical ReSUlt.......oeneieieee e 69

CONCIUSION ... 77
Inverse Problem of Microwave Tomography..........cccceeeeeeeveiviiinnnnnn. 79
INtrOAUCHION .ouvvniiiiiee e 79
Microwave Tomography System..............ceeiieeeeeiiiiiiiiiiiieeeeeeeeeennns 80
Data and domain equations ................cevvvvueiiieeeeeeieiiiiiiieeeeeeeeeeeeanns 82
Microwave Tomography Inverse Problem.................ccceeeeeeeiiiinnnnn. 84
4.4.1 Objective-function of microwave inverse problem................ 34
4.4.2 The Least-Squares data misfit cost-functional of microwave
tOMOZIAPNY ...eiiiiiiieeiiiiiie e e e 85
The solution of objective-function MWT inverse problem of
CONLLAST INVETSIONL ..ueeeeeeeeeiiiiiieeeeeeeeeeeatiiie e e e eeeeeeeeeaanaeeeeeeeeeeeees 86
The solution of least square cost function of contrast inversion ....... 89
Numerical experiment of contrast iINVErSION ................eeereeeeeeeennnn. 90
CONCIUSIONS ... 93
Linearizing MWT Inverse Problem................c.coeeeeiiiiiiieeiiiiiieeeeeen. 95
INtrOdUCHION ..o 95
NeWton Tteration .......coevviiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee 97
Linear filtering technique for non-linear Microwave Inverse
ProbIem ... 99
5.3.1 Linear ill posed problem of microwave tomography inverse
PYODICIN ..ottt 99
5.3.2 Linearizing by means of Levenberg Marquardt method....... 100
Numerical eXPErTMENTt .........uuuieeeeeriereiiiiiieeeeeeeeeeeirieaeeeeaeeeaeanes 102
5.4.1 Simulated data.........cc.coooviiiiiiiiiiiieei e 103
5.4.1 Object domain and object of interest.............cc.cccevvveneernnnnn. 103
5.4.2 Error definition............ovvviiiieeeiiiiiiiiiiciiee e 106
5.4.3 Numerical 1€SUltS.........oovviiiiieeeeiiiiiiiiicieee e 107
CONCIUSION ... 112
Iterative Methods for Solving Microwave Inverse Problem ............. 114
INtrodUCION ..cooeeeeeeeeeeeeee e 114
Iterative scheme of MWT inverse problem ..............cccevvveiinnenn... 116
6.2.1 Regularized solution of linear problem of MWT inverse
PYODICIMN ..ooiiiiiiiiie e 116
6.2.2 Iterative improvement of linear problem..............cccccoeeee... 119
Inexact Newton Backtracking Method (INBM)................c........... 120
6.3.1 Inexact Newton to solve Newton equations of microwave
tomography inverse problem .............cccceeeeeeeeiiiiiiiiiiinneeennn.. 120
6.3.2 Backtracking Strategy ............ccevveruvuiieeeeereiiiiiiiiiiaeeeeeeeeeeenns 123
6.3.3 FOrCING teIM .....ccoiiiiiiiiiiiieee e e e 124
6.3.4 Inexact Newton Backtracking Method INBM) .................. 125



6.4 Numerical Study of INBM ...........oiiiiiiiiiiiiiiiiieeee e, 127

6.4.1 Solving Newton equations using INBM.....................ooooe. 129
6.4.2 Study of regularization techniques on INBM algorithm....... 135
6.4.3 Choice of fOrcing terms ............oovvuviieeeeeeereiiiiiiiiieeeeeeeeeenenns 140

6.5 The application of INBM to Solve MWT- inverse problem of
LOSSY ODJECE ...t e e e e e e e eaaaees 146
6.5.1 Cylindrical homogeneous lossy object .............ccceeeeeeeeennnnnns 146
6.5.2 Dielectric tube model for INBM test..........cccoeevvvveneeiinnenn... 152
6.5.3 Human arm model..............coooviiiiiiiiiineiiiiiiee e, 157
6.6 CONCIUSIONS ..coeeeieieeeeeieeieeeeeeeeeee e 161
7 Newton Iterative — Conjugate Gradient on Normal Equation ......... 163
7.1 INEWLON TtErAtiVE .......uuuuiiiiiiiiiiiiiiiiiiiiiiiiieee 163
7.2 Conjugate Gradient on Normal Equation...............cccceeeeivviinnen. 166
7.3 Stopping Rule of CGNE ...........ouiiiiiiiiiiiiiiiiiiiiiiiiii 169
7.3.1 Discrepancy prinCiple.........ccceeevvuuieeeiiiiiineeiiiiiieeeeeiieeeeeennen. 171

7.3.2 The application of NI-cgne-tto solveMWT inverse problem 173
7.3.3 L-curve criterion for regularizing linear ill posed problem....179

7.3.4 Discrete L-Curve Criterion ..........cuuuueeivirenneeieiiieeeeeiiineeeeennen. 183

7.4  Numerical eXPeriment ...........ceeeeiiiuiieeriiiiiieeeeiiiieeeeerrineeeeaiinaeaeens 185
7.4.1 Dielectric tube model of NI-cgne test...........ccceeeevvvveneeennnnnn. 186

7.4.2 Human Arm model...........cooeeiiiiiiieiiiiiiiieeiiee e, 191

7.5  CONCIUSIONS ...ovvuniiiiiiieeeiiiiie e e e et e e e e e e e e eaa e e e eeaaens 195
8 Microwave Tomography SYSteM.......cceeeeeiviiiiiiiiieeeeeeeeeeiiiieeeenne 196
8.1  INtrOdUCHION ...uuviiieeeiiiiieie e e e e e e eeeaaes 196
8.2  Microwave Tomographic System...........ccceeeeeeeiiiiiiiiiiiiiineeeeeeeennins 197
8.3  Architecture of the University of Manchester MWT System ......... 200
8.4 Antennas Arrangement............ccuuueeeriiriieeeriiiiieeeriiieeeeeriieeeeeaaen 201
8.5 Object Domain of the University of Manchester-MWT System..... 203
8.6  Antenna Multiplexing Using Microwave Switching System........... 204
8.7 Read and Write Data from VINA .......cccoooiiiiiiiiiiiiieeeee e, 207
8.8  Data Collection and Calibration ............ccceeeeeeeiiiiiiiiiiiieeeeeeneenenns 209
8.8.1 Data COllECtION ........uueiiiiiiiieeieiiiee e 209

8.8.2 Calibration ...........ccuvuveiiiiiiiieeeiiiie e e e 212

8.9  The Results of Reconstructing Experimental Data........................ 214
8.9.1 The effect of antenna arrangement...............ccceeeevvvvenneernnnn. 214

8.9.2 The application of reconstruction algorithms ...................... 218

8.9.3 Object of interest variation ...............couueeeeervvieeeeeerieeeenennnn. 222

8.10 CONCIUSIONS ..uvuviiiieeeieiiiiiiiiieee e e e e ettt e e e e e e e e e e e eeeaeeeeaaes 228
9 Conclusions and Future WOrks ...........cccoovvvieeiiiiiiieeeiiiieeeeeiiiee e, 229
0.1  CONCIUSIONS ...ovvnniiiiiiieeeiiiiee e e e e e e e e e e e e e e eaaens 229

10



0.2 FULULE WOTKS - oot 232

RETEIEICE .. e iiiiiiieii e e e e 234

Appendix A Integral Equation of Microwave Tomography Inverse
(0] o) (=3 s USRI 248
Appendix B Scattering by a dielectric circular cylinder .......................... 252
B.1 Normalized Plane Wave..........cooovviiiiiiieeeieiiieiiiee e 252
B.2  Electric Line SOUICE ........coeeeeiiiiiiiiiiiiiiee e 253
Appendix C  Regularization of linear ill posed problem.......................... 255
C.1 Truncated Singular Value Decomposition ................cceeeeeeeeereennnn. 255
C.2 Tikhonov Regularization .............ccovvvviuviiiineeeeeeeiiiiiiiieeeeeeeeeeeeeenns 256
C.3 Truncated Landweber method ..........ccooeeveiiiiiiiiiiiiii, 257

Appendix D The Application of Born Approximation in MWT-
Inverse Problem............oovviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeee 259

D.1 The solution of MWT inverse problem using Born
APPIOXIMALION ....evvvneiiiiiieeeeiiiee e e e e e e e et e e e et e e e e eeeaaaannens 259
D.2 Minimising the MWT cost function using Born Approximation ...260
D.3 Numerical experiment of Born Approximation..............c...c.coven.... 261
Appendix E PubliCations..........ccovvviiiiiiiiiiieeeiiiiiie e 265

E.1 Newton Method for Solving Microwave Inverse Problem,;
Nugroho, Agung T and Z Wu; The UoM IEEE Electron
Devices Poster Conference; 12" june 2013...........coceevvvveveeeiennennn. 265

E.2 Reconstructing Image of Microwave Tomography Using
Contrast Source Inversion Method; Nugroho, Agung T and Z

Wu; The UoM, EE E PGR Poster Conference; 20th November

E.3 Inexact Newton Backtracking Method for Solving Microwave
Tomography Inverse Problem; Nugroho, Agung T and Z Wu;
2015 IEEE, International Conference on Imaging Systems and
Techniques; Macau, China; September 16-18, 2015..................... 267

E.4 Newton Iterative with Conjugate Gradient on Normal
Equations for Reconstruction of Free Space Microwave
Imaging ; Nugroho, Agung T and Z Wu; To be submitted to: ;
Transactions of the Institute of Measurement and Control
JoUINAl...cooiiiiiieee e 273

E.5 Microwave Tomography Image Reconstruction Using Inexact
Newton Backtracking Method; Nugroho, Agung T and Z Wu;
To be submitted to: iopscience; Measurement Science and
Technology Journal............cccoooviiiiiiiiiiiiii e, 281

Pages 289
Words: 53,692

11



List of Figures

Figure 2-1: The Fourier diffraction projection theorem [3]..............cccoeeeeee... 37
Figure 2-2: Geometrical model of microwave tomography problem............. 42

Figure 2-3: Model object of interest used for modified gradient
algorithm test and the result of the reconstruction. Large object had
the properties er = 15.0 and ¢ = 0.4 S/m and two small objects
with radius 4mm with parameters er = 55.0 and o = 1.0 S/m. The
background medium is matching liquid with er =12.0 and
O = 0.328/10 [T4]. e 45

Figure 2-4: Relative error of OI complex permittivity of small object
resulted by Modified Gradient method with and without a priori
LA [74]. oo e e e e a e 46

Figure 2-5: CSI and MR-CSI reconstructions for TM data at single
frequency of 10 GHZ [88] ...euneiiiiiiieiiiiie e 48

Figure 2-6: Schematic setup of the simulation for Gauss Newton
inversion test [67]. The background constitutive parameter is
er = 30and or = 1.163 S/m. The OI is cantered at x,y = 0,2cm.
The OI radius and constitutive parameter are r = 2cmer = 50and
OF = 108 /M. oot e ea s 51

Figure 2-7: Normalized norm for MWT cost function of GNI with
Tikhonov regularization (nn,GN —T) and GNI with conjugate
gradient least squares regularization (N1, GN — C) [67]...cccceeeevvvvrriiieiianeennnn. 51

Figure 2-8: Reconstructed values of conductivity and permittivity of
simulated OI (Figure 2-6) for (nn, GN — T) and (nn,GN — C) [67].................. 52

Figure 2-9: The object model with dielectric contrast yr € Q =1,
initial guess and reconstruction results of Newton Kantorovich
algorithm for noiseless data and noisy data [71]. ........ccoovveeriiiiiiiiieiiiiiineen, 54

Figure 2-10: The results of inexact Newton test by Bozza et al.
Reconstructed distribution of the contrast of OI y from noisy data
With SNR 20dB [112] ..cooiiiiiiiieeee 56

12



Figure 2-11: Reconstructed distribution of the contrast of buried OI
x from noisy data with SNR 20dB and the behaviour of mean

squared error on the reconstruction of the contrast function [113]...........

Figure 3-1: Cross section of a dielectric object (1. Object is placed in
object domain 0. The domain O is divided into N squared cells
n=1,2..N. The O is surrounded by data domain D where

observation points m = 1,2 ... M are placed. ............cooovvvveeireeeeerirriiinnnnnn.

Figure 3-2: Imaging configuration for microwave tomography. The
properties of MWT system are object domain O, data domain D,

object of interest (OI) and measurement points...............ceueeeeeevvvenenennnnn.

Figure 3-3: The plot of Scattered fields at 36 observation points in
object domain Dp = 5cm. The OI has permittivity er = 4 + jOand
radius 1 cm. 4.5 GHz Plane Wave and Line source equivalence
illuminate the OI. The scattered field is approximated using the

MM. The results are compared with analytic solution. ...........................

Figure 3-4: The plot of the magnitude of scattered fields at three
observation points in object domain Dp = 5cm, ¢ = 0, 2, m of MM
solutions and analytic solution. 4.5 GHz Plane wave (top) and Line
source equivalence (bottom) illuminate er = 4 a dielectric cylinder

WIth 1 CIML 10 QIAIMIELET . ..o e

Figure 3-5: The plot of exact solutions and MM solutions of
scattering field at a single observation point D(p = 5cm, ¢ = w/2).
Dielectric contrasts of OI are varied. Three different frequencies of
(top) plane wave and (bottom) line source equivalence illuminate

TR Ol oo e e

Figure 3-6: The pattern of scattered field and total electric field
around a dielectric cylinder with radius 1 cm when 4.5 GHz-TMz
microwave signal illuminates the object from +x direction, for three

different relative permittivity..........oeeeiiiiiieeiiiiiieeeeiiiieeeeeiie e e e e e eeaaen

Figure 4-1: Total electric field generated by the microwave plane

wave that illuminates a dielectriC ObJect .............coueeeiiiiiieeeeiiiiieeeeeiiiannee.

Figure 4-2: The parameter of the solutions of MWT inverse

problem 1n contrast formulation................ooueeeeiiiiiiireiiiiiee e,

Figure 4-3: Images of four cylindrical cross-section objects. The
images are the solution of MWT contrast inversion problem GNI.
The MWT inverse problems are presented in three different MWT

FUNICEIONIS. et

13

..... 61

..... 71

..... 73

..... 92



Figure 5-1: The simulation of measured scattered fields at data

domain without and with noise of various SNRAB .......ccocveeeeiinieeaaainn..

Figure 5-2: The x — y plane distribution and y = 0 cross section of

object of interest which is immersed in the object domain......................

Figure 5-3: The parameter of the solutions of noisy MWT inverse
problem of Linearization technique test. The regularization
technique 1is Tikhonov regularization. The regularization 1is

AESCENACA ..ot e e e e e e e

Figure 5-4: The reconstruction of noisy data with SNR 40dB at four
different iterations. The images resulted by LM method with
Tikhonov regularization. The regularization parameters are

AESCENACA. ..o e e

Figure 5-5: The reconstruction of noisy data with various SNR. The
images resulted by LM method with Tikhonov regularization. The

regularization parameters are descended. ................oevvuiiiiieeeeeniiiiiiiennnnn.

Figure 5-6: the cross section of the contrast y distribution at y =0
of the images resulted by LM when the noise is introduced with

SNR 40.1 dB (above) and 50.3 dB (below) .........cooueeiiiieiiieeiiieeeiie,

Figure 6-1: The cross section of the object of interest with complex
permittivity er = 3 — j0. The background of the MWT system is air

where the parameter of the dielectricis er = 1. ....ccccccvviiiiiiiiiiiiiiiinnnnnn.

Figure 6-2: The parameters of MWT inverse problem solutions
using INBM and LM algorithms. The OI is a cylindrical with

complex permittivity er = 3 —jOand radius 1.5cm. ..........ooeeeeeeennnn.n.

Figure 6-3: The real part of reconstructed Images using INBM and
LM algorithms. The OI is a cylindrical object with complex
permittivity er = 3 — jO and radius 1.5 cm. The data is taken at 4.5
GHz. White Gaussian noise is introduced with signal to noise ratio

28 dB,34dB and 41 dB. ....coooiiiiiiee e

Figure 6-4: The imaginary part of reconstructed Images using
INBM and LM algorithms. The OI is a cylindrical object with
complex permittivity er = 3 —jO and radius 1.5 cm. The data is
taken at 4.5 GHz. White Gaussian noise is introduced with signal

to noise ratio 28 dB, 34dB and 41 dB. ..........ccoooiiiiiiiii

Figure 6-5:The parameters of MWT inverse problem solutions using
INBM with Tikhonov regularization (Thi), Landweber-Friedman
iteration (LF) and Truncated Singular Value Decomposition

14

....105

....109

...110

... 128

... 131

... 132

...133



(TSVD). The Ol is a cylindrical with complex permittivity er = 3 —

JO and radius 1.5 CML.....oooiiiiiiiiiiiec e

Figure 6-6: The parameters of INBM solutions with respect to
forcing term constant. The parameters are number of iteration k,
objective function norm and relative error of yk. The OI is a
cylindrical object with complex permittivity er = 3 — jO and radius

1.5 cm. The working frequency is 4.5 GHz. ..........cooovviiiiiieeeiiiin,

Figure 6-7: a cross sectional view of a homogeneous lossy object of
interest. The real part of OI complex permittivity is 3.5. The

imaginary part of Ol 1s varied. ............ooovviiiiiiieeeiiiiiiicee e

Figure 6-8: The real part of reconstructed images using INBM and
LM algorithms. Four different cylindrical OI with radius 2 cm and
permittivity € =3.5—j1, €=35—-j48, ¢=35—j54 ande =
3.5 —j5.8 are applied. The data are taken at 2.5 GHz. White

Gaussian noise 1s introduced with signal to noise ratio40 dB ................

Figure 6-9: The imaginary part of reconstructed images using
INBM and LM algorithms. Four different cylindrical OI with radius
2 cm and permittivity € = 3.5 —j1, ¢ =3.5—j4.8, e =3.5—-j54
and € = 3.5 —j5.8 are applied. The data are taken at 2.5 GHz.

White Gaussian noise is introduced with signal to noise ratio 40 dB ......

Figure 6-10 The parameter of iterative solutions for INBM and LM
algorithms for solving the MWT inverse problem of homogeneous
lossy object a) relative norm of objective function b) relative error

of the dielectric contrast Of Ol. ... ..o,

Figure 6-11: The effect of the imaginary part of the complex
permittivity to the results of INBM and LM algorithms. The
parameters of the solutions are a) MW objective function norm b)
the relative error of the dielectric contrast. The parameters are
plotted with respects to the imaginary part of the complex

permittivity Of OL. ....ccooiiiiiiii e

Figure 6-12: the Architecture of a dielectric tube model for INBM
test. A) the Dielectric tube is placed in a free space. B) the dielectric

cylinder is placed inside dielectric tube...............coovvieeiiiiiiieeiiiiieeeeeeee,

Figure:6-13: The reconstructed images of the dielectric tube model
A. The OI is presented in the images of Real(e),Imag(e) and

Abs(¢€).. The images are resulted using INBM and LM algorithms. .......

Figure:6-14: the reconstructed images of the dielectric tube model B.
The OI is presented in the images of the real part and imaginary

15

... 144

... 146

151

... 154



part of complex permittivity. The images are resulted using INBM
and LM algorithms ..........coooiiiiiiiiiiiieeeeeceee e 155

Figure 6-15: The parameter of iterative solutions of INBM and LM
algorithm for solving MWT inverse problem of the dielectric tube
model a) the relative norm of the objective function b) the relative
error of the dielectric contrast of OL. ............cooiiiiiiiiiiiiiiiiie e, 156

Figure 6-16: Two-dimensional models of human arms a) centered
bone (left) b) off center bone (right) ...........cceeeviiiiiiiiiieeeiiiiiiccie e, 158

Figure 6-17: The images of a human arm model A (centered bone)
resulted using INBM and LM algorithms. ...............ouvviiiieeeeiiiiiiiiiiiieeeenn, 159

Figure 6-18: the images of a human arm model B (off center bone)
resulted using INBM and LM algorithms. ............ccooeeiiiiiiiiiiiiiinneiiiiieeee, 160

Figure 6-19: The parameter of iterative solutions for INBM and LM
algorithms for solving the MWT inverse problem of the human arm
model a)the relative norm of the objective function b) the relative
error of the dielectric contrast of OL. ........ccoooiiiiiiiiiiiiiii, 161

Figure 7-1: the two dimensional cross section of cylindrical
dielectric object with two similar holes. ...........cccooovvviiiiiiiiiineiiiiiie e, 173

Figure 7-2: The parameters of MWT inverse problem solutions
using NI-cgne and LM algorithm. The problem is a dielectric object
with two circular holes. NI-cgne with discrepancy t is applied.
Three different discrepancy values t = 0.05, t=0.01 and 7 =
0.005 1€ apPlied......ccovvvneiiiiiiee e 175

Figure 7-3: The reconstructed images of a dielectric lossy material
with two circular holes. The Real(e),Imag(e) and Abs(€).. images
are resulted using Ni-cgne- 7 and LM algorithms. ............cccooooovieiiiiinnnnn.... 176

Figure 7-4: The graph or the parameters of solution with respect to
discrepancy constant. The parameters are objective function norm,
relative error of dielectric contrast and number of iteration k of the
results of NI-cgne algorithm with scanning discrepancy criteria tk............ 177

Figure 7-5: L curve criteria for continuous regularization parameter.
Top: a discrete L curve for Tikhonov regularization of the linear ill
posed problem of the first iteration of the nonlinear MWT inverse.
Bottom: the part of the Tikhonov L-curve with noisy data for
Various SINR. ..oooieii e 180

Figure 7-6: L curve criteria for discontinuous regulator parameter by
means oOf CGNE. ... 182

16



Figure 7-7: Angles between two vectors which construct the vertex
Of L-curve regulariZation ............uuieeeeeerieiiiiiiiiieeeeeeeeeeeeiiieeeeeeeeeereeenennnnns 184

Figure 7-8: Architecture of dielectric tube model for NI-cgne. Two
cylindrical dielectric materials are placed in three different positions
Inside dieleCtriC tUDE. ..cceeeeeeeeeeeeeeeeeeee e 186

Figure 7-9: The images of Real(¢)of the dielectric tube model for
NI-cgne test. The tube contains different materials. The images are
resulted using NI-cgne and LM algorithms................ccceeeeeeeeiiiiiiiiiiineeenn... 188

Figure 7-10: The images of Imag(&)of dielectric tube model for NI-
cgne test. The tube contains different materials. The images are
resulted using NI-cgne and LM algorithms................cceeeereeeeiriiiiiiiiinnnennnn. 189

Figure 7-11: The architecture of human arms model for NI-cgne
ALGOTTERIM TESE ...uuniiiiiiie e e 192

Figure 7-12: Two dimensional cross section of human arm model
for NI-cgne test. The model is presented in a) real part b) imaginary
part of COMPIEX PEIMILLIVILY .ovvvvnneiiiiiiieeiiiiiieeeeiiiieeeeeeiie e e e e eai e eeeaiineeaeees 192

Figure 7-13:The parameter of the iterative solutions of NI-cgne and
LM for solving the MWT inverse problem of human arm model a)
the relative norm of objective function b) the relative error of the
dielectric contrast Of OL. ........coouiiiiiiiieeiiii e 193

Figure 7-14: Images of human arm model reconstructed by Ni-cgne
and LM methods. .....oooeeeiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeee e 194

Figure 8-1: The University of Manchester microwave tomography
prototype. The 16 ground plane antennas are connected to VNA via
Cytec 2x16 MatrixX SWItCH. ......ccoiiiiiieiiiiiiie e 198

Figure 8-2:The architecture of the University of Manchester-MWT
system. The system is computer controlled via GPIB IEEE 488.2.
NI GPIB-USB-HS interface is used to connect the system to
POTLADIE COMPULET. ....eeeiiiiiiiiiiiiie e e e e e e ettt e e e e e e e et e e e e e e e eeeaaaae e e e e 198

Figure 8-3: The array of antennas of MW'T system. a) 16 monopole
antennas are placed in a single ground plane. b) the antenna
connectors are connected using RD 316 coaxial cable. ...............c..ccoovunnn... 202

Figure 8-4:s11 parameter of the monopole antenna in free space. .............. 203

Figure 8-5: the architecture of ground plane antennas. The antennas
are arranged circularly around object domain O of MWT system............... 204

17



Figure 8-6: the architecture of the matrix switch of Cytec
MiICTOWAVE MUIIPIEXET ..oevviviiiiiee e e e e 205

Figure 8-7: Undisturbed and disturbed electric fields measured at
Rx2 and Rx9 when microwave signal is transmitted from Tx1................... 210

Figure 8-8: Raw data of measured Electric field at Rx antennas
around object domain when three different microwave signals are
transmitted from first three TxX antennas.............ccccceevvviiiiiiiiiiiiiiiiieieeeeenn.. 211

Figure 8-9: The absolute and phase of calibrated scattered field at
4.5 GHz when a plastic rod is introduced................couvveeieeeeeiriiiiiiiiieeeenn, 213

Figure 8-10: The arrangement of antennas. Txl is set as a
transmitting antenna and Rx1 to Rx15 are defined as receiving
3 0115 0D o 2 USRI 215

Figure 8-11: The effect of the architecture of the receiver to the
pattern of the objective function norms of INBM-Tikhonov and NI-
cgne-LC at4.5t05.0 GHzZ...ooiiiiiieiiee e 216

Figure 8-12: The results of antenna arrangement test: Images of
plastic rod cross section when receiving antennas are set at five
different modes. The working frequency 1s4.5 GHz ..............coovveiiiiinnnnnn.l. 217

Figure 8-13: The objective functional norm and number of iterations
of four different algorithms reconstructing the calibrated scattered
field due to the presence of homogeneous dielectric cylinder...................... 220

Figure 8-14: Images of plastic rod cross section resulted by various
algorithms which are Levenberg Marquardt method, Inexact
method and Newton Iterative with conjugate gradient at three
different freQUENCIES. .......coovueieiiiiiiee e 221

Figure 8-15: three different objects of interest used to test the
adaptability of the inexact Newton and Newton iterative
ALGOTIERIMIS. ..ot 223

Figure 8-16: Images of three different objects of interest cross
section resulted by INBM and NI-cgne at 4.5 GHz............cc.coovveieiiiinnnn. .. 224

Figure 8-17: Two small cylindrical Teflons which are placed at
object domain with four different gaps. .........cccoeeiiiiiiiiiiiiiiiniie 225

Figure 8-18: Images of two small cylindrical Teflons with four
different gaps resulted by INBM and Nl-cgne at 4.6 GHz.......................... 227

Figure B-1: A TMz Uniform plane wave incident on a dielectric
CIrcular CYINAET. ....uueiiiie e 252

18



Figure B-2: An infinitely long line source current directed at z is
placed near a dielectric cylindrical ObJECt .............coovvvviiieeeeeiiiiiiiiieeeee, 254

Figure D-3: Image of cylindrical cross-section object under Born
Approximation using Gauss Newton Inversion. Three different
MWT inverse problems which are MWT objective function, MWT
cost function A and B, are formulated and solved using GNI
100111 0 1o FS USSP 262

Figure D-4: The parameter of the solutions of Born approximation
MWT INVETISE PrODIEIM. ..oovvviiiiieeeiiiiiiiiiie e 263

19



List of Tables

Table 2-1 Computational time on a Pentium 2.0 GHz dual

processor personal computer [88]........veviiiiiiieiiiiiiiieeiiiiiie e 49
Table 3-1: Observation points of scattered field .............cccoeeeeeiiiiiiiiiiinnne... 64
Table 5-1: parameter of the simulated system for the simple test ................ 105

Table 6-1 the parameter of the simulated system for numerical
testing of LM and INBM methods...............oeeiiiiiiiieeiiiiiiieeeceee e 128

Table 6-2: The comparison of INBM results to solve MWT inverse
problem of cylindrical dielectric Ol with complex permittivity
er = 3 — j0 and radius 1.5 cm and that LM algorithm..................ccccceee. 134

Table 6-3:The comparison of regularization technique for inner
loops of Newton iterative (INBM) and direct regularization method
by means of Levenberg Marquardt method (LM) as a result of the
numerical data reCONSLIUCHION. ... ..ceeiiiiiiiiiiieeeeeeeeeeiiiie e e e e e 138

Table 6-4: The comparison of three different techniques of choosing
the forcing term. The MWT inverse problem is solved using INBM
With TiRhonov regularization .................ceeeeeeuueeeeiiiiieeeeeiiiee e e e e e e e aeaas 142

Table 6-5: The comparison of three different techniques of choosing
the forcing term. The MWT inverse problem is solved using INBM-
Landweber FTiedman. ..................oouuuuiiiiiiiiiiiiiiiiiiiiiiiiiieiiiieieieeeeeeeeeeeeeeeeeeee 142

Table 6-6: The comparison of three different techniques of choosing
the forcing term. The MWT inverse problem is solved using INBM-

Table 6-7:Complex permittivity materials of a synthetic model of a
human fOr€arM .........oiiiiiiiii i 158

Table 7-1: the parameter of the simulated system for the numerical
testing of Ni-cgne—7 method .............cooeiiiiiiiiiiiiiiiii e 174

Table 7-2 the parameter of the simulated system for the numerical
testing of the dielectric tube model..............cccooeiiiiiiiiiiiiiiiii e 187

20



Table 7-3: The results of NI-cgne and LM algorithms in solving the
MWT inverse problem of the dielectric tube containing different
100 1 (1 -1 S SUUSPPPRRRRIN

Table 7-4 complex permittivity materials of a synthetic model of
human forearm ...

Table 8-1: The arrangement of Rx antenna when Tx1 is defined as
transmMItting ANtENNA. ..........ovvuuuiieeeereriiiiiiiieeeeeeeeeeeeeriiiaeeeeeeeeeaeaan

Table 8-2: The number of iterations and objective functional norm
of Levenberg Marquardt, Inexact Newton and Newton Iterative
algorithms when reconstructing the images of the cross section of
cylindrical Teflon ..........oovvuiiiiiiiiiiieiiie e

Table 8-3: The result of reconstruction of varied objects of interest
cross sectioned by Inexact Newton and Newton iterative algorithms

Table 8-4: The result of reconstruction of two small cylindrical
Teflons with four different gaps by Inexact Newton and Newton
1terative algoTItRIMS. ... .ceeeeiiiiiiiiiiee e e

21

......... 190

......... 215



List of Algorithms

Algorithm 5-1 GNI: Gauss Newton Inversion for MWT Inverse

PrODIEIM ... 100
Algorithm 6-1:NM: Newton Method to solve MWT- Inverse
PrODIem ... 121
Algorithm 6-2:INM: inexact Newton to solve Newton equations of
MMWT Inverse Problem ...........cccccoviiiiiiiiiiiiieeeee 123
Algorithm 6-3: BK: Backtracking strategy of INM................coeeeiiiiiinneen, 124

Algorithm 6-4: INBM: Inexact Newton Method with Backtracking
for Microwave Inverse Problem............ccccoooiiiiiiiiiiiiniiiiiiie e, 127

Algorithm 7-1NI-cgne: Newton Iterative with Conjugate gradient

ON NOIMAL EQUALION ....uviiiiiiieeeeiiie e et eeeeaa s 165
Algorithm 7-2: CG: Conjugate gradient Step .........cceeevvvveneerriiineeereiiineanns 168
Algorithm 7-3cgne : Conjugate Gradient on Normal Equation .................. 169
Algorithm 7-4: cgne-t: cgne with discrepancy Principle................cceeeeen... 172
Algorithm 7-5: Lcurve : Lcurve regularization for cgne .................ccceeee. 184

Algorithm 8-1 MWT: Microwave Tomography Measurement

SEQUENICE ..o 200
Algorithm 8-2: setMUL: Setting Multiplexer switCh .................oovvveeeeee.... 206
Algorithm 8-3: VGvna: VISA-GPIB object of VNA ......ccoeeiiiiiiiiiiiiiieeeen, 208
Algorithm 8-4: getFreq: Acquire Frequency Parameter of VNA................. 208
Algorithm 8-5: getDat: Acquire s21 signal..............ovvveeireeeiiiiiiiiiiiieeeene, 208

22



List of Symbols

Symbol Description
j Imaginary unit j2 = —1
o permeability of vacuum
Uy Relative complex permeability of the object of interest
& Permittivity of vacuum
& Relative complex permittivity of the object of interest
&p Complex permittivity of background medium
X Dielectric contrast (g, — 1)
e ot Harmonic wave varying in time
w Radial frequency
k, Wave number in background medium kZ = w?py&qe)
rand r’ Position vector of the imaging
p [ — 7]
X,y Unit vectors along x and y
G(r,r") Green’s function
grr) Dyadic Green'’s function
0 Object domain
D Data domain
Q Cross section of the object
Ei(r) Incident electric fields
E(r) Total electric fields
EsS(r) Scattered electric fields
t=1,2..,T |Illumination of incident field
n=1,2..N | Index of cells of the object
m=1,2 ..M | Index of observation points
k=1,2..K | Index ofiteration

23



[L]k
[6x]
¢ (xD
c?(xD
Y
[b]
[b%];

X

Matrix identity

Incident field for all T

Incident field at t (a N X 1 matrix)

Total field at t (a N X 1 matrix)

Scattered field at t (a M(t) X 1 matrix)
Measured Scattered field at t (a M(t) X 1 matrix)
Integral operator maps L?(0) into L*(0)
Integral operator maps L?(0) into L?(D)
Unknown dielectric contrast (a N X 1 matrix)
Objective functional

Deferential of MWT functional
Approximation of Hessian matrix = [D*D],
Direction of correction of unknown contrast
Cost functional of MWT type A

Cost functional of MWT type B

linearized operator

exact functional

The approximation [b]

Unknown variable

Initial value of x

Search direction

Search direction for total electric field
Search direction for dielectric contrast
approximated direction of search

Exact solution of direction of search

Regulator parameter

24



List of Abbreviation

Acronym Description
2D Two Dimensional
3D Three Dimensional
AMMW Active Millimeter-Wave Imaging
CcG Conjugate Gradient Method
cgne Conjugate Gradient On Normal Equation
CSI Contrast Source Inversion
EFIE Electric Field Integral Equation
ERT Electrical Resistance Tomography
ET Electromagnetic Tomography
FD Frequency Domain
FDTD Finite-Difference Time-Domain
FOPEN Foliage Penetration
FPA Focal Plane Array
GA Genetic Algorithm
GMRES Generalized Minimal Residual Method
GNM Gauss—Newton Method
INBM Inexact Newton Backtracking Method
INM Inexact Newton Method
LF Landweber Friedman Method
LM Levenberg Marquardt
MM The Moment of Methods
MMI Microwave Imaging
MMW Millimeter-Wave
MWT Microwave Tomography
NI Newton Iterative

25



NK
OI
PMMW
QNM
RF
SAR
TD
TE
Thi
THz
™

Newton—Kantorovich Method
Object Of Interest

Passive Millimeter-Wave Imaging
Quasi Newton Method

Radio Frequency

Synthetic Aperture Radar

Time Domain

Transverse Electric

Tikhonov Regularization
Terahertz Radiation

Transverse Magnetic

26



1

Introduction

The thesis presents the research work on microwave tomography with an
emphasis on microwave image reconstruction algorithms. The main objective
of this research in Microwave Tomography (MWT), which is one form
of the electromagnetic inverse scattering problems, is to develop an
algorithm for reconstructing dielectric properties of an Object of
Interest (OI) from microwave measurements collected outside the OI.
The first chapter of the thesis introduces the brief overview of
electromagnetic inverse scattering and microwave tomography,

followed by statements of objectives and contributions.

1.1 Electromagnetic Tomography

Electromagnetic tomography by means of Radio Frequency, microwave, or
optical signals, provides inexpensive non-intrusive imaging systems with low
but sufficient resolution of the internal distributions of processes. The
technique is intended to solve an electromagnetic inverse problem which is
generally a nonlinear one; even so, a linear system can be found in a certain
limited tomography cases. In the linear systems, an image is obtained by
solving the linear equations which are an approximation of the linear

relationship between the measured data and the internal property of the OI. In
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diffraction tomography for example, a linear relationship between scattered
field data which can be approximated using either Born or Rytov
approximation [1], and the OI when the dielectric contrast of the OI is low.
The advantages of this approach is that it is straightforward to apply and
usually computationally efficient [2]. The disadvantages, however, is that due
to the underlying approximation involved, the diffraction tomography
becomes less accurate when the inhomogeneities in the OI are strongly
scattering [3].

The electromagnetic tomography is a nonlinear inverse problem for
objects with high contrasts. The nature of the nonlinear system is much more
complex than the nature of the linear system, which presents a great difficulty
when computing the image reconstruction algorithms. Examples of the
nonlinear tomography in the low frequency are electrical impedance
tomography [2], electrical capacitance tomography [4] and magnetic
inductance tomography [5]. These techniques have advantages mainly they
are fast, and least costly; even though unlike MWT which is a high frequency
tomography, the low frequency tomography is limited in spatial resolution
[6].

In the high frequency, the microwave frequency range for instance, the
dielectric contrast of OI, which 1s a complex number where the imaginary
parts of the number tends to be zero in the low frequency, is nonlinearly
related to the scattered field data. Though the complex number raises the
complexity of the inverse problem, it brings more information than a scalar in
the low frequency. For this reason, the electromagnetic tomography in the

microwave frequency range is selected as the topic in this thesis.

1.2 Microwave Tomography Inverse problem

This thesis considers electromagnetic tomography in the microwave frequency

range; therefore, the thesis refers to the nonlinear inverse scattering problem
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within this frequency range as the Microwave Tomography-inverse problem
(MWT-inverse problem).

Potential advantages of the MWT-inverse problem include low cost,
portability, and nonionizing radiation. On top of this, its ability to produce
quantitative images without a contrast agent has highlighted the great
potential of the method being applied in medical applications. At the
microwave range, the dielectric properties of living tissues like skin, muscle,
fat and bone; and more importantly those between healthy and malignant
tissues are different [2]. Nevertheless, the lower resolution of MWT in a
biomedical application needs to be improved to become a competitive
biomedical imaging modalities, in comparison to the magnetic resonance
imaging and x-ray computerized tomography

The aim of solving MWT-inverse problem is reconstructing the image
of the OI cross section by determining the distribution of the OI dielectric
property from the data of Microwave Tomography (MWT).The data are the
measured scattered fields around the OI when the OI is successively irradiated
with some known incident electromagnetic waves in the microwave frequency
range originating from different source positions. Accordingly, the data are
processed using nonlinear image reconstruction algorithms in which the
reconstructions can be completed in two steps; firstly, by the use of the
forward problem, secondly, by the use of the inverse problems.

The forward problem, also known as the direct scattering process,
computes the output of a physical system by giving the internal structure of
the OI. In this process, both the incident fields and the dielectric contrast of
the OI are assumed to be known and the scattered fields are determined by
solving the Maxwell’s equations for electromagnetic problems. The general
solution of the equations may be obtained along with the constitutive
solution. However, the unique solutions must enforce the boundary and
interface conditions of the system that makes the Maxwell’s equations hard to
solve analytically. Hence, the numerical solution for the Maxwell’s equations,
which are usually referred to as computational electromagnetic, is likely to be

an alternative.
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The numerical tool to solve the forward problem is the Moment of
Method (MM) which is classified as a low frequency method. Low-frequency
methods are so-named because they solve Maxwell’'s equations with no
implicit approximations and are typically limited to problems of small
electrical size due to limitations of computation time and system memory|[7,
8; 9]. Since the MM is a technique used to solve electromagnetic boundary or
volume integral equations in the frequency domain and the electromagnetic
sources are the MWT quantities of interest, the technique is very useful in
solving the forward problem of the MWT. The report which deals with ways
of solving electric field integral equation using the MM and the numerical
experiment results will be described and discussed in chapter 3.

Contrary to the forward problem, the inverse problem reconstructs the
distribution of unknown variables, which is the internal characteristic of
physical system from the system output behavior data. In the X-ray
tomography or computerized tomography, for example, the X-ray attenuation
coefficient of the OI is reconstructed from integral summation of the
attenuation experienced by the X-ray as it travels a path crossing the OI.
Another example is in the MWT, in which the distribution of the dielectric
contrast value of the OI 1s determined from several projections of the scattered
field data around the OI.

The inverse problem tends to be an ill-posed problem in term of
Hadamard’s criteria where existence, uniqueness and stability are the criteria
of a well posed problem. In tomography applications, the existence of a
solution is not an issue as the inverse problem tries to find the internal
properties of an existing OI from measured data. However, the problem is
generally an underdetermined system where there are fewer equations than
variables, hence, the uniqueness and stability are the two main challenges of
solving the problem.

The MWT-inverse problem is a nonlinear and ill posed problem. The
nonlinearity of the problem is solved by applying different optimising methods
to minimize an objective function which can be the difference between

measured scattered fields and calculated scattered fields from a forward
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problem solution. Generally, the methods are iterative where these techniques
are computationally complex and expensive because the objective function
has to be updated at each iteration. Various nonlinear algorithms have been
developed to solve MWT problems. These include Modified Gradient method
[10; 11], Newton-Kantorovich [2], Gauss Newton inversion [2], Quasi
Newton method [12], Contrast source inversion [13; 14] and Inexact Newton
method [2]. The ill posedness of the problem is handled by employing
different regularization techniques which set an appropriate constrain to the
solution [2]. Tikhonov regulator for example, which facilitates the inversion of
ill conditioning matrix, limits the value of the update solution. However, the
weight of the regularization is generally determined by one or more regulator
parameters so that the techniques can be application dependent.

In this thesis, the algorithm to solve MWT inverse problems via
implicit solution is developed in which the algorithm presents an intermediate
solution of the problem. Consequently the method offers a tradeoff between
the accuracy with which the regularized solution is computed. The algorithm
handles the 1ll poseness of the problem by utilizing a semi regularized method
in which regularization techniques can be avoided and replaced with an
appropriate criterion. The amount of work for solving MWT inverse problem
can be decreased as the computation and regularization do not need to be
done at each sequence of the iteration. The stability and robustness of the

algorithm is studied under noisy numerical data and experimental data.

1.3 Objectives

With the understanding of microwave scattering by dielectric objects,
such a scattering process is described. The mechanism of microwave signal
penetrating into a dielectric object and the signal which scatters toward the
background is modeled in an electric field integral equation. The MM, hence,

1s used to solve the integral equation using the Pulse Basis Function.
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Consequently, numerical calculation can be carried out; and the results are
evaluated in comparison to the analytic solutions.

The MWT inverse problem is stated using a forward problem
formulation in the form of nonlinear objective function. Deterministic
technique based on optimization solves the problem by minimizing the norm
of the function using Newton type minimization. The nonlinearity of the
MWT inverse problem is linearized via the Frechet deferential, then; it is
solved using the Levenberg Marquardt method. The ill posedness is treated by
employing different regularization techniques which are truncated singular
value decomposition; Tikhonov regularization and iterative Landweber The
stability and robustness of the linearization technique for solving MWT
problem are studied using synthetic noiseless and noisy data.

An implicit solution of the linearized MWT-inverse problem is
introduced as an alternative to a direct regulative solution by employing the
class of Inexact Newton in the form of Inexact Newton Backtracking Method
(INBM). A forcing term, which is computed using ratio of linear solution with
its corresponding nonlinear solution, defines an appropriate approximation of
the solution. The stability and robustness of the INBM is tested using
synthetic and experimental data.

The Newton Iterative-conjugate gradient on normal equation (NI-
cgne) method which is an iterative method with a semi regulated implicit
solution 1s developed to solve MW T-inverse problem. The method is stated in
outer and inner loops. The outer loop is the Newton type method for solving a
nonlinear problem and the inner loop is the semi regulated implicit method
that is conjugate gradient on normal equation (CGNE). At each Newton
iteration step a stopping rule of the CGNE, which is used to control the
accuracy and the ill posedness when solving the objective function is required.
The stability de accuracy of the NI-cgne are studied using numerical
experiment and experimental data.

A Microwave tomography system is developed by using monopole
ground plane antennas. The system is computer controlled and automatically

switched using Cytec multiplexer. A vector Network Analyzer (VNA) handles
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the data acquired from the system. In the meantime, the connection uses
488.2 line and MATLAB code, where the interface of the instrument is
addressed as a unique object. The capability of the sensor is, then, tested
individually to measure the scattered field of object of interest.

The measured scattering data are reconstructed using developed
algorithm. The raw data are calibrated using ratio of the ideal measurement
model. The incident field of line source equivalent antenna represents the
monopole ground plane antenna. The ratio of incident fields at receiving
antennas calibrates the disturbance electric fields, which is used to determine
the scattered field. The calibrated data is used to test the robustness and

stability of developed algorithms.

1.4 Contributions

This thesis reports the contributions made by the author in the area of

microwave tomography. The contributions are listed as follows

e Developing algorithms to solve MWT inverse problems. The algorithms
are deterministic approaches based using the Newton type of method. An
implicit solution, which is introduced to replace a direct regulative
solution of the MWT inverse problem, is determined in an unspecific
manner. There are two algorithms developed; namely Inexact Newton
Backtracking (INBM) method and Newton Iterative-conjugate gradient

on normal equation method (NI-cgne).

e Developing the Inexact Newton Backtracking (INBM) method to solve
MWT inverse problem. The INBM is an inexact Newton class method to
solve nonlinear problems. The implicit regulative Newton steps are
defined in an unspecific manner using a forcing term. The steps are
iterative solutions of MWT inverse problem linearization. The forcing
terms define the accuracy of the MWT linear solutions. INBM is tested

using synthetic and experimental data. The results of INBM are
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compared to the results of direct linearization technique (Levenberg
Marquardt method). The INBM improves the accuracy of MWT results

and the speed of reconstructions.

Developing a Newton Iterative-conjugate gradient on normal equation
method (NI-cgne) to solve MWT problem. NI-cgne is an outer-inner loop
technique. The outer loops are the Newton Iterative method to solve the
nonlinear system. The steps of the method minimize the objective function
of MWT inverse problems. The directions of the steps are the solutions of
Newton equations of MWT inverse problems in a normal system.
Conjugate gradient method computes the solutions. It is conducted in
inner loops. Stopping criteria of conjugate gradient on normal equations
conduct semi-regularization of the MWT 1ill posedness. Two different
stopping criteria are modified; which are discrepancy and L-curve
techniques. They have been tested using numerical and experimental data
in which NI-cgne algorithm produces stable solution of MWT inverse

problems.

Introducing MWT problems in the form of nonlinear objective function.
The objective function is the difference between measured output MWT
systems with the approximation of the output systems. Comparing two
formulations of MWT problems, namely, objective function and least

squared cost function of MWT problem.

Formulating forward problem solutions of MWT using Moment of
Method. The formulations are stated in the form of electric fields and
equivalent current density. Two pairs of objects and domain equations are
resulted which are used to formulate the objective function of MWT

problems.

Setting up a microwave tomography system which consists of 16 ground
plane antennas, Vector Network Analyzer and microwave multiplexer
which is computer controlled. The pneumonic code is listed in MATLAB

code and applying INBM and NI-cgne algorithms to the system
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2

Microwave Imaging

An Overview of electromagnetic imaging is introduced. The brief
overview of the extensive work in electromagnetic imaging by means
of microwave, millimeter wave and terahertz imaging is presented and

followed by a critical review of microwave tomography.

2.1 Brief Overview of Electromagnetic Imaging

For the last few decades electromagnetic imaging that ranges from electrical,
microwave, millimeter-wave, terahertz, and optical imaging gained intensive
attention for its unique features as an attractive non-destructive diagnostic
tool. Recently, the scope of electromagnetic imaging application has become
more extensive, including non-destructive evaluation[l15; 16], Dbreast
imaging[17; 18], biological [19], geophysical [20; 21] , military [22], inline
industrial process [23; 24], and industrial engineering [25; 26]. Many other
possible applications could be listed and developed on the assumption that the
electromagnetic signal penetrates the Object of Interest (OI).

The electromagnetic imaging can be categorized based on the working
frequency due the fact that the working frequency determines the type of
relationship between electromagnetic signal and the OI. One of the important

relationships is diffraction because it is applicable for a high contrast OI
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tomography. The following section of the review is mainly about diffraction
tomography and the diffraction imaging at three different frequency ranges

(terahertz, millimeter wave, and microwave ranges).

2.1.1 Diffraction tomography

Diffraction Tomography (DT) is a conventional tomography method which
refers to tomographic applications that employ diffraction wave fields in the
tomographic reconstruction process. The diffraction effect cannot be
neglected, when the cells of the OI become comparable in size to a
wavelength. The propagation of the electromagnetic signal is not along the
lines or rays, and energy transmission is described in terms of wave fronts and
fields scattered by the contrast of the OI. In other words, the DT tries to
quantify the contrast value of the OI from the scattered field data.

It has been shown [1] that the Fourier Diffraction Projection Theorem,
which is formulated with a Fourier-slice-like theorem and certain
approximations, can be used to describe the diffraction tomography. Under
the Fourier theorem (Figure 2-1), an electromagnetic signal in the time
domain illumines an OI in many different directions where the scattered fields
at each projection are measured. Then, the data are reconstructed using
Fourier inversion technique like filtered-back-projection algorithm for
reconstruction [27]. This approach is comparatively straightforward to apply
and 1is wusually computationally efficient, although, the number of
measurements for Fourier diffraction theorem is large [1], besides the
technique is only accurate for a low contrast OI problem [3]. Moreover, the
resolution of the images generated by DT is limited by the wavelength A of the
signal.

The application of conventional scan configuration as described in
Figure 2-1 limits the resolution to A/ 2[28]. Under realistic measurement noise
levels, the Fourier inversion algorithm excludes the possibility of resolving

features of a wave scattering object which are less than A/ o apart.
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Figure 2-1: The Fourier diffraction projection theorem [3]

The resolution and accuracy of diffraction tomography are also limited
due to the underlying approximations that involve the type of objects imaged
accurately. Numerical experiment reveals that the first-order Born
approximation is only valid for objects when the product of the change in
refractive index and the diameter is less than 0.35 1 [3].

There are two main problems in conventional diffraction tomography:
the number of measurements, and the image resolution. Hence, the diffraction
tomography method needs to be developed to decrease the number of
measurement, which means reducing data collection time, and also to

improve the imaging resolution.

2.1.2 Terahertz imaging

Terahertz radiation (THz), which is electromagnetic radiation ranges from 0.3
to 10 terahertz, has been used as the complementary of ionized X-ray and
radioactive signals for non-destructive imaging technique. In addition to

nonionizing technique, the THz imaging which penetrates various dielectric
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materials, such as plastic, ceramic, and concrete, is advances in noncontact,
non-destructive and coherent imaging, therefore, it has been widely used in
various 1imaging modalities, including, spectral imaging, reflection
tomography, and computerized tomography.

THz spectral imaging applies tomography technique over terahertz
frequency band; typically 0.1-4 terahertz. In this technique, THz pulse is
scanned toward an object, then, the reflection and transmission signal are
measured. The recorded data are reconstructed using two dimensional image
reconstruction algorithms. The advantage of this technique is more on its
transient electric field, instead of the radiation intensity measured, where the
measured THz field does not only yield a terahertz signal with excellent
signal-to-noise ratio and high dynamic range, but also preserves the important
phase information. Moreover, the reconstructed 2D image eliminates the need
of raster scan and reduces the number of measurements of the conventional
spectroscopy technique. This new complementary spectroscopy modal has
been developed in various applications [29; 30; 31]. However, commonly, the
power level used as THz sources is small, thus, a sensitive and compact THz
detector still needs to be developed. Besides that, the large time needed for
image reconstruction limits the technique for real time and industrial on line
application.

THz reflection tomography makes use of time of flight technique. In
this technique, a THz pulse is illuminated to the OI and the reflected signal 1s
measured. The image of the interest is generated from the difference of time of
flight in term of phase and amplitude. The technique has been used in various
applications, including industrial [32], automotive [33; 34] , pharmaceutical
[35; 36] and medical applications [37]. However, the technique is limited due
to small dispersion and diffraction properties, weak reflection and uniform
refractive indexes within each layer [38].

THz computerized tomography is described in [39; 40]. In this
technique, an OI is radiated using THz pulse signal, then, the transmitted
amplitude and phase of THz broadband pulses are measured at multiple

projection angles. The measured fields which are in complex value are new
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alternative of the scalar data of measured X-ray technique. The filtered back
projection algorithm is applied to reconstruct the image from the measured
data. The technique has been demonstrated for spectral analysis of material,
like lactose and glucose [40], turkey bone [41; 42], and vial, and plastic tube
[42]. The technique can be used to describe and discriminate the characteristic
of the material due to strong absorption lines is present in their terahertz
spectra. Nevertheless, the attenuation of THz signal and the cost of high
power optical and terahertz sources limit the thickness and transparency of
the sample to be imaged[43], besides, THz computerized tomography imaging

1s affected by different types of noise which can restrict its usefulness [44].

2.1.3 Millimeter-wave imaging

Millimeter-wave imaging (MMW) is a new non-ionizing imaging tool
complementary to X-ray and Infrared. The MWT uses operating frequency
ranges from 30 to 300 GHz or wavelength ranges from 10 to 1.0 mm, where
in those frequencies, the wave penetrates various dielectric materials including
plastics, ceramics, living tissues and low visibility objects. In millimeter wave
range, an object emits, reflects and diffracts radiation; therefore, the MWT
characterized an OI by the distribution of permittivity(e)or dielectric
properties.

Generally, Millimeter-wave imaging can be categorized into passive
and active imaging. Passive millimeter-wave imaging (PMMW) reconstructs
images from ambient radiation and radiation emitted from the objects through
passive detection. The rapid development of this passive technique is driven
by the ability to form images during the day or night; in clear weather or in
low-visibility conditions, such as haze, fog, clouds, smoke, or sandstorms; and
even through clothing. There are many applications of the PMMW including
restored scene imaging[45], holographic imaging [46], aviation[47].,W-band
power detector breakout circuit [48] and concealed hidden weapon
detector[49; 50]. The advantages of this system include: high speed imaging

[51] compact and analogues to optical camera [52]. However, the system is
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limited in having relatively low resolution, small aperture and limited field of
Views.

Active millimeter-wave imaging (AMMW) directs millimeter wave
energy at the subject, and then, reconstructs image by interpreting the
reflected energy. The system of AMMW requires transmitting antenna and
linear array of receiving antennas. Planar sparse array is used in [53; 54] and
holographic linear arrays are applied in [55]. The reflection images may be
developed using monostatic system of millimeter wave [56] or applying
computer reconstruction methods, like backpropagation algorithm [53], and
Synthetic Aperture Radar (SAR) imaging algorithm [54; 57; 58].The
advantages of this system are high speed, high resolution and large aperture.

Millimeter-wave tomography is a type of AMMW procedure. The
development of this technique 1s not as fast as the development of MWT.
Subtle interaction between MMW and object of interest which involves
diffraction and emission makes the MWT technique and non-diffraction
techniques like X-ray and radioactive tomography techniques hard to apply in
this band.

2.1.4 Microwave imaging

Microwave imaging using electromagnetic radiation with frequency ranging
from 0.3 to 30 GHz, is a promising technique for non-invasive evaluation
tools. The technique is an alternative to visible light due to the higher
capability in penetrating dielectric object and a better non-ionizing option
than X-rays for biomedical investigation. The technique reveals more
complete information than electrical imaging which deals with a real value of
electric property of an OI, since the physical quantity of the object in
microwave domain is stated in complex value of dielectric properties by
means of permittivity and conductivity of the material. However, the complex
number enhances the description of the interest but increases the difficulty of

the problem.
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Microwave imaging can mainly be categorized as microwave radar
imaging and Microwave Tomography (MWT). The former is commonly
known as ultra-wide band radar imaging. The basic principle of this technique
is interpreting reflected fields due to strong scatterers. The data by means of
the amplitude and phase of the reflection field are collected at a receiver
antenna when microwave time domain pulse or swept frequency signal
illuminates object domain where an OI takes place. Then, a reconstruction
algorithm for example Fourier-based imaging methods like back-projection
[59] and synthetic aperture radar algorithm [60] can be used to interpret data
or build the image of the OI.

Radar imaging is useful for qualitative imaging that can be used to
determine the shape and position of the object. There are many applications
for radar imaging, including s through wall imaging [59] and foliage
penetration imaging applications [60] which expose the ability of microwave
in penetrating concrete and ground. Because it is fast, the technique can also
be used to evaluate ground moving targets [61]. Nevertheless, microwave
radar imaging is categorized as a qualitative imaging technique which cannot
be used to describe the cross section of a complex object. Therefore, radar
1maging is not accounted for in this thesis.

The later imaging technique which 1s the MWT 1s an active
noninvasive imaging technique. The technique reconstructs the image of an
OI cross section without a direct contact by solving the non-linear and ill
posed MWT problem. The potential advantages of the imaging technique
over conventional modalities such as magnetic resonance imaging (MRI) and
computed tomography (CT) are: its relatively inexpensive cost and usage of
low power, and its non-ionizing radiation. However, the MWT is challenged
with nonlinear, ill posed and complex systems. Interestingly a great advantage
of having detailed information in data gained in the form of amplitude and
phase as well as its safety, mobility, and cost-effective supplement to current
imaging modalities for non-invasive assessment has made the MW'T urgent to

be selected as the topic of this thesis.
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2.2 Microwave Tomography Method

The accuracy of reconstructed images by the DT, MMW tomography and
THz tomography are limited. These techniques acquire the data acquisition in
a time domain. Though the data gathered consist of phase and amplitude of
the field, the use of Fourier technique to deal with the swept data disregards
the variation of the OI contrast over the working frequency ranges. In
contrast, the acquisition of MWT can generally be done a single frequency
and the MWT-inverse problem can be formulated in frequency domain with
an appropriate electric field integral equation , thus, the artifacts due to
ignoring the variation in propagation speed, the multipath effect and loss in
the DT, MMW and THz tomography can be avoided.

The architecture of the MWT which works in frequency domain, is
presented in Figure 2-2, where the Tx represents the transmitting antenna; and

the Rx represents the receiving antennas.

Figure 2-2: Geometrical model of microwave tomography
problem.
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The domain O which contains the OI is the imaging domain/object
domain. The domain D which contains antennas is the measurement
domain/data domain. It is outside the object domain. These two domains are
assumed to be in x — y plane. Practically, the antennas can be used to receive
or transmit microwave signal, where the radiation from the Tx can be
assumed as a plane wave or electric line source equivalent. At each radiation,
the scattered fields are collected at the rest of the antennas which are assigned
as the Rx.

Microwave Tomography is the form of active microwave imaging. The
goal of the MWT is to estimate unknown attributes distribution of interest
from given measurement that only indirectly related to the interaction
between the microwave signal and the dielectric property of the interest.
Unfortunately, the interaction is nonlinear and a small amount of noise in the
data leads to enormous errors in the reconstruction. The nonlinearity of the
problem has to be optimized and the instability known as ill condition needs
to be regularized. Several methods to solve the nonlinear ill posed problem of
the MWT have been developed. The following section overviews the methods

to solve the problems.

2.3 Nonlinear Methods to Solve Microwave
Tomography Inverse Problems

Nonlinear iterative method for solving MWT-inverse problem can be
categorized into two types of algorithms: gradient type method and Newton
method. Both types of algorithms with the applications of the algorithms on
MWT are described as follows.
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2.3.1 Gradient Method

2.3.1.1 Modified gradient method

Modified Gradient Method (MG) which is a gradient type algorithm for
solving MWT inverse problem, applies a conjugate method on both total
electric field and dielectric contrast variables. The iterative sequence of the
MG is presented in [11], where both variables are updated simultaneously by
minimizing a cost function.The conjugate gradient method determines the
search direction of the MG and the Fletcher-Reeves equation [62], Polak and
Ribiere[63] or other conjugate techniques with a parameter (f)) defines the
step length of the correction. It can be seen that the MG is basically a
conjugate gradient method for minimizing two-terms of MWT cost function.

The MG method has been widely used to solve MWT inverse
problem. There are many applications for the MWT inverse problem,
including industrial application [64; 65], breast tumor/cancer detection [66;
67; 68], medical/biological reconstruction [69], and geophysical application
[70], besides numerical experiments have also been reported in [71; 72; 73].
The MG can be applied to a high contrast OI problem, however the
disadvantage of the method is that the initial estimation of the contrast is
essential to the quality of the result [66; 74].

The essential initial guess of MG is described in [74]. The MG is used
to reconstruct two small objects in a lossy background medium where the
model used for the simulation is a large circular object with properties
€, =15.0 and 0 = 0.4S/m and two small objects with radius 4mm with
parameters €, = 55.0 and ¢ = 1.0 S/m. The background medium is matching
liquid with €, = 12.0and o = 0.32 S/m. The results of reconstruction with
and without priory information are presented in Figure 2-3 and the relative
error of the results is presented in Figure 2-4. It can be seen that when the
algorithm has converged, the reconstructions utilizing a priori data have a
lower relative error compared to the reconstructions without a priori data.
Moreover, the prior information data resolve the reconstructed images while

the MG fails to reconstruct the small object without the information.
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(c) Reconstruction of the two small objects with a priori dielectric data

Figure 2-3: Model object of interest used for modified gradient
algorithm test and the result of the reconstruction. Large object
had the properties €, = 15.0 and ¢ = 0.4 S/m and two small
objects with radius 4mm with parameters €, =55.0 and
o = 1.0 S/m. The background medium is matching liquid with
€, =12.0and o0 = 0.32 S/m. [74].
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The MG method can be categorized as a semi regularized method. The
ill conditioning of the problem is regulated by stopping the sequence before
the noise starts to govern the inversion [71]. However, the stopping criteria
cannot be determined accurately as if the noise level is unknown. An

additional procedure to define the stopping position of MG method is needed.

2.3.1.2  Contrast source inversion method

Contrast Source Inversion (CSI) method is a gradient method that combines
the unknown total electric field and the dielectric contrast in the imaging
domain into a contrast source variable. Basically, this is similar to the
application of the volume equivalence principle to the TM polarization of the
electric field integral equation where the dielectric contrast of a material and
the electric field inside the OI is replaced by the equivalent polarization
currents variable [9].

The CSI algorithm reconstructs the contrast-source variable and

contrast variable iteratively. Different from the MG method which updates
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the contrast simultaneously with the total field, the CSI corrects the contrast
successively. The contrast is updated by minimizing the second term of a cost
function that is constructed from electric field integral equations. However,
the contrast is present in the denominator of the cost function. Direct
application of a conjugate direction to the cost function may not always
reduce the quantity of the functional [13].

Various numerical tests and applications of the CSI have been
reported, which include the reconstruction of biological object [75; 76; 77; 78],
breast cancer or tumour detection [79]phase less data [80]and other numerical
tests [81; 82]. Reconstruction of experimental data in the case of biological
object can be found [83; 84], while the capability of the CSI in reconstructing
an unknown triangle and other shapes from Ipswich data when the MG fails
to build accurate images is demonstrated at[85; 86]. The CSI is also possibly
combined with various methods such as, the use of finite element [79] and
finite difference solver [77], three dimensional measurement system [87], and
application of multi frequency data [88].

The CSI cannot start with zero initial estimates for the contrast, since
the cost function of MWT problem is not defined. Therefore, the CSI starts
with nonzero initial guess. A priori information is one of the initial input of
the method. It has been shown that the use of prior information in cancer
detection is better than blind information [79]. Other prior information has
been applied like real positive value of the Olcontrast [13; 80].

The contrast is updated using second term of the CSI cost function
which is formulated by the integral equations of MWT inverse problem. The
problem arises is generally over determined, however, a direct calculation
which means averaging, may not minimize the cost function due to the
presence of the contrast in the denominator. Therefore, minimization
functional is constructed to update the contrast. This makes the method rather

unpractical and slow.
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Figure 2-5: CSI and MR-CSI reconstructions for TM data at
single frequency of 10 GHz [88]

The advantage of CSI is adaptive to a regularization technique.

Theapplication of weighted L2- norm regularization factor named
multiplicative regulator to the nonlinear integral equation of the CSI improves
the flexibility of the algorithm to the noise. The regularization reformulates
the CSI as Multiplicative Regularized CSI (MR-CSI). The MR-CSI seems to
handle noise as well as limited data in a robust way, that makes the algorithm
suitable to invert experimental data [89; 90; 91].

Jinghong et al compare the CSI with the MR-CSI. The object of
interest is a metallic cylinder located outside a large dielectric cylinder with a
contrast of 0.45[88]. The source of microwave signal is 10 GHz TM mode.
The images resulted by the CSI and the MR-CSI are presented in Figure 2-5.
It can be seen that the inversion results achieved by the MR-CSI are better
than that obtained by the CSI. The application of regularization improves the
quality of the images. Nevertheless, the great limitation of both methods is the

speed (see Table 2-1) that they cannot be used in a quasi-real time processing.
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Table 2-1 Computational time on a Pentium 2.0 GHz dual
processor personal computer [88]

Inversion Schemes CSlI MR-CSI
Initial Guess Back Projection Back Projection

Number of Iteration 500 500

Computational Time 4 hour 4 hour

The gradient methods for solving MWT inverse problem, that are MG
and CSI methods, are sensitive to initial guess; but, they are flexible in
handling noise. The methods are basically constructed from a conjugate
gradient technique. In this thesis, the modification of the CG is used to solve
MWT problem. It is used as a part of a Newton iterative method. The CG
regulates the ill conditioning and solves the linearization of MWT inverse
problem which is constructed along with the Newton Iteration, wherethe

initial guess of the CG 1is the current nonlinear solution of Newton method.

2.3.2 Newton's Method

2.3.2.1 Gauss-Newton inversion

Gauss Newton Inversion (GNI) is a well-known Newton’s based method for
solving MWT problem. Wide area tests and applications have been reported,
including testing the GNI to reconstruct synthetic data in the form of
inhomogeneous numerical 2D objects [92; 93], 3D objects [94] and synthetic
brain and breast models [95]. Furthermore, it has been shown that the method
reconstructs experimental data well, like Fresnel experimental data [96; 97],
three dimensional experimental objects [98; 99], biomedical experimental data
[84; 100] , and the applications of breast cancer screening [67].

The GNI is a type of quadratic Newton method optimization which
minimizes a non-linear least squares cost function of MWT inverse problem.
Consequently, the sequence of the GNI needs a negative gradient of the cost

function which can be defined from the first order deferential of the cost
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function and a Hessian matrix which is constructed from the second order
deferential of the function. Implicit Jacobian matrix (J) to approximate both
terms, gradient and Hessian matrix, as it has been proved by Mojabi[95],
saves memory and computational time [97].

The calculation of the GNI steps involves explicit computation of the
inverse of matrix J7J which is ill posed. Therefore, treating the ill posedness
via regularization is essential in the GNI procedure. The regularization can be
inserted in the pseudo inverse sequence which is done using a singular value
decomposition, the examples of this technique include Tikhonov
regularization [99], iterative Landweber-Friedman, and Truncated singular
value decomposition. An alternative regularization technique is proposed in
[101] which regularizes the cost function of MWT inverse problem. Methods
for regularizing the cost function include additive [102], multiplicative [93; 97]
and additive-multiplicative regularization [96].

The speed of algorithm is mainly governed by two factors. The first
factor is the speed of the forward problem solution and the second is the
accuracy of the Newton step. The first is done by solving the integral function
of direct MWT scattering problem. The function is a well posed system that
can be inverted directly. The second are not the issue as they can be controlled
by setting the size of the cells [9]. The ideal Newton step of GNI equals to the
distance of the parameter of global solution and its current iterative solution.
The accuracy of GNI to update parameter of current solution as close as
possible to the global solution decreases the number of iteration, therefore, the
choice of regularization relates to the number of iteration which has been

shown by Rubaket al[67].
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The choice of regularization techniques affects the ability of GNI in
solving certain MWT problem [102]. Many researches have been conducted
as discussed in previous paragraphs. Moreover, the iterative solution of GNI
can be categorized as a one-step exact solution. If the regularization at current
iteration fails, then, the general solution will not converge toward global
solution. Therefore, the determination of regulator parameter is also an issue;
besides, a regulator technique may not be suitable for certain MWT inverse
problem. For this reason, a deterministic algorithm based on the GNI to solve

MWT inverse problem is selected to be developed in this thesis.
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2.3.3 Newton Kantorovich method

Originally, Roger [103] develops Newton Kantorovich (NK) from the
Newton method to reconstruct the inverse scattering of perfect
conductive cylinder from TE illumination. The NK is a functional
system where the iterative update value is directly proportional to the
deference between the parameter value of the output of MWT system
and the measured MWT data. The method is constructed from the first
two components of Taylor series, where Fréchet derivative defines first
order deferential of MWT inverse problem. The NK is a linear ill-
posed system; however, it is still nonlinear in respect to the solution of
the MWT inverse problem which is an ill-posed system, therefore, the
NK needs to be regularized. Roger shows that the NK with the
Tikhonov-Miller regulator is capable of reconstructing conductive
object.

The NK solves MWT inverse problem as linear ill posed
problem optimization. The technique, which is introduced by
Joachimowich, starts by linearizing the MWT inverse problem, then
solves the linear ill posed using a standard Tikhonov regularization
with an identity operator being used.Numerical tests show that the NK
1s reasonably good in reconstructing two and three dimensional
inhomogeneous object[104], One dimensional highly contrast object
[105], Noise less human arm model [106],and shape and location of an
object from noiseless data, but it fails to rebuild a noisy data [69; 71;
107].

Furthermore, the NK has been reported to be applied to handle
experimental data, which include experimental breast cancer imaging
using microwave planar camera [108], reconstructing an
inhomogeneous lossy dielectric cylinder of Ipswich data [109; 110;
111]. It 1s reported that NK is flexible in the choice of polarization, and
experimental arrangement, but it is sensitive in the initial guess of

dielectric contrast.
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Figure 2-9: The object model with dielectric contrast (y(r €
Q) = 1), initial guess and reconstruction results of Newton
Kantorovich algorithm for noiseless data and noisy data [71].
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NK reconstructs the linear ill posed problem using the solutions of the
direct scattering electric integral equation at each iteration. Then, the problem
is directly regulated and solved. It has been shown that the direct and
regulated solution is sensitive to the noise level. Therefore, flexibility in
determining linear solution is needed to improve the quality of NK. Flexible
approximation solution of Inexact Newton class method may replace the rigid
solution of NK. For this reason, the thesis focuses on the development of

inexact Newton class to solve MWT-inverse problem.

2.3.4 Inexact Newton method

Bozza solves MWT inverse problem in two nested loops [112; 113]. The outer
loop is the linearization of MWT problem, while the inner loop determines
the regularized solution of the linear ill-posed problem where the iterative
Truncated Landweber method is applied. The technique is categorized as
Inexact Newton Method (INM)

The INM has been used in several applications, which include
reconstructing several different unknown dielectric contrasts of
inhomogeneous objects from noisy data [114; 115; 116; 117]. It has been
demonstrated that started from an empty scene, the localization and
separation of the OI is very good, although the shaping is not very sharp
because of the ill-posedness of the problem. The INM has also been used to
reconstruct experimental data. The results related to the inversion of far-field
data measurement show that the localization of the objects is very good and
so are their separation capabilities [116]. Moreover, the INM shows the
superiority in conducting noisy data. Satisfying inverting results of noisy data
are reported, such as the synthetic two layered dielectric circular [114], three
dimensional targets [118], and 3D Breast imaging [119]. The example of the
INM in handling noisy data of homogeneous circular cylinder problem as it is

reported by Bozza et al in[112]is presented in Figure 2-10
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Bozza et al. exploit the iterative Truncated Landweber method as an
inexact solver for MWT linear ill-posed problem which is constructed under
first order Newton scheme. It is an alternative to the direct regulative solution
as in the NK. It has been shown that the solution is flexible to the
introduction of noise and flexible to the initial guess. However, this inner
iterative solution is defined in a specific manner which means that the
truncated Landweber method finds regularized solution of the linear MWT
problem at the inner loop. Then, the solution is directly taken as the update of
the Newton solution. The INM sequence is only evaluated in the stopping
criteria of the outer loops [112]. The method has to solve the Newton
equations at each stage as the inner loop acts as a direct regularization. It can
be expensive if the number of unknowns 1s large and may not be justified if
the current solution is far from the target value. Therefore, this thesis develops
Inexact Newton Class to solve MWT problems by addressing an implicit
solution of the MWT inverse problem. At the inner loop, the first order
Newton equation as a result of linearization of MWT problem is solved only
approximately and in some unspecified manner. An iterative method solves
the Newton equation with a natural stopping rule based on the relative
residual linear solution with its corresponding nonlinear solution. The method
computes an approximate solution to the Newton equation in some
unspecified manner such that a nonnegative forcing sequence controls the

level of accuracy.
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3

Direct Scattering for
Microwave Tomography

The Direct scattering problem is presented in a volume electric field
integral equation (VEFIE). The equation which respects to total
electric fields (E) and dielectric contrast(y) is solved using pulse basis
function and the Method of Moment (MM). The solution in term of
scattered fields (E®) in data domain is evaluated by comparing it with
the analytic solution. The numerical experiment shows that the
solution is accurate and flexible to cell size. Perfect solution is
generated from a wide range relative permittivity of scatterer. Further
extensions of direct scattering problem studies are included: presenting
and solving EFIE in term of equivalent current density (J) and ratio of
the dielectric contrast; and applying the microwave incident fields

under both plane wave and line source equivalent.

3.1 Introduction

The direct scattering problem is essential to develop methods in inverse
scattering problems as in the MWT inverse problem. The direct scattering

problem is the forward problems of the MWT. The solution of the problem
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defines the cost function of the MWT inverse problem; therefore, the accuracy
of the direct scattering problem solution directly influences the results of the
MWT inverse problem.

A general scattering problem can be solved using an integral equation,
like calculating scattering fields due to the illumination of electromagnetic
field to an Object of Interest (OI). Richmond [120]introduced the simulation
of the integral equation for an electromagnetic scattering problem. The
magnetic and the electric field interior and exterior of a cylinder with arbitrary
cross-sectional shape are calculated using the integral equation. Furthermore,
methods to solve the integral equation have grown since the work of
Richmond’s. Harington[8] proposed a numerical solution of the integral
equation using the Method of Moment (MM). The MM i1s a numerical
procedure to solve a linear operator equation by transforming it to a system of
simultaneous linear algebraic equation which is commonly referred to as
matrix equation. The MM quantifies current distribution in the surface of a
conducting cylinder which can be used to determine the value of scattering
field outside the cylinder. It becomes very popular as a solver for the integral
equation of direct scattering problem.

Generally, the MM can be applied to solve two types of integral
equations namely surface integral and volume integral. The application of the
MM for the surface integral usually involves scattering from a conducting
cylinder. The MM has been implemented to simulate scattering fields from
various types of conducting materials[121; 122; 123]. The surface integral can
be applied to calculate the scattering from a conducting object of
homogeneous scatterer, but it is not suitable for an inhomogeneous penetrable
object [9]. Therefore, the surface integral is not further discussed in this thesis.

The MM for solving the volume integral equation works in the centre
of the cells across the OI slice. This is suitable for MWT application which is
aimed to reconstruct the image of the dielectric value of OI cross section.
Richmond approach is used to develop the forward problems. Then, it is
followed by developing several inverse methods based on the defined forward

problems. The results show that the volume integral can be used to develop
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microwave imaging. It can be used to reconstruct simple objects [107; 124;
125]. Nevertheless, it is sensitive to noises and initial guess besides gaining big
error; thereto, the investigation on the forward problems needs to be done.
The feature of the MM has included a frequency domain prediction
technique and taken to the account the entire electromagnetic phenomenon
and the polarization effects. The MM, which is based on an integral equation
technique, advances in the accuracy of the results as it is essentially exact and
provides direct numerical solutions. It is also applicable to complex
inhomogeneous(0I). Nevertheless, the MM is classified into low frequency
methods. It 1s typically limited to problems of small electrical size due to
limitations of computation time and memory system. Thereto, an

investigation of the MM solution for higher frequency is necessary to be done.

3.2 The Method of Moment Solution for Direct
Scattering Problem

3.2.1 Direct scattering in two-dimensional

The direct scattering problem of an inhomogeneous OI involves the
interaction between microwave and a penetrable OI. The interaction can be
described in term of a volume electric field integral equation (VEFIE). In the
special case in which the OI is composed entirely of dielectric material, the

electric field integral equation can be stated as in [9]
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Figure 3-1: Cross section of a dielectric object (Q). Object is
placed in object domain (0). The domain O is divided into N
squared cells (n =1,2..N). The O is surrounded by data
domain (D) where observation points (m = 1,2 ... M) are placed.

Ei(#) = E@) + jou,A(®) + Vo, 3.1
For two-dimensional TM polarization in Z direction the vector

potential(A(?))and the Green function(G)are defined as
A,(7) = jweg [, (& — DE@G(r,r")dr’ (3.2)

G(r,7") = 1 Hg” (kp) (3.3)

The two-dimensional electric field integral equation of (3.1) can be written as

E'(r) = E(r) — ko’ [f 3 xGNE@)HG (kop)dr’ (3.4)
WhereE!(r)E (r)and E5(r) are the incident, total and scattered electric fields
atr sequentially, () is the cross section of the OI, y = (&, — 1) is the dielectric

contrast, and both coefficients r and r’ are positon vectors, and p = |[r — r'|.
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Equation above represents domain equation. The position vector addresses a
point at an O,(r,r") € 0.

Assuming that a dielectric object is immersed in an O where the O is
divided into N number of cells as seen in Figure 3-1. Then, the electric field in

(1) at n™ cell where n = 1,2 ... N can be defined in a discrete system as

E‘Il‘L =E, + Zg’zlznnr XniEn (3.5)

WhereZ,,, is the integral operator of (3.4) which represents the interaction of
celln to celln’

The integral (3.4) is evaluated analytically with the assumption that all
cells are circles [9; 120]; thus,the integral of the Hankel function can be

aproximated using

2ma j4
“—Hi(kea) =5 (p<a)
Jgeo S5 HE (eop)r'dr'd@’ = {1 k (3.6)

Th(koa)Hg(koP) (p>a)

where ais the radius of a cell. Applying (3.6) to (3.4), the entries of Z,,, are

given by
— ,
L = / O;m ]1(k0a)Hg(k0p); n#n (3.7)
Zy =P W2 (ko) + 1, n=1n' (3.8)

Assuming that the radius of cells equals to a,with n’ =1,2..N, equation

(3.5) can be written forn = 1 as

El = Ey + [Z10,)[(Xn En)] (3.9)

wheren’ = 1,2 ... N and

[Z1nr]=[Z11 AV ZlN]

While[(x,/E,,)] is defined as

Xl 0 O 0 E1
0 0 O0||E .

(Bl =]y o0 - & || 7 |= [diagCta)l(En]  (3.20)
0 0 xnlLEy
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For simplicity, for the rest of report [(¥,E,.)] may be written as
[diag(xn/)][E/] Similar equations can be obtained for n = 2,3 ... N so that for

this illumination,

|EL] = [En] + [Zpn Nl (Xn En)] = [En] + [Z,1[diag(Xn)1[En/]
[EL] = [1+ [Z,,][diag(xa)]][En] G.11)

the total electric field [E,,] can be expressed as

[En] = [I + [Z,][diagQra)]] [EL ] (3.12)

where the total field is the addition of the incident and scattered field.

E(r) = E'(r) + E5(r) (3.13)

Therefore, the scattered fields due the present of a dielectric object at imaging

domain, at the observations points can be stated in the integral equation as

ES(r) = ko [f, i x(E@)HP (kop)dr’ (3.14)

Assuming that the scattered fields are measured in Mobservation points where
m is index of observation points that is m = 1,2 ... M, (n € D), then, equation

(3.14) can be stated as matrix equation

[Efn] = _[Zmn’][diag()(nl)] [E;’] (3.15)
Defining thatn is the index of the object cell which is n =1,2...N;(n € 0)

and, then, at each projection (t) with t=1..T, a microwave signal

illuminates O. Integral (3.4) can be stated as the matrix equation

[E4], = [I + [Z,][diagGra)]] [ES e (3.16)

And the scattered fields can be calculated using

[Egn]t = - [Zmn’]t[diag()(nl)] [E;’]t

[Efn]t = _[Zmn']t[diag()(nl)] [I + [Znn’][diag(an)]]_l[Eil ]t (317)
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In MWT application, scattered fields are not measured at transmitter,
at t = 1 index m which is assigned as the observation points or receiver is
m=1,2..M1. In multiple projections, microwave signals are transmitted
from T number of transmitter sequentially. In each transmission, the electric
fields are measured at M observation points where m = 1,2 ... M(t). M(t)can
be dependent on ¢z. The field points can also be at different positions for

different . The antenna arrangement is illustrated in Table 3-1.

Table 3-1: Observation points of scattered field

t (Transmitter No.) M
t=1 1,2,..M1
t=2 1,2,..M2
t=T 1,2,..MT

Total data on 1% projection when t =1 is M1 and the total data for all

projections will be

data = Z’{=1 Mt (3.18)

3.2.2  Solving direct scattering using the method of moment

Following the volume equivalence principle, jwey(e, — 1)E[#) = J(7), the
dielectric material may be replaced by equivalence polarization currents, then,

the integral equation can be written as

1

jow(e—gp)

1
4j

Ei(r) = J(@) = jkono [, —J@HS (kop)dr’ (3.19)

Assuming that the dielectric object is divided into N cells equal in size as
described in Figure 3-1, then, a basis function in discrete system can be stated

as:

1 (r)€cell,
0 elsewhere

P,(r) = { (3.20)
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The polarization current density in the center of the cell j(r) are

approximated as

](r) _Zn/ 1 n/ nr (321)

Then, integral (3.19) can be expressed in the pulse basis function as

Pnr k ’
= Sl (e 2000 [ HEP (kop)ar) (3.22)

It can also be expressed in matrix equation as:

[EL] = [Zpn U] (3.23)

Evaluating the field at n=1,t =1, whenn'=1,2,.. N, whereN is the

number of the cells, matrix equation (3.23) can be expressed as

[Ell] Zlnr] []nr] (3.24)
where
[Z1n]] =211 Z12 - Zan] (3.25)
N1
_ /)2
Unle = | (3.26)
N

However, at each projection, an incident field illuminates all cells of the
object,n = 1,2 ... N, then at t = 1 there will be a set of vector and matrix

operators

E]Ii,l ]1,1
B4, = P21 ]; Ul = |21
E,‘;,‘l In1
Z11 Zy AV
(2] = | 720 P2 P (3.27)
Znyi Zno o Znn

The [Z,,,,, |entries of (3.27) are given by
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n#+n, %ff HéZ) (kory)dx'dy’

— Mo kono () ’
n=n TS TETI J[ Hy™ (kor)dx'dy

(3.28)

Lonr =

By using (3.6) to estimate the integral of Hankel's function in (3.28), the

entries are defined as

n#xn - p>a; (3.29)

Znns = T2 ] (Ko@) HE (kop)

n=n"-p<a (3.30)

_ Mo kono Zﬂ 4'_]

7)07Ta 1770 J[ —1] n
Zpnr = ~——H?(koa) — Ko  JlEr—1] + jkoler—1]

7707Ta Noér
= —H}(koa) + Trale—1]

Znn’ -
Solution (3.23) yields [J,,.],. At each[Efi]t, the equivalent current density is

obtained for n’=1,2 .. N.Once [J,]:is defined, the scattered field at

observation domain can be determined by expanding the integral equation

ES(r) = jkono [fy, 5] H;? (kop)dr” (3.31)

Assuming that for a given [E,l;]t, ES(r) is measured at M(t) points of

observation which is placed in a data domain (E*(r),r € D). [E$,];due to the

presence of a dielectric object and illumination of [Eil]tcan be determined

using

Unl]t = nnl 1[E ]

= [Ende = [ZmnleUnle (3.32)
Nevertheless, equation (3.23) produces zero division at the background when
the dielectric contrast is 1 (g, = 1). Thus, a new variable is introduced to
replace the contrast term in the equation as follows

koler—1]
Jnoér

£ = (3.33)
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The dielectric contrast appears in the diagonal of the [Z,,, |matrix in
the object domain, (n,n") € 0, when the cells of the objects interact with

themselves (n = n'). The ¢ replaces &, in (3.30) by multiplying (3.23) with éas

dlag(fnl) [E ] dlag(fnl)][znnl] [lnl]t (334)

where[diag(§,,,)]is a diagonal matrix, which can be used to cancel the
dielectric contrast in the diagonal of [Z,,]. The diagonal term
ofldiag(§,,,)1[Z . ]is rearranged. Let us define the first cell of the term that is
n=n"=1

koler1—1] [noma Moéra
670y = Sl 1oz ) o - et (339)

Koler1—1
= ¢$1211 = % nonaH1(koa)—1

= &2 = 6124, — 1

where[Z,,, ]is an integral operator of the domain equation with entries

oﬂan

1 (kga)HE(kop)ifp > a orn #n’

Lipmr| = 3.36
(o] 0mHl(koa)lfp<0Lorn—n (3:36)

Furthermore, a new domain equation at t projection is written as

[diag(§,)1[Ex], = [[diag(§n)1[Znn] — 1T (337)
The relation between & and y is

ko
Jno&r

= (3.38)

Scattered field [Es5]; at m = 1,2.. M(t) observation points due to the present
of a dielectric object and illumination of the microwave signal can be

determined by :

Unile = [ [diag(&n ) [ Zpnile — ] [diag(§,,)] [E ]
= [E‘fn]t = [Znnl]t[]nr]t (3-39)
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3.3 Numerical Experiment

3.3.1 Methods

A comparative study is applied to analyze the accuracy of the MM solutions.
The MM solutions are compared to exact solutions. A simple cylindrical
geometry object with real dielectric contrast is used as it is the only possible
geometry that the exact solutions can handle. The OI is defined as an infinite
cylindrical object with a,; —radius and real ¢, dielectric. The exact solutions
calculate the scattering fields in the observation points using cylindrical
harmonic expansions in which it is derived in appendix B.

The MM approaches the cylindrical in squared meshes as seen in
Figure 3-2. In 2D view the OI is placed in a square area which is divided in N,
small squared area with a..; —radius equivalent. The radius of the cell is
varied by changing the N,. The dielectric of the cells which is placed inside Of
is set as &, , others are set as 1. The number of cells inside OI is labeled as N.

The size must be small compared to the wave length. Inside the material, the

wave length is defined as \/E/lm = Ay. Peterson [9] recommends that the
minimum number of cells for homogeneous dielectric cylindrical cross-section
be 100cells/A3;. This is approximately similar to ~ 0.051,,-cell radius. A set
of antennas are placed in a data domain (D) which is an exterior toO. The
antennas are used as measurement points. An antenna transmits the incident
field and the others receive the scattered fields when a dielectric object of
interest 1s given at the 0. In the direct scattering process which is used as the
solution of the forward problem of MWT, the MM calculates the scattered

fields at the antennas which are assigned as the measurement points.
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_________ >» Data domain

% \\,\g _________ » Measurement points

_____________ » Object domain
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Figure 3-2: Imaging configuration for microwave tomography.
The properties of MWT system are object domain (0), data
domain (D), object of interest (OI) and measurement points

The scattered fields simulated at the measurement points using the
MM are evaluated by comparing them against the results of calculation using
analytic solution. An absolute mean error is used to measure the quality of
MM solutions relative to exact solutions. The quality of the solution is

examined in term of cell size and dielectric contrast variations.

3.3.2 Numerical Result

3.3.2.1 The effect of cell size to the accuracy of the results of the method of moment

Microwave signals at 4.5 GHz in the form of plane wave and line
source equivalence illuminate an infinitively long dielectric cylinder
with dielectric of real 4 and 1 cm or 0.15A, in radius. This OI is
placed at the centre of O in which the domain is divided into N?
cells. The scattering of the signals at 36 antennas in D are
approximated using the MM with equivalence current density
(3.39). Figure 3-3 shows the effect of cell size on the results of MM
when the incident field is transmitted from (D(p = 5,¢ = 0)).
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The plots show that the size of the cell directly affects the
accuracy of the solution. The smaller the size, the better the solution
is. Nevertheless, decreasing the size means adding the number of
cells which will lift up the computational burden. For the case
provided in the test, the reasonable result of MM is gained when the
radius of cell is equal or less than 0.021, and good result is obtained
from 0.0154, radius of cell. These equal to 64 and 287 cells,
respectively. Improving cell size significantly raises the number of
cell in which it will increase cost of calculation.

It can be seen from the pattern of the plots at Figure 3-3 that
the smallest scattering field is on the same side of transmitting
antenna (= 0 rad ) and the biggest amplitude lies on the other side
of OI. The position of the observation points seems to influence the
accuracy of the MM solutions. The MM produces more errors of
magnitude on the other side of OI, on the other hand, it gains less
errors of phase at ¢ = mwrad.Figure 3-4 illustrates the change of
errors due to variation of the radius of cell at three different
observation points. The best result of the MM 1s produced at
¢ = mn/2rad, and the worst result is placed at ¢ = m rad. The size
of the cells must be relatively small in term of the background
medium area. Additionally, one thing that should be put into
consideration is the position of the points of observation. Points of
observation around ¢,, = ¢y + n.m, where ¢, is the transmitting

antenna point, produce bigger errors than other points at D.
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Figure 3-3: The plot of Scattered fields at 36
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3.3.2.2

The MM produces less errors for smaller cell size and the size
of error is dependent on the position. The source of error might be due
to one of the following reasons; firstly, the pulse basis expansion
(XN 1 JnPu) replaces the equivalence current density(J(r)). The
definite geometry of OI cross section is divided in cells where the pulse
is employed. Thus, finer mesh of OI brings the approximation close to
the/(r). Secondly, the enforcement of the integral is done only at the
center of the cell, and the integral is solved using series of functions for
the circular cell. The error is initiated as a result of point matching and
simplification. Third, the numerical error sets off errors to the results of
MM due to the round off and truncation of the calculation. These

types of errors may appear in the result of MM solutions.

The effect of relative permittivity to the scattered fields

The evaluation of the accuracy of the MM results is done by
illuminating OI which is a cylindrical object with 0.0134, radius and is
placed in the center of the object domain. The domain is divided into
N? =900 cells. Microwave signals at f=
[2.5,3,5 and 4.5 GHz]illluminate the OI. The scattered field due to
each illumination is measured at D(p =5,¢ = m/2). The relative
permittivity of the object is varied from ¢, = 2to &, = 90. The effect of
relative permittivity variation to the magnitude of the scattered field 1s
plotted in Figure 3-5.

As mentioned in the previous sections, the radius of cells in the
object of interest must be smaller than 0.0151,. Moreover, Paterson
states that the relative permittivity affects the flexibility the MM
solutions [9]. On the contrary, the numerical experiment shows that
the absolute value of the scattering field resulted from the MM
solutions are close to the exact solutions along the relative permittivity
variations. The MM is able to handle high relative permittivity

variations. The error gains along the variation are relatively constant.
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3.3.2.3

Thus, the MM can be used to solve forward problems of an

inhomogeneous dielectric object at microwave frequency.

Two-dimensional pattern of scattered and total electric fields

The scattered field at data domain is determined by the quantities
which are the relative permittivity of the object, the size of the object
and the frequency of microwave signals. The effect of the quantities
stated to the patterns is presented in Figure 3-6.

The effect of relative permittivity to the scattered pattern at D is
shown in Figure 3-6. It can be seen that the scattered fields are in line
with the direction of the signals. The value of relative permittivity
affects on the distribution of the fields. At low contrast, the scattered
fields are distributed around the object. A higher contrast object forces
the fields further from the source of the signals. The permittivity
contrast focuses and reflects the microwave signals. The higher the
contrast, the higher the effect on the pattern is.

The pattern of scattered fields due to plane wave and line source
equivalence illumination are similar, but the distribution of total fields
which are the addition of scattered and incident fields at D are different
as seen in Figure 3-6. The patterns of the incident fields greatly
influence the distribution of the total electric fields. The normalized
incident of the plane wave that is directed at —x, has an equal value
along the y axis and has a constant magnitude along the propagation.
This results in striped patterns of the total electric fields due to plane
wave illumination. The presence of the dielectric object distracts the
linear pattern. The fields are bent when they hits the object and they
drops on the other side of the object. The magnitude of the fields is
dependent on the distance with the source. Thus, the transmitting
points should be allocated. The circular pattern of incident field with
transmitting antenna as the center of the circle is distracted by the

presence of the dielectric material
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Figure 3-6: The pattern of scattered field and total electric field
around a dielectric cylinder with radius 1 cm when 4.5 GHz-
TMz microwave signal illuminates the object from +x direction,
for three different relative permittivity

76



In fact the scattered fields cannot be directly measured. The
field is determined by measuring the fields before and after the object is
introduced. The undisturbed fields are assigned as incident fields and
the measured fields after the object is placed in the object domain are
the total fields. The addition of scattered fields and incident fields
result in total electric fields at observation points. Thus, understanding
the pattern of total electric fields is essential, as this variable is the key

of the reliability and accuracy of the experimental measurement.

3.4 Conclusion

The direct scattering problem of microwave tomography is defined in term of
electric field integral equations (EFIE) for inhomogeneous scatterer. The
method of moment (MM) transforms the integral equation into a matrix
equation by applying pulse basis function. The solution of matrix equation
yields total electric fields [E,, or equivalence current density [J,,]; coefficients
in the centre of N2 cells of OI. The use of [J,,];, replaces [E,] in the EFIE
based on the volume equivalence principle and vice versa. Once the [E,,]
or[J,,]; are obtained, the quantities of scattered fields at D can be computed
for the given relative permittivity.

The direct solution proposed is designed for inhomogeneous dielectric
objects, but the study of MM solution is done for homogeneous cylindrical
dielectric objects. This geometry can be solved by harmonic expansion which
1s assigned as an exact solution. The effect of cell size and relative permittivity
value are studied to describe the accuracy of the MM solution.

The application of the MM to determine direct scattering of a simple
geometry shows that The MM is flexible to the size of the cells. The results of
calculations produce good accuracy up to 0.015 4, radius of cells. The MM
accuracy endorses flexibility in dividing object of interest into a number of

cells. A relatively small number of cells can be used to construct the object.
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The value of relative permittivity of OI does not greatly affect the
errors of the scattered fields. The errors mainly associated with the
approximation, which include errors of modeling. The cylindrical geometry is
replaced by a number of cells. The object of interest is divided into N2square
cells which are equal in size. The relative permittivity &,(p) is assumed to be
constant per cell. The superposition of the cells which are assumed to be
circular in shape approximates the original geometry and contrast. The
approximation brings modeling errors to the results of calculation. To
overcome this limitation, the cells should be sufficiently small. Nevertheless,
reducing size will increase the computational burden as the size of the matrix

equation rises up.
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4

Inverse Problem of
Microwave Tomography

4.1 Introduction

The mathematical formulation of Microwave Tomography Inverse Problem
(MWT-inverse problem) is presented using Microwave Tomography
Objective Function (MW T-objective function). The function is the difference
between the value of estimated electric field data and its corresponding
measurement data. Therefore, solving the MW T-inverse problem can be done
by minimizing the norm of the MWT-objective function, where iterative
nonlinear optimizing techniques can be applied. Iteratively, the function is
updated by improving the approximation of the estimated data. The MWT-
objective function is a set of nonlinear functions, however the iterative update
can be determined using linearization techniques, which include Newton
Kantorovich method [104; 108], Lavenberg Marquardt method [126], and
inexact Newton method [114; 127; 128]. The global solution of MWT inverse
problem is defined as if the approximation field equals to the measurement
data. This is the same as the norm of the MWT-objective function equals to

Z€r0.
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The norm of MWT-objective function is an alternative formulation to
conventional least squared MWT cost functional to present the MWT-inverse
problem. The least squared cost function of MWT-inverse problem is based
on the difference between the measured and predicted data for a particular
choice of parameters. The problem which is presented in quadratic form of
least squared problems is solved by optimization techniques that minimize the
cost-functional, for examples Modified Gradient method [64; 67; 129], Gauss
Newton inversion[96; 97; 99], and Contrast Source inversion [14; 82; 87].

This chapter covers the presentation of MWT-inverse problem in the
form of the norm of MWT objective function. It starts with the description of
a two dimensional MWT system, then the reconstruction of data and domain
equations of MWT from a direct scattering formulation is explained, and then
followed by the formulation of MWT-inverse problem in the form of the
MWT objective function and the least squared cost functional as comparison.

A numerical experiment is conducted to study the stability of the problems.

4.2 Microwave Tomography System

A two dimensional microwave tomographic system principally is
constructed by two basic domains: a bounded object domain O c R? and a
data domain D c R2. Both domains are subset of x — y plane (R?). The
domain O is denoted as the interior of bound medium. The domain should be
large enough to fully contain unknown Object of Interest(OI).

The data domain D c R? is the exterior of O where a set of
measurement points is placed. At each incident field radiation, M number of
electric field data at D are measured. Denoting that r and r’ are the position
vectors and p = |r — 1’| is the distance between two points at R?, total field at
r that is a perturbed field (E (r)), is measured when OI is presented.
Furthermore, the scattered field due t*" incident field illumination at r can be

described as the difference between the perturbed and unperturbed fields.
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Figure 4-1: Total electric field generated by the microwave plane
wave that illuminates a dielectric object

Ef(r) = E,(r) — E{(r) 4.1

Microwave tomography works by placing an unknown nonmagnetic
01 with permittivity &(r) inside O. The object is immersed in a homogeneous
nonmagnetic background medium with permittivity €,which is bound at D.

The OI is illuminated by t = 1,2 ..., T number of known incident fields ([E ‘])

At each radiation of EY, the scattered fields are measured at M observation
points at D. The scattered fields are generated as a reason of the present of
permittivity contrast &.(r) at 0. Experimentally, the scattered fields are
determined by applying (4.1) to the perturbed and unperturbed fields at
observation points. The measured scattered fields are reconstructed to build
the image of OI cross section.

Microwave image reconstruction methods determine the distribution
of &,(r) over OI which represents the image of OI cross section. The methods
solve MW T-inverse problem which can be formulated in the set of nonlinear
equations or a nonlinear least squares problem. Both formulations are
constructed by an object equation and a data equation. The formulation of the

equations and the definition of unknown variables in the MWT inverse
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problems directly influence the stability of the MWT solutions. Therefore, it is

essential to present the formulation of the data and domain equations

4.3 Data and domain equations

The data and domain equations are pairs of nonlinear equations that are used
to determine scattered fields from incident fields and dielectric contrast. The
equations are presented in integral equations. The mechanism of the scattered
process can be described by assuming that the object introduced is a
nonmagnetic material. The object only generates equivalent source in term of
current density, while the equivalence magnetic density vanishes. Therefore,
at each illumination, the electric fields can be stated in object and data integral

equations as

E'(r) = E(r) = ko’ [fo 1xGDE@)H? (kop)dr’ (4.2)
ES(r) = ko” [f, - x(rDEG)H? (kop)dr’ (4.3)

wherey = (g, — 1) is the dielectric contrast, and both coefficients r and r' are
positon vectors. Equation (4.2) represents the domain equation. The position
vectors address a point at O, (r,r") € O,while (4.3) expresses the data
equation. The vector r defines a data position r € D and r' points a cell at O,
r' € 0.

To define the integral equations (4.2) and (4.3) into the domain and data
functions, let us see integral operator [Z,,,,/]and [Z,,,/] which map L?(0) into
L?(0) and L2(0) into L?>(D), respectively. The entries are defined by solving
(4.2) using the MM which has been described in chapter 2, which are given by

— ,
Znm = =521 (ko @) H§ (kop); n # 1 (4.4)

Lo = jk(;na le(koa) + 1; n=n' 4.5)
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Att=1,2..T incident, the domain function and data function are written using

the integral operators as:

[EL], = [I + [Z,n][diagCtad)]] [En]e (4.6)

[Efn]e = —[Z ] [diagtn) 1 [En]e 4.7)

Both equations are functions of dielectric contrast [x,,] which is assigned as

the contrast of the equation and total electric field [E,,]which is assigned as
the source of the equations.

The alternative object and data functions are derived by applying the

equivalence volume principle to (4.2) and (4.3). The integral equations are

stated as:

1

jo(e—gg)

1
4j

Ei(r) = J)HD (kop)dr (4.8)

](T) _jkOrIO ffg

ES(r) = jkono fJy 35Jr)Hy? (kop)dr (4.9)

In fact (4.8) is not applicable for MWT application as zero division could
appear at the background medium and the solution is only valid at OI.
Nevertheless, the location of O is determined but the OI 1s unknown, though
the OI is immersed at embedded background medium in O, where y(r) = 0.
To overcome the limitation, (4.8) is multiplied by the contrast (y).
Furthermore, the domain equation and data equation with respect to [J,,].can be

stated as:

[diagOtn)][EL], = |[diagOtn) [ Znn] =220 Unde  (4.10)

[Efn]t = _[Zmnl]t[]n/]t (4.11)

This two pairs of equations (4.6)(4.7) and (4.10)(4.11) are used to
explain the forward and the inverse scattering problems. Numerically, they
are equivalent but they are stated in two different variables; so, whenever both
variables in the pair of the functions are updated simultaneously, the stability

and the accuracy of the solution could be different.
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The forward problem is used to calculate the scattered fields on the
observation points. The study of forward problem has been discussed in the
previous chapter. Therefore, they are no longer discussed in this chapter.
Meanwhile, the inverse problem is used to reconstruct the image of the
microwave tomography which is in term of dielectric contrast distribution in
domain 0. The inverse problem is constructed using a pair of domain equation
and data equation. The problem is presented in the form of a set of nonlinear
system of the objective functional and the least squared of the nonlinear cost-

functional.

4.4 Microwave Tomography Inverse Problem

4.4.1 Objective-function of microwave inverse problem

The MWT-objective function in nonlinear system is stated at D, wherethe
function is the difference of predicted scattered fields and measurement fields.

The predicted field is symbolized as a function of dielectric contrast as

[En]e(Ix]) = [En]: (4.12)
where[E3, ] ([x]) is the calculated electric field and [E5,]; is the defined field
or measured field. If the approximated[y]is close to the exact solution, then,
there is a difference between [E3,]:([x]) and [E3,]; which is assigned as the
MWT-objective function

Microwave tomography objective function F.([x])

Fe([xD = [Em]e(xD — [Ene (4.13)

Assuming that at t = 1, the scattered fields are measured at M1 observation
points which are placed in D outside 0. The entries of the objective function

are
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ES £s
Foor (D) = [ES ] (D) = [€5]ecr = EZ‘ l & (4.13)
EMl Em t=1

Using pairs of the domain (4.6) and data equations (4.7), [E;,]([x]) can be

stated as

[Efn]t([)(]) = _[Zmn']t[diag()(nl)] [I + [Znn'][diag(an)]]_l[Egl ]t (4.15)

The MWT-objective function in multiple projection microwave
tomography system comprisest = 1,2..T set of nonlinear functions. It is

defined as a column vector
Fey ([xD
F = Ft=2:([X]) (416)

Fer([xD
Then, the MWT-inverse problem in term of objective function (F([x]))is
stated as a normalized norm of MWT-objective function with respect to the

measured data

F(lxD = ”'SFS':@ (4.17)

4.4.2 The Least-Squares data misfit cost-functional of microwave
tomography

The microwave inverse problem can be formulated as the optimization
problem over the contrast [x]. The problem minimizes a MWT cost-function
which is usually presented in term of least squares data misfit of MWT, that

can be written as:

A IR LDIR
€D = iz (*.18)

where the norm and the inner product on Dis defined as :

1

lallp = (a,a) (4.19)

85



(a,a)p = fD a* (r)a(r)dr

a’,

2 al
lall3 =(a,a)p = | 2|[ax az - an]

aly

wherea'is transpose of a

for multiple illumination t = 1,2 ... T the cost function is defined as

| ]
er(lx)) =| 20D (4.20)
| |

whereC4is a T X 1 matrix.
The MWT cost function can be also stated in a single equation by summing

the cost for all projections.

T 2

IR [E4 P T

whereC2is a scalar, which can be defined fort = 1,2 ... T as

C(xD) = eZ(IxD + €3 (xD + -+ €7([xD (4.22)

The residual error R;([x]) inside the cost-function is defined as the difference
between the approximation of scattered fields and the measured data in the
observation points at D.

To 1llustrate the behavior of both problems: MWT-inverse problem in
objective function formulation (F([x])) and cost function of MWT-inverse

problemC([x]) and €B([x]), is applied in a contrast inversion problem.

4.5 The solution of objective-function MWT inverse
problem of contrast inversion

To describe the solution, the nonlinear MWT inverse problem is

presented in an abstract function. Suppose that an objective function f in
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convex optimization problem is differentiable so the iteration, Vy; € O,

follows optimality criterion

fQter1) = f O + VG - 8k (4.23)
The y; is optimal if and only if y € O and

Vi) -8, =0 (4.24)
Following the criterion, the function is solved according to iterative Newton

scheme

V) -8k = —f (k) (4.25)

where the iterative scheme needs derivative of objective function.
Based on the Newton iterative scheme, the derivative of (4.13) is
needed to construct the Newton scheme. It can be defined by applying the

total deferential to both of the domain and data functions, such that,

0= A[En]t + [Znn’]A([diag(an)][Enl]t) (4.26)
= A[En]t = _[Znn']A([diag(an)][Enl]t)
A[ES ] = —[Z 1 A([diag(Xn)1[Eni] ) (4.27)

The variation of the total electric field at (4.26) and (4.27) can be eliminated

by introducing the identity of total deferential as

A(Dtn ) diaglEnle) = [diag(xn)1(A[ER]e) + (A[diag(tn)DEn]e (4.28)
Substituting A[E,,,]; of (4.27) into (4.28)
A([diagQru)][Ew 1) =
—[diagQtn)][Z e 1A([diag(n) 1 [Eni]e) (+A[diag On ) [Eni ]
= [I + [diag(n)][Zyn 1]A(diagtn )] [Eni]e) = (AldiagQrn) D [En]e (4.29)

Defining the equality of diagonal matrix and column vector multiplication as

[diag(a@)][b] = [(ab)] = [(ba)] = [diag(b)][a] (4.30)

where
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aq 0 0 b1 albl blal
0 0 asllby) laghyl |bsay 0 b3

Using the definition of a small difference, the inner multiplication term in

(4.29) 1s rearranged as

[diag()(nl)] [Enr]t = [diag(Enr)]tA[an] (431)
Substituting (4.31) into (3.29)

= A([diagQra)I[ES 1) = [I + [diagQrn)1[Zp]] [diag(En)]Alxn1(4.32)

Substituting (4.32) into (3.27)

A[Efn]t = _[Zmn']t[l + [diag(an)][Znn’]]_l[diag(Enl)]tA[an] (4.33)

Assuming that the objective functional is the difference between estimated

and measured scattered field, that is

dF )
AEf = T Ay = Fy () = Ei() — & (4.34)

then, the derivative of F;()) can be defined as

F;(—[[jf]]) = —[Zp 1[I + [diagGtn)1[Zp]]” [diag(En)]; (4.35)

The iterative scheme of the Newton method for all projections can be stated as

[Dy] - [6x]k = —Fr([xlx) (4.36)
where
rF1([x]x) 7]
dlx] [Em]1 — [Emls
Fo([xlx) s _[cs
D] =| a0 |Fellxl) = | Fnl2 T Enl2
Fr(Lxlo) [Es.]r — [Enlr
L dlx]
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4.6 The solution of least square cost function of
contrast inversion

The cost-function (€) of contrast inversion is presented in two different least
squared problems. The (€)is a composition of the data and object functions in

manner of contrast ([x]) variable.

2

||[_[Zmn,]t[diag()(nl)][I"'[Znn’][diag(xn’)]]_l[Egl]t]_[gfn]t”D (4.37)

(&5 ]ell3

ci(xh =

- 2
ST l[-1z,,./] [diagGeani[1+]2,, /| diagGran]] [EG 1e| €51
8 (il = 2ol toml i) by 4
ST ER

The solution of the problems are done by minimizing the cost-function,
minC([x]), where C: R™ — Ris continuously differentiable. Assuming that the
cost-function is solvable, then, there exists an optimal point [y]*. The optimal
value lies at C([x]) = C([x]*). Since C is quadratic and differentiable, a

necessary and sufficient condition for a point [x]* to be optimal is

ve([x]) =ve(xD =0 (4.39)
Minimizing the least-squared problem C([x]) is the same as finding the

solution of (4.39). Assigning the cost-function as the norm of the residual

function, the differential of the cost function V€([x]) can be defined as

_ 1 dRIID
Ve (XD = e nim — atar (4.40)

The problem must be solved by an iterative algorithm due to the high non-
linearity of the functions. The iterative Newton can be used to solve the

problems. For all projections, the properties of the schemes can be stated as

Newton properties for (C4([x]))

Ve, (Ixk)
Dk — VCZ([X]k) (441)

ve, (Ll
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[Cf (X))
F(Xl) = 'lcﬁ([ff]k)J' 442)
cr(xli)
Newton properties for (CZ([x]))

D, = Ve ([xlx) + VC([x]x) + -+ VCr([x]) (4.43)
F([x]x) = €% ([xD (4.44)

The objective and cost functional of CSI is tested in a numerical experiment.

The results are discussed in the following section.

4.7 Numerical experiment of contrast inversion

MWT-inverse problem is applied to reconstruct the dielectric value of four
cylindrical dielectric objects. The parameter value of OI is & = 4. The
diameter of cylinder is 1 cm. The OI is placed randomly inside the object
domain. The object domain is immersed in background media with &, = 1.
Sixteen antennas are placed around the object domain with radius of 7.5 cm.
From each antenna, 4.5 GHz microwave signals illuminate data domain
sequentially afterwards, the scattered fields at data domain are measured at 8
Rx antennas.

The MWT-inverse problem in three different formulations F([x]),
cA([x]) and €B([x]) are applied in multiple cylindrical OI. Noiseless
numerical data is developed using forward problem. GNI reconstructs the
data; for evaluation purposes, the process is terminated after 40 iterations. The
characteristics of the iterations are shown in Figure 4-2 and the reconstructed

images are presented in Figure 4-3.
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Figure 4-2: The parameter of the solutions of MWT inverse
problem in contrast formulation.
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Figure 4-3: Images of four cylindrical cross-section objects. The
images are the solution of MWT contrast inversion problem
GNI. The MWT inverse problems are presented in three
different MWT functions.

It can be seen in Figure 4-3 that the relative errors of the problems for
all formulations are decreasing toward zero level. The iteration converges and
the output value of MWT-inverse problem functions reaches the tolerance of
the functional. If the tolerance of the functional is set similar for all statements
which is Fi([x]x) < (e = \/E) ; thus, it can be seen that the tolerance is
achieved relatively on the same iteration for all problem formulations.
Furthermore, the MWT-inverse problem with MWT-objective function
formulation works better than the least square function formulation. The
relative error of the MWT problem in MWT-objective function is less than 10°
® while the other two formulations of relative errors are more than 10~.

The derivative of least squared cost-functional falls to zero, meaning
that the solution of the cost-functional is achieved as, C4([x]) < €, where € s

a small tolerance number. The direction of iteration reduces along the
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iterations. Thus, the error relative of the scattered fields dramatically falls for
first few steps; then, it is followed by moderate decrease in errors of scattered
graph

The reconstructed images are presented in Figure 4-3. It can be seen
that the solution of MWT-inverse problem which is presented using MWT-
objective function is better in image quality than that in the solution of MWT
least square cost-function. The location, the number and the shape of the
object are clearly distinguished from the background. The quantity of the
contrast can be defined. On the other hand, the images reconstructed using
inverse problem of cost functional solution is blurred. Furthermore, the

quantity of the contrast is affected by the location of the object.

4.8 Conclusions

The MWT-inverse problem is formulated as normalized norm of objective
function. This 1s an alternative MWT-inverse problem formulation of least
squared MWT cost functions. The MWT objective function states the MWT
inverse problem as the difference of estimated and measured data. This
function presents the problem in sets of complex functions. Thus, the high
non-linearity of MWT system is clearly exposed. It can be seen that the
MWT-inverse problem in objective-function formulation is better than the
least squared cost function formulation.

Numerical results show that the MWT-inverse problem can be
presented in MWT objective function norm. The parameters of the
reconstruction show that the objective function norm and MWT cost function
decrease toward zero point. All of the functions reach the tolerance. The stop
rule base on the value of MWT-inverse problem output function is satisfied.
Meanwhile, the norm of the derivative of MWT-inverse problem with MWT-
objective function approaches a constant point, while the norm of derivative

of MWT least squared cost function fall down toward zero. The final
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destination of the derivative is different, however, they move toward a specific
point.

The numerical data is reconstructed using GNI. The solution of the
reconstruction is the value of the dielectric contrast on each cell of OI. The
plot of dielectric contrast distribution represents the image of OI cross section.
The quality of the images of OI from Born approximation problem is
relatively similar for all MWT-inverse problem formulations. In contrast, the
presentation of the images of contrast inversion shows that the MWT-
objective function is better than the least squared cost function for MWT-
inverse problem. The detail of the OI is clearly presented using MWT-
objective function formulation while the least squared cost function fails to

produce sharp images.
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0
Linearizing MW'T
Inverse Problem

An iterative Newton method to solve an MWT inverse problem is
presented. The problem which is in the form of a normalized norm of
the MWT objective-function is linearized by filtering and transforming
the nonlinear MWT inverse problem into a linear system which is
assigned as the Newton equation. In this study Levenberg Marquardt
(LM) is used to linearize the problem and methods based on pseudo
inverse are applied to compute the solution of the linear ill posed
problem. The stopping rule for the method is defined and the choice of
regularization is studied. The stability of the solution is evaluated in a

numerical experiment and tested using noiseless and noisy data.

5.1 Introduction

Let us define the MW T-objective function as a nonlinear abstract function

F(lxD=b (5.1)
and MWT-inverse problem is an optimization problem, which is defined as

minimization of normalized norm of (5.1)
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F([x]) = miny oz IF (DR (5.2)

where F([x])is the MWT-objective function and ([x]) is the dielectric
contrast of material in the object domain(Q), which is representing the image
of Object of Interest (OI). The measured term b is the difference between
estimated (E°) and measured scattered fields ([€°]) at data domain(D). Once
the unknown variable ([y]) is determined, the scattered fields in D can be
calculated by solving the forward problem[E*] = f([x])|p, which is used to
define the MWT-objective function.

F([xD = b = [[E*] - [&°]] (5:3)

The MWT-objective function is designed to improve the stability of the
solution of MWT inverse problem. The function is an alternative of a cost
function of an MWT inverse problem which is commonly presented in a least
squared cost function. The norm formulation of MWT is a convex
approximation problem. There is an optimal solution for cost function which
is gained using various iterative methods, such as Newton iteration [92; 97]
and modified gradient [67; 89; 129]. However, the approximate solution could
be the local minima of the problem. In addition, the errors of the cost function
may not decrease in the errors of the dielectric contrast with respect to the
iteration. Therefore, the MWT-objective function is selected in this thesis to
construct the MWT-inverse problem. The inverse problem is presented in a set
of functions in a complex system in which the inner product of the norm is
avoided.

The nonlinear system of the MWT inverse problem is solved using a
linearization technique. This technique has been successfully demonstrated in
inexact Newton application [114] where the solution is gained using iterative
linear regularization method. In this chapter, another Newton class by means
of the LM is developed to compute the regularized solution of the MWT
inverse problem. The linearizing scheme is done at each iteration using
Frechet derivative and pseudo inverse regularization techniques which

include truncated singular value decomposition, Landweber Friedman
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iteration (LF) [130; 131; 132; 133], and Tikhonov regularization [134], to cure
the ill-posed ness and solve the linear problem. The LF iteratively regulates
the inversion based on the expansion of the matrix decomposition. The
regularization depends on the index of iterations[133]. Tikhonov
regularization is a well-known approximation solution which minimizes
regularized functional by means of Tikhonov function, where a positive
parameter is inserted to (5.1). The method is originally proposed by Tikhonov
to solve linear ill-posed problem, and has been developed for solving
nonlinear microwave inverse problems [104; 108; 135].

The linearization technique is developed to obtain a stable solution of
MWT inverse problem based on the iterative scheme of Gauss Newton
Inversion (GNI) as in [93]. The iterative update of GNI is regulated by
applying a linear filter which is the version of LM as explained in [136; 137,
138; 139]. The stability and accuracy of the proposed method are studied

using numerical experimental.

5.2 Newton Iteration

Iteratively, the MWT inverse problem can be solved using Newton’s method.
Assuming that the objective function is solvable, where [x]* and [x]x are the
solution and the estimated solution, respectively; then, the GNI scheme can
be stated based on the Taylor’s expansion.

The GNI to solve (5.1) is the approximation solution of the Newton
iteration where the Taylor’s term is modeled and the remaining term is

neglected. The algorithm of the GNI can be summarized as

X1 = [X]k + d 3y (54
8, = [6x1 = =131 [Ji"Fi (5.5)
Where

Jis Jacobian matrix of MWT inverse problem

8, 1s the direction of iteration at [x]y, and
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dis the step size, which is defined to reduce the value of (5.1).

The current iteration of GNI is approximated by solving the objective-
function of MWT inverse problem. The Jacobian matrix at current iteration
index is approximated by the Fréchet derivative of the operator F([x]) as the
Jrcannot be defined analytically.

Recalling F([x])of MWT as a multiple projection problem where
t=12 ..Tas

F ([xD
F([xD = FZ(EXD (5.6)
Fr(xD
then the GNI iteration is defined as
[D*D];. 8, = —[Dy"Fy] (5.7)

where D is multi projection symbol for the Jacobian matrix.

rF (i)

dix]
Fa (Ll
[D]x = alxl (5.8)

Fr(li)

L dx]
and the MWT objective function F;([x],) is defined as
[[Elue — (€51
F(lxl) = l[Em]Z'kj [gmh‘ (59
[Emlri — [Emlr

The solution of MWT inverse problem is updated accordingly

[Xlks1 = [l = [D*D], " [Dy"Fy] (5.10)

The Newton iteration (5.7) involves the solution of linear ill posed
system. There are several techniques to find the regularized solution of the ill
posed, which are explained in [140; 141; 142; 143; 144; 145]. In this chapter, a
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regularized solution is applied to calculate the search direction of the GNI.
However, the problem is highly non-linear, local minima could be hard to be
avoided. Thus, an alternative solution based on the linearization of MWT
inverse problems is studied. The application of linearization promotes more

flexible solutions of the inverse problem.

5.3 Linear filtering technique for non-linear
Microwave Inverse Problem

5.3.1 Linear ill posed problem of microwave tomography inverse
problem

The iterative scheme is developed to solve (5.9) by applying the linear filtering
technique to the equation. Parametric approximation as described in [140], is

introduced to replace the inverse of the Hessian of the GNI as

[W((LL), @) 8k = =Dy Fic] (5.11)

where

[L]ic = [D"D]
The function Y ([L], «) is the inner product of spectral value ([D*D]) and a
positive real number(a). Filter (i) estimates the inverse of Hessian[D*D] 1.
For all regulator parameters a, the limit of regulator towards zero value is

equivalent to the inverse of[L]. However, the inverse cannot be defined. It is

estimated. The functional filter can be stated in an abstract way as:

1

forall L, limy([L],a) = (5.12)
a—0 L

= limg o P([L], &) = [L]™*
The approximation of [L]™! using ([L], ;) should be taken into the

consideration to limit the solution inside the intended domain. The iterative

scheme of GNI to solve MWT inverse problem can now be stated as
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[Xlk+1 = (Xl — Y(L]L ap) [Dy"Fy ] (5.13)

Assuming that the parametric functional ¥([L], @) is a good approximation
of the inverse of the Hessian, then, the iterative GNI scheme for solving
MWT inverse problem in the linear system can be illustrated in Algorithm
5-1. It 1s applied to calculate the search direction of the Newton step, where
the inputs of the algorithm are the measured scattered fields in data domain

and known incident fields in the object domain.

Algorithm 5-1 GNI: Gauss Newton Inversion for MWT Inverse Problem
Function GNI[€},]=12..70 [Ee=12..7)
Set : [x]lo=0; k =0; SR, = false
Fo([xlo) = [Emelt=12..1
Do while k < max _k&&not(SR;)

_ [Fell)
[D]k _[ dlx] ]t=1,2...T

8 = —Y([L], a;) (D" F]
di = ming||F([x]x + di8i) — [E°]II
Delisr = Dl + di - 8k
k=k+1
F = E*([x]D) — [€°]
SR, = stoprule([x])
End do while
Return ([x])

The linearization starts with defining the initial guess of contrast [x],
and MWT objective-function F,. The linear system is defined as a normal
equation of an MWT-inverse problem. The regulator parametera,, is used to
compute regularized solution of the MWT linear ill posed problem. Various

methods can be used as presented in the following section.

5.3.2 Linearizing by means of Levenberg Marquardt method

Introducing a parametric function as
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Y([L], @) = (5.14)

a+[L]
Functional norm of filtered is stated as
1
L = .1
Y([L], @) H[D]”z (5.15)
Ja

Regulator parameter (@) is a real positive number.

The iterative solution of the MWT inverse problem is derived using a
parametric filter. The parametric functional (5.16) acts as the linearizing filter
of the nonlinear objective-function. The iterative solution in the regularized

linear system can be defined as

[D]lk 2
|21

Xlk+1 = [X]k — [Dy Fy] (5.16)

This algorithm is well known as Levenberg and Marquardt method (LM). The

LM is convergent and stable if the «; is selected following

|Fyx — [D]i[[xX]k1 — Dxlidll < €llFill (5.17)

This has been proven by Hanke[144].
Assuming that the direction, 8; = [¥]x+1 — [X]x, of LM iteration
equals to the update value of the solution of the linear ill-posed problem of

vector 8 . The last term of LM scheme can be written as

[L%]8 = [D\"Fy] (5.18)

The inverse of the regularized normal equation[L%]™! represents linearized
operator Y([L],@). The variable s is unknown N X 1 vector which is the
direction of iteration. Basically, (5.18) is a regularized normal equation. It is

similar to the regularized norm approximation problem.

min,||[D]s — FlI3 + al|sl|3 (5.19)

This Tikhonov regularization problem can be expressed as

®(8) =8 [D'D]|s— 2F*[D]|8+ F'F + as8*s (5.20)
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The vector 8 minimizes ®if and only if the derivative of (5.20) equals to zero,

where the optimum point takes place

Vd(s) = 2[D*D]s — 2[[D]*F] + 2as (5.21)

If & satisfies the minimization, then, regularized normal equation can be

expressed as

([D*D] + al)s = [[D]F] (5.22)

The regulator is a small positive numbera > 0, therefore, the regularization
does not need the assumption of the rank of matrix [D].
Assigning matrix [L%] represents regularized ([D*D]+ al), the

solution of (5.22) can be stated as

8 =[L*]7*[[D]"F] (5.23)

However, one step solution usually does not give a good result. Alternatively,
an iterative solution is proposed. The iterative method offers a stable solution.
Accordingly, it will decrease the sensitivity of the inverse problem, and retain
the LM method to produce the expected solution of the MWT inverse
problem. At each sequence, the objective-function and its derivative are
calculated with respect to the approximated contrast and defined incident
field. The system is linearized and transformed into a linear ill posed problem.

The linear ill-posed is regulated and solved.

5.4 Numerical experiment

A numerical experiment is aimed to investigate the LM algorithm to solve
nonlinear ill posedness of the MWT inverse problem in the sense of linear ill

posed problem solution.
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5.4.1 Simulated data

The measured field is generated by setting the target OI and calculating the
scattered fields at the data domain due to the incident field which illuminates
the object domain. Empirically, measured data always contain noise. It is
necessary to find the way to work with noise. The noise is generated using a

random number in which the signal to noise ratio is defined as

sN2
SNR,5 = 10logy, ”fvg ||||2 (5.24)
t

The data which belong to the complex number, are measured in data domain.
The noise, therefore, is introduced in a complex system, in which the ratio of
real and imaginary parts of the complex number are calculated separately to
prevent rational over each term of the data component. The magnitude of the

signal with and without noise is presented in Figure 5-1.

5.4.1 Object domain and object of interest

The object domain is defined as a square area. It is divided into 50 X 50 cells
equal in size. The number of cell determines the accuracy and computational
time. The finer the grid, which means smaller cells, the more accurate the
simulation 1s. However, higher cell number produces large size of unknown
vectors. This makes the solution more unstable. The cost of computing the
decomposition significantly increases and the higher frequency of singular
values, in which the values are very small, rises in number. The cell size can
be determined according to the maximum size of the cell that supports the
accuracy of the direct scattering problem.

The number of cells corresponds to the size of the cells. It is
recommended that the minimum number of the cells be 100 cells per square

wave length inside object of interest.

100 cells
Npin = 12
&r

(5.25)
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Figure 5-1: The simulation of measured scattered fields at data
domain without and with noise of various SNR ;5
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Figure 5-2: The x — y plane distribution and y = 0 cross section
of object of interest which is immersed in the object domain.

Table 5-1: parameter of the simulated system for the simple test

Parameter Value
Diameter of Object Domain (0) 9.5cm
Diameter of Data Domain (D) 13.0cm
Transmitting Antenna T, 16 T,
Receiving Antenna R, 8 R, each illumination
Number of cells 50 x 50 = 2500
Obiject of interest 1+ (g, — Dcos?(p)
Radius of 01 X Y?

27,

Frequency 4.5 GHz

The wave length inside the dielectric object is determined usingA, = ,/3/,.
The object of interest is constructed by the distribution of the dielectric
material in which the maximum dielectric contrast is 3 at 4.5 GHz working
frequency. Thus, the wave length of the microwave signal at the dielectric
material is 3.85 cm and the recommended minimum cell mesh for each
15 cm? is 100 cells. The accuracy of the solution of the direct scattering
problem depends on the position of the receiving antenna with respect to the
transmitting antenna. The previous chapter shows that the minimum cell

number should be larger than the recommended size at the points close to the
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transmission antenna. The size of the object domain is 90.25 cm?2. It is
divided into 2500 cells, which is more than 4 times of the minimum
recommendation.

The measurement set is placed in the background medium which has
the dielectric permittivity contrast of 1 as well as the background medium of
the object domain. A small object of interest is placed at the center of the
domain. It is constructed using 1 + (&, — 1)cos?(p) function, where p is the

radius of the object which is limited at (go) The cross section of the object at

y = 0 is presented in the right side of the figure. It can be seen that the peak
of the object of interest is 3 which is the maximum contrast of the object. The

parameter of Object domain and the OI is summarized in Table 5-1.

5.4.2 Error definition

The solution of the MWT inverse problem is done by minimizing the
objective function. The function produces a complex vector. To evaluate the
descent direction of the MWT objective function, error is defined using
normalized an MWT objective function norm (5.2).

IF(DIZ
Forr (XD = ”[Es{]HZD (5.26)

The initial guess of the contrast is set equal to the background medium. The
functional error will be 100% relative to the measured scattered fields.

The dielectric contrast of the Olis presented in a complex number.
However, the object target is defined as a real number where the imaginary
part of the contrast is defined as zero. The real part of the dielectric of the OI
is bigger than the background. If the result of reconstruction is less than 1,
then, it is assigned as the background; and the real and imaginary parts of the
contrast are set as 1 and 0, respectively. The error of the reconstructed image

is defined as the relative error of the contrast.
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I Glese— [l target
= 527
Xerr j Iodlcargetll’ (5.27)

The norm used as the contrast is a complex number. The imaginary part of
the reconstructed image contributes relative errors to the solution.

The iterative solution is updated using the direction and the size of the
steps. The direction is calculated using the LM method. To analyze the

change in the direction, norm of the direction is defined as

norm(sy) = || 8|l (5.28)

The direction .8, is a vector with size equals to the cells of the object domain.
It is a complex number and updates the value of the contrast of the object

domain

5.4.3 Numerical results

The study of LM with linear ill posed regularization is done using OI
defined at Figure 5-2. The study is done at noise less data. It is shown that the
LM method can be used to reconstruct the OI. Using dynamic Tikhonov
regularization, the object can be drawn well. The detailed information can be
rebuilt when the approximated solution closes to the exact solution. It is done
by decreasing the regulator parameter. Nevertheless, it could not be applied
for data with noise. At the point close to the solution, the noise could be larger
than the information.

The solution of the linear ill posed problems potentially amplifies the
noise as the regulator decreases. The constant of the dynamic regulator 4.52 is
set at 7~ = 0.75. The iteration starts with zero initial. The scattered field
measured equals to the incident field at data domain. The regulator is initially

setata = 0.1.

107



10°

£ SN SNR=34.9dB '
s \\ ——SNR=40.1dB N
L \ —— SNR =43.7 dB 7
=] - — [
S 10tk \ SNR =46.5dB i
s p ~-=:-SNR=48.1dB i
T \ ~+w:+ SNR=50.3 dB /
(] r .
2 i
5] ) U
S 107 RO
O N /
. ’I'
E : ~.~'.|~:— _._". .,.
. h.-'~ -
= 'l LM-Thikonov
-3
10 f r r r
0 20 40 60 80 100
lteration
1,2 r T T T C I'L'
SNR=34.9dB it
—— SNR=40.1dB il
Lt —— SNR =43.7 dB i
£ SNR=46.5dB r/
5 08 —"=**SNR=48.1dB {7 A
0 ==—-SNR=50.3 dB il
o /
£ 06 / .
T
ad -y -
0.4 .
LM-Thikonov
0.2 f [ r r r r r
0 10 20 30 40 50 60 70

lteration

Figure 5-3: The parameter of the solutions of noisy MWT
inverse problem of Linearization technique test. The
regularization technique is Tikhonov regularization. The
regularization is descended

The solution gained can be used to decrease the distance between the
initial guess and the exact solution. It can be seen in Figure 5-3 that the
relative errors of the contrast slightly decrease at first five iterations. The big
value of the regulator flattens the solutions. It can be seen that the revolution
of the solution for data with noise is generally similar when the LM method
solves the main information. The lines in Figure 5-3 decrease in line with the

iteration index up to 40 iterations. Then, the noise starts playing the role.
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Figure 5-4: The reconstruction of noisy data with SNR 40dB at
four different iterations. The images resulted by LM method
with Tikhonov regularization. The regularization parameters are

descended.

The noise level significantly affects the results of the regulated linear ill
posed solutions. The value of the regulator is less than @ = 3e — 5, while the
noise level is comparable to the objective function. It can be seen that the
smaller SNR makes the solution easier to be unstable. The lines of relative
error of the contrast and functional move to other domains. The iteration is

divergence. Therefore, the iteration should be stopped at a proper iteration

index based on the noise level introduced.

The reconstructed images at various iterations are presented in Figure
5-4 and Figure 5-5 for SNR = 40 dB and 50 dB. It can be seen that the
iteration should be stopped at 60 and 70 iterations for SNR=40dB and
SNR=50dB successively. Stopping rule should be set at the desired iterations

index.
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Figure 5-6: the cross section of the contrast (y) distribution at
y = 0 of the images resulted by LM when the noise is introduced
with SNR 40.1 dB (above) and 50.3 dB (below)

In practice, the object of interest is an unknown variable. Thus,
detecting by analyzing the images frame per frame could be hard to do and
computationally expensive. The stopping criteria could be defined using the
provided parameters. One of the parameters provided is the line of the norm
of objective function. It offers essential information of the behavior of the
solution, in which the line of SNR=40dB starts to increase at 70 iterations
while at 50 dB it remains flat.

In this case the solution misses the appropriate stopping index. The

solution starts to fluctuate as the noise is greatly amplified. As it is seen in
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Figure 5-6, the cross section of the contrast distribution at 70 iterations of the
LM scheme for data with SNR = 40 dB pictures the wrong object. Even by
defining prior information that the real part of the dielectric cannot be less
than 1, the distribution of the contrast still reflects the effect of the noise.
While at SNR =50 dB, the peak of the object can be clearly seen and
discriminated from the background. Filter could be applied if the prior

knowledge of the OI is known

5.5 Conclusion

The MWT inverse problem is solved using the LM method. The inverse
problem is presented in a nonlinear objective function. The nonlinear system
1s linearized and formed into a regularized linear ill posed problem. Two
different methods to solve the linear ill posed problems are studied. Both
methods are used based on pseudo inverse. The linear system is decomposed
into singular values and pairs of orthonormal vectors.

The regularization makes the solutions stable. The object can be
reconstructed and decided from the background. The position of the object is
the same as the original OI. However, both regulator techniques fail to
produce detail information of the object. The object is described larger than it
should be. The intensity of the contrast is reformed below the exact solution.
The behavior of the low pass filter of both regulator methods affects the loss of
detailed information. The small singular values are out of calculation. It
makes some of the information uncaptured. Therefore, detailed image cannot
be described using these techniques..

The regulator parameter of Tikhonov regularization is set to be
dynamic. At an initial scheme of the LM algorithm, the regulator is defined
relatively large compared to the smallest singular values. Thus, the solution of
the LM 1s guaranteed to be stable and moving toward the exact solution.
Then, the regulator is gradually decreased following the power series rule.

This is applied to accommodate the detail information which is kept at lower
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singular values. It has been shown that the dynamic regulator is able to
rebuild the distribution of the dielectric contrast. The norm of the objective
function is decreased along with the iteration and the global stopping criterion
1s achieved.

The noise is introduced to the measured data. The LM method with
dynamic Tikhonov regularization is used to reconstruct the distribution of
dielectric contrast. It is seen that the global information can be reconstructed
at various levels of noise. These are done at a lower index of iterations, where
the regulator parameter is relatively big. The noise starts to distract the
solution when the approximated solutions are close to the exact solution. At
this point, the regulator is small as the objective functional is decreased.
Therefore, the levels of noise rise and contribute to the solution. The iteration
should be stopped before the noise covers the whole solution and turns the
solution to the wrong directions. The stopping rule should be defined to gain
an optimum solution. The rule can use the parameter of the iteration like the
revolution of objective function and the norm of the Fréchet deferential. This

rule will be further discussed in the next chapter.
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6
Iterative Methods for
Solving Microwave

Inverse Problem

Newton iterative by means of Inexact Newton Backtracking Method
(INBM) has been developed to obtain stable solutions of Microwave
Tomography inverse problems. The inverse problem is presented in
term of a nonlinear objective function and solved iteratively by
minimizing the relative norm of the function. The method proposed is
applied to reconstruct numerical noisy data of lossless, lossy and
human arm models. The quality of the proposed method is evaluated
by comparing the results of INBM with the results of the Lavenberg
Marquardt method (LM).

6.1 Introduction

The Multiple illumination of Microwave tomography system (MWT) which is
described in (4.3) using a pair of integral equations that describe the data and
object equations is stated in an abstract non-linear ill posed problem. For the

purpose of INBM application, the MWT inverse problem is written as
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F(x)=»b (6-1)
where (6.1) has an exact solution at x and the exact data but indefinite
measured data is defined as[£5] which makes b = F(x") = [ES(xT)] — [E5] =
0.

In the real world, the measured data cannot be separated from noise
levels, thus b, is undefined due to the unknown exact data and residual

errors. The Measured data[€°], therefore, is assigned asy®which is the
scattered field at data domain with noise (y5 = [E°] + h(6)) as the exact

scattered field (y = [E°]) cannot be determined. Assuming that the noise level

8 is known, the noisy data y? satisfies

ly-yll<s (6-2)
Immersing the noise and residual error toby, the perturbed b, is defined using

the difference of measured data and estimated data

P =y — E5(x) (6-3)

where||b, — bi|l < & + ||ES(xT, x|
The proposed algorithm is based on the Newton method applied to
MWT inverse problems. The iterative step of the algorithm involves solving a

Newton equation which is linearization of the nonlinear problem (6.1), where

the equation is presented as

F'(x,)8; = b (6-4)

Defining D,is the derivative of multi projection F(x)at x) ,then, the Newton

equation for multi projection of the MWT inverse problems can be written as

D;.8; = bj (6-5)

The basic principle in solving the nonlinear MWT inverse problems using
iterative Newton class includes inexact Newton that is the correction step of
the solution is determined by Newton equation (6.5). The equation is linear,

even though the step 8, is still nonlinear with respect to the objective
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function. Beside the equation is commonly underdetermined. For this reason,
the INBM is developed to provide a stable solution of MWT inverse
problems.

The INBM, an inexact Newton class, is a generalization of Newton
method for solving a nonlinear problem like (6.1), in which at the kth
iteration, the step 8,from current approximation solution x is required to
satisfy a condition. The step is no longer a direct regularized solution of the
Newton equation, but an approximation of the solution which is defined in
unspecific manner.

To clarify the proposed algorithm, the iterative scheme of Newton

method for solving MWT inverse problem is described.

6.2 Iterative scheme of MWT inverse problem

6.2.1 Regularized solution of linear problem of MW'T inverse problem

Iterative step of Newton scheme for solving (6.1) involves the computation of
the Newton equation (6.5) that is the linearization of the MWT inverse
problem. In the application of parametric function as discussed in chapter 5

reveals that the general solution (.8, )in LM satisfies

8 = Y([L]y, ar) [[DI; [b]k] (6-6)
where[L], = [D*D];, Dyis F'(x;) of multi projection MWT problem and
[D]}is adjoint of D,

Several techniques have been developed to provide regularized .8, with
regularization parameter «. Three regularization techniques are described as

follows:

6.2.1.1 Truncated Singular Value Decomposition
It is assumed that the operator [L] is an invertible complex matrix. It is a

squared matrix which has a singular value decomposition
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[L]=UzVT (6-7)

The singular value decomposition produces coupled unitary matrix U and V
which are UT = U tand VT =V~1. The diagonal matrix of ¥ is o;where
i = 1,2..N.If the column vectors of V is v; and the column vectors of U is u;

then, the relation can be stated as follows

[L]v; = oyu;; [L]"u; = opv; (6-8)

The solution of (12.1) is stated using the singular value decomposition as

8 = |2, 22 [1DT; [b¥],] (6-9)

g
The truncated singular value decomposition (TSVD) regularizes the ill-

posed problem by truncating the matrix([L]). A small value of singular value

(07) is ignored. The ill-conditioned system is regularized as

uiv;

L] = 2, 9L (6-10)
Where the regularization ¢; is defined as
1, i=12.k
¢i_{0;i=k+1..N (611

Equation (5.28) is known as the truncated singular value
decomposition (TSVD) solution. It solves the linear ill-posed MWT inverse
problem. It should be noted that the instability could occur during the

computation of .8 as some information is omitted.

6.2.1.2 Tikhonov Regularization
The Instability of TSVD can be decreased by applying a parametric filter
w(0,a). One of the well-known filters is the Tikhonov regularization. It is
defined as

oi’+a

w(o? a) = - (6-12)

Oj
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wherea is the Tikhonov regularization parameter. It addresses the singular

decomposition values as

oi’+a

w(6,a)a; = (6-13)

Determining « is essential for the stability and accuracy of the
solution. The regulator should be relatively small compared to the largest
singular values and relatively big compared to the largest singular values

For the largest singular values, the regulator contributes small effect

while the smallest singular value contributes the biggest inversion values.

2
w(8,a)o; = Imax ¥4 Omax (6-14)

Omax

The filtered singular value is approximated as

. 2
w (8, a)g; = Tmin e o (6-15)

Omin
Substituting the regularization (6.13) into (6.9) results in Tikhonov regularized

ill-posed solution as follows

8t = |Zy 7w (D [b°1,] (6-16)

oi%+a

6.2.1.3 Truncated Landweber method
The solution of the linear system is regulated using the inner iterative index

[ =1,2,... I and guarded with positive nonzero numberf3.

[Le]t = ¥i=6(1 — BIL]Y (6-17)

The [*"regulative iteration can be expressed in terms of the singular value

decomposition system

— VN 1_(1_[’,@2)[ *Ipe Ty, _
Br 41 = =1 o ([[D]} [b]k], u; Yv; (6-18)

The S is chosen according to the largest singular values. The £ lies between

0<ﬁ<ailz (6-19)
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The techniques explained are categorized as direct regularized
methods. The direct solution is a predictable number of steps, but it does not
support intermediate solutions. The solution is in a specified manner
according to the regularization technique used. The accuracy of the solution is
dependent on the type of the regulator and the size of the parameter of the

regularization in which both parameters are hard to be defined.

6.2.2 Iterative improvement of linear problem

An iterative method is an alternative method to improve the flexibility of the
solution. It starts with an approximate answer, and then, the accuracy is
improved iteratively, and finally stops once the estimated error is below the
tolerance.

Suppose a Newton equation which is a linear system with exact

solution 8] satisfies

[W([Llk, @)1 s} = [[DI[b°]] (6-20)
The approximated solution is defined as 5i. It is calculated iteratively, in
which its current solution of the system is assigned as 5,1;1. Initially, it starts

with 5;0. Then, at [ = 1,2 ... L the residue of the solution is defined as

r; = [[D][b]i] — [W([L], ;)] 5kl (6-21)
= 1, = [[D];[b%]x] — [L1ksf,
A large residue is caused by an error in the current solution

-f.
By

=5, +e (6-22)
Multiplying (6.15) with [W([L], a)]
(L] )] 8] = [([LL, @)] 72 (sF, + €)
= [Y([Llw a)] ™ 8E, = (Ll ai)] 8] — (L] )] e,

= [Y([Lle @)1 s}, = [[DIi[b%]] — 7,
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= (Ll @)l (5] — e,) = [DIi[bT] — 7
= [[D];[b%]] — [W((Llk @)] " e, = [D1x[b%]i] — 7
e, = [Y([Ll, a)]r, (6-23)
The direction of Iterative sequence for improving the linear system is the error

e; which satisfies (6.16). The iterative solution of the Newton equation is

defined as

8% = 85, +de (6-24)

The step size d is a positive number less than 1. It minimizes the residual

norm

ming || [T [b<1] — [L1i[8%, + de]||” (6-25)

Iterative solution (5?1) represents the approximate solution of the linear ill

posed problem (8;)at the Newton scheme current solution of MWT inverse

problem.

6.3 Inexact Newton Backtracking Method (INBM)

6.3.1 Inexact Newton to solve Newton equations of microwave
tomography inverse problem

The objective function of MWT inverse problem is presented as

F(x) = [E°(x)] - [€°] =0 (6-26)
Generally, it has two main properties of a continuous function, which are:1)
there exists an exact solution xT € R®, where F(xT) =0, and 2) F is
continuously differentiable in a neighborhood of x'. The derivative of multi
projection of MWT inverse problem which is assigned as D is asymmetric.
The condition of the normal function of the differential [D*D]is poor. A

regularized method is needed to solve the MWT inverse problems.
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Newton method is a conventional algorithm for solving well posed
nonlinear problems. It starts with initial x,, then, computes a sequence of

steps (8;) and updates x;as

Xp41 = X+ 8 (6-27)

By introducing a linear filter 1}y which regulates the ill-posedness of [D*D],

then, Newton equation of the MWT inverse problem can be written as

(W(D* Dl @) 8 = —[[DIF(x)] (6-28)

Then, Newton method algorithm for solving MWT inverse problem can be

presented as follows

Algorithm 6-1:NM: Newton Method to solve MWT- Inverse Problem
Function NM(x,)
Repeat
8, = = ([D* D]y, ay)[[D]F (x)]
Xk+1 = Xi + 8
k=k+1

o IFGeRl?
Until T

Return (xy)

In the case of solving well posed system, Newton method is attractive because
it converges rapidly from any sufficiently good initial guess. On the other
hand, it suffers from noise effect in the case of ill posed problems. It has been
shown 1n the previous chapters that noise and other disturbance greatly affect
the regularized Newton method in the form of LM for solving ill posed system
of MWT inverse problems.

The other drawback of the regularized Newton scheme is that Newton
equation has to be solved at each stage of scheme. The direct regulative
solution of Newton method may not be justified if the initial value is far from
the exact solution, besides, it can be expensive to handle a large system like
the MWT inverse problems. Therefore, an iterative method in which the

solution of the linear system is unspecific, approximation is proposed.
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An inexact Newton method is applied to compute the regularized

MWT inverse problem. The iterative scheme of the method is defined as

Xk+1 = X + B (6-29)

The regularized inexact Newton equation is defined using

(WD Dl ) 8 = —[[DILF (x:)] + 14 (6-30)

The residue is given in normal system

i = [D*D]isy + [[D]}F (x,)] (6-31)

The addition of residual inexact Newton in (6.24) presents an intermediate
solution of Newton equations. Consequently, the method offers a tradeoff
between the accuracy with which the regularized Newton equations are
computed. The amount of work for solving MWT inverse problems can be
decreased as the computation and regularization of Newton equations may
not need to be done at each sequence of the inexact Newton scheme.

The accuracy of the computation of Newton equations is determined
in unspecific manner. A nonnegative forcing term (n;) is introduced to
control the accuracy. The approximation of the solution of Newton equations

1s computed based on the relation

Ind® (6-32)

lpTiFCeoll”
The Inexact Newton method for the MWT inverse problem replaces the direct
regularized solution of Newton equations with its iterative approximation
under unspecific manner. The Newton solutions 8, 1is determined as such that

the following condition is satisfied

I[D*D]icsill? < mi I[P F (x| (6-33)

Inexact Newton is applied to solve the Newton equations of the MWT
inverse problem. It is conducted iteratively. The regularization and inversion
of the problem is computed once. It is defined at the initial step of the inexact

Newton. The result of the inexact Newton computation is the direction of
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Newton method step for solving the MWT inverse problem. The algorithm of

the inexact Newton is presented as follows:

Algorithm 6-2:INM: inexact Newton to solve Newton equations of MMWT
Inverse Problem

Function INM([D]y, F(xy))
Set : [=1

520 =0

ro = [[D]}F(x;)]

[¥] = Y([D* D]y, ax)

ry = [[D]RF(x)] + [D*D]ki”i,l
I=1+1
Until [|[D*D] 8¢ lI* < micI[DIRF (xi)lI?
Return (s};)

6.3.2 Backtracking strategy

The nonlinear MW T-objective function may not actually be reduced by the
direction of the solution. The linear model can be directed toward some local
minima since the initial point for the inexact Newton method cannot be
guaranteed to be near a solution of the nonlinear system. To improve the
global convergence, the value of 8, and 7, is determined to follow some
criteria. The global criteria of the inexact Newton are used to ensure the
direction of the relative norm of the MWT objective function. The inexact
Newton method is globalized by a backtracking strategy. This method is
defined as Inexact Newton Backtracking Method (INBM)

IIF G + 8117 < [1 = t(1 = ) IIIF (x )11 (6-34)
Equation (6.28) guarantees the reduction of the objective function

norm with the direction defined. By given the direction 8, and force term 7,
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there, at least, is a fraction of reduction of functional which is guaranteed by
founding the term t € [0, 1).

Backtracking method can be applied to accommodate the selection of
8, and n, which are suitable for both (6.27) and (6.28) criteria. The
backtracking keeps a not too long step of Newton method. If 8, is not
acceptable by the criteria, then it is shortened until it reaches the criteria. The

correction of the parameter follows

B =1 By (6-35)
Me=1—7-(1—m)
+ € (Pmin T'max)-
The fraction of reduction should be selected in the range of7 € [0, 1).

Backtracking is the type of inexact line search. It keeps the step not too long,

but does not guard the steps for becoming not too short.

Algorithm 6-3: BK: Backtracking strategy of INM
Function BK( 8, F(xy))
Do While ||[F (x; + )11 < [1 — t(1 — n)IF (x)1I?

’8k = ’V".Sk;
m=1—7r-(1—-mn)
End of Do While

Return (8;)

6.3.3 Forcing term

Nonnegative forcing term 1, 1s used to control the levels of accuracy. Finds 7n;
at n, € [0, 1) so that any vector .8 that satisfies (6.27) where 1, < 1 is assigned
as the stopping criteria of the INM-MWT. The inexact Newton method is
locally convergent, if forcing term 1, is uniformly less than 1. Under the
present assumptions, if x, is sufficiently close to xT, and 0 < 9 < Nyar < 1
for each k, then,x, converges to x*[146; 147; 148]. If n, i1s zero for all
iterations, then, it is similar to the GNI method. The forcing term is

independent on the iteration index(k). The forcing term is applied to
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guarantee the decrease of the linear model of the MWT inverse problem. The
convergence rate of the method is explained in [149].

The convergence rate of the method is determined by the appropriate
choice of the sequence of the forcing term. The term may be determined using
the agreement of the MWT objective function and the linear model of the
corresponding problem [146]

_ ID*Fa)I> =D F (x— 1= [D*Dlje—1 81 1> | _ _
o ID*F (xg—)II? k=12, (6-36)

An alternative strategy is explained in [150]. The forcing term is adjusted
depending on the ratio of the actual reduction and predicted reduction. The

ratio is defined as

1D*F (i) I = ID* F (xge +850) |12

Tle = D F e 12— 1D F G~ 10" Dlsr 12 (6-37)
The forcing term is determined according to the ratior;
1-2p, 1n-1<py
-1 < T <
e = Me—1 b1 k-1 < P2 (6-38)

0.8Mk-1, P2 <7Tk-1<D3
0.5Mk-1, Tk-12P3

wherep; < p, < ps < 1 are prescribed with p; € (0,1)

6.3.4 Inexact Newton Backtracking Method (INBM)

It has been shown that Inexact Newton is sufficiently general as to encompass
most exiting method for solving nonlinear inverse problem [147]. In this
thesis, inexact Newton is combined with the linearized method in the form of
LM. The LM is a type of a regulated Newton method. The Newton equations
of the LM for solving the MWT inverse problem is stated as follows

Xlk+1 = [x]x + Y (DD, ar)[[D]; F ([x]i)] (6-39)
The linear filter of LM is defined as
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1

Y([D*D]y, ax) = TDIE (6—40)
[\l
Linear filter ¥ ([x])is an inexact Newton iteration if the filter satisfies
”I - lp([)(]k)llz < Mimax < 1 (6_41)

With the assumption that

T ll? = IIDTR[[D]x8x + F (L]l < NI = (Dl IPNF (D]l

< Nmax | F (X112 (6-42)

Rieder describes that any Newton iterative methods which include LM for
solving MWT inverse problem can be made to converge with weak order if
inner iterations are applied to the Newton equations at k™ outer iteration[149].
In this thesis, inexact Newton with backtracking criteria is used to find the
solution of Newton equations. It is conducted at the inner loop. The

computation generally is terminated according to

IID1[[D1st, + FAxl]” < nell F (a2
< (DL [(DYest , + F(xl]| i = 1201 (6-43)

The Newton iteration is the outer loops of the INBM. It has to be
stopped above the noise level to avoid noise amplification. Discrepancy

principle can be used to define the stopping rule

IF(xJON? < RS < IF(Ix])I? k=12..K—-1 (6-44)

whered is the noise level and R > 0Ois the real positive number.

The INBM for solving MWT inverse problem 1s summarized as in
algorithm (6.4): Stating the initial solution of the Newton sequence starts the
algorithm. Then, the MWT inverse problem is linearized by means on Fréchet
derivative. The 1ll posedness of the system is immersed into the linear system.
The approximation of regulated solution is determined iteratively. It is

controlled with forcing term. The MWT solution is updated using
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approximated regulated solution. The Newton iteration is terminated until

stopping rule is satisfied

Algorithm 6-4: INBM: Inexact Newton Method with Backtracking for
Microwave Inverse Problem
Function INBM([y°])
Set : k=1
F([xlo) = [b]o = [¥°] = [E5([x]o)]
While [|F([x]i)II> > RS

_ | g = (9Fi(xli)
D) = [Fij B ( oxl; )]1siszf:1Mt
15jsN

[ ]=INM( (D1, F([x]0)) )
[8x1ic =BK((81, F (%))

Xlk+1 = xlk + [6x]k
k=k+1

F(lxl) = [¥°] = [ES(Lx])]
End of Do While
Return ([x])

6.4 Numerical Study of INBM

The INBM algorithm is evaluated using synthetic data. The object of interest
1s a homogeneous dielectric cylindrical object of interest with relative
dielectric parameter &, = 3. The radius of the cylinder i1s 1 cm. Figure 6-1
shows the cross section of OI inside the object domain.

Numerical synthetic data are used to test the algorithm. The simulated
data is based on a MWT system. The system consists of 16 antennas which
can be used as a microwave signal transmitter and receiver. The data are
constructed by assuming that 16 Tx antennas sequentially illuminate 4.5 GHz
microwave signal. The source of the signal is approximated as an equivalent

infinitive current line.
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Figure 6-1: The cross section of the object of interest with
complex permittivity &, = 3 — j0. The background of the MWT

system is air where the parameter of the dielectricis €, = 1.

measurement.

At each illumination, 16 Rx antennas measure the scattered electric field.
Positions of Tx antennas are the same as the position of Rx antennas in which
it is assumed that the reflection of electric field can be measured. Total of 256
data are collected on each set of MWT measurement. A random number
which is assigned as introduced noise and any other additional errors are

added to the data. Table 6.1 summarizes the parameter of MWT data

Table 6-1 the parameter of the simulated system for numerical

testing of LM and INBM methods

Parameter Value
Diameter of Object Domain(0Q) 9.5cm
Diameter of Data Domain (D) 13.0cm
Transmitting Antenna T, 16 T,
Receiving Antenna R, 16 R, X 16T,
Number of data 256
SNR 28.3,34.2,40.5 dB
Number of cells 50 x 50 = 2500
&, 3
Radius of OI 1.5cm
Frequency 4.5 GHz
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INBM reconstructs the numerical synthetic data. The quality of the
algorithm in solving MWT inverse problem is compared with the results of
LM. Generally, the quality of the algorithm is studied using three parameters,
which are
1. The relative value of the discrepancy.

Discrepancy defines the termination of the iterative process of the
algorithms. The discrepancy is defined using successive norm of the MWT
objective function. The iteration is stopped if the relative value of the

discrepancy is below the defined tolerance. The ratio is calculated using

IF N2 =F (eI
R(F(Lxl) = {fF<[xJk_1>||2k ; (6-45)

2. The relative norm of the MW T-objective function
The process of the iteration i1s studied using the relative norm of the
MWT-objective function. The norm is calculated relative to the
measurement. It is defined as
F )II?
F(lxlo = 52t (6-46)
3. The relative error of the value of the dielectric contrast of OI
The quality of the solutions of MWT inverse problem is quantified using
the error of the value of dielectric contrast of object domain. Relative

errors are computed for all cells inside OI.

[X arge [x
Err(l) =1 e tnk” (6-47)
arge

Several regulator techniques and forcing term selector are studied.

6.4.1 Solving Newton equations using INBM

Newton method is applied to solve the MWT inverse problem. The Newton
iteration i1s composed using a linearization technique. There are two major
loops of Newton scheme for solving this inverse problem. The outer is

Newton method for solving the nonlinear system of the MWT inverse
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problem. It is an iterative method in which the Newton steps are the solution
of Newton equations which are the linearization of MWT inverse problem by
means Frechet derivative. The inner loop computes the solution of Newton
equations. The equations are ill posed. Tikhonov regularization is applied. It
is presented in regulated singular value decomposition. Two different
methods are used to solve the Newton equations. They are:

1. Lavenberg Marquardt method (LM)

8 = P([L]k, i) [[D]ic[b%] ] (6—48)
It is categorized as a direct regularization method. The equations are
regularized by means of Tikhonov regularization, then, solved using a

pseudoinverse problem.
2. Inexact Newton Backtracking method (INBM)

e; = Y([L]y, a)[[D1;[b%]x — [L]8},] (6-49)
5i,z+1 = /Si,z + de;

INBM solves the Newton equations in unspecific manner. It replaces

the solution of equations by LM which is 8, with its iterative

approximation(/si = 5?1). The intermediate solution of the iterative
method is selected as the solution if the ratio of the residual norm with
the norm of Newton equations output is below a forcing term.

In this study, the iteration of Newton method is not terminated based
on the discrepancy stopping rule, but it 1s conducted at 30 iterations per test.
This is conducted to learn the behavior of the MWT objective function before
and after the solution of the MWT inverse problem is gained. In practice, the
iteration is stopped above the noise level to avoid noise amplification. The
ratio of the discrepancy principle can be used to define the stopping rule. As

the noise level is unknown, the Newton iteration is stopped accordingly

R(F([xl) < e (6-50)

where € is a nonnegative small number.
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Figure 6-2: The parameters of MWT inverse problem solutions
using INBM and LM algorithms. The OI is a cylindrical with
complex permittivity &, = 3 — jO and radius 1.5 cm.
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Figure 6-3: The real part of reconstructed Images using INBM
and LM algorithms. The OI is a cylindrical object with complex
permittivity &, = 3 — j0 and radius 1.5 cm. The data is taken at
4.5 GHz. White Gaussian noise is introduced with signal to
noise ratio 28 dB, 34dB and 41 dB.

Synthetic data are reconstructed using LM and INBM algorithms. The
parameter of process of the reconstruction is presented in Figure 6-2 and the
reconstructed images are presented in Figure 6-3.

Figure 6-2 shows the parameters of the Newton’s iteration when the
stopping index of the outer loop is not set. The parameters are the relative
value of the discrepancy, the relative norm of MWT objective function and

the relative error of the value of the dielectric of the OI.
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Figure 6-4: The imaginary part of reconstructed Images using
INBM and LM algorithms. The OI is a cylindrical object with
complex permittivity &, = 3 — jO and radius 1.5 cm. The data is
taken at 4.5 GHz. White Gaussian noise is introduced with
signal to noise ratio 28 dB, 34dB and 41 dB.

It can be seen that the relative values of the discrepancy are relatively
similar for all types of data. It can be stated that the value of the relative
discrepancy is not affected by the level of noise above SNR 30dB. It has been
shown that INBM moves faster than LM for solving the MWT inverse
problem. The discrepancy of INBM is relatively big for the first five iterations
of Newton method, then, sharply decreases toward a tolerance level. While,

the discrepancy value of LM moderately decreases to the level of tolerance.
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Table 6-2: The comparison of INBM results to solve MWT
inverse problem of cylindrical dielectric OI with complex
permittivity &, =3 —j0 and radius 1.5 cm and that LM

algorithm.
SNR LM INMB
@) | k| 7 | Err |R k| F | Err |[R

(%) | (%) | (%) (%) | (%) | (%)
40.5 | 20| 0.90 [44.4 | 1.80 |8 | 0.85 |38.90 | 0.00
34.2 | 18| 1.90 | 44.69 [ 261 |8 |1.85|39.65|0.00

28.3 |16(3.80 |45.09|210 |7 |3.75|40.30 | 0.05
Note

1. The iteration is terminated at (k — 1) iteration when the
relative value of the discrepancy is less than a tolerance,

which is
IFGAONE = IF G2
ROFD) = e < 1%

2. The relative norm of MWT objective function and the error
of dielectric contrast is calculated at (k — 1)** iteration,

which are T(F([)(]k_l)) and Err([x]x-1)

Following the pattern of relative value of the discrepancy, the relative
norms of MWT objective functions resulted by INBM decrease faster than
that produced by LM. The flat range of the norms line on INBM is reached
after 8 iterations while the norms line of LM flats after 18 iterations.

The line of the objective function norm graphs show that noise level
determines the destination level of the objective functions. Decreasing the
ratio of signal to noise ratio reduces the level of the norm of objective function
value. This follows the idea that the iterations should be stopped above the
noise level.

The quality of the results of solving the MWT inverse problem is
described using the relative error of the dielectric contrast value. It can be seen
in Figure 6-2 that INBM produces better results than LM algorithm.
Generally, the error level of INBM solution is lower than that of LM solution.
The INBM produces relative errors 40% or less, while the LM produces
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relative errors 5% or higher. Moreover, Figure 6-3 shows that the images of
OI cross section which are resulted by INBM describe the shape and the value
of the dielectric OI accurately while the radius of cylinder on the images
resulted by LM 1is slightly smaller than the original shape of OI. The
smoothness of the Tikhonov regularization at LM directly affects the general
solution of the Newton method. The quality of the solutions is determined by
the parameter of the regulator, which is hard to define. On the contrary,
INBM offers flexibility in the accuracy of the Newton equation solutions.
Forcing the solutions of the Newton equations improves the quality of global
solutions. The quality of MWT inverse problem solutions using INBM
algorithm is better than that of LM solutions

In this case, the relative discrepancy is used as the Newton method
stopping rule. The iterations are terminated if the discrepancy is R < 0.001.
The results of reconstructions are summarized in Table 6-2 and the images of
the dielectric OI are presented in Figure 6-3. It can be seen that the number of
iterations of INBM 1is less than a halve of the iterations needed by LM
algorithm. Within less iterations, INBM produces a better solution than LM

algorithm does.

6.4.2 Study of regularization techniques on INBM algorithm

The Newton equations of MWT inverse problem are ill posed and highly
nonlinear with respect to the contrast even when it is stated in a linear system.
The regularization technique solves the ill posedness of the problem. It has
been studied in the previous sections that the intermediate approximation
solution, in a specific manner by means of a nonzero forcing term, enforces
better solutions of Inexact Newton class algorithm. The approximation is
regulated by means of Tikhonov regularization. In this section, the effect of
the regularization technique on the solution of the MWT inverse problem

using INBM is further studied.
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Three different techniques are applied to solve Newton equations under
INBM scheme. The regularizations are conducted using pseudo inverse,
which are

1. Tikhonov regularization (Thi)

c

Y([Lle ) = |, P ulvi s o = 20 (6-51)

2. Landweber-Friedman iteration (LF)

Y([L]y, ar) = [Z Mu Vil e = lg—p + ¢ (6-52)

3. Truncated Singular Value Decomposition (TSVD)

pllow) =[S ¢ g = {y' ST TN 65D

The INBM algorithm with three different regulator techniques is
applied to reconstruct the MWT synthetic data. The parameter of the
reconstruction process which are the relative value of discrepancy criteria, the
relative norm of MWT objective function norm and the relative errors of
dielectric contrast distribution graphs are presented in Figure 6-5.

Figure 6-5 shows the parameters of the iterative process of INBM with
three different regularization techniques in solving the MWT inverse
problems. It can be seen that the graphs of the relative value of the
discrepancy are relatively similar for all types of the regularization techniques.
The discrepancy values are relatively big for first five iterations, then, the
values drop toward the zero level. This means that the accuracy of the update
values of Newton method is not greatly influenced by the type of the
regularization techniques. The accuracy of the Newton equations solution is
controlled by the forcing term as the application of INBM offers possibility in
evaluating an intermediate solution. It can be seen in Table 6-2 that the
defined accuracy is achieved in a different number of inner iterations for

different regularization techniques.
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Figure 6-5:The parameters of MW'T inverse problem solutions
using INBM with Tikhonov regularization (Thi), Landweber-
Friedman iteration (LF) and Truncated Singular Value
Decomposition (TSVD). The OI is a cylindrical with complex
permittivity &, = 3 — jO and radius 1.5 cm.
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Table 6-3:The comparison of regularization technique for inner
loops of Newton iterative (INBM) and direct regularization
method by means of Levenberg Marquardt method (LM) as a
result of the numerical data reconstruction

INBM LM
Parameter - -
Tikhonov | Landweber TSVD Tikhonov
k 8 8 8 20
% K 80 102 69 -
S
g k=1
% R 0.00% 0.01% 0.00% 1.80 %
» F 0.85% 0.87% 0.92% 0.90%
Err 38.9% 36.99% 45.23% 44.4%
k 8 8 8 18
% K 90 86 75 -
S| Dk
g’ k=1
% R 0.00% 0.00% 0.00% 2.61%
» F 1.85% 1.81% 2.01% 1.90%
Err 39.65% 37.14% 51.93% 44.69%
k 7 7 8 16
% K 86 83 91 -
™ Z he
% k=1
% R 0.05% 0.00% 0.00% 2.10%
» F 3.75% 3.71% 3.85% 3.80%
Err 40.30% 37.75% 65.2% 45.09%
Note

1. k is the number of Newton method iteration (outer loop of INBM)
2. i 1s the number of inner iteration
3. Ris the discrepancy value at (k — 1). The iteration is terminated

when the relative value of the discrepancy is less than a tolerance

IF DI = 1F e D2
R(F (o) = T|F([x]k_1>[nxz < 03%
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4. F is the relative norm of the MWT objective function and

Erristhe error of dielectric contrast calculated at (k — 1) iteration,

namely.‘F(F([)(]k_l)) and Err([x]x-1)

The graphs of the relative norms of the MWT objective function can be
seen in Figure 6-5. It shows the lines of relative norms that move towards the
zero level. Initially, the patterns of the lines of the norms of WMT objective
function for INBM with three different regularizations are similar; but after
the 6™ iterations, the line of INBM with Tikhonov regularization is not as
sharp as the other lines. The choices of regularization and regulator parameter
influence the global solution of the MWT inverse problems. The accuracy of
the INBM is set in unspecific manner, then, the path of the iterative solutions
are varied, especially when the solution is close to the global solution where
the noise level is relatively high compared to the signal.

The quality of the images resulted is evaluated via the revolution of the
relative errors of the dielectric contrast. The pattern of the relative errors of the
dielectric contrast can be seen in the last figure of Figure 6-5. It is shown that
the Tikhonov and LF regularizations produce better 