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Abstract 

The University of Manchester; Agung Tjahjo Nugroho; 

PhD Electrical and Electronic; Microwave Tomography; 08/10/2015 

 

This thesis reports on the research carried out in the area of Microwave 

Tomography (MWT) where the study aims to develop inversion algorithms to 

obtain cheap and stable solutions of MWT inverse scattering problems which 

are mathematically formulated as nonlinear ill posed problems.  

The study develops two algorithms namely Inexact Newton 

Backtracking Method (INBM) and Newton Iterative-Conjugate Gradient on 

Normal Equation (NI-CGNE) which are based on Newton method. These 

algorithms apply implicit solutions of the Newton equations with unspecific 

manner functioning as the regularized step size of the Newton iterative. 

The two developed methods were tested by the use of numerical 

examples and experimental data gained by the MWT system of the University 

of Manchester. The numerical experiments were done on samples with 

dielectric contrast objects containing different kinds of materials and lossy 

materials. Meanwhile, the quality of the methods is evaluated by comparing 

them with the Levenberg Marquardt method (LM). 

Under the natural assumption that the INBM is a regularized method 

and the CGNE is a semi regularized method, the results of experiments show 

that INBM and NI-CGNE improve the speed, the spatial resolutions and the 

quality of direct regularization method by means of the LM method. The 

experiments also show that the developed algorithms are more flexible to the 

effect of noise and lossy materials compared with the LM algorithm..  
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The thesis presents the research work on microwave tomography with an 

emphasis on microwave image reconstruction algorithms. The main objective 

of this research in Microwave Tomography (MWT), which is one form 

of the electromagnetic inverse scattering problems, is to develop an 

algorithm for reconstructing dielectric properties of an Object of 

Interest (OI) from microwave measurements collected outside the OI. 

The first chapter of the thesis introduces the brief overview of 

electromagnetic inverse scattering and microwave tomography, 

followed by statements of objectives and contributions.  

1.1 Electromagnetic Tomography 

Electromagnetic tomography by means of Radio Frequency, microwave, or 

optical signals, provides inexpensive non-intrusive imaging systems with low 

but sufficient resolution of the internal distributions of processes. The 

technique is intended to solve an electromagnetic inverse problem which is 

generally a nonlinear one; even so, a linear system can be found in a certain 

limited tomography cases. In the linear systems, an image is obtained by 

solving the linear equations which are an approximation of the linear 

relationship between the measured data and the internal property of the OI. In 

1  

Introduction 
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diffraction tomography for example, a linear relationship between scattered 

field data which can be approximated using either Born or Rytov 

approximation [1],  and the OI when the dielectric contrast of the OI is low. 

The advantages of this approach is that it is straightforward to apply and 

usually computationally efficient [2]. The disadvantages, however, is that due 

to the underlying approximation involved, the diffraction tomography 

becomes less accurate when the inhomogeneities in the OI are strongly 

scattering [3]. 

The electromagnetic tomography is a nonlinear inverse problem for 

objects with high contrasts. The nature of the nonlinear system is much more 

complex than the nature of the linear system, which presents a great difficulty 

when computing the image reconstruction algorithms. Examples of the 

nonlinear tomography in the low frequency are electrical impedance 

tomography [2], electrical capacitance tomography [4] and magnetic 

inductance tomography [5]. These techniques have advantages mainly they 

are fast, and least costly; even though unlike MWT which is a high frequency 

tomography, the low frequency tomography is limited in spatial resolution 

[6].  

In the high frequency, the microwave frequency range for instance, the 

dielectric contrast of OI, which is a complex number where the imaginary 

parts of the number tends to be zero in the low frequency, is nonlinearly 

related to the scattered field data. Though the complex number raises the 

complexity of the inverse problem, it brings more information than a scalar in 

the low frequency. For this reason, the electromagnetic tomography in the 

microwave frequency range is selected as the topic in this thesis.  

1.2 Microwave Tomography Inverse problem 

This thesis considers electromagnetic tomography in the microwave frequency 

range; therefore, the thesis refers to the nonlinear inverse scattering problem 
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within this frequency range as the Microwave Tomography-inverse problem 

(MWT-inverse problem). 

Potential advantages of the MWT-inverse problem include low cost, 

portability, and nonionizing radiation. On top of this, its ability to produce 

quantitative images without a contrast agent has highlighted the great 

potential of the method being applied in medical applications. At the 

microwave range, the dielectric properties of living tissues like skin, muscle, 

fat and bone; and more importantly those between healthy and malignant 

tissues are different [2]. Nevertheless, the lower resolution of MWT in a 

biomedical application needs to be improved to become a competitive 

biomedical imaging modalities, in comparison to the magnetic resonance 

imaging and x-ray computerized tomography 

The aim of solving MWT-inverse problem is reconstructing the image 

of the OI cross section by determining the distribution of the OI dielectric 

property from the data of Microwave Tomography (MWT).The data are the 

measured scattered fields around the OI when the OI is successively irradiated 

with some known incident electromagnetic waves in the microwave frequency 

range originating from different source positions. Accordingly, the data are 

processed using nonlinear image reconstruction algorithms in which the 

reconstructions can be completed in two steps; firstly, by the use of the 

forward problem, secondly, by the use of the inverse problems.  

The forward problem, also known as the direct scattering process, 

computes the output of a physical system by giving the internal structure of 

the OI. In this process, both the incident fields and the dielectric contrast of 

the OI are assumed to be known and the scattered fields are determined by 

solving the Maxwell’s equations for electromagnetic problems. The general 

solution of the equations may be obtained along with the constitutive 

solution. However, the unique solutions must enforce the boundary and 

interface conditions of the system that makes the Maxwell’s equations hard to 

solve analytically. Hence, the numerical solution for the Maxwell’s equations, 

which are usually referred to as computational electromagnetic, is likely to be 

an alternative.  
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The numerical tool to solve the forward problem is the Moment of 

Method (MM) which is classified as a low frequency method. Low-frequency 

methods are so-named because they solve Maxwell’s equations with no 

implicit approximations and are typically limited to problems of small 

electrical size due to limitations of computation time and system memory[7; 

8; 9]. Since the MM is a technique used to solve electromagnetic boundary or 

volume integral equations in the frequency domain and the electromagnetic 

sources are the MWT quantities of interest, the technique is very useful in 

solving the forward problem of the MWT. The report which deals with ways 

of solving electric field integral equation using the MM and the numerical 

experiment results will be described and discussed in chapter 3. 

Contrary to the forward problem, the inverse problem reconstructs the 

distribution of unknown variables, which is the internal characteristic of 

physical system from the system output behavior data. In the X-ray 

tomography or computerized tomography, for example, the X-ray attenuation 

coefficient of the OI is reconstructed from integral summation of the 

attenuation experienced by the X-ray as it travels a path crossing the OI. 

Another example is in the MWT, in which the distribution of the dielectric 

contrast value of the OI is determined from several projections of the scattered 

field data around the OI.  

The inverse problem tends to be an ill-posed problem in term of 

Hadamard’s criteria where existence, uniqueness and stability are the criteria 

of a well posed problem. In tomography applications, the existence of a 

solution is not an issue as the inverse problem tries to find the internal 

properties of an existing OI from measured data. However, the problem is 

generally an underdetermined system where there are fewer equations than 

variables, hence, the uniqueness and stability are the two main challenges of 

solving the problem. 

The MWT-inverse problem is a nonlinear and ill posed problem. The 

nonlinearity of the problem is solved by applying different optimising methods 

to minimize an objective function which can be the difference between 

measured scattered fields and calculated scattered fields from a forward 



31 

problem solution. Generally, the methods are iterative where these techniques 

are computationally complex and expensive because the objective function 

has to be updated at each iteration. Various nonlinear algorithms have been 

developed to solve MWT problems. These include Modified Gradient method 

[10; 11], Newton–Kantorovich [2], Gauss Newton inversion [2], Quasi 

Newton method [12], Contrast source inversion [13; 14] and Inexact Newton 

method [2]. The ill posedness of the problem is handled by employing 

different regularization techniques which set an appropriate constrain to the 

solution [2]. Tikhonov regulator for example, which facilitates the inversion of 

ill conditioning matrix, limits the value of the update solution. However, the 

weight of the regularization is generally determined by one or more regulator 

parameters so that the techniques can be application dependent.  

In this thesis, the algorithm to solve MWT inverse problems via 

implicit solution is developed in which the algorithm presents an intermediate 

solution of the problem. Consequently the method offers a tradeoff between 

the accuracy with which the regularized solution is computed. The algorithm 

handles the ill poseness of the problem by utilizing a semi regularized method 

in which regularization techniques can be avoided and replaced with an 

appropriate criterion. The amount of work for solving MWT inverse problem 

can be decreased as the computation and regularization do not need to be 

done at each sequence of the iteration. The stability and robustness of the 

algorithm is studied under noisy numerical data and experimental data.  

1.3 Objectives 

With the understanding of microwave scattering by dielectric objects, 

such a scattering process is described. The mechanism of microwave signal 

penetrating into a dielectric object and the signal which scatters toward the 

background is modeled in an electric field integral equation. The MM, hence, 

is used to solve the integral equation using the Pulse Basis Function. 
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Consequently, numerical calculation can be carried out; and the results are 

evaluated in comparison to the analytic solutions.  

The MWT inverse problem is stated using a forward problem 

formulation in the form of nonlinear objective function. Deterministic 

technique based on optimization solves the problem by minimizing the norm 

of the function using Newton type minimization. The nonlinearity of the 

MWT inverse problem is linearized via the Frechet deferential, then; it is 

solved using the Levenberg Marquardt method. The ill posedness is treated by 

employing different regularization techniques which are truncated singular 

value decomposition; Tikhonov regularization and iterative Landweber The 

stability and robustness of the linearization technique for solving MWT 

problem are studied using synthetic noiseless and noisy data. 

An implicit solution of the linearized MWT-inverse problem is 

introduced as an alternative to a direct regulative solution by employing the 

class of Inexact Newton in the form of Inexact Newton Backtracking Method 

(INBM). A forcing term, which is computed using ratio of linear solution with 

its corresponding nonlinear solution, defines an appropriate approximation of 

the solution. The stability and robustness of the INBM is tested using 

synthetic and experimental data. 

The Newton Iterative-conjugate gradient on normal equation (NI-

cgne) method which is an iterative method with a semi regulated implicit 

solution is developed to solve MWT-inverse problem. The method is stated in 

outer and inner loops. The outer loop is the Newton type method for solving a 

nonlinear problem and the inner loop is the semi regulated implicit method 

that is conjugate gradient on normal equation (CGNE). At each Newton 

iteration step a stopping rule of the CGNE, which is used to control the 

accuracy and the ill posedness when solving the objective function is required. 

The stability de accuracy of the NI-cgne are studied using numerical 

experiment and experimental data.  

A Microwave tomography system is developed by using monopole 

ground plane antennas. The system is computer controlled and automatically 

switched using Cytec multiplexer. A vector Network Analyzer (VNA) handles 
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the data acquired from the system. In the meantime, the connection uses 

488.2 line and MATLAB code, where the interface of the instrument is 

addressed as a unique object. The capability of the sensor is, then, tested 

individually to measure the scattered field of object of interest. 

The measured scattering data are reconstructed using developed 

algorithm. The raw data are calibrated using ratio of the ideal measurement 

model. The incident field of line source equivalent antenna represents the 

monopole ground plane antenna. The ratio of incident fields at receiving 

antennas calibrates the disturbance electric fields, which is used to determine 

the scattered field. The calibrated data is used to test the robustness and 

stability of developed algorithms.    

1.4 Contributions 

This thesis reports the contributions made by the author in the area of 

microwave tomography. The contributions are listed as follows 

 Developing algorithms to solve MWT inverse problems. The algorithms 

are deterministic approaches based using the Newton type of method. An 

implicit solution, which is introduced to replace a direct regulative 

solution of the MWT inverse problem, is determined in an unspecific 

manner. There are two algorithms developed; namely Inexact Newton 

Backtracking (INBM) method and Newton Iterative-conjugate gradient 

on normal equation method (NI-cgne). 

 Developing the Inexact Newton Backtracking (INBM) method to solve 

MWT inverse problem. The INBM is an inexact Newton class method to 

solve nonlinear problems. The implicit regulative Newton steps are 

defined in an unspecific manner using a forcing term. The steps are 

iterative solutions of MWT inverse problem linearization. The forcing 

terms define the accuracy of the MWT linear solutions. INBM is tested 

using synthetic and experimental data. The results of INBM are 
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compared to the results of direct linearization technique (Levenberg 

Marquardt method). The INBM improves the accuracy of MWT results 

and the speed of reconstructions.  

 Developing a Newton Iterative-conjugate gradient on normal equation 

method (NI-cgne) to solve MWT problem. NI-cgne is an outer-inner loop 

technique. The outer loops are the Newton Iterative method to solve the 

nonlinear system. The steps of the method minimize the objective function 

of MWT inverse problems. The directions of the steps are the solutions of 

Newton equations of MWT inverse problems in a normal system. 

Conjugate gradient method computes the solutions. It is conducted in 

inner loops. Stopping criteria of conjugate gradient on normal equations 

conduct semi-regularization of the MWT ill posedness.  Two different 

stopping criteria are modified; which are discrepancy and L-curve 

techniques. They have been tested using numerical and experimental data 

in which NI-cgne algorithm produces stable solution of MWT inverse 

problems. 

 Introducing MWT problems in the form of nonlinear objective function. 

The objective function is the difference between measured output MWT 

systems with the approximation of the output systems. Comparing two 

formulations of MWT problems, namely, objective function and least 

squared cost function of MWT problem.  

 Formulating forward problem solutions of MWT using Moment of 

Method. The formulations are stated in the form of electric fields and 

equivalent current density. Two pairs of objects and domain equations are 

resulted which are used to formulate the objective function of MWT 

problems.  

 Setting up a microwave tomography system which consists of 16 ground 

plane antennas, Vector Network Analyzer and microwave multiplexer 

which is computer controlled. The pneumonic code is listed in MATLAB 

code and applying INBM and NI-cgne algorithms to the system 
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An Overview of electromagnetic imaging is introduced. The brief 

overview of the extensive work in electromagnetic imaging by means 

of microwave, millimeter wave and terahertz imaging is presented and 

followed by a critical review of microwave tomography. 

2.1 Brief Overview of Electromagnetic Imaging 

For the last few decades electromagnetic imaging that ranges from electrical, 

microwave, millimeter-wave, terahertz, and optical imaging gained intensive 

attention for its unique features as an attractive non-destructive diagnostic 

tool. Recently, the scope of electromagnetic imaging application has become 

more extensive, including non-destructive evaluation[15; 16], breast 

imaging[17; 18], biological [19], geophysical [20; 21] , military [22], inline 

industrial process [23; 24], and industrial engineering [25; 26]. Many other 

possible applications could be listed and developed on the assumption that the 

electromagnetic signal penetrates the Object of Interest (OI).  

The electromagnetic imaging can be categorized based on the working 

frequency due the fact that the working frequency determines the type of 

relationship between electromagnetic signal and the OI. One of the important 

relationships is diffraction because it is applicable for a high contrast OI 

2  

Microwave Imaging 
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tomography. The following section of the review is mainly about diffraction 

tomography and the diffraction imaging at three different frequency ranges 

(terahertz, millimeter wave, and microwave ranges).  

2.1.1 Diffraction tomography 

Diffraction Tomography (DT) is a conventional tomography method which 

refers to tomographic applications that employ diffraction wave fields in the 

tomographic reconstruction process. The diffraction effect cannot be 

neglected, when the cells of the OI become comparable in size to a 

wavelength. The propagation of the electromagnetic signal is not along the 

lines or rays, and energy transmission is described in terms of wave fronts and 

fields scattered by the contrast of the OI. In other words, the DT tries to 

quantify the contrast value of the OI from the scattered field data.  

It has been shown [1] that the Fourier Diffraction Projection Theorem, 

which is formulated with a Fourier-slice-like theorem and certain 

approximations, can be used to describe the diffraction tomography. Under 

the Fourier theorem (Figure 2-1), an electromagnetic signal in the time 

domain illumines an OI in many different directions where the scattered fields 

at each projection are measured. Then, the data are reconstructed using 

Fourier inversion technique like filtered-back-projection algorithm for 

reconstruction [27]. This approach is comparatively straightforward to apply 

and is usually computationally efficient, although, the number of 

measurements for Fourier diffraction theorem is large [1], besides  the 

technique is only accurate for a low contrast OI problem [3]. Moreover, the 

resolution of the images generated by DT is limited by the wavelength 𝜆 of the 

signal. 

The application of conventional scan configuration as described in 

Figure 2-1 limits the resolution to 𝜆 2⁄ [28]. Under realistic measurement noise 

levels, the Fourier inversion algorithm excludes the possibility of resolving 

features of a wave scattering object which are less than 𝜆 2⁄  apart. 
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Figure 2-1: The Fourier diffraction projection theorem [3] 

The resolution and accuracy of diffraction tomography are also limited 

due to the underlying approximations that involve the type of objects imaged 

accurately. Numerical experiment reveals that the first-order Born 

approximation is only valid for objects when the product of the change in 

refractive index and the diameter is less than 0.35 𝜆 [3]. 

There are two main problems in conventional diffraction tomography: 

the number of measurements, and the image resolution. Hence, the diffraction 

tomography method needs to be developed to decrease the number of 

measurement, which means reducing data collection time, and also to 

improve the imaging resolution. 

2.1.2 Terahertz imaging 

Terahertz radiation (THz), which is electromagnetic radiation ranges from 0.3 

to 10 terahertz, has been used as the complementary of ionized X-ray and 

radioactive signals for non-destructive imaging technique. In addition to 

nonionizing technique, the THz imaging which penetrates various dielectric 
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materials, such as plastic, ceramic, and concrete, is advances in noncontact, 

non-destructive and coherent imaging, therefore, it has been widely used in 

various imaging modalities, including, spectral imaging, reflection 

tomography, and computerized tomography. 

THz spectral imaging applies tomography technique over terahertz 

frequency band; typically 0.1-4 terahertz. In this technique, THz pulse is 

scanned toward an object, then, the reflection and transmission signal are 

measured. The recorded data are reconstructed using two dimensional image 

reconstruction algorithms. The advantage of this technique is more on its 

transient electric field, instead of the radiation intensity measured, where the 

measured THz field does not only yield a terahertz signal with excellent 

signal-to-noise ratio and high dynamic range, but also preserves the important 

phase information. Moreover, the reconstructed 2D image eliminates the need 

of raster scan and reduces the number of measurements of the conventional 

spectroscopy technique. This new complementary spectroscopy modal has 

been developed in various applications [29; 30; 31]. However, commonly, the 

power level used as THz sources is small, thus, a sensitive and compact THz 

detector still needs to be developed. Besides that, the large time needed for 

image reconstruction limits the technique for real time and industrial on line 

application. 

THz reflection tomography makes use of time of flight technique. In 

this technique, a THz pulse is illuminated to the OI and the reflected signal is 

measured. The image of the interest is generated from the difference of time of 

flight in term of phase and amplitude. The technique has been used in various 

applications, including industrial [32], automotive [33; 34] , pharmaceutical 

[35; 36] and medical applications [37].  However, the technique is limited due 

to small dispersion and diffraction properties, weak reflection and uniform 

refractive indexes within each layer [38]. 

THz computerized tomography is described in [39; 40]. In this 

technique, an OI is radiated using THz pulse signal, then, the transmitted 

amplitude and phase of THz broadband pulses are measured at multiple 

projection angles. The measured fields which are in complex value are new 
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alternative of the scalar data of measured X-ray technique. The filtered back 

projection algorithm is applied to reconstruct the image from the measured 

data. The technique has been demonstrated for spectral analysis of material, 

like lactose and glucose [40], turkey bone [41; 42], and vial, and plastic tube 

[42]. The technique can be used to describe and discriminate the characteristic 

of the material due to strong absorption lines is present in their terahertz 

spectra. Nevertheless, the attenuation of THz signal and the cost of high 

power optical and terahertz sources limit the thickness and transparency of 

the sample to be imaged[43], besides, THz computerized tomography imaging 

is affected by different types of noise which can restrict its usefulness [44]. 

2.1.3 Millimeter-wave imaging 

Millimeter-wave imaging (MMW) is a new non-ionizing imaging tool 

complementary to X-ray and Infrared. The MWT uses operating frequency 

ranges from 30 to 300 GHz or wavelength ranges from 10 to 1.0 mm, where 

in those frequencies, the wave penetrates various dielectric materials including 

plastics, ceramics, living tissues and low visibility objects.  In millimeter wave 

range, an object emits, reflects and diffracts radiation; therefore, the MWT 

characterized an OI by the distribution of permittivity(𝜀)or dielectric 

properties.  

Generally, Millimeter-wave imaging can be categorized into passive 

and active imaging. Passive millimeter-wave imaging (PMMW) reconstructs 

images from ambient radiation and radiation emitted from the objects through 

passive detection. The rapid development of this passive technique is driven 

by the ability to form images during the day or night; in clear weather or in 

low-visibility conditions, such as haze, fog, clouds, smoke, or sandstorms; and 

even through clothing. There are many applications of the PMMW including 

restored scene imaging[45], holographic imaging [46], aviation[47].,W-band 

power detector breakout circuit [48] and concealed hidden weapon 

detector[49; 50]. The advantages of this system include: high speed imaging 

[51] compact and analogues to optical camera [52]. However, the system is 
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limited in having relatively low resolution, small aperture and limited field of 

views.  

Active millimeter-wave imaging (AMMW) directs millimeter wave 

energy at the subject, and then, reconstructs image by interpreting the 

reflected energy. The system of AMMW requires transmitting antenna and 

linear array of receiving antennas.  Planar sparse array is used in [53; 54] and 

holographic linear arrays are applied in [55]. The reflection images may be 

developed using monostatic system of millimeter wave [56] or applying 

computer reconstruction methods, like  backpropagation algorithm [53], and 

Synthetic Aperture Radar (SAR) imaging algorithm [54; 57; 58].The 

advantages of this system are high speed, high resolution and large aperture. 

Millimeter-wave tomography is a type of AMMW procedure. The 

development of this technique is not as fast as the development of MWT. 

Subtle interaction between MMW and object of interest which involves 

diffraction and emission makes the MWT technique and non-diffraction 

techniques like X-ray and radioactive tomography techniques hard to apply in 

this band.  

2.1.4 Microwave imaging 

Microwave imaging using electromagnetic radiation with frequency ranging 

from 0.3 to 30 GHz, is a promising technique for non-invasive evaluation 

tools. The technique is an alternative to visible light due to the higher 

capability in penetrating dielectric object and a better non-ionizing option 

than X-rays for biomedical investigation. The technique reveals more 

complete information than electrical imaging which deals with a real value of 

electric property of an OI, since the physical quantity of the object in 

microwave domain is stated in complex value of dielectric properties by 

means of permittivity and conductivity of the material. However, the complex 

number enhances the description of the interest but increases the difficulty of 

the problem.   
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Microwave imaging can mainly be categorized as microwave radar 

imaging and Microwave Tomography (MWT). The former is commonly 

known as ultra-wide band radar imaging. The basic principle of this technique 

is interpreting reflected fields due to strong scatterers. The data by means of 

the amplitude and phase of the reflection field are collected at a receiver 

antenna when microwave time domain pulse or swept frequency signal 

illuminates object domain where an OI takes place. Then, a reconstruction 

algorithm for example Fourier-based imaging methods like back-projection 

[59] and synthetic aperture radar algorithm [60] can be used to interpret data 

or build the image of the OI.  

Radar imaging is useful for qualitative imaging that can be used to 

determine the shape and position of the object. There are many applications 

for radar imaging, including s through wall imaging [59] and foliage 

penetration imaging applications [60] which expose the ability of microwave 

in penetrating concrete and ground. Because it is fast, the technique can also 

be used to evaluate ground moving targets [61]. Nevertheless, microwave 

radar imaging is categorized as a qualitative imaging technique which cannot 

be used to describe the cross section of a complex object. Therefore, radar 

imaging is not accounted for in this thesis. 

The later imaging technique which is the MWT is an active 

noninvasive imaging technique. The technique reconstructs the image of an 

OI cross section without a direct contact by solving the non-linear and ill 

posed MWT problem. The potential advantages of the imaging technique 

over conventional modalities such as magnetic resonance imaging (MRI) and 

computed tomography (CT) are: its relatively inexpensive cost and usage of 

low power, and its non-ionizing radiation. However, the MWT is challenged 

with nonlinear, ill posed and complex systems. Interestingly a great advantage 

of having detailed information in data gained in the form of amplitude and 

phase as well as its safety, mobility, and cost-effective supplement to current 

imaging modalities for non-invasive assessment has made the MWT urgent to 

be selected as the topic of this thesis. 
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2.2 Microwave Tomography Method 

The accuracy of reconstructed images by the DT, MMW tomography and 

THz tomography are limited. These techniques acquire the data acquisition in 

a time domain. Though the data gathered consist of phase and amplitude of 

the field, the use of Fourier technique to deal with the swept data disregards 

the variation of the OI contrast over the working frequency ranges. In 

contrast, the acquisition of MWT can generally be done a single frequency 

and the MWT-inverse problem can be formulated in frequency domain with 

an appropriate electric field integral equation , thus, the artifacts due to 

ignoring the variation in propagation speed, the multipath effect and loss in 

the DT, MMW and THz tomography can be avoided.  

The architecture of the MWT which works in frequency domain, is 

presented in Figure 2-2, where the Tx represents the transmitting antenna; and 

the Rx represents the receiving antennas. 

 

Figure 2-2: Geometrical model of microwave tomography 
problem. 
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The domain 𝒪 which contains the OI is the imaging domain/object 

domain. The domain 𝒟 which contains antennas is the measurement 

domain/data domain. It is outside the object domain. These two domains are 

assumed to be in 𝑥 − 𝑦  plane. Practically, the antennas can be used to receive 

or transmit microwave signal, where the radiation from the Tx can be 

assumed as a plane wave or electric line source equivalent. At each radiation, 

the scattered fields are collected at the rest of the antennas which are assigned 

as the Rx. 

Microwave Tomography is the form of active microwave imaging. The 

goal of the MWT is to estimate unknown attributes distribution of interest 

from given measurement that only indirectly related to the interaction 

between the microwave signal and the dielectric property of the interest. 

Unfortunately, the interaction is nonlinear and a small amount of noise in the 

data leads to enormous errors in the reconstruction. The nonlinearity of the 

problem has to be optimized and the instability known as ill condition needs 

to be regularized. Several methods to solve the nonlinear ill posed problem of 

the MWT have been developed. The following section overviews the methods 

to solve the problems.   

2.3 Nonlinear Methods to Solve Microwave 
Tomography Inverse Problems 

Nonlinear iterative method for solving MWT-inverse problem can be 

categorized into two types of algorithms: gradient type method and Newton 

method. Both types of algorithms with the applications of the algorithms on 

MWT are described as follows. 
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2.3.1 Gradient Method 

2.3.1.1 Modified gradient method 

Modified Gradient Method (MG) which is a gradient type algorithm for 

solving MWT inverse problem, applies a conjugate method on both total 

electric field and dielectric contrast variables. The iterative sequence of the 

MG is presented in [11], where both variables are updated simultaneously by 

minimizing a cost function.The conjugate gradient method determines the 

search direction of the MG and the Fletcher-Reeves equation [62], Polak and 

Ribiere[63] or other conjugate techniques with a parameter (𝛽𝑘) defines the 

step length of the correction. It can be seen that the MG is basically a 

conjugate gradient method for minimizing two-terms of MWT cost function. 

The MG method has been widely used to solve MWT inverse 

problem. There are many applications for the MWT inverse problem, 

including industrial application [64; 65], breast tumor/cancer detection [66; 

67; 68], medical/biological reconstruction [69], and geophysical application 

[70], besides numerical experiments have also been  reported in [71; 72; 73]. 

The MG can be applied to a high contrast OI problem, however the 

disadvantage of the method is that the initial estimation of the contrast is 

essential to the quality of the result [66; 74].  

The essential initial guess of MG is described in [74]. The MG is used 

to reconstruct two small objects in a lossy background medium where the 

model used for the simulation is a large circular object with properties 

𝜖𝑟 = 15.0 and 𝜎 = 0.4 𝑆/𝑚 and two small objects with radius 4mm with 

parameters 𝜖𝑟 = 55.0 and 𝜎 = 1.0 𝑆/𝑚. The background medium is matching 

liquid with 𝜖𝑟 = 12.0and 𝜎 = 0.32 𝑆/𝑚. The results of reconstruction with 

and without priory information are presented in Figure 2-3 and the relative 

error of the results is presented in Figure 2-4. It can be seen that when the 

algorithm has converged, the reconstructions utilizing a priori data have a 

lower relative error compared to the reconstructions without a priori data. 

Moreover, the prior information data resolve the reconstructed images while 

the MG fails to reconstruct the small object without the information. 
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Figure 2-3: Model object of interest used for modified gradient 
algorithm test and the result of the reconstruction. Large object 

had the properties  𝜖𝑟 = 15.0 and 𝜎 = 0.4 𝑆/𝑚 and two small 

objects with radius 4mm with parameters 𝜖𝑟 = 55.0 and 

𝜎 = 1.0 𝑆/𝑚. The background medium is matching liquid with 

𝜖𝑟 = 12.0 and 𝜎 = 0.32 𝑆/𝑚. [74]. 

 
a) Model used for the simulation 

 

 
 (b) Reconstruction of the two small objects without a priori data 

 

 
(c) Reconstruction of the two small objects with a priori dielectric data 
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Figure 2-4: Relative error of OI complex permittivity of small 

object resulted by Modified Gradient method with and without a 
priori data [74]. 

The MG method can be categorized as a semi regularized method. The 

ill conditioning of the problem is regulated by stopping the sequence before 

the noise starts to govern the inversion [71]. However, the stopping criteria 

cannot be determined accurately as if the noise level is unknown. An 

additional procedure to define the stopping position of MG method is needed.  

2.3.1.2 Contrast source inversion method 

Contrast Source Inversion (CSI) method is a gradient method that combines 

the unknown total electric field and the dielectric contrast in the imaging 

domain into a contrast source variable. Basically, this is similar to the 

application of the volume equivalence principle to the TM polarization of the 

electric field integral equation where the dielectric contrast of a material and 

the electric field inside the 𝑂𝐼 is replaced by the equivalent polarization 

currents variable [9].  

The CSI algorithm reconstructs the contrast-source variable and 

contrast variable iteratively. Different from the MG method which updates 
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the contrast simultaneously with the total field, the CSI corrects the contrast 

successively. The contrast is updated by minimizing the second term of a cost 

function that is constructed from electric field integral equations. However, 

the contrast is present in the denominator of the cost function. Direct 

application of a conjugate direction to the cost function may not always 

reduce the quantity of the functional [13]. 

Various numerical tests and applications of the CSI  have been 

reported, which include the reconstruction of biological object [75; 76; 77; 78], 

breast cancer or tumour detection [79]phase less data [80]and other numerical 

tests [81; 82]. Reconstruction of experimental data in the case of biological 

object can be found [83; 84], while the capability of the CSI in reconstructing 

an unknown triangle and other shapes from Ipswich data when the MG fails 

to build accurate images is demonstrated at[85; 86]. The CSI is also possibly 

combined with various methods such as, the use of finite element [79] and 

finite difference solver [77], three dimensional measurement system [87], and 

application of multi frequency data [88]. 

The CSI cannot start with zero initial estimates for the contrast, since 

the cost function of MWT problem is not defined. Therefore, the CSI starts 

with nonzero initial guess. A priori information is one of the initial input of 

the method. It has been shown that the use of prior information in cancer 

detection is better than blind information [79]. Other prior information has 

been applied like real positive value of the 𝑂𝐼contrast [13; 80]. 

The contrast is updated using second term of the CSI cost function 

which is formulated by the integral equations of MWT inverse problem. The 

problem arises is generally over determined, however, a direct calculation 

which means averaging, may not minimize the cost function due to the 

presence of the contrast in the denominator. Therefore, minimization 

functional is constructed to update the contrast. This makes the method rather 

unpractical and slow.  
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Figure 2-5: CSI and MR-CSI reconstructions for TM data at 

single frequency of 10 GHz [88] 

The advantage of CSI is adaptive to a regularization technique. 

Theapplication of weighted L2- norm regularization factor named 

multiplicative regulator to the nonlinear integral equation of the CSI improves 

the flexibility of the algorithm to the noise. The regularization reformulates 

the CSI as Multiplicative Regularized CSI (MR-CSI). The MR-CSI seems to 

handle noise as well as limited data in a robust way, that makes the algorithm 

suitable to invert experimental data [89; 90; 91].  

Jinghong et al compare the CSI with the MR-CSI. The object of 

interest is a metallic cylinder located outside a large dielectric cylinder with a 

contrast of 0.45[88]. The source of microwave signal is 10 GHz TM mode. 

The images resulted by the CSI and the MR-CSI are presented in Figure 2-5. 

It can be seen that the inversion results achieved by  the MR-CSI are better 

than that obtained by the CSI. The application of regularization improves the 

quality of the images. Nevertheless, the great limitation of both methods is the 

speed (see Table 2-1) that they cannot be used in a quasi-real time processing. 
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Table 2-1 Computational time on a Pentium 2.0 GHz dual 
processor personal computer [88] 

Inversion Schemes CSI MR-CSI 

Initial Guess Back Projection Back Projection 

Number of Iteration 500 500 

Computational Time 4 hour 4 hour 

 

 

The gradient methods for solving MWT inverse problem, that are MG 

and CSI methods, are sensitive to initial guess; but, they are flexible in 

handling noise. The methods are basically constructed from a conjugate 

gradient technique. In this thesis, the modification of the CG is used to solve 

MWT problem. It is used as a part of a Newton iterative method. The CG 

regulates the ill conditioning and solves the linearization of MWT inverse 

problem which is constructed along with the Newton Iteration, wherethe 

initial guess of the CG is the current nonlinear solution of Newton method.  

2.3.2 Newton's Method 

2.3.2.1 Gauss-Newton inversion 

Gauss Newton Inversion (GNI) is a well-known Newton’s based method for 

solving MWT problem. Wide area tests and applications have been reported, 

including testing the GNI to reconstruct synthetic data in the form of 

inhomogeneous numerical 2D objects [92; 93], 3D objects [94] and synthetic 

brain and breast models [95]. Furthermore, it has been shown that the method 

reconstructs experimental data well, like Fresnel experimental data [96; 97], 

three dimensional experimental objects [98; 99], biomedical experimental data 

[84; 100] , and the applications of breast cancer screening [67]. 

The GNI is a type of quadratic Newton method optimization which 

minimizes a non-linear least squares cost function of MWT inverse problem. 

Consequently, the sequence of the GNI needs a negative gradient of the cost 

function which can be defined from the first order deferential of the cost 
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function and a Hessian matrix which is constructed from the second order 

deferential of the function. Implicit Jacobian matrix (𝓙) to approximate both 

terms, gradient and Hessian matrix, as it has been proved by Mojabi[95], 

saves memory and computational time [97].  

The calculation of the GNI steps involves explicit computation of the 

inverse of matrix 𝓙𝑇𝓙 which is ill posed. Therefore, treating the ill posedness 

via regularization is essential in the GNI procedure. The regularization can be 

inserted in the pseudo inverse sequence which is done using a singular value 

decomposition, the examples of this technique include Tikhonov 

regularization [99], iterative Landweber-Friedman, and Truncated singular 

value decomposition. An alternative regularization technique is proposed in 

[101] which regularizes the cost function of MWT inverse problem. Methods 

for regularizing the cost function include additive [102], multiplicative [93; 97] 

and additive-multiplicative regularization [96].  

The speed of algorithm is mainly governed by two factors. The first 

factor is the speed of the forward problem solution and the second is the 

accuracy of the Newton step. The first is done by solving the integral function 

of direct MWT scattering problem. The function is a well posed system that 

can be inverted directly. The second are not the issue as they can be controlled 

by setting the size of the cells [9]. The ideal Newton step of GNI equals to the 

distance of the parameter of global solution and its current iterative solution. 

The accuracy of GNI to update parameter of current solution as close as 

possible to the global solution decreases the number of iteration, therefore, the 

choice of regularization relates to the number of iteration which has been 

shown by  Rubæket al[67]. 
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Figure 2-6: Schematic setup of the simulation for Gauss Newton 

inversion test [67]. The background constitutive parameter is 

𝜀𝑟 = 30and 𝜎𝑟 = 1.163 𝑆/𝑚. The OI is cantered at (𝑥, 𝑦) =
(0,2𝑐𝑚). The OI radius and constitutive parameter are 𝑟 =
2𝑐𝑚𝜀𝑟 = 50and 𝜎𝑟 = 1.6 𝑆/𝑚. 

 

Figure 2-7: Normalized norm for MWT cost function of GNI 

with Tikhonov regularization (𝜂𝑛, 𝐺𝑁 − 𝑇) and GNI with 

conjugate gradient least squares regularization (𝜂𝑛, 𝐺𝑁 − 𝐶) [67]. 
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Figure 2-8: Reconstructed values of conductivity and permittivity 

of simulated OI (Figure 2-6) for (𝜂𝑛, 𝐺𝑁 − 𝑇) and (𝜂𝑛, 𝐺𝑁 − 𝐶) 

[67] 

The choice of regularization techniques affects the ability of GNI in 

solving certain MWT problem [102]. Many researches have been conducted 

as discussed in previous paragraphs. Moreover, the iterative solution of GNI 

can be categorized as a one-step exact solution. If the regularization at current 

iteration fails, then, the general solution will not converge toward global 

solution. Therefore, the determination of regulator parameter is also an issue; 

besides, a regulator technique may not be suitable for certain MWT inverse 

problem. For this reason, a deterministic algorithm based on the GNI to solve 

MWT inverse problem is selected to be developed in this thesis. 
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2.3.3 Newton Kantorovich method 

Originally, Roger [103] develops Newton Kantorovich (NK) from the 

Newton method to reconstruct the inverse scattering of perfect 

conductive cylinder from TE illumination. The NK is a functional 

system where the iterative update value is directly proportional to the 

deference between the parameter value of the output of MWT system 

and the measured MWT data. The method is constructed from the first 

two components of Taylor series, where Fréchet derivative defines first 

order deferential of MWT inverse problem. The NK is a linear ill-

posed system; however, it is still nonlinear in respect to the solution of 

the MWT inverse problem which is an ill-posed system, therefore, the 

NK needs to be regularized. Roger shows that the NK with the 

Tikhonov-Miller regulator is capable of reconstructing conductive 

object. 

The NK solves MWT inverse problem as linear ill posed 

problem optimization. The technique, which is introduced by 

Joachimowich, starts by linearizing the MWT inverse problem, then 

solves the linear ill posed using a standard Tikhonov regularization 

with an identity operator being used.Numerical tests show that the NK 

is reasonably good in reconstructing two and three dimensional 

inhomogeneous object[104], One dimensional highly contrast object 

[105], Noise less human arm model [106],and shape and location of an 

object from noiseless data, but it fails to rebuild a noisy data [69; 71; 

107].  

Furthermore, the NK has been reported to be applied to handle 

experimental data, which include experimental breast cancer imaging 

using microwave planar camera [108], reconstructing an  

inhomogeneous lossy dielectric cylinder of Ipswich data [109; 110; 

111]. It is reported that NK is flexible in the choice of polarization, and 

experimental arrangement, but it is sensitive in the initial guess of 

dielectric contrast. 
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Figure 2-9: The object model with dielectric contrast (𝜒(𝑟 ∈
Ω) = 1), initial guess and reconstruction results of Newton 

Kantorovich algorithm for noiseless data and noisy data [71]. 

 
a) The contrast of OI and its initial guess 

 
b) Reconstruction of contrast from noiseless data 

 
c) Reconstruction of contrast from noisy data with SNR of 30% 
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NK reconstructs the linear ill posed problem using the solutions of the 

direct scattering electric integral equation at each iteration. Then, the problem 

is directly regulated and solved. It has been shown that the direct and 

regulated solution is sensitive to the noise level. Therefore, flexibility in 

determining linear solution is needed to improve the quality of NK. Flexible 

approximation solution of Inexact Newton class method may replace the rigid 

solution of NK. For this reason, the thesis focuses on the development of 

inexact Newton class to solve MWT-inverse problem. 

2.3.4 Inexact Newton method 

Bozza solves MWT inverse problem in two nested loops [112; 113]. The outer 

loop is the linearization of MWT problem, while the inner loop determines 

the regularized solution of the linear ill-posed problem where the iterative 

Truncated Landweber method is applied. The technique is categorized as 

Inexact Newton Method (INM) 

The INM has been used in several applications, which include 

reconstructing several different unknown dielectric contrasts of 

inhomogeneous objects from noisy data [114; 115; 116; 117]. It has been 

demonstrated that started from an empty scene, the localization and 

separation of the OI is very good, although the shaping is not very sharp 

because of the ill-posedness of the problem. The INM has also been used to 

reconstruct experimental data. The results related to the inversion of far-field 

data measurement show that the localization of the objects is very good and 

so are their separation capabilities [116]. Moreover, the INM shows the 

superiority in conducting noisy data. Satisfying inverting results of noisy data 

are reported, such as the synthetic two layered dielectric circular [114], three 

dimensional targets [118], and 3D Breast imaging [119]. The example of the 

INM in handling noisy data of homogeneous circular cylinder problem as it is 

reported by Bozza et al in[112]is presented in Figure 2-10 

. 
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Figure 2-10: The results of inexact Newton test by Bozza et al. 

Reconstructed distribution of the contrast of OI (𝜒) from noisy 

data with SNR 20dB [112] 

 

 

Figure 2-11: Reconstructed distribution of the contrast of buried 

OI (𝜒) from noisy data with SNR 20dB and the behaviour of 

mean squared error on the reconstruction of the contrast 
function [113] 

 

 
Two identical separate 

homogeneous circular cylinder 
(𝜒(𝑟 ∈ Ω) = 1) 

 
A circular homogeneous 

cylinder (𝜒(𝑟 ∈ Ω) = 0.4)with a 
square hole 
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Bozza et al. exploit the iterative Truncated Landweber method as an 

inexact solver for MWT linear ill-posed problem which is constructed under 

first order Newton scheme. It is an alternative to the direct regulative solution 

as in the NK. It has been shown that the solution is flexible to the 

introduction of noise and flexible to the initial guess. However, this inner 

iterative solution is defined in a specific manner which means that the 

truncated Landweber method finds regularized solution of the linear MWT 

problem at the inner loop. Then, the solution is directly taken as the update of 

the Newton solution. The INM sequence is only evaluated in the stopping 

criteria of the outer loops [112]. The method has to solve the Newton 

equations at each stage as the inner loop acts as a direct regularization. It can 

be expensive if the number of unknowns is large and may not be justified if 

the current solution is far from the target value. Therefore, this thesis develops 

Inexact Newton Class to solve MWT problems by addressing an implicit 

solution of the MWT inverse problem. At the inner loop, the first order 

Newton equation as a result of linearization of MWT problem is solved only 

approximately and in some unspecified manner. An iterative method solves 

the Newton equation with a natural stopping rule based on the relative 

residual linear solution with its corresponding nonlinear solution. The method 

computes an approximate solution to the Newton equation in some 

unspecified manner such that a nonnegative forcing sequence controls the 

level of accuracy.  

  



58 

The Direct scattering problem is presented in a volume electric field 

integral equation (VEFIE). The equation which respects to total 

electric fields (𝐸) and dielectric contrast(𝜒) is solved using pulse basis 

function and the Method of Moment (MM). The solution in term of 

scattered fields (𝐸𝑠) in data domain is evaluated by comparing it with 

the analytic solution. The numerical experiment shows that the 

solution is accurate and flexible to cell size. Perfect solution is 

generated from a wide range relative permittivity of scatterer. Further 

extensions of direct scattering problem studies are included: presenting 

and solving EFIE in term of equivalent current density (𝐽) and ratio of 

the dielectric contrast; and applying the microwave incident fields 

under both plane wave and line source equivalent.  

3.1 Introduction 

The direct scattering problem is essential to develop methods in inverse 

scattering problems as in the MWT inverse problem. The direct scattering 

problem is the forward problems of the MWT. The solution of the problem 

3  

Direct Scattering for 
Microwave Tomography 
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defines the cost function of the MWT inverse problem; therefore, the accuracy 

of the direct scattering problem solution directly influences the results of the 

MWT inverse problem.  

A general scattering problem can be solved using an integral equation, 

like calculating scattering fields due to the illumination of electromagnetic 

field to an Object of Interest (OI). Richmond [120]introduced the simulation 

of the integral equation for an electromagnetic scattering problem. The 

magnetic and the electric field interior and exterior of a cylinder with arbitrary 

cross-sectional shape are calculated using the integral equation. Furthermore, 

methods to solve the integral equation have grown since the work of 

Richmond’s. Harington[8] proposed a numerical solution of the integral 

equation using the Method of Moment (MM). The MM is a numerical 

procedure to solve a linear operator equation by transforming it to a system of 

simultaneous linear algebraic equation which is commonly referred to as 

matrix equation. The MM quantifies current distribution in the surface of a 

conducting cylinder which can be used to determine the value of scattering 

field outside the cylinder. It becomes very popular as a solver for the integral 

equation of direct scattering problem.  

Generally, the MM can be applied to solve two types of integral 

equations namely surface integral and volume integral. The application of the 

MM for the surface integral usually involves scattering from a conducting 

cylinder. The MM has been implemented to simulate scattering fields from 

various types of conducting materials[121; 122; 123]. The surface integral can 

be applied to calculate the scattering from a conducting object of 

homogeneous scatterer, but it is not suitable for an inhomogeneous penetrable 

object [9]. Therefore, the surface integral is not further discussed in this thesis. 

The MM for solving the volume integral equation works in the centre 

of the cells across the OI slice. This is suitable for MWT application which is 

aimed to reconstruct the image of the dielectric value of OI cross section. 

Richmond approach is used to develop the forward problems. Then, it is 

followed by developing several inverse methods based on the defined forward 

problems. The results show that the volume integral can be used to develop 
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microwave imaging. It can be used to reconstruct simple objects [107; 124; 

125]. Nevertheless, it is sensitive to noises and initial guess besides gaining big 

error; thereto, the investigation on the forward problems needs to be done. 

The feature of the MM has included a frequency domain prediction 

technique and taken to the account the entire electromagnetic phenomenon 

and the polarization effects. The MM, which is based on an integral equation 

technique, advances in the accuracy of the results as it is essentially exact and 

provides direct numerical solutions. It is also applicable to complex 

inhomogeneous(𝑂𝐼). Nevertheless, the MM is classified into low frequency 

methods. It is typically limited to problems of small electrical size due to 

limitations of computation time and memory system. Thereto, an 

investigation of the MM solution for higher frequency is necessary to be done. 

3.2 The Method of Moment Solution for Direct 

Scattering Problem 

3.2.1 Direct scattering in two-dimensional 

The direct scattering problem of an inhomogeneous OI involves the 

interaction between microwave and a penetrable OI. The interaction can be 

described in term of a volume electric field integral equation (VEFIE). In the 

special case in which the OI is composed entirely of dielectric material, the 

electric field integral equation can be stated as in [9] 
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Figure 3-1: Cross section of a dielectric object (Ω). Object is 

placed in object domain (𝒪). The domain 𝒪 is divided into N 

squared cells (𝑛 = 1, 2…𝑁). The 𝒪 is surrounded by data 

domain (𝒟) where observation points (𝑚 = 1, 2…𝑀) are placed. 

 𝐄i(𝑟) = 𝐄(𝑟) + 𝑗𝜔𝜇0𝐀(𝑟) + 𝛁Φ𝑒 

For two-dimensional TM polarization in 𝑧̂ direction the vector 

potential(𝐀(𝑟))and the Green function(𝔾)are defined as 

 𝐴𝑧(𝑟) = 𝑗𝜔𝜀0 ∫ (𝜀𝑟 − 1)𝐸(𝑟)𝔾(𝑟, 𝑟′)𝑑𝑟′
Ω

 

 𝔾(𝑟, 𝑟′) =
1

4𝑗
𝐻0

(2)(𝑘𝜌) 

The two-dimensional electric field integral equation of (3.1) can be written as 

 𝐸𝑖(𝒓) = 𝐸(𝒓) − 𝑘0
2
∬

1

4𝑗
𝜒(𝒓′)𝐸(𝒓′)𝐻0

(2)

Ω
(𝑘0𝝆)𝑑𝒓′ 

Where𝐸𝑖(𝒓)𝐸(𝒓)and 𝐸𝑠(𝒓) are the incident, total and scattered electric fields 

at𝒓 sequentially, Ω is the cross section of the OI, 𝜒 = (𝜀𝑟 − 1) is the dielectric 

contrast, and both coefficients 𝑟 and 𝑟′ are positon vectors, and 𝜌 = |𝑟 − 𝑟′|. 

𝜌 

𝑟 

𝑟′ 

Ω 

𝒪 

𝒟 
𝑥 

𝑦 

𝜀𝑟  

𝑛 = 1 

𝑛 = 𝑁 

𝑛 = 2 
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Equation above represents domain equation. The position vector addresses a 

point at  an 𝒪,(𝑟, 𝑟′) ∈ 𝒪. 

Assuming that a dielectric object is immersed in  an 𝒪 where the 𝒪 is 

divided into N number of cells as seen in Figure 3-1. Then, the electric field in 

(1) at nth cell where 𝑛 = 1, 2…𝑁 can be defined in a discrete system as  

 𝐸𝑛
𝑖 = 𝐸𝑛 + ∑ 𝑍𝑛𝑛′

𝑁
𝑛′=1 𝜒𝑛′𝐸𝑛′ 

Where𝑍𝑛𝑛′ is the integral operator of (3.4) which represents the interaction of 

cell𝑛 to cell𝑛′ 

The integral (3.4) is evaluated analytically with the assumption that all 

cells are circles [9; 120]; thus,the integral of the Hankel function can be 

aproximated using 

 ∫ ∫ 𝐻0
2(𝑘0𝜌)𝑟′𝑑𝑟′𝑑∅′ = {

2𝜋𝑎

𝑘0
𝐻1

2(𝑘0𝑎) −
𝑗4

𝑘2      (𝜌 < 𝑎)

2𝜋𝑎

𝑘
𝐽1(𝑘0𝑎)𝐻0

2(𝑘0𝜌)   (𝜌 > 𝑎) 

𝑎

𝑟′=0

2𝜋

∅′=0
 

where 𝑎is the radius of a cell. Applying (3.6) to (3.4), the entries of  𝑍𝑛𝑛′ are 

given by 

 𝑍𝑛𝑛′ =
𝑗𝑘0𝜋𝑎𝑛

2
𝐽1(𝑘0𝑎)𝐻0

2(𝑘0𝜌);  𝑛 ≠ 𝑛′ 

 𝑍𝑛𝑛′ =
𝑗𝑘0𝜋𝑎

2
𝐻1

2(𝑘0𝑎) + 1;         𝑛 = 𝑛′ 

Assuming that the radius of cells equals to 𝑎𝑛′with 𝑛′ = 1, 2. . 𝑁, equation 

(3.5) can be written for 𝑛 = 1 as 

 𝐸1
𝑖 = 𝐸1 + [𝒁1𝑛′][(𝝌𝑛′𝑬𝑛′)] 

where𝑛’ = 1,2…𝑁 and   

[𝒁1𝑛′] = [𝑍11 𝑍12 … 𝑍1𝑁]

While[(𝝌𝑛′𝑬𝑛′)] is defined as 

 [(𝝌𝑛′𝑬𝑛′)] = [

𝜒1 0
0 𝜒2

0 0
0 0

0 0
0 0

⋱ ⋮
… 𝜒𝑁

] [

𝐸1

𝐸2

⋮
𝐸𝑁

] = [diag(𝝌𝒏′)][𝑬𝑛′] (3.10
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For simplicity, for the rest of report [(𝝌𝒏′𝑬𝑛′)] may be written as 

[diag(𝝌𝒏′)][𝑬𝑛′] Similar equations can be obtained for 𝑛 = 2 ,3…𝑁 so that for 

this illumination,  

 [𝑬n
𝑖 ] = [𝑬𝑛] + [𝒁𝑛𝑛′][(𝝌𝑛′𝑬𝑛′)] = [𝑬𝑛] + [𝒁𝑛𝑛′][diag(𝝌𝒏′)][𝑬𝑛′] 

 [𝑬n
𝑖 ] = [𝑰 + [𝒁𝑛𝑛′][diag(𝝌𝒏′)]][𝑬𝑛′] 

the total electric field [𝑬𝑛] can be expressed as 

 [𝑬𝑛] = [𝑰 + [𝒁𝑛𝑛′][diag(𝝌𝒏′)]]
−1

[𝑬𝑛
𝑖  ] 

where the total field is the addition of the incident and scattered field.  

 𝐸(𝒓) = 𝐸𝑖(𝒓) + 𝐸𝑠(𝒓) 

Therefore, the scattered fields due the present of a dielectric object at imaging 

domain, at the observations points can be stated in the integral equation as 

 𝐸𝑠(𝒓) = 𝑘0
2
∬

1

4𝑗
𝜒(𝒓′)𝐸(𝒓′)𝐻0

(2)

Ω
(𝑘0𝝆)𝑑𝒓′ 

Assuming that the scattered fields are measured in 𝑀observation points where 

m is index of observation points that is 𝑚 = 1,2…𝑀, (𝑛 ∈ 𝒟), then, equation 

(3.14) can be stated as matrix equation 

 [𝑬𝑚
𝑠 ] = −[𝒁𝑚𝑛′][diag(𝝌𝒏′)][𝑬𝑛′

𝑡 ]  

Defining that𝑛 is the index of the object cell which is 𝑛 = 1,2…𝑁; (𝑛 ∈ 𝒪) 

and, then, at each projection (𝑡) with 𝑡 = 1. . 𝑇, a microwave signal 

illuminates 𝒪. Integral (3.4) can be stated as the matrix equation 

 [𝑬𝑛
𝑡 ]𝑡 = [𝑰 + [𝒁𝑛𝑛′][diag(𝝌𝒏′)]]

−1
[𝑬𝑛

𝑖  ]𝑡 

And the scattered fields can be calculated using 

 [𝑬𝑚
𝑠 ]𝑡 = −[𝒁𝑚𝑛′]t[diag(𝝌𝒏′)][𝑬𝑛′

𝑡 ]𝑡

 [𝑬𝑚
𝑠 ]𝑡 = −[𝒁𝑚𝑛′]𝑡[diag(𝝌𝒏′)][𝑰 + [𝒁𝑛𝑛′][diag(𝝌𝒏′)]]

−1
[𝑬𝑛

𝑖  ]𝑡 
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In MWT application, scattered fields are not measured at transmitter, 

at 𝑡 = 1 index 𝑚 which is assigned as the observation points or receiver is 

𝑚 = 1, 2…𝑀1. In multiple projections, microwave signals are transmitted 

from 𝑇 number of transmitter sequentially. In each transmission, the electric 

fields are measured at 𝑀 observation points where 𝑚 = 1, 2…𝑀(𝑡). 𝑀(𝑡)can 

be  dependent on t. The field points can also be at different positions for 

different t. The antenna arrangement is illustrated in Table 3-1.  

Table 3-1: Observation points of scattered field 

𝒕 (Transmitter No.) M 

t = 1 1, 2, …M1 

t = 2 1, 2, …M2 

⋮  

t = T 1, 2, …MT 

 

Total data on 1st projection when 𝑡 = 1 is M1 and the total data for all 

projections will be 

 𝑑𝑎𝑡𝑎 = ∑ 𝑀𝑡
𝑇
𝑡=1  

3.2.2 Solving direct scattering using the method of moment 

Following the volume equivalence principle, 𝑗𝜔𝜀0(𝜀𝑟 − 1)𝐸(𝑟) = 𝐽(𝑟), the 

dielectric material may be replaced by equivalence polarization currents, then, 

the integral equation can be written as  

 𝐸𝑖(𝒓) =
1

𝑗𝜔(𝜀−𝜀0)
𝐽(𝒓) − 𝑗𝑘0𝜂0 ∬

1

4𝑗
𝐽(𝒓′)𝐻0

(2)

Ω
(𝑘0𝝆)𝑑𝒓′ 

Assuming that the dielectric object is divided into 𝑁 cells equal in size as 

described in Figure 3-1, then, a basis function in discrete system can be stated 

as: 

 𝑃𝑛(𝒓) = {
1 (𝒓) ∈ cell𝑛
0 elsewhere

 
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The polarization current density in the center of the cell 𝐽(𝒓) are 

approximated as 

 𝐽(𝒓) = ∑ 𝐽𝑛′𝑃𝑛′
𝑁
𝑛′=1  

Then, integral (3.19) can be expressed in the pulse basis function as 

 𝐸𝑛
𝑖 = ∑ 𝐽𝑛′ (

𝜂0𝑃𝑛′(𝒓)

𝑗𝑘0[𝜀𝑟(𝒓)−1]
+

𝑘0𝜂0

4
∬ 𝐻0

(2)

Ω
(𝑘0𝝆)𝑑𝒓′)𝑁

𝑛′=1  

It can also be expressed in matrix equation as: 

 [𝑬𝑛
𝑖 ] = [𝒁𝑛𝑛′][𝑱𝑛′] 

Evaluating the field at 𝑛 = 1, 𝑡 = 1, when𝑛’ = 1, 2, …  𝑁, where𝑁 is the 

number of the cells, matrix equation (3.23) can be expressed as 

 [𝑬1
𝑖 ]

𝑡
= [𝒁1𝑛′][𝑱𝑛′]𝑡 

where 

 [𝒁1𝑛′] = [𝑍11 𝑍12 … 𝑍1𝑁] 

 [𝑱𝑛′]𝑡 = [

𝐽1
𝐽2
⋮
𝐽𝑁

] 

However, at each projection, an incident field illuminates all cells of the 

object, 𝑛 = 1, 2 …  𝑁, then at 𝑡 = 1 there will be a set of vector and matrix 

operators 

 [𝑬𝑛
𝑖 ]

𝑡=1
=

[
 
 
 
 
𝐸1,1

𝑖

𝐸2,1
𝑖

⋮
𝐸𝑁,1

𝑖 ]
 
 
 
 

; [𝑱𝑛′]𝑡=1 = [

𝐽1,1

𝐽2,1

⋮
𝐽𝑁,1

] ;  

 [𝒁𝑛𝑛′] = [

𝑍11 𝑍12

𝑍21 𝑍22

… 𝑍1𝑁

… 𝑍2𝑁

⋮ ⋮
𝑍𝑁1 𝑍𝑁2

⋱ ⋮
… 𝑍𝑁𝑁

] 

The [𝒁𝑛𝑛′]entries of (3.27) are given by 
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 𝑍𝑛𝑛′ = {
𝑛 ≠ 𝑛′,                                          

𝑘0𝜂0

4
∬𝐻0

(2)(𝑘0𝑟𝑚)𝑑𝑥′𝑑𝑦′

𝑛 = 𝑛′,               
𝜂0

𝑗𝑘0[𝜀𝑟(𝑥,𝑦)−1]
+

𝑘0𝜂0

4
∬𝐻0

(2) (𝑘0𝑟)𝑑𝑥′𝑑𝑦
 

By using (3.6) to estimate the integral of Hankel's function in (3.28), the 

entries are defined as 

𝑛 ≠ 𝑛′ → 𝜌 > 𝑎  

𝑍𝑛𝑛′ =
𝜂0𝜋𝑎𝑛

2
𝐽1(𝑘0𝑎)𝐻0

2(𝑘0𝜌)

𝑛 = 𝑛′ → 𝜌 < 𝑎;  

𝑍𝑛𝑛′ =
𝜂0

𝑗𝑘0[𝜀𝑟−1]
+

𝑘0𝜂0

4
[
2𝜋𝑎

𝑘0
𝐻1

2(𝑘0𝑎) −
4𝑗

𝑘0
2]

𝑍𝑛𝑛′ =
𝜂0𝜋𝑎

2
𝐻1

2(𝑘0𝑎) −
𝑗𝜂0

𝑘0
∙
𝑗[𝜀𝑟−1]

𝑗[𝜀𝑟−1]
+

𝜂

𝑗𝑘0[𝜀𝑟−1]


𝑍𝑛𝑛′ =
𝜂0𝜋𝑎

2
𝐻1

2(𝑘0𝑎) +
𝜂0𝜀𝑟

𝑗𝑘0[𝜀𝑟−1]


Solution (3.23) yields [𝑱𝑛′]𝑡. At each[𝑬𝑛
𝑖 ]

𝑡
, the equivalent current density is 

obtained for 𝑛’ = 1, 2 …  𝑁. Once [𝑱𝑛′]𝑡is defined, the scattered field at 

observation domain can be determined by expanding the integral equation 

 𝐸𝑠(𝒓) = 𝑗𝑘0𝜂0 ∬
1

4𝑗
𝐽(𝒓′)𝐻0

(2)

Ω
(𝑘0𝝆)𝑑𝒓′ 

Assuming that for a given [𝑬𝑛
𝑖 ]

𝑡
, 𝐸𝑠(𝒓) is measured at 𝑀(𝑡) points of 

observation which is placed in a data domain (𝐸𝑠(𝒓), 𝒓 ∈ 𝒟). [𝑬𝑚
𝑠 ]𝑡due to the 

presence of  a dielectric object and illumination of [𝑬𝑛
𝑖 ]

𝑡
can be determined 

using 

[𝑱𝑛′]𝑡 = [𝒁𝑛𝑛′]
−1[𝑬𝑛

𝑖 ]
𝑡


 ⇒ [𝑬𝑚
𝑠 ]𝑡 = [𝒁𝑚𝑛′]𝑡[𝑱𝑛′]𝑡 

Nevertheless, equation (3.23) produces zero division at the background when 

the dielectric contrast is 1 (𝜀𝑟 = 1). Thus, a new variable is introduced to 

replace the contrast term in the equation as follows 

 𝜉 =
𝑘0[𝜀𝑟−1]

𝑗𝜂0𝜀𝑟
 
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The dielectric contrast appears in the diagonal of the [𝒁𝑛𝑛′]matrix in 

the object domain, (𝑛, 𝑛′) ∈ 𝒪, when the cells of the objects interact with 

themselves (𝑛 = 𝑛′). The 𝜉 replaces 𝜀𝑟 in (3.30) by multiplying (3.23) with 𝜉as  

 [diag(𝝃𝑛′)][𝑬𝑛
𝑖 ]

𝑡
= [diag(𝝃𝑛′)][𝒁𝑛𝑛′][𝑱𝑛′]𝑡 

where[diag(𝝃𝑛′)]is a diagonal matrix, which can be used to cancel the 

dielectric contrast in the diagonal of [𝒁𝑛𝑛′]. The diagonal term 

of[diag(𝝃𝑛′)][𝒁𝑛𝑛′]is rearranged. Let us define the first cell of the term that is 

𝑛 = 𝑛’ = 1 

 𝜉1𝑍11 =
𝑘0[𝜀𝑟,1−1]

𝑗𝜂0𝜀𝑟,1
[
𝜂0𝜋𝑎

2
𝐻1

2(𝑘0𝑎) +
𝜂0𝜀𝑟,1

𝑗𝑘0[𝜀𝑟,1−1]
] 

⇒ 𝜉1𝑍11 =
𝑘0[𝜀𝑟,1−1]

𝑗𝜂0𝜀𝑟,1
∙
𝜂0𝜋𝑎

2
𝐻1

2(𝑘0𝑎) − 1

⇒ 𝜉1𝑍11 = 𝜉1ℤ11 − 1

where[ℤ𝑛𝑛′]is an integral operator of the domain equation with entries 

 [ℤ𝑛𝑛′] = [

𝜂0𝜋𝑎𝑛

2
𝐽1(𝑘0𝑎)𝐻0

2(𝑘0𝜌)𝑖𝑓𝜌 > 𝑎  or 𝑛 ≠ 𝑛′
𝜂0𝜋𝑎

2
𝐻1

2(𝑘0𝑎)𝑖𝑓𝜌 ≤ 𝑎 or 𝑛 = 𝑛′
 

Furthermore, a new domain equation at 𝑡 projection is written as  

 [diag(𝝃𝑛′)][𝑬𝑛
𝑖 ]

𝑡
= [[diag(𝝃𝑛′)][ℤ𝑛𝑛′] − 𝑰][𝑱𝑛′]𝑡 

The relation between 𝜉 and 𝜒 is 

 𝜉 =
𝑘0

𝑗𝜂0𝜀𝑟
𝜒 

Scattered field [𝑬𝑛
𝑠 ]𝑡 at 𝑚 = 1,2 . . 𝑀(𝑡) observation points due to the present 

of a dielectric object and illumination of the microwave signal can be 

determined by : 

 [𝑱𝑛′]𝑡 = [[diag(𝝃𝑛′)][ℤ𝑛𝑛′]𝑡 − 𝑰]
−1

[diag(𝝃𝑛′)][𝑬𝑛
𝑖 ]

𝑡


 ⇒ [𝑬𝑚
𝑠 ]𝑡 = [ℤ𝑛𝑛′]𝑡[𝑱𝑛′]𝑡 
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3.3 Numerical Experiment 

3.3.1 Methods 

A comparative study is applied to analyze the accuracy of the MM solutions. 

The MM solutions are compared to exact solutions. A simple cylindrical 

geometry object with real dielectric contrast is used as it is the only possible 

geometry that the exact solutions can handle. The OI is defined as an infinite 

cylindrical object with 𝑎𝑂𝐼 −radius and real 𝜀𝑟 dielectric. The exact solutions 

calculate the scattering fields in the observation points using cylindrical 

harmonic expansions in which it is derived in appendix B.  

The MM approaches the cylindrical in squared meshes as seen in 

Figure 3-2. In 2D view the OI is placed in a square area which is divided in 𝑁𝐴 

small squared area with 𝑎𝑐𝑒𝑙𝑙 −radius equivalent. The radius of the cell is 

varied by changing the 𝑁𝐴. The dielectric of the cells which is placed inside OI 

is set as  𝜀𝑟 , others are set as 1. The number of cells inside OI is labeled as 𝑁. 

The size must be small compared to the wave length. Inside the material, the 

wave length is defined as √|𝜀𝑟|𝜆𝑂𝐼 = 𝜆0. Peterson [9] recommends that the 

minimum number of cells for homogeneous dielectric cylindrical cross-section 

be 100𝑐𝑒𝑙𝑙𝑠/𝜆𝑂𝐼
2 . This is approximately similar to ≈ 0.05𝜆𝑂𝐼-cell radius. A set 

of antennas are placed in a data domain (𝒟) which is an exterior to𝒪. The 

antennas are used as measurement points. An antenna transmits the incident 

field and the others receive the scattered fields when a dielectric object of 

interest is given at the 𝒪. In the direct scattering process which is used as the 

solution of the forward problem of MWT, the MM calculates the scattered 

fields at the antennas which are assigned as the measurement points. 
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Figure 3-2: Imaging configuration for microwave tomography. 

The properties of MWT system are object domain (𝒪), data 

domain (𝒟), object of interest (OI) and measurement points 

The scattered fields simulated at the measurement points using the 

MM are evaluated by comparing them against the results of calculation using 

analytic solution. An absolute mean error is used to measure the quality of 

MM solutions relative to exact solutions. The quality of the solution is 

examined in term of cell size and dielectric contrast variations.  

3.3.2 Numerical Result 

3.3.2.1 The effect of cell size to the accuracy of the results of the method of moment  

Microwave signals at 4.5 GHz in the form of plane wave and line 

source equivalence illuminate an infinitively long dielectric cylinder 

with dielectric of real 4 and 1 cm or  0.15𝜆0 in radius. This 𝑂𝐼 is 

placed at the centre of 𝒪 in which the domain is divided into 𝑁2 

cells. The scattering of the signals at 36 antennas in 𝒟 are 

approximated using the MM with equivalence current density 

(3.39). Figure 3-3 shows the effect of cell size on the results of MM 

when the incident field is transmitted from (𝒟(𝜌 = 5, 𝜙 = 0)). 

  
 

Data domain 

Measurement points 

Object domain 

Object of interest 

Incident field 

Scattered field 
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The plots show that the size of the cell directly affects the 

accuracy of the solution. The smaller the size, the better the solution 

is. Nevertheless, decreasing the size means adding the number of 

cells which will lift up the computational burden. For the case 

provided in the test, the reasonable result of MM is gained when the 

radius of cell is equal or less than 0.02𝜆0 and good result is obtained 

from 0.015𝜆0 radius of cell. These equal to 64 and 287 cells, 

respectively. Improving cell size significantly raises the number of 

cell in which it will increase cost of calculation. 

It can be seen from the pattern of the plots at Figure 3-3 that 

the smallest scattering field is on the same side of transmitting 

antenna (≈ 0 𝑟𝑎𝑑 ) and the biggest amplitude lies on the other side 

of 𝑂𝐼. The position of the observation points seems to influence the 

accuracy of the MM solutions. The MM produces more errors of 

magnitude on the other side of 𝑂𝐼, on the other hand, it gains less 

errors of phase at 𝜙 = 𝜋 𝑟𝑎𝑑.Figure 3-4 illustrates the change of 

errors due to variation of the radius of cell at three different 

observation points. The best result of the MM is produced at 

𝜙 = 𝜋/2 𝑟𝑎𝑑, and the worst result is placed at 𝜙 = 𝜋 𝑟𝑎𝑑. The size 

of the cells must be relatively small in term of the background 

medium area. Additionally, one thing that should be put into 

consideration is the position of the points of observation. Points of 

observation around 𝜙𝑛 = 𝜙0 + 𝑛. 𝜋, where 𝜙0 is the transmitting 

antenna point, produce bigger errors than other points at 𝒟.  



71 

 
 

 

Figure 3-3: The plot of Scattered fields at 36 

observation points in object domain (𝒟(ρ =

5cm)). The OI has permittivity 𝜀𝑟 = 4 + 𝑗0and 

radius 1 cm. 4.5 GHz Plane Wave and Line source 
equivalence illuminate the OI. The scattered field 
is approximated using the MM. The results are 

compared with analytic solution. 
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Figure 3-4: The plot of the magnitude of 

scattered fields at three observation points in 

object domain (𝒟(ρ = 5cm,ϕ = [0, π 2⁄ , π])) of 

MM solutions and analytic solution. 4.5 GHz 

Plane wave (top) and Line source equivalence 

(bottom) illuminate 𝜀𝑟 = 4 a dielectric cylinder 

with 1 cm in diameter. 
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Figure 3-5: The plot of exact solutions and MM 

solutions of scattering field at a single observation 

point 𝒟(𝜌 = 5𝑐𝑚, 𝜙 = 𝜋/2) . Dielectric contrasts 

of OI are varied. Three different frequencies of 
(top) plane wave and (bottom) line source 

equivalence illuminate the OI.  

Plane wave illumination 

 
 

Line source equivalence illumination 

 

0 10 20 30 40 50 60 70 80 90
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Dielectric Contrast (
r
)

M
a
g
n
it
u
d
e
 o

f 
E

z

 

 

Analytic f=2.5 GHz

The MM f=2.5 GHz

Analytic f=3.5 GHz

The MM f=3.5 GHz

Analytic f=4.5 GHz

The MM f=4.5 GHz

0 10 20 30 40 50 60 70 80 90

0.1

0.2

0.3

0.4

0.5

Dielectric Contrast (
r
)

M
a
g
n
it
u
d
e
 o

f 
E

z

 

 

Analytic f=2.5 GHz

The MM f=2.5 GHz

Analytic f=3.5 GHz

The MM f=3.5 GHz

Analytic f=4.5 GHz

The MM f=4.5 GHz

𝜙 = 0 

𝐸𝑠(
𝜋

2
) 

𝑥 

𝑦 

𝐸𝑖 

𝜀𝑟 

5 𝑐𝑚 



74 

The MM produces less errors for smaller cell size and the size 

of error is dependent on the position. The source of error might be due 

to one of the following reasons; firstly, the pulse basis expansion 

(∑ 𝐽𝑛′𝑃𝑛′
𝑁
𝑛′=1 ) replaces the equivalence current density(𝐽(𝒓)). The 

definite geometry of OI cross section is divided in cells where the pulse 

is employed. Thus, finer mesh of 𝑂𝐼 brings the approximation close to 

the𝐽(𝒓). Secondly, the enforcement of the integral is done only at the 

center of the cell, and the integral is solved using series of functions for 

the circular cell. The error is initiated as a result of point matching and 

simplification. Third, the numerical error sets off errors to the results of 

MM due to the round off and truncation of the calculation. These 

types of errors may appear in the result of MM solutions.  

3.3.2.2 The effect of relative permittivity to the scattered fields  

The evaluation of the accuracy of the MM results is done by 

illuminating OI which is a cylindrical object with 0.013𝜆0 radius and is 

placed in the center of the object domain. The domain is divided into 

𝑁2 = 900 cells. Microwave signals at 𝑓 =

[2.5 , 3,5  𝑎𝑛𝑑 4.5 𝐺𝐻𝑧]illuminate the OI. The scattered field due to 

each illumination is measured at  𝒟(𝜌 = 5, 𝜙 = 𝜋/2). The relative 

permittivity of the object is varied from 𝜀𝑟 = 2to 𝜀𝑟 = 90. The effect of 

relative permittivity variation to the magnitude of the scattered field is 

plotted in Figure 3-5.  

As mentioned in the previous sections, the radius of cells in the 

object of interest must be smaller than 0.015𝜆0. Moreover, Paterson 

states that the relative permittivity affects the flexibility the MM 

solutions [9]. On the contrary, the numerical experiment shows that 

the absolute value of the scattering field resulted from the MM 

solutions are close to the exact solutions along the relative permittivity 

variations. The MM is able to handle high relative permittivity 

variations. The error gains along the variation are relatively constant. 
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Thus, the MM can be used to solve forward problems of an 

inhomogeneous dielectric object at microwave frequency. 

3.3.2.3 Two-dimensional pattern of scattered and total electric fields  

The scattered field at data domain is determined by the quantities 

which are the relative permittivity of the object, the size of the object 

and the frequency of microwave signals. The effect of the quantities 

stated to the patterns is presented in Figure 3-6.  

The effect of relative permittivity to the scattered pattern at 𝒟 is 

shown in Figure 3-6. It can be seen that the scattered fields are in line 

with the direction of the signals. The value of relative permittivity 

affects on the distribution of the fields. At low contrast, the scattered 

fields are distributed around the object. A higher contrast object forces 

the fields further from the source of the signals. The permittivity 

contrast focuses and reflects the microwave signals. The higher the 

contrast, the higher the effect on the pattern is.  

The pattern of scattered fields due to plane wave and line source 

equivalence illumination are similar, but the distribution of total fields 

which are the addition of scattered and incident fields at 𝒟 are different 

as seen in Figure 3-6. The patterns of the incident fields greatly 

influence the distribution of the total electric fields. The normalized 

incident of the plane wave that is directed at −𝑥, has an equal value 

along the 𝑦 axis and has a constant magnitude along the propagation. 

This results in striped patterns of the total electric fields due to plane 

wave illumination.  The presence of the dielectric object distracts the 

linear pattern. The fields are bent when they hits the object and they 

drops on the other side of the object. The magnitude of the fields is 

dependent on the distance with the source. Thus, the transmitting 

points should be allocated. The circular pattern of incident field  with 

transmitting antenna as the center of the circle is distracted by the 

presence of the dielectric material 

 



76 

 

Figure 3-6: The pattern of scattered field and total electric field 

around  a dielectric cylinder with radius 1 cm when 4.5 GHz-

TMz microwave signal illuminates the object from +𝑥 direction, 

for three different relative permittivity 
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In fact the scattered fields cannot be directly measured. The 

field is determined by measuring the fields before and after the object is 

introduced. The undisturbed fields are assigned as incident fields and 

the measured fields after the object is placed in the object domain are 

the total fields. The addition of scattered fields and incident fields 

result in total electric fields at observation points. Thus, understanding 

the pattern of total electric fields is essential, as this variable is the key 

of the reliability and accuracy of the experimental measurement.  

3.4 Conclusion 

The direct scattering problem of microwave tomography is defined in term of 

electric field integral equations (EFIE) for inhomogeneous scatterer. The 

method of moment (MM) transforms the integral equation into a matrix 

equation by applying pulse basis function. The solution of matrix equation 

yields total electric fields [𝑬𝑛 or equivalence current density [𝑱𝑛′]𝑡 coefficients 

in the centre of 𝑁2 cells of OI. The use of [𝑱𝑛′]𝑡, replaces [𝑬𝑛] in the EFIE 

based on the volume equivalence principle and vice versa. Once the [𝑬𝑛] 

or[𝑱𝑛′]𝑡 are obtained, the quantities of scattered fields at 𝒟 can be computed 

for the given relative permittivity.  

The direct solution proposed is designed for inhomogeneous dielectric 

objects, but the study of MM solution is done for homogeneous cylindrical 

dielectric objects. This geometry can be solved by harmonic expansion which 

is assigned as an exact solution. The effect of cell size and relative permittivity 

value are studied to describe the accuracy of the MM solution. 

The application of the MM to determine direct scattering of a simple 

geometry shows that The MM is flexible to the size of the cells. The results of 

calculations produce good accuracy up to 0.015 𝜆0 radius of cells. The MM 

accuracy endorses flexibility in dividing object of interest into a number of 

cells. A relatively small number of cells can be used to construct the object.  
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The value of relative permittivity of OI does not greatly affect the 

errors of the scattered fields. The errors mainly associated with the 

approximation, which include errors of modeling. The cylindrical geometry is 

replaced by a number of cells. The object of interest is divided into 𝑁2square 

cells which are equal in size. The relative permittivity 𝜀𝑟(𝜌) is assumed to be 

constant per cell. The superposition of the cells which are assumed to be 

circular in shape approximates the original geometry and contrast. The 

approximation brings modeling errors to the results of calculation. To 

overcome this limitation, the cells should be sufficiently small. Nevertheless, 

reducing size will increase the computational burden as the size of the matrix 

equation rises up.  
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4.1 Introduction 

The mathematical formulation of Microwave Tomography Inverse Problem 

(MWT-inverse problem) is presented using Microwave Tomography 

Objective Function (MWT-objective function). The function is the difference 

between the value of estimated electric field data and its corresponding 

measurement data. Therefore, solving the MWT-inverse problem can be done 

by minimizing the norm of the MWT-objective function, where iterative 

nonlinear optimizing techniques can be applied. Iteratively, the function is 

updated by improving the approximation of the estimated data. The MWT-

objective function is a set of nonlinear functions, however the iterative update 

can be determined using linearization techniques, which include Newton 

Kantorovich method [104; 108], Lavenberg Marquardt method [126], and 

inexact Newton method [114; 127; 128]. The global solution of MWT inverse 

problem is defined as if the approximation field equals to the measurement 

data. This is the same as the norm of the MWT-objective function equals to 

zero. 

4  

Inverse Problem of 
Microwave Tomography 
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The norm of MWT-objective function is an alternative formulation to 

conventional least squared MWT cost functional to present the MWT-inverse 

problem. The least squared cost function of MWT-inverse problem is based 

on the difference between the measured and predicted data for a particular 

choice of parameters. The problem which is presented in quadratic form of 

least squared problems is solved by optimization techniques that minimize the 

cost-functional, for examples Modified Gradient method [64; 67; 129], Gauss 

Newton inversion[96; 97; 99], and Contrast Source inversion [14; 82; 87].   

This chapter covers the presentation of MWT-inverse problem in the 

form of the norm of MWT objective function. It starts with the description of 

a two dimensional MWT system, then the reconstruction of data and domain 

equations of MWT from a direct scattering formulation is explained, and then 

followed by the formulation of MWT-inverse problem in the form of the 

MWT objective function and the least squared cost functional as comparison. 

A numerical experiment is conducted to study the stability of the problems.  

4.2 Microwave Tomography System 

A two dimensional microwave tomographic system principally is 

constructed by two basic domains: a bounded object domain  𝒪 ⊂ ℝ2 and a 

data domain 𝒟 ⊂ ℝ2. Both domains are subset of 𝑥 − 𝑦 plane (ℝ2). The 

domain 𝒪  is denoted as the interior of bound medium. The domain should be 

large enough to fully contain unknown Object of Interest(𝑂𝐼).  

The data domain 𝒟 ⊂ ℝ2 is the exterior of 𝒪 where a set of 

measurement points is placed. At each incident field radiation, 𝑀 number of 

electric field data at 𝒟 are measured. Denoting that  𝑟 and 𝑟′ are the position 

vectors and 𝜌 = |𝑟 − 𝑟′| is the distance between two points at ℝ2, total field at 

𝑟 that is a perturbed field (𝐸(𝑟)), is measured when 𝑂𝐼 is presented. 

Furthermore, the scattered field due 𝑡𝑡ℎ incident field illumination at 𝑟 can be 

described as the difference between the perturbed and unperturbed fields. 



81 

 

Figure 4-1: Total electric field generated by the microwave plane 

wave that illuminates a dielectric object 

 𝐸𝑡
𝑠(𝒓) = 𝐸𝑡(𝒓) − 𝐸𝑡

𝑖(𝒓) 

Microwave tomography works by placing an unknown nonmagnetic 

𝑂𝐼 with permittivity 𝜀(𝒓) inside 𝒪. The object is immersed in a homogeneous 

nonmagnetic background medium with permittivity 𝜀𝑏which is bound at 𝒟. 

The 𝑂𝐼 is illuminated by 𝑡 = 1,2… , 𝑇 number of known incident fields ([𝑬𝑖]).  

At each radiation of 𝐸𝑖, the scattered fields are measured at 𝑀 observation 

points at 𝒟. The scattered fields are generated as a reason of the present of 

permittivity contrast 𝜀𝑟(𝒓) at 𝒪. Experimentally, the scattered fields are 

determined by applying (4.1) to the perturbed and unperturbed fields at 

observation points. The measured scattered fields are reconstructed to build 

the image of 𝑂𝐼 cross section. 

Microwave image reconstruction methods determine the distribution 

of  𝜀𝑟(𝒓) over OI which represents the image of 𝑂𝐼 cross section. The methods 

solve MWT-inverse problem which can be formulated in the set of nonlinear 

equations or a nonlinear least squares problem. Both formulations are 

constructed by an object equation and a data equation. The formulation of the 

equations and the definition of unknown variables in the MWT inverse 

 (𝝁𝓞, 𝜺𝓞) 

(𝜇𝒟 , 𝜀𝒟) 

𝑟′ 

𝑟 
𝜌 = |𝑟 − 𝑟′| 

𝐸(𝑟) 

Object  
Domain 

(𝓞) 

Data domain 

𝐸 𝑖  

x 

y 

z 



82 

problems directly influence the stability of the MWT solutions. Therefore, it is 

essential to present the formulation of the data and domain equations 

4.3 Data and domain equations 

The data and domain equations are pairs of nonlinear equations that are used 

to determine scattered fields from incident fields and dielectric contrast. The 

equations are presented in integral equations. The mechanism of the scattered 

process can be described by assuming that the object introduced is a 

nonmagnetic material. The object only generates equivalent source in term of 

current density, while the equivalence magnetic density vanishes. Therefore, 

at each illumination, the electric fields can be stated in object and data integral 

equations as 

 𝐸𝑖(𝒓) = 𝐸(𝒓) − 𝑘0
2
∬

1

4𝑗
𝜒(𝒓′)𝐸(𝒓′)𝐻0

(2)

Ω
(𝑘0𝝆)𝑑𝒓′ 

 𝐸𝑠(𝒓) = 𝑘0
2
∬

1

4𝑗
𝜒(𝒓′)𝐸(𝒓′)𝐻0

(2)

Ω
(𝑘0𝝆)𝑑𝒓′ 

where𝜒 = (𝜀𝑟 − 1)  is the dielectric contrast, and both coefficients 𝑟 and 𝑟′ are 

positon vectors. Equation (4.2) represents the domain equation. The position 

vectors address a point at 𝒪, (𝑟, 𝑟′) ∈ 𝒪,while (4.3) expresses the data 

equation. The vector 𝑟 defines a data position  𝑟 ∈ 𝒟 and 𝑟′ points a cell at 𝒪,  

𝑟′ ∈ 𝒪.  

To define the integral equations (4.2) and (4.3) into the domain and data 

functions, let us see integral operator [𝒁𝑛𝑛′]and [𝒁𝑚𝑛′] which map 𝐿2(𝒪) into 

𝐿2(𝒪) and 𝐿2(𝒪) into 𝐿2(𝒟), respectively. The entries are defined by solving 

(4.2) using the MM which has been described in chapter 2, which are given by  

 𝑍𝑛𝑛′ =
𝑗𝑘0𝜋𝑎𝑛

2
𝐽1(𝑘0𝑎)𝐻0

2(𝑘0𝜌);  𝑛 ≠ 𝑛′  

 𝑍𝑛𝑛′ =
𝑗𝑘0𝜋𝑎

2
𝐻1

2(𝑘0𝑎) + 1;         𝑛 = 𝑛′  
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At 𝑡 = 1, 2 …𝑇  incident, the domain function and data function are written using 

the integral operators as: 

 [𝑬n
𝑖 ]

𝑡
= [𝑰 + [𝒁𝑛𝑛′][diag(𝝌𝒏′)]][𝑬𝑛′]𝑡 

 [𝑬𝑚
𝑠 ]𝑡 = −[𝒁𝑚𝑛′]𝑡[diag(𝝌𝒏′)][𝑬𝑛′]𝑡 

Both equations are functions of dielectric contrast [𝝌𝒏′] which is assigned as 

the contrast of the equation and total electric field [𝑬𝑛′]which is assigned as 

the source of the equations.  

The alternative object and data functions are derived by applying the 

equivalence volume principle to (4.2) and (4.3). The integral equations are 

stated as: 

 𝐸𝑖(𝒓) =
1

𝑗𝜔(𝜀−𝜀0)
𝐽(𝒓) − 𝑗𝑘0𝜂0 ∬

1

4𝑗
𝐽(𝒓′)𝐻0

(2)

Ω
(𝑘0𝝆)𝑑𝒓′ 

 𝐸𝑠(𝒓) = 𝑗𝑘0𝜂0 ∬
1

4𝑗
𝐽(𝒓′)𝐻0

(2)

Ω
(𝑘0𝝆)𝑑𝒓′ 

In fact (4.8) is not applicable for MWT application as zero division could 

appear at the background medium and the solution is only valid at 𝑂𝐼. 

Nevertheless, the location of 𝒪 is determined but the 𝑂𝐼 is unknown, though 

the 𝑂𝐼 is immersed at embedded background medium in 𝒪, where 𝜒(𝒓) = 0. 

To overcome the limitation, (4.8) is multiplied by the contrast (𝜒). 

Furthermore, the domain equation and data equation with respect to [𝑱𝑛′]𝑡can be 

stated as: 

 [diag(𝝌𝒏′)][𝑬n
𝑖 ]

𝑡
= [[diag(𝝌𝒏′)][𝒁𝑛𝑛′] −

𝑗𝜂0

𝑘0
𝑰] [𝑱𝑛′]𝑡 

 [𝑬𝑚
𝑠 ]𝑡 = −[𝒁𝑚𝑛′]𝑡[𝑱𝑛′]𝑡 

This two pairs of equations (4.6)(4.7) and (4.10)(4.11) are used to 

explain the forward and the inverse scattering problems. Numerically, they 

are equivalent but they are stated in two different variables; so, whenever both 

variables in the pair of the functions are updated simultaneously, the stability 

and the accuracy of the solution could be different.  
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The forward problem is used to calculate the scattered fields on the 

observation points. The study of forward problem has been discussed in the 

previous chapter. Therefore, they are no longer discussed in this chapter. 

Meanwhile, the inverse problem is used to reconstruct the image of the 

microwave tomography which is in term of dielectric contrast distribution in 

domain  𝒪. The inverse problem is constructed using a pair of domain equation 

and data equation. The problem is presented in the form of a set of nonlinear 

system of the objective functional and the least squared of the nonlinear cost-

functional.  

4.4 Microwave Tomography Inverse Problem 

4.4.1 Objective-function of microwave inverse problem 

The MWT-objective function in nonlinear system is stated at 𝒟, wherethe 

function is the difference of predicted scattered fields and measurement fields. 

The predicted field is symbolized as a function of dielectric contrast as 

 [𝑬𝑚
𝑠 ]𝑡([𝝌]) = [𝓔𝑚

𝒔 ]𝑡 

where[𝑬𝑚
𝑠 ]𝑡([𝝌]) is the calculated electric field and [𝓔𝑚

𝒔 ]𝑡 is the defined field 

or measured field. If the approximated[𝝌]is close to the exact solution, then, 

there is a difference between [𝑬𝑚
𝑠 ]𝑡([𝝌]) and [𝓔𝑚

𝒔 ]𝑡 which is assigned as the 

MWT-objective function 

Microwave tomography objective function 𝑭𝑡([𝝌]) 

 𝑭𝑡([𝝌]) = [𝑬𝑚
𝑠 ]𝑡([𝝌]) − [𝓔𝑚

𝒔 ]𝑡 

Assuming that at 𝑡 = 1, the scattered fields are measured at 𝑀1 observation 

points which are placed in 𝒟 outside 𝒪. The entries of the objective function 

are 
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 𝑭𝑡=1([𝝌]) = [𝑬𝑚
𝑠 ]𝑡([𝝌]) − [𝓔𝑚

𝑠 ]𝑡=1 = [

𝐸1
𝑠

𝐸2
𝑠

⋮
𝐸M1

𝑠

]

𝑡=1

− [

ℰ1
𝑠

ℰ2
𝑠

⋮
ℰ𝑀1

𝑠

]

𝑡=1

 

Using pairs of the domain (4.6) and data equations (4.7), [𝑬𝑚
𝑠 ]([𝝌]) can be 

stated as 

 [𝑬𝑚
𝑠 ]𝑡([𝝌]) = −[𝒁𝑚𝑛′]𝑡[diag(𝝌𝒏′)][𝑰 + [𝒁𝑛𝑛′][diag(𝝌𝒏′)]]

−1
[𝑬𝑛

𝑖  ]𝑡

The MWT-objective function in multiple projection microwave 

tomography system comprises𝑡 = 1,2 . . 𝑇 set of nonlinear functions. It is 

defined as a column vector   

 𝑭 = [

𝑭𝑡=1([𝝌])

𝑭𝑡=2([𝝌])
⋮

𝑭𝑡=𝑇([𝝌])

] 

Then, the MWT-inverse problem in term of objective function (𝓕([𝝌]))is 

stated as a normalized norm of MWT-objective function with respect to the 

measured data 

 𝓕([𝝌]) =
‖𝑭‖𝒟

2

‖𝓔𝑠‖𝒟
2  

4.4.2 The Least-Squares data misfit cost-functional of microwave 

tomography 

The microwave inverse problem can be formulated as the optimization 

problem over the contrast [𝝌]. The problem minimizes a MWT cost-function 

which is  usually presented in term of least squares data misfit of MWT, that 

can be written as: 

 𝓒𝑡
𝐴([𝝌]) =

‖𝓡𝑡([𝝌])‖𝒟
2

‖[𝓔𝑚
𝑠 ]𝑡‖𝒟

2  

where the norm and the inner product on 𝒟is defined as : 

 ‖𝒂‖𝒟 = 〈𝒂, 𝒂〉
𝒟

1
2  
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〈𝒂, 𝒂〉𝒟 = ∫ 𝒂∗
𝒟

(𝑟)𝒂(𝑟)𝑑𝑟

‖𝒂‖𝒟
2 = 〈𝒂, 𝒂〉𝒟 = [

𝑎𝑇
1

𝑎𝑇
2

⋮
𝑎𝑇

𝑁

] [𝑎1 𝑎2 … 𝑎𝑁]

where𝑎𝑇is transpose of 𝑎 

for multiple illumination 𝑡 = 1,2 …  𝑇 the cost function is defined as 

 𝓒𝑨([𝝌]) =

[
 
 
 
𝓒1

𝐴([𝝌])

𝓒2
𝐴([𝝌])

⋮
𝓒𝑇

𝐴([𝝌])]
 
 
 
 

where𝓒𝑨is a 𝑇 × 1 matrix. 

The MWT cost function can be also stated in a single equation by summing 

the cost for all projections.   

 𝓒𝑡
𝐵([𝝌]) =

∑ ‖𝓡𝑡([𝝌])‖𝒟
2𝑇

𝑡=1

∑ ‖[𝓔𝑚
𝑠 ]𝑡‖𝒟

2𝑇
𝑡=1

 

where𝓒𝑩is a scalar, which can be defined for 𝑡 = 1,2 …  𝑇 as 

 𝓒𝑩([𝝌]) = 𝓒1
𝐵([𝝌]) + 𝓒2

𝐵([𝝌]) + ⋯+ 𝓒𝑇
𝐵([𝝌]) 

The residual error 𝓡𝑡([𝝌]) inside the cost-function is defined as the difference 

between the approximation of scattered fields and the measured data in the 

observation points at 𝒟. 

To illustrate the behavior of both problems: MWT-inverse problem in 

objective function formulation (𝓕([𝝌])) and cost function of MWT-inverse 

problem𝓒𝑨([𝝌]) and 𝓒𝑩([𝝌]), is applied in a contrast inversion problem.  

4.5 The solution of objective-function MWT inverse 

problem of contrast inversion 

To describe the solution, the nonlinear MWT inverse problem is 

presented in an abstract function. Suppose that an objective function 𝑓 in 
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convex optimization problem is differentiable so the iteration, ∀𝜒𝑘 ∈ 𝒪, 

follows optimality criterion  

 𝑓(𝜒𝑘+1) ≥ 𝑓(𝜒𝑘) + ∇𝑓(𝜒𝑘) ∙ 𝓈𝑘 

The 𝜒𝑘 is optimal if and only if 𝜒 ∈ 𝒪 and 

 ∇𝑓(𝜒𝑘) ∙ 𝓈𝑘 ≥ 0 

Following the criterion, the function is solved according to iterative Newton 

scheme 

 ∇𝑓(𝜒𝑘) ∙ 𝓈𝑘 = −𝑓(𝜒𝑘) 

where the iterative scheme needs derivative of objective function.  

Based on the Newton iterative scheme, the derivative of (4.13) is 

needed to construct the Newton scheme. It can be defined by applying the 

total deferential to both of the domain and data functions, such that,   

 0 = ∆[𝑬𝑛]𝑡 + [𝒁𝑛𝑛′]∆([diag(𝝌𝒏′)][𝑬𝑛′]𝑡)  

⇒ ∆[𝑬𝑛]𝑡 = −[𝒁𝑛𝑛′]∆([diag(𝝌𝒏′)][𝑬𝑛′]𝑡)

 ∆[𝑬𝑚
𝑠 ]𝑡 = −[𝒁𝑚𝑛′]𝑡∆([diag(𝝌𝒏′)][𝑬𝑛′]𝑡) 

The variation of the total electric field at (4.26) and (4.27) can be eliminated 

by introducing the identity of total deferential as 

 ∆([𝝌𝒏′]diag[𝑬𝑛′]𝑡) = [diag(𝝌𝒏′)](∆[𝑬𝑛′]𝑡) + (∆[diag(𝝌𝒏′)])[𝑬𝑛′]𝑡 

Substituting ∆[𝑬𝑛′]𝑡 of (4.27) into (4.28)  

∆([diag(𝝌𝒏′)][𝑬𝑛′]𝑡) = 

 −[diag(𝝌𝒏′)][𝒁𝑛𝑛′]∆([diag(𝝌𝒏′)][𝑬𝑛′]𝑡)(+∆[diag(𝝌𝒏′)])[𝑬𝑛′]𝑡 

 ⇒ [𝑰 + [diag(𝝌𝒏′)][𝒁𝑛𝑛′]]∆([diag(𝝌𝒏′)][𝑬𝑛′]𝑡) = (∆[diag(𝝌𝒏′)])[𝑬𝑛′]𝑡

Defining the equality of diagonal matrix and column vector multiplication as 

 [diag(𝒂)][𝒃] = [(𝒂𝒃)] = [(𝒃𝒂)] = [diag(𝒃)][𝒂] 

where 



88 

 [
𝑎1 0 0
0 𝑎2 0
0 0 𝑎3

] [

𝑏1

𝑏2

𝑏3

] = [

𝑎1𝑏1

𝑎2𝑏2

𝑎3𝑏3

] = [

𝑏1𝑎1

𝑏2𝑎2

𝑏3𝑎3

] = [

𝑏1 0 0
0 𝑏2 0
0 0 𝑏3

] [

𝑎1

𝑎2

𝑎3

] 

Using the definition of a small difference, the inner multiplication term in 

(4.29) is rearranged as  

 [diag(𝝌𝒏′)][𝑬𝑛′]𝑡 = [diag(𝑬𝑛′)]𝑡∆[𝝌𝒏′] 

Substituting (4.31) into (3.29) 

 ⇒ ∆([diag(𝝌𝒏′)][𝑬𝑛′
𝑡 ]𝑡) = [𝑰 + [diag(𝝌𝒏′)][𝒁𝑛𝑛′]]

−𝟏
[diag(𝑬𝑛′)]𝑡∆[𝝌𝒏′]

Substituting (4.32) into (3.27) 

 ∆[𝑬𝑚
𝑠 ]𝑡 = −[𝒁𝑚𝑛′]𝑡[𝑰 + [diag(𝝌𝒏′)][𝒁𝑛𝑛′]]

−𝟏
[diag(𝑬𝑛′)]𝑡∆[𝝌𝒏′] 

Assuming that the objective functional is the difference between estimated 

and measured scattered field, that is  

 ∆𝐸𝑡
𝑠 =

𝑑ℱ𝑡(𝜒𝑘)

𝑑[𝜒]
∆𝜒 = 𝐹𝑡(𝜒) = 𝐸𝑡(𝜒) − ℰ𝑡

𝑠 

then, the derivative of 𝑭𝑡(𝜒) can be defined as 


𝑭𝑡([𝝌])

𝑑[𝝌]
= −[𝒁𝑚𝑛′]𝑡[𝑰 + [diag(𝝌𝒏′)][𝒁𝑛𝑛′]]

−𝟏
[diag(𝑬𝑛′)]𝑡 

The iterative scheme of the Newton method for all projections can be stated as 

 [𝑫𝑘] ∙ [𝜹𝝌]𝑘 = −𝑭𝑘([𝝌]𝑘) 

where 

[𝑫𝑘] =

[
 
 
 
 
 
𝑭1([𝝌]𝑘)

𝑑[𝝌]

𝑭2([𝝌]𝑘)

𝑑[𝝌]

⋮
𝑭𝑇([𝝌]𝑘)

𝑑[𝝌] ]
 
 
 
 
 

𝑭𝑘([𝝌]𝑘) = [

[𝑬𝑚
𝑠 ]1 − [𝓔𝑚

𝒔 ]1
[𝑬𝑚

𝑠 ]2 − [𝓔𝑚
𝒔 ]2

⋮
[𝑬𝑚

𝑠 ]𝑇 − [𝓔𝑚
𝒔 ]𝑇

]


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4.6 The solution of least square cost function of 

contrast inversion 

The cost-function (𝓒) of contrast inversion is presented in two different least 

squared problems. The (𝓒)is a composition of the data and object functions in 

manner of contrast ([𝝌]) variable.  

 𝓒𝑡
𝐴([𝝌]) =

‖[−[𝒁
𝑚𝑛′]

𝑡
[diag(𝝌𝒏′)][𝑰+[𝒁

𝑛𝑛′][diag(𝝌𝒏′)]]
−1

[𝑬𝑛
𝑖  ]𝑡]−[𝓔𝑚

𝑠 ]𝑡‖
𝒟

2

‖[𝓔𝑚
𝑠 ]𝑡‖𝒟

2  

 𝓒𝑡
𝐵([𝝌]) =

∑ ‖[−[𝒁
𝑚𝑛′]

𝑡
[diag(𝝌𝒏′)][𝑰+[𝒁

𝑛𝑛′][diag(𝝌𝒏′)]]
−1

[𝑬𝑛
𝑖  ]𝑡]−[𝓔𝑚

𝑠 ]𝑡‖
𝒟

2
𝑇
𝑡=1

∑ ‖[𝓔𝑚
𝑠 ]𝑡‖𝒟

2𝑇
𝑡=1

 

The solution of the problems are done by minimizing the cost-function, 

𝑚𝑖𝑛𝓒([𝝌]), where 𝓒:𝐑𝑛 → 𝐑is continuously differentiable. Assuming that the 

cost-function is solvable, then, there exists an optimal point [𝝌]∗. The optimal 

value lies at 𝓒([𝝌]) = 𝓒([𝝌]∗). Since 𝒞 is quadratic and differentiable, a 

necessary and sufficient condition for a point  [𝝌]∗ to be optimal is 

 ∇𝓒([𝝌]∗) = ∇𝓒([𝝌]) = 0  

Minimizing the least-squared problem 𝓒([𝝌]) is the same as finding the 

solution of (4.39). Assigning the cost-function as the norm of the residual 

function, the differential of the cost function ∇𝓒([𝝌]) can be defined as 

 ∇𝒞𝑡([𝝌]) =
1

‖[𝓔𝑚
𝑠 ]𝑡‖𝒟

2

𝑑ℛ𝑡([𝝌]∗,[𝝌])̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑑[𝝌]∗
 

The problem must be solved by an iterative algorithm due to the high non-

linearity of the functions. The iterative Newton can be used to solve the 

problems. For all projections, the properties of the schemes can be stated as 

 

Newton properties for (𝓒𝐴([𝝌]))  

 𝑫𝑘 = [

∇𝓒1([𝝌]𝑘)

∇𝓒2([𝝌]𝑘)
⋮

∇𝓒𝑇([𝝌]𝑘)

] 
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 𝑭𝑘([𝝌]𝑘) =

[
 
 
 
𝓒1

𝐴([𝝌]𝑘)

𝓒2
𝐴([𝝌]𝑘)

⋮
𝓒𝑇

𝐴([𝝌]𝑘)]
 
 
 
 

Newton properties for (𝓒𝐵([𝝌]))  

 𝑫𝑘 = ∇𝓒1([𝝌]𝑘) + ∇𝓒2([𝝌]𝑘) + ⋯+ ∇𝓒𝑇([𝝌]𝑘) 

 𝑭𝑘([𝝌]𝑘) = 𝓒𝐵([𝝌]) 

The objective and cost functional of CSI is tested in a numerical experiment. 

The results are discussed in the following section. 

4.7 Numerical experiment of contrast inversion 

MWT-inverse problem is applied to reconstruct the dielectric value of four 

cylindrical dielectric objects. The parameter value of OI is 𝜀𝑟 = 4. The 

diameter of cylinder is 1 cm. The OI is placed randomly inside the object 

domain. The object domain is immersed in background media with 𝜀𝑏𝑘 = 1. 

Sixteen antennas are placed around the object domain with radius of 7.5 cm. 

From each antenna, 4.5 GHz microwave signals illuminate data domain 

sequentially afterwards, the scattered fields at data domain are measured at 8 

Rx antennas.  

The MWT-inverse problem in three different formulations 𝓕([𝝌]),

𝓒𝑨([𝝌]) and 𝓒𝑩([𝝌]) are applied in multiple cylindrical OI. Noiseless 

numerical data is developed using forward problem. GNI reconstructs the 

data; for evaluation purposes, the process is terminated after 40 iterations. The 

characteristics of the iterations are shown in Figure 4-2 and the reconstructed 

images are presented in Figure 4-3. 
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Figure 4-2: The parameter of the solutions of MWT inverse 

problem in contrast formulation. 
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Figure 4-3: Images of four cylindrical cross-section objects. The 

images are the solution of MWT contrast inversion problem 
GNI. The MWT inverse problems are presented in three 

different MWT functions. 

It can be seen in Figure 4-3 that the relative errors of the problems for 

all formulations are decreasing toward zero level. The iteration converges and 

the output value of MWT-inverse problem functions reaches the tolerance of 

the functional. If the tolerance of the functional is set similar for all statements 

which is 𝑭𝑘([𝝌]𝑘) ≤ (ϵ = √𝑒); thus, it can be seen that the tolerance is 

achieved relatively on the same iteration for all problem formulations. 

Furthermore, the MWT-inverse problem with MWT-objective function 

formulation works better than the least square function formulation. The 

relative error of the MWT problem in MWT-objective function is less than 10-

6 while the other two formulations of relative errors are more than 10-5. 

The derivative of least squared cost-functional falls to zero, meaning 

that the solution of the cost-functional is achieved as, 𝓒𝐴([𝝌]) ≤ ϵ ,  where ϵ is 

a small tolerance number. The direction of iteration reduces along the 
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iterations. Thus, the error relative of the scattered fields dramatically falls for 

first few steps; then, it is followed by moderate decrease in errors of scattered 

graph 

The reconstructed images are presented in Figure 4-3. It can be seen 

that the solution of MWT-inverse problem which is presented using MWT-

objective function is better in image quality than that in the solution of MWT 

least square cost-function. The location, the number and the shape of the 

object are clearly distinguished from the background. The quantity of the 

contrast can be defined. On the other hand, the images reconstructed using 

inverse problem of cost functional solution is blurred. Furthermore, the 

quantity of the contrast is affected by the location of the object.  

4.8 Conclusions 

The MWT-inverse problem is formulated as normalized norm of objective 

function. This is an alternative MWT-inverse problem formulation of least 

squared MWT cost functions. The MWT objective function states the MWT 

inverse problem as the difference of estimated and measured data. This 

function presents the problem in sets of complex functions. Thus, the high 

non-linearity of MWT system is clearly exposed.  It can be seen that the 

MWT-inverse problem in objective-function formulation is better than the 

least squared cost function formulation.  

Numerical results show that the MWT-inverse problem can be 

presented in MWT objective function norm. The parameters of the 

reconstruction show that the objective function norm and MWT cost function 

decrease toward zero point. All of the functions reach the tolerance. The stop 

rule base on the value of MWT-inverse problem output function is satisfied. 

Meanwhile, the norm of the derivative of MWT-inverse problem with MWT-

objective function approaches a constant point, while the norm of derivative 

of MWT least squared cost function fall down toward zero. The final 
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destination of the derivative is different, however, they move toward a specific 

point.  

The numerical data is reconstructed using GNI. The solution of the 

reconstruction is the value of the dielectric contrast on each cell of OI. The 

plot of dielectric contrast distribution represents the image of OI cross section. 

The quality of the images of OI from Born approximation problem is 

relatively similar for all MWT-inverse problem formulations. In contrast, the 

presentation of the images of contrast inversion shows that the MWT-

objective function is better than the least squared cost function for MWT-

inverse problem. The detail of the OI is clearly presented using MWT-

objective function formulation while the least squared cost function fails to 

produce sharp images. 
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An iterative Newton method to solve an MWT inverse problem is 

presented. The problem which is in the form of a normalized norm of 

the MWT objective-function is linearized by filtering and transforming 

the nonlinear MWT inverse problem into a linear system which is 

assigned as the Newton equation. In this study Levenberg Marquardt 

(LM) is used to linearize the problem and methods based on pseudo 

inverse are applied to compute the solution of the linear ill posed 

problem. The stopping rule for the method is defined and the choice of 

regularization is studied.  The stability of the solution is evaluated in a 

numerical experiment and tested using noiseless and noisy data.  

5.1 Introduction 

Let us define the MWT-objective function as a nonlinear abstract function  

 𝐹([𝝌]) = 𝒃 

and MWT-inverse problem is an optimization problem, which is defined as 

minimization of normalized norm of (5.1)  

5  

Linearizing MWT 
Inverse Problem 
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 𝓕([𝝌]) = min𝝌
1

‖𝓔𝑠‖𝒟
2 ‖𝐹([𝝌])‖𝒟

2  

where𝐹([𝝌])is the MWT-objective function and ([𝝌]) is the dielectric 

contrast of material in the object domain(𝒪), which is representing the image 

of Object of Interest (OI). The measured term 𝒃 is the difference between 

estimated (𝑬𝑠) and measured scattered fields ([𝓔𝑠]) at data domain(𝒟). Once 

the unknown variable ([𝝌]) is determined, the scattered fields in 𝒟 can be 

calculated by solving the forward problem[𝑬𝑠] = 𝑓([𝝌])|𝒟, which is used to 

define the MWT-objective function. 

 𝐹([𝝌]) = 𝒃 = [[𝑬𝑠] − [𝓔𝑠]] 

The MWT-objective function is designed to improve the stability of the 

solution of MWT inverse problem. The function is an alternative of a cost 

function of an MWT inverse problem which is commonly presented in a least 

squared cost function. The norm formulation of MWT is a convex 

approximation problem. There is an optimal solution for cost function which 

is gained using various iterative methods, such as Newton iteration [92; 97] 

and modified gradient [67; 89; 129]. However, the approximate solution could 

be the local minima of the problem. In addition, the errors of the cost function 

may not decrease in the errors of the dielectric contrast with respect to the 

iteration. Therefore, the MWT-objective function is selected in this thesis to 

construct the MWT-inverse problem. The inverse problem is presented in a set 

of functions in a complex system in which the inner product of the norm is 

avoided. 

The nonlinear system of the MWT inverse problem is solved using a 

linearization technique. This technique has been successfully demonstrated in 

inexact Newton application [114] where the solution is gained using iterative 

linear regularization method. In this chapter, another Newton class by means 

of the LM is developed to compute the regularized solution of the MWT 

inverse problem. The linearizing scheme is done at each iteration using 

Frechet derivative and pseudo inverse regularization techniques which 

include truncated singular value decomposition, Landweber Friedman 
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iteration (LF) [130; 131; 132; 133], and Tikhonov regularization [134], to cure 

the ill-posed ness and solve the linear problem. The LF iteratively regulates 

the inversion based on the expansion of the matrix decomposition. The 

regularization depends on the index of iterations[133].  Tikhonov 

regularization is a well-known approximation solution which minimizes 

regularized functional by means of Tikhonov function, where a positive 

parameter is inserted to (5.1). The method is originally proposed by Tikhonov 

to solve linear ill-posed problem, and has been developed for solving 

nonlinear microwave inverse problems [104; 108; 135].  

The linearization technique is developed to obtain a stable solution of 

MWT inverse problem based on the iterative scheme of Gauss Newton 

Inversion (GNI) as in [93]. The iterative update of GNI is regulated by 

applying a linear filter which is the version of LM as explained in [136; 137; 

138; 139]. The stability and accuracy of the proposed method are studied 

using numerical experimental.  

5.2 Newton Iteration 

Iteratively, the MWT inverse problem can be solved using Newton’s method. 

Assuming that the objective function is solvable, where [𝝌]† and [𝝌]k are the 

solution and the estimated solution, respectively; then, the GNI scheme can 

be stated based on the Taylor’s expansion. 

The GNI to solve (5.1) is the approximation solution of the Newton 

iteration where the Taylor’s term is modeled and the remaining term is 

neglected. The algorithm of the GNI can be summarized as 

 [𝝌]𝑘+1 = [𝝌]𝑘 + 𝑑𝓼𝑘 

 𝓼𝑘 = [𝜹𝝌]𝑘 = −[𝓙∗𝓙]𝑘
−1[𝓙𝑘

∗𝑭𝑘] 

Where 

𝓙is Jacobian matrix of MWT inverse problem 

𝓼𝑘is the direction of iteration at [𝝌]k, and  
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𝑑is the step size, which is defined to reduce the value of  (5.1). 

The current iteration of GNI is approximated by solving the objective-

function of MWT inverse problem. The Jacobian matrix at current iteration 

index is approximated by the Fréchet derivative of the operator 𝐹([𝝌]) as the 

𝓙𝑘cannot be defined analytically.  

Recalling 𝐹([𝝌])of MWT as a multiple projection problem where 

𝑡 = 1,2 …  𝑇 as 

 𝐹([𝝌]) = [

𝐹1([𝝌])

𝐹2([𝝌])
⋮

𝐹𝑇([𝝌])

] 

then the GNI iteration is defined as 

 [𝑫∗𝑫]𝑘𝓼𝑘 = −[𝑫𝑘
∗𝑭𝑘] 

where 𝑫 is multi projection symbol for the Jacobian matrix. 

 [𝑫]𝑘 =

[
 
 
 
 
 
𝐹1([𝝌]𝑘)

𝑑[𝝌]

𝐹2([𝝌]𝑘)

𝑑[𝝌]

⋮
𝐹𝑇([𝝌]𝑘)

𝑑[𝝌] ]
 
 
 
 
 

 

and the MWT objective function 𝑭𝑘([𝝌]𝑘) is defined as 

 𝑭𝑘([𝝌]𝑘) =

[
 
 
 
[𝑬𝑚

𝑠 ]1,𝑘 − [𝓔𝑚
𝒔 ]1

[𝑬𝑚
𝑠 ]2,𝑘 − [𝓔𝑚

𝒔 ]2
⋮

[𝑬𝑚
𝑠 ]𝑇,𝑘 − [𝓔𝑚

𝒔 ]𝑇]
 
 
 

 

The solution of MWT inverse problem is updated accordingly 

 [𝝌]𝑘+1 = [𝝌]𝑘 − [𝑫∗𝑫]𝑘
−1
[𝑫𝑘

∗𝑭𝑘] 



The Newton iteration (5.7) involves the solution of linear ill posed 

system. There are several techniques to find the regularized solution of the ill 

posed, which are explained in [140; 141; 142; 143; 144; 145]. In this chapter, a 



99 

regularized solution is applied to calculate the search direction of the GNI. 

However, the problem is highly non-linear, local minima could be hard to be 

avoided. Thus, an alternative solution based on the linearization of MWT 

inverse problems is studied. The application of linearization promotes more 

flexible solutions of the inverse problem. 

5.3 Linear filtering technique for non-linear 
Microwave Inverse Problem 

5.3.1 Linear ill posed problem of microwave tomography inverse 

problem 

The iterative scheme is developed to solve (5.9) by applying the linear filtering 

technique to the equation. Parametric approximation as described in [140], is 

introduced to replace the inverse of the Hessian of the GNI as  

 [𝝍(([𝑳]𝑘), 𝛼𝑘)]
−1

𝓼𝑘 = −[𝑫𝑘
∗𝑭𝑘] 

where 

[𝑳]𝑘 = [𝑫∗𝑫]𝑘

The function 𝝍([𝑳], 𝛼) is the inner product of spectral value ([𝑫∗𝑫]) and a 

positive real number(𝛼). Filter (𝝍) estimates the inverse of Hessian[𝑫∗𝑫]−1. 

For all regulator parameters 𝛼, the limit of regulator towards zero value is 

equivalent to the inverse of[𝑳]. However, the inverse cannot be defined. It is 

estimated. The functional filter can be stated in an abstract way as: 

 for all 𝑳, lim
𝛼→0

𝝍([𝑳], 𝛼) =
1

𝑳
 

⇒ lim𝛼→0 𝝍([𝑳], 𝛼𝑘) = [𝑳]−1

The approximation of [𝑳]−1 using 𝜓([𝑳], 𝛼𝑘) should be taken into the 

consideration to limit the solution inside the intended domain. The iterative 

scheme of GNI to solve MWT inverse problem can now be stated as 
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 [𝝌]𝑘+1 = [𝝌]𝑘 − 𝝍([𝑳], 𝛼𝑘)[𝑫𝑘
∗𝑭𝑘] 

Assuming that the parametric functional  𝝍([𝑳], 𝛼) is a good approximation 

of the inverse of the Hessian, then, the iterative GNI scheme for solving 

MWT inverse problem in the linear system can be illustrated in Algorithm 

5-1. It is applied to calculate the search direction of the Newton step, where 

the inputs of the algorithm are the measured scattered fields in data domain 

and known incident fields in the object domain. 

Algorithm 5-1 GNI: Gauss Newton Inversion for MWT Inverse Problem 

Function GNI[𝓔𝑚𝑡
𝒔 ]𝑡=1,2…𝑇 , [𝑬𝑖]𝑡=1,2…𝑇) 

Set  :  [𝝌]0 = 0;  𝑘 = 0; 𝑆𝑅𝑘 = 𝑓𝑎𝑙𝑠𝑒 

  𝑭0([𝝌]0) = [𝓔𝑚𝑡
𝒔 ]𝑡=1,2…𝑇 

Do while 𝑘 < 𝑚𝑎𝑥 _𝑘&&𝑛𝑜𝑡(𝑆𝑅𝑘) 

 [𝑫]𝑘 = [
𝓕𝑡([𝝌]𝑘)

𝑑[𝝌]
]
𝑡=1,2…𝑇

 

 𝓼𝑘 = −𝝍([𝑳], 𝛼𝑘)[𝑫𝑘
∗𝑭𝑘] 

 𝑑𝑘 = min𝑑‖𝓕([𝝌]𝑘 + 𝑑𝑘𝓼𝑘) − [𝓔𝑠]‖2 

 [𝝌]𝑘+1 = [𝝌]𝑘 + 𝑑𝑘 ∙ 𝓼𝑘 

 𝑘 = 𝑘 + 1 

 𝑭𝑘 = 𝑬𝒔([𝝌]) − [𝓔𝑠] 

 𝑆𝑅𝑘 = 𝑠𝑡𝑜𝑝𝑟𝑢𝑙𝑒([𝝌]𝑘) 

End do while 

Return ([𝝌]) 

 

The linearization starts with defining the initial guess of contrast [𝝌]0 

and MWT objective-function 𝑭0.  The linear system is defined as a normal 

equation of an MWT-inverse problem. The regulator parameter𝛼𝑘 is used to 

compute regularized solution of the MWT linear ill posed problem. Various 

methods can be used as presented in the following section. 

5.3.2 Linearizing by means of Levenberg Marquardt method 

Introducing a parametric function as 
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 𝜓([𝑳], 𝛼) =
1

𝛼+[𝑳]
 

Functional norm of filtered 𝜓is stated as 

 𝜓([𝑳], 𝛼) =
1

‖
[𝑫]

√𝛼
‖
2 

Regulator parameter (𝛼) is a real positive number.  

The iterative solution of the MWT inverse problem is derived using a 

parametric filter. The parametric functional (5.16) acts as the linearizing filter 

of the nonlinear objective-function. The iterative solution in the regularized 

linear system can be defined as  

 [𝝌]𝑘+1 = [𝝌]𝑘 − [
1

‖
[𝑫]𝑘

√𝛼
‖
2] [𝑫𝑘

∗𝑭𝑘] 

This algorithm is well known as Levenberg and Marquardt method (LM). The 

LM is convergent and stable if the 𝛼𝑘 is selected following  

 ‖𝑭𝑘 − [𝑫]𝑘[[𝝌]𝑘+1 − [𝝌]𝑘]‖ ≤ 𝜖‖𝑭𝑘‖ 

This has been proven by Hanke[144].   

Assuming that the direction, 𝓼𝑘 = [𝝌]𝑘+1 − [𝝌]𝑘, of LM iteration 

equals to the update value of the solution of the linear ill-posed problem of 

vector 𝓼 .  The last term of LM scheme can be written as  

 [𝑳𝛼]𝓼 = [𝑫𝑘
∗𝑭𝑘] 

The inverse of the regularized normal equation[𝑳𝛼]−1 represents linearized 

operator 𝝍([𝑳], 𝛼). The variable 𝓼 is unknown 𝑁 × 1 vector which is the 

direction of iteration.  Basically, (5.18) is a regularized normal equation. It is 

similar to the regularized norm approximation problem. 

 min𝓼‖[𝑫]𝓼 − 𝑭‖2
2 + 𝛼‖𝓼‖2

2 

This Tikhonov regularization problem can be expressed as 

 Φ(𝓼) = 𝓼∗[𝑫∗𝑫]𝓼 − 2𝑭∗[𝑫]𝓼 + 𝑭∗𝑭 + 𝛼𝓼∗𝓼 
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The vector 𝓼 minimizes Φif and only if the derivative of (5.20) equals to zero, 

where the optimum point takes place 

 ∇Φ(𝓼) = 2[𝑫∗𝑫]𝓼 − 2[[𝑫]∗𝑭] + 2𝛼𝓼 

If 𝓈 satisfies the minimization, then, regularized normal equation can be 

expressed as 

 ([𝑫∗𝑫] + 𝛼𝐼)𝓼 = [[𝑫]∗𝑭] 

The regulator is a small positive number𝛼 > 0, therefore, the regularization 

does not need the assumption of the rank of matrix  [𝑫].  

Assigning matrix [𝑳𝛼] represents regularized ([𝑫∗𝑫] + 𝛼𝑰),  the 

solution of (5.22) can be stated as 

 𝓼 = [𝑳𝛼]−1[[𝑫]∗𝑭] 

However, one step solution usually does not give a good result. Alternatively, 

an iterative solution is proposed. The iterative method offers a stable solution. 

Accordingly, it will decrease the sensitivity of the inverse problem, and retain 

the LM method to produce the expected solution of the MWT inverse 

problem. At each sequence, the objective-function and its derivative are 

calculated with respect to the approximated contrast and defined incident 

field. The system is linearized and transformed into a linear ill posed problem. 

The linear ill-posed is regulated and solved.  

5.4 Numerical experiment 

 A numerical experiment is aimed to investigate the LM algorithm to solve 

nonlinear ill posedness of the MWT inverse problem in the sense of linear ill 

posed problem solution.  
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5.4.1 Simulated data 

The measured field is generated by setting the target OI and calculating the 

scattered fields at the data domain due to the  incident field which illuminates 

the object domain. Empirically, measured data always contain noise. It is 

necessary to find the way to work with noise. The noise is generated using a 

random number in which the signal to noise ratio is defined as  

 𝑆𝑁𝑅𝑑𝐵 = 10log10
‖ℰ𝑡

𝑠‖
2

‖𝑁𝑡
𝑠‖

2 

The data which belong to the complex number, are measured in data domain. 

The noise, therefore, is introduced in a  complex system, in which the ratio of 

real and imaginary parts of the complex number are calculated separately to 

prevent rational over each term of the data component. The magnitude of the 

signal with and without noise is presented in Figure 5-1. 

5.4.1  Object domain and object of interest 

The object domain is defined as a square area. It is divided into 50 × 50 cells 

equal in size. The number of cell determines the accuracy and computational 

time. The finer the grid, which means smaller cells, the more accurate the 

simulation is. However, higher cell number produces large size of unknown 

vectors. This makes the solution more unstable. The cost of computing the 

decomposition significantly increases and the higher frequency of singular 

values, in which the values are very small, rises in number.  The cell size can 

be determined according to the maximum size of the cell that supports the 

accuracy of the direct scattering problem. 

The number of cells corresponds to the size of the cells. It is 

recommended that the minimum number of the cells be 100 cells per square 

wave length inside object of interest. 

 𝑁𝑚𝑖𝑛 =
100 𝑐𝑒𝑙𝑙𝑠

𝜆𝜀𝑟
2  
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Figure 5-1: The simulation of measured scattered fields at data 

domain without and with noise of various 𝑆𝑁𝑅𝑑𝐵 
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Figure 5-2: The 𝑥 − 𝑦 plane distribution and 𝑦 = 0 cross section 

of object of interest which is immersed in the object domain. 

Table 5-1: parameter of the simulated system for the simple test 

Parameter Value 

Diameter of Object Domain (𝓞) 9.5 𝑐𝑚 

Diameter of Data Domain (𝓓) 13.0 𝑐𝑚 

Transmitting Antenna 𝑻𝒙 16 𝑇𝑥 

Receiving Antenna 𝑹𝒙 8 𝑅𝑥 each illumination 

Number of cells 50 × 50 = 2500 

Object of interest 1 + (𝜀𝑟 − 1)𝑐𝑜𝑠2(𝜌) 

Radius of 𝑶𝑰 
𝜋√𝑥2 + 𝑦2

2𝑟𝑎
 

Frequency 4.5 GHz 

 

The wave length inside the dielectric object is determined using𝜆𝜀𝑟
= 𝜆0/√𝜀𝑟

2 . 

The object of interest is constructed by the distribution of the dielectric 

material in which the maximum dielectric contrast is 3 at 4.5 GHz working 

frequency. Thus, the wave length of the microwave signal at the dielectric 

material is 3.85 𝑐𝑚 and the recommended minimum cell mesh for each 

15 𝑐𝑚2 is 100 cells.  The accuracy of the solution of the direct scattering 

problem depends on the position of the receiving antenna with respect to the 

transmitting antenna. The previous chapter shows that the minimum cell 

number should be larger than the recommended size at the points close to the 
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transmission antenna. The size of the object domain is 90.25 𝑐𝑚2. It is 

divided into 2500 𝑐𝑒𝑙𝑙𝑠, which is more than 4 times of the minimum 

recommendation.  

The measurement set is placed in the background medium which has 

the dielectric permittivity contrast of 1 as well as the background medium of 

the object domain. A small object of interest is placed at the center of the 

domain. It is constructed using 1 + (𝜀𝑟 − 1)𝑐𝑜𝑠2(𝜌) function, where 𝜌 is the 

radius of the object which is limited at (𝜋

2
,0). The cross section of the object at 

𝑦 = 0 is presented in the right side of the figure. It can be seen that  the peak 

of the object of interest is 3 which is the maximum contrast of the object. The 

parameter of Object domain and the 𝑂𝐼 is summarized in Table 5-1.   

 

5.4.2 Error definition 

The solution of the MWT inverse problem is done by minimizing the 

objective function. The function produces a complex vector. To evaluate the 

descent direction of the MWT objective function, error is defined using 

normalized an MWT objective function norm (5.2). 

 𝐹𝑒𝑟𝑟([𝝌]) = √
‖𝐹([𝝌])‖𝒟

2

‖[𝓔𝑠]‖2
 

The initial guess of the contrast is set equal to the background medium. The 

functional error will be 100% relative to the measured scattered fields.  

The dielectric contrast of the 𝑂𝐼is presented in a complex number. 

However, the object target is defined as a real number where the imaginary 

part of the contrast is defined as zero. The real part of the dielectric of the 𝑂𝐼 

is bigger than the background. If the result of reconstruction is less than 1, 

then, it is assigned as the background; and the real and imaginary parts of the 

contrast are set as 1 and 0, respectively.   The error of the reconstructed image 

is defined as the relative error of the contrast.  
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 𝝌𝑒𝑟𝑟 = √
‖[𝝌]𝑒𝑠𝑡−[𝝌]𝑡𝑎𝑟𝑔𝑒𝑡‖

2

‖[𝝌]𝑡𝑎𝑟𝑔𝑒𝑡‖
2  

The norm used as the contrast is a complex number. The imaginary part of 

the reconstructed image contributes relative errors to the solution. 

The iterative solution is updated using the direction and the size of the 

steps. The direction is calculated using the LM method. To analyze the 

change in the direction, norm of the direction is defined as  

 𝑛𝑜𝑟𝑚(𝓼𝑘) = ‖𝓼𝑘‖
2 

The direction 𝓼𝑘 is a vector with size equals to the cells of the object domain. 

It is a complex number and updates the value of the contrast of the object 

domain 

5.4.3 Numerical results 

The study of LM with linear ill posed regularization is done using OI 

defined at Figure 5-2. The study is done at noise less data. It is shown that the 

LM method can be used to reconstruct the 𝑂𝐼. Using dynamic Tikhonov 

regularization, the object can be drawn well. The detailed information can be 

rebuilt when the approximated solution closes to the exact solution. It is done 

by decreasing the regulator parameter. Nevertheless, it could not be applied 

for data with noise. At the point close to the solution, the noise could be larger 

than the information.  

The solution of the linear ill posed problems potentially amplifies the 

noise as the regulator decreases. The constant of the dynamic regulator 4.52 is 

set at 𝓇 = 0.75. The iteration starts with zero initial. The scattered field 

measured equals to the incident field at data domain. The regulator is initially 

set at 𝛼 = 0.1.  
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Figure 5-3: The parameter of the solutions of noisy MWT 

inverse problem of Linearization technique test. The 
regularization technique is Tikhonov regularization. The 

regularization is descended 

The solution gained can be used to decrease the distance between the 

initial guess and the exact solution. It can be seen in Figure 5-3 that the 

relative errors of the contrast slightly decrease at first five iterations. The big 

value of the regulator flattens the solutions. It can be seen that the revolution 

of the solution for data with noise is generally similar when the LM method 

solves the main information. The lines in Figure 5-3  decrease in line with the 

iteration index up to 40 iterations. Then, the noise starts playing the role. 
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Figure 5-4: The reconstruction of noisy data with SNR 40dB at 

four different iterations. The images resulted by LM method 
with Tikhonov regularization. The regularization parameters are 

descended. 

The noise level significantly affects the results of the regulated linear ill 

posed solutions. The value of the regulator is less than 𝛼 = 3𝑒 − 5, while the 

noise level is comparable to the objective function. It can be seen that the 

smaller SNR makes the solution easier to be unstable. The lines of relative 

error of the contrast and functional move to other domains. The iteration is 

divergence. Therefore, the iteration should be stopped at a proper iteration 

index based on the noise level introduced. 

The reconstructed images at various iterations are presented in Figure 

5-4 and Figure 5-5 for SNR = 40 dB and 50 dB. It can be seen that the 

iteration should be stopped at 60 and 70 iterations for SNR=40dB and 

SNR=50dB successively. Stopping rule should be set at the desired iterations 

index.  
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Figure 5-5: The reconstruction of noisy data with various SNR. 
The images resulted by LM method with Tikhonov 

regularization. The regularization parameters are descended. 

Iteration = 50 
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Figure 5-6: the cross section of the contrast (𝜒) distribution at 

𝑦 = 0 of the images resulted by LM when the noise is introduced 

with SNR 40.1 dB (above) and 50.3 dB (below) 

In practice, the object of interest is an unknown variable. Thus, 

detecting by analyzing the images frame per frame could be hard to do and 

computationally expensive. The stopping criteria could be defined using the 

provided parameters. One of the parameters provided is the line of the norm 

of objective function. It offers essential information of the behavior of the 

solution, in which the line of SNR=40dB starts to increase at 70 iterations 

while at 50 dB it remains flat. 

In this case the solution misses the appropriate stopping index. The 

solution starts to fluctuate as the noise is greatly amplified. As it is seen in 

-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05
0

0.5

1

1.5

2

2.5

3

3.5

x-axis (cm)

R
e

a
l 
o

f 

 

 

original object

iteration = 40

iteration = 60

iteration = 70

SNR = 40.1 dB

-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05
0

0.5

1

1.5

2

2.5

3

3.5

x-axis (cm)

R
e

a
l 
o

f 

 

 

SNR = 50.3 dB



112 

Figure 5-6, the cross section of the contrast distribution at 70 iterations of the 

LM scheme for data with SNR = 40 dB pictures the wrong object. Even by 

defining prior information that the real part of the dielectric cannot be less 

than 1, the distribution of the contrast still reflects the effect of the noise. 

While at SNR =50 dB, the peak of the object can be clearly seen and 

discriminated from the background. Filter could be applied if the prior 

knowledge of the 𝑂𝐼 is known 

5.5 Conclusion 

The MWT inverse problem is solved using the LM method. The inverse 

problem is presented in a nonlinear objective function. The nonlinear system 

is linearized and formed into a regularized linear ill posed problem. Two 

different methods to solve the linear ill posed problems are studied. Both 

methods are used based on pseudo inverse. The linear system is decomposed 

into singular values and pairs of orthonormal vectors.  

The regularization makes the solutions stable. The object can be 

reconstructed and decided from the background. The position of the object is 

the same as the original 𝑂𝐼. However, both regulator techniques fail to 

produce detail information of the object. The object is described larger than it 

should be. The intensity of the contrast is reformed below the exact solution. 

The behavior of the low pass filter of both regulator methods affects the loss of 

detailed information. The small singular values are out of calculation. It 

makes some of the information uncaptured. Therefore, detailed image cannot 

be described using these techniques.. 

The regulator parameter of Tikhonov regularization is set to be 

dynamic. At an initial scheme of the LM algorithm, the regulator is defined 

relatively large compared to the smallest singular values. Thus, the solution of 

the LM is guaranteed to be stable and moving toward the exact solution. 

Then, the regulator is gradually decreased following the power series rule. 

This is applied to accommodate the detail information which is kept at lower 
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singular values.  It has been shown that the dynamic regulator is able to 

rebuild the distribution of the dielectric contrast. The norm of the objective 

function is decreased along with the iteration and the global stopping criterion 

is achieved. 

The noise is introduced to the measured data. The LM method with 

dynamic Tikhonov regularization is used to reconstruct the distribution of 

dielectric contrast. It is seen that the global information can be reconstructed 

at various levels of noise. These are done at a lower index of iterations, where 

the regulator parameter is relatively big. The noise starts to distract the 

solution when the approximated solutions are close to the exact solution. At 

this point, the regulator is small as the objective functional is decreased. 

Therefore, the levels of noise rise and contribute to the solution. The iteration 

should be stopped before the noise covers the whole solution and turns the 

solution to the wrong directions. The stopping rule should be defined to gain 

an optimum solution. The rule can use the parameter of the iteration like the 

revolution of objective function and the norm of the Fréchet deferential. This 

rule will be further discussed in the next chapter.  
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Newton iterative by means of Inexact Newton Backtracking Method 

(INBM) has been developed to obtain stable solutions of Microwave 

Tomography inverse problems. The inverse problem is presented in 

term of a nonlinear objective function and solved iteratively by 

minimizing the relative norm of the function. The method proposed is 

applied to reconstruct numerical noisy data of lossless, lossy and 

human arm models.  The quality of the proposed method is evaluated 

by comparing the results of INBM with the results of the Lavenberg 

Marquardt method (LM). 

6.1 Introduction 

The Multiple illumination of Microwave tomography system (MWT) which is 

described in (4.3) using a pair of integral equations that describe the data and 

object equations is stated in an abstract non-linear ill posed problem. For the 

purpose of INBM application, the MWT inverse problem is written as  

6  

Iterative Methods for 

Solving Microwave 

Inverse Problem 
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 𝐹(𝒙) = 𝒃 

where (6.1) has an exact solution at 𝒙† and the exact data but indefinite 

measured data is defined as[𝓔𝑠] which makes 𝒃 = 𝐹(𝒙†) = [𝑬𝑠(𝒙†)] − [𝓔𝑠] =

0. 

In the real world, the measured data cannot be separated from noise 

levels, thus 𝒃𝑘 is undefined due to the unknown exact data and residual 

errors. The Measured data[𝓔𝑠], therefore, is assigned as𝒚𝛿which is the 

scattered field at data domain with noise (𝒚𝛿 = [𝓔𝑠] + 𝒉(𝛿)) as the exact 

scattered field (𝒚 = [𝓔𝑠]) cannot be determined. Assuming that the noise level 

𝛿 is known, the noisy data 𝒚𝛿 satisfies  

 ‖𝒚 − 𝒚𝛿‖ ≤ 𝛿 

Immersing the noise and residual error to𝒃𝑘, the perturbed 𝒃𝑘
𝜀  is defined using 

the difference of measured data and estimated data  

 𝒃𝑘
𝜀 ≔ 𝒚𝛿 − 𝑬𝑠(𝑥𝑘) 

where‖𝒃𝑘 − 𝒃𝑘
𝜀‖ ≤ 𝛿 + ‖𝑬𝑠(𝒙†, 𝒙𝑘)‖ 

The proposed algorithm is based on the Newton method applied to 

MWT inverse problems. The iterative step of the algorithm involves solving a 

Newton equation which is linearization of the nonlinear problem (6.1), where 

the equation is presented as  

 𝐹′(𝒙𝑘)𝓼𝑘 = 𝒃𝑘
𝜀  

Defining 𝑫𝑘is the derivative of multi projection 𝐹(𝒙)at 𝒙𝑘 ,then, the Newton 

equation for multi projection of the MWT inverse problems can be written as 

 𝑫𝑘𝓼𝑘 = 𝒃𝑘
𝜀  

The basic principle in solving the nonlinear MWT inverse problems using 

iterative Newton class includes inexact Newton that is the correction step of 

the solution is determined by Newton equation (6.5).  The equation is linear, 

even though the step 𝓼𝑘 is still nonlinear with respect to the objective 
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function. Beside the equation is commonly underdetermined. For this reason, 

the INBM is developed to provide a stable solution of MWT inverse 

problems.  

The INBM, an inexact Newton class, is a generalization of Newton 

method for solving a nonlinear problem like (6.1), in which at the kth 

iteration, the step 𝓼𝑘from current approximation solution 𝒙𝑘 is required to 

satisfy a condition. The step is no longer a direct regularized solution of the 

Newton equation, but an approximation of the solution which is defined in 

unspecific manner.  

To clarify the proposed algorithm, the iterative scheme of Newton 

method for solving MWT inverse problem is described.  

6.2 Iterative scheme of MWT inverse problem 

6.2.1 Regularized solution of linear problem of MWT inverse problem 

Iterative step of Newton scheme for solving (6.1) involves the computation of 

the Newton equation (6.5) that is the linearization of the MWT inverse 

problem. In the application of parametric function as discussed in chapter 5 

reveals that the general solution (𝓼𝑘)in LM satisfies 

 𝓼𝑘 = 𝜓([𝑳]𝑘, 𝛼𝑘)[[𝑫]𝑘
∗ [𝒃𝜀]𝑘] 

where[𝑳]𝑘 = [𝑫∗𝑫]𝑘, 𝑫𝑘is 𝐹′(𝒙𝑘) of multi projection MWT problem and 

[𝑫]𝑘
∗ is adjoint of 𝑫𝑘 

Several techniques have been developed to provide regularized 𝓼𝑘 with 

regularization parameter 𝛼. Three regularization techniques are described as 

follows: 

6.2.1.1 Truncated Singular Value Decomposition 

It is assumed that the operator [𝑳] is an invertible complex matrix. It is a 

squared matrix which has a singular value decomposition 
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 [𝑳] = 𝑈 Σ 𝑉𝑇 ) 

The singular value decomposition produces coupled unitary matrix 𝑈 and 𝑉 

which are 𝑈𝑇 = 𝑈−1and 𝑉𝑇 = 𝑉−1. The diagonal matrix of Σ is 𝜎𝑖where 

𝑖 = 1,2 . . 𝑁.If the column vectors of 𝑉 is 𝑣𝑖 and the column vectors of 𝑈 is 𝑢𝑖 

then, the relation can be stated as follows 

 [𝑳]𝑣𝑖 = 𝜎𝑖𝑢𝑖;  [𝑳]𝑇𝑢𝑖 = 𝜎𝑖𝑣𝑖 ) 

The solution of (12.1) is stated using the singular value decomposition as 

 𝓼𝑘 = [∑
𝑢𝑖𝑣𝑖

𝜎𝑖

𝑁
𝑖=1 ] [[𝑫]𝑘

∗ [𝒃𝜀]𝑘] 

The truncated singular value decomposition (TSVD) regularizes the ill-

posed problem by truncating the matrix([𝑳]). A small value of singular value 

(𝜎𝑖) is ignored. The ill-conditioned system is regularized as 

 [𝑳𝛼]−1 = ∑ 𝜙𝑖
𝑢𝑖𝑣𝑖

𝑠𝑖

𝑁
𝑖=1  ) 

 

Where the regularization 𝜙𝑖 is defined as 

 𝜙𝑖 = {
1;      𝑖 = 1,2. . 𝑘
0;  𝑖 = 𝑘 + 1. . 𝑁

 ) 

Equation (5.28) is known as the truncated singular value 

decomposition (TSVD) solution. It solves the linear ill-posed MWT inverse 

problem. It should be noted that the instability could occur during the 

computation of 𝓼 as some information is omitted.  

6.2.1.2 Tikhonov Regularization 

The Instability of TSVD can be decreased by applying a parametric filter 

𝜔(𝜃, 𝛼). One of the well-known filters is the Tikhonov regularization. It is 

defined as  

 𝜔(𝜎𝑖
2, 𝛼) =

𝜎𝑖
2+𝛼

𝜎𝑖
2  
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where𝛼 is the Tikhonov regularization parameter. It addresses the singular 

decomposition values as  

 𝜔(𝜃, 𝛼)𝜎𝑖 =
𝜎𝑖

2+𝛼

𝜎𝑖
 ) 

Determining 𝛼 is essential for the stability and accuracy of the 

solution. The regulator should be relatively small compared to the largest 

singular values and relatively big compared to the largest singular values 

For the largest singular values, the regulator contributes small effect 

while the smallest singular value contributes the biggest inversion values. 

 𝜔(𝜃, 𝛼)𝜎𝑖 =
𝜎𝑚𝑎𝑥

2+𝛼

𝜎𝑚𝑎𝑥
≈ 𝜎𝑚𝑎𝑥 )

The filtered singular value is approximated as 

 𝜔(𝜃, 𝛼)𝜎𝑖 =
𝜎𝑚𝑖𝑛

2+𝛼

𝜎𝑚𝑖𝑛
≈ 𝛼 

Substituting the regularization (6.13) into (6.9) results in Tikhonov regularized 

ill-posed solution as follows    

 𝓼𝑘 = [∑
𝜎𝑖

𝜎𝑖
2+𝛼

𝑁
𝑖=1 𝑢̅𝑖𝑣𝑖] [[𝑫]𝑘

∗ [𝒃𝜀]𝑘] 

6.2.1.3 Truncated Landweber method  

The solution of the linear system is regulated using the inner iterative index 

𝑙 = 1,2, …  𝐼 and guarded with positive nonzero number𝛽.  

 [𝑳𝛼]−1 = ∑ (1 − 𝛽[𝑳])𝑗𝐼−1
𝑗=0  )

The 𝑙𝑡ℎregulative iteration can be expressed in terms of the singular value 

decomposition system 

 𝓼𝑘,𝑙+1 = ∑
1−(1−𝛽𝜎𝑖

2)
𝑙

𝜎𝑖

𝑁
𝑖=1 〈[[𝑫]𝑘

∗ [𝒃𝜀]𝑘], 𝑢𝑖
𝑇〉𝑣𝑖 ) 

The 𝛽 is chosen according to the largest singular values. The 𝛽 lies between 

 0 < 𝛽 <
2

𝜎1
2 
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The techniques explained are categorized as direct regularized 

methods. The direct solution is a predictable number of steps, but it does not 

support intermediate solutions. The solution is in a specified manner 

according to the regularization technique used. The accuracy of the solution is 

dependent on the type of the regulator and the size of the parameter of the 

regularization in which both parameters are hard to be defined. 

6.2.2 Iterative improvement of linear problem 

An iterative method is an alternative method to improve the flexibility of the 

solution. It starts with an approximate answer, and then, the accuracy is 

improved iteratively, and finally stops once the estimated error is below the 

tolerance. 

Suppose a Newton equation which is a linear system with exact 

solution 𝓼𝑘
†
satisfies  

 [𝜓([𝑳]𝑘, 𝛼𝑘)]
−1𝓼𝑘

† = [[𝑫]𝑘
∗ [𝒃𝜀]𝑘] 

The approximated solution is defined as 𝓼𝑘
‡
. It is calculated iteratively, in 

which its current solution of the system is assigned as 𝓼𝑘,𝑙
‡

. Initially, it starts 

with 𝓼𝑘,0
‡

. Then, at 𝑙 = 1,2…𝐿  the residue of the solution is defined as  

 𝒓𝑙 = [[𝑫]𝑘
∗ [𝒃𝜀]𝑘] − [𝜓([𝑳]𝑘, 𝛼𝑘)]

−1𝓼𝑘,𝑙
‡
 

⇒ 𝒓𝑙 = [[𝑫]𝑘
∗ [𝒃𝜀]𝑘] − [𝑳]𝑘𝓼𝑘,𝑙

‡


A large residue is caused by an error in the current solution 

 𝓼𝑘
† = 𝓼𝑘,𝑙

‡ + 𝒆𝑙 

Multiplying (6.15) with [𝜓([𝑳]𝑘, 𝛼𝑘)]
−1 

 [𝜓([𝑳]𝑘, 𝛼𝑘)]
−1𝓼𝑘

† = [𝜓([𝑳]𝑘, 𝛼𝑘)]
−1(𝓼𝑘,𝑙

‡ + 𝒆𝑙) 

⇒ [𝜓([𝑳]𝑘, 𝛼𝑘)]
−1𝓼𝑘,𝑙

‡ = [𝜓([𝑳]𝑘, 𝛼𝑘)]−1𝓼𝑘
† − [𝜓([𝑳]𝑘, 𝛼𝑘)]

−1𝒆𝑙

⇒ [𝜓([𝑳]𝑘, 𝛼𝑘)]
−1𝓼𝑘,𝑙

‡ = [[𝑫]𝑘
∗ [𝒃𝜀]𝑘] − 𝒓𝑙
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⇒ [𝜓([𝑳]𝑘, 𝛼𝑘)]
−1(𝓼𝑘

† − 𝒆𝑙) = [[𝑫]𝑘
∗ [𝒃𝜀]𝑘] − 𝒓𝑙

⇒ [[𝑫]𝑘
∗ [𝒃𝜀]𝑘] − [𝜓([𝑳]𝑘, 𝛼𝑘)]

−1𝑒𝑙 = [[𝑫]𝑘
∗ [𝒃𝜀]𝑘] − 𝑟𝑙

 𝒆𝑙 = [𝜓([𝑳]𝑘, 𝛼𝑘)]𝒓𝑙 

The direction of Iterative sequence for improving the linear system is the error 

𝑒𝑙 which satisfies (6.16). The iterative solution of the Newton equation is 

defined as  

 𝓼𝑘,𝑙+1
‡ = 𝓼𝑘,𝑙

‡ + 𝑑𝒆𝑙 

The step size 𝑑 is a positive number less than 1.  It minimizes the residual 

norm 

 min𝑑‖[[𝑫]𝑘
∗ [𝒃𝜀]𝑘] − [𝑳]𝑘[𝓼𝑘,𝑙

‡ + 𝑑𝒆𝑙]‖
2
 

Iterative solution (𝓼𝑘,𝑙
‡ ) represents the approximate solution of the linear ill 

posed problem (𝓼𝑘)at the Newton scheme current solution of MWT inverse 

problem.  

6.3 Inexact Newton Backtracking Method (INBM) 

6.3.1 Inexact Newton to solve Newton equations of microwave 

tomography inverse problem 

The objective function of MWT inverse problem is presented as 

 𝐹(𝒙) = [𝑬𝑠(𝒙)] − [𝓔𝑠] = 0 

Generally, it has two main properties of a continuous function, which are:1) 

there exists an exact solution 𝒙† ∈ 𝑅𝑛, where 𝐹(𝒙†) = 0, and 2) 𝐹 is 

continuously differentiable in a neighborhood of 𝒙†. The derivative of multi 

projection of MWT inverse problem which is assigned as 𝑫 is asymmetric. 

The condition of the normal function of the differential [𝑫∗𝑫]is poor. A 

regularized method is needed to solve the MWT inverse problems. 
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Newton method is a conventional algorithm for solving well posed 

nonlinear problems. It starts with initial 𝒙0, then, computes a sequence of 

steps (𝓼𝑘) and updates 𝒙𝑘as  

 𝒙𝑘+1 = 𝒙𝑘 + 𝓼𝑘 

By introducing a linear filter 𝜓 which regulates the ill-posedness of [𝑫∗𝑫], 

then, Newton equation of the MWT inverse problem can be written as 

 (𝜓([𝑫∗𝑫]𝑘, 𝛼𝑘))
−1

𝓼𝑘 = −[[𝑫]𝑘
∗𝐹(𝒙)] 

Then, Newton method algorithm for solving MWT inverse problem can be 

presented as follows 

Algorithm 6-1:NM: Newton Method to solve MWT- Inverse Problem 

 Function NM(𝒙0) 

 Repeat 

  𝓼𝑘 = −𝜓([𝑫∗𝑫]𝑘 , 𝛼𝑘)[[𝑫]𝑘
∗𝐹(𝒙)] 

  𝒙𝑘+1 = 𝒙𝑘 + 𝓼𝑘 

  𝑘 = 𝑘 + 1 

Until 
‖𝐹(𝒙𝑘)‖2

‖𝓔𝑠‖2 ≤ ϵ 

Return (𝒙𝑘) 

In the case of solving well posed system, Newton method is attractive because 

it converges rapidly from any sufficiently good initial guess. On the other 

hand, it suffers from noise effect in the case of ill posed problems. It has been 

shown in the previous chapters that noise and other disturbance greatly affect 

the regularized Newton method in the form of LM for solving ill posed system 

of MWT inverse problems. 

The other drawback of the regularized Newton scheme is that Newton 

equation has to be solved at each stage of scheme. The direct regulative 

solution of Newton method may not be justified if the initial value is far from 

the exact solution, besides, it can be expensive to handle a large system like 

the MWT inverse problems. Therefore, an iterative method in which the 

solution of the linear system is unspecific, approximation is proposed. 
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An inexact Newton method is applied to compute the regularized 

MWT inverse problem. The iterative scheme of the method is defined as  

 𝒙𝑘+1 = 𝒙𝑘 + 𝓼𝑘 

The regularized inexact Newton equation is defined using 

 (𝜓([𝑫∗𝑫]𝑘, 𝛼𝑘))
−1

𝓼𝑘 = −[[𝑫]𝑘
∗𝐹(𝒙𝑘)] + 𝒓𝑘 

The residue is given in normal system  

 𝒓𝑘 = [𝑫∗𝑫]𝑘𝓼𝑘 + [[𝑫]𝑘
∗𝐹(𝒙𝑘)] 

The addition of residual inexact Newton in (6.24) presents an intermediate 

solution of Newton equations. Consequently, the method offers a tradeoff 

between the accuracy with which the regularized Newton equations are 

computed. The amount of work for solving MWT inverse problems can be 

decreased as the computation and regularization of Newton equations may 

not need to be done at each sequence of the inexact Newton scheme. 

The accuracy of the computation of Newton equations is determined 

in unspecific manner. A nonnegative forcing term (𝜂𝑘) is introduced to 

control the accuracy. The approximation of the solution of Newton equations 

is computed based on the relation  

 
‖𝒓𝑘‖2

‖[𝑫]𝑘
∗ 𝐹(𝒙𝑘)‖

𝟐 ≤ 𝜂𝑘 

The Inexact Newton method for the MWT inverse problem replaces the direct 

regularized solution of Newton equations with its iterative approximation 

under unspecific manner. The Newton solutions 𝓈𝑘is determined as such that 

the following condition is satisfied 

 ‖[𝑫∗𝑫]𝑘𝓼𝑘‖2 ≤ 𝜂𝑘‖[𝑫]𝑘
∗𝐹(𝒙𝑘)‖

2 

Inexact Newton is applied to solve the Newton equations of the MWT 

inverse problem. It is conducted iteratively. The regularization and inversion 

of the problem is computed once. It is defined at the initial step of the inexact 

Newton. The result of the inexact Newton computation is the direction of 
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Newton method step for solving the MWT inverse problem. The algorithm of 

the inexact Newton is presented as follows: 

Algorithm 6-2:INM: inexact Newton to solve Newton equations of MMWT 

Inverse Problem 

 Function INM([𝑫]𝑘 , 𝐹(𝒙𝑘)) 

 Set  :  𝑙 = 1 

  𝓼𝑘,0
‡ = 0 

  𝒓0 = [[𝑫]𝑘
∗ 𝐹(𝒙𝑘)] 

  [𝝍] = 𝜓([𝑫∗𝑫]𝑘, 𝛼𝑘) 

Repeat 

 𝒆𝑙 = [𝝍]𝒓𝑙 

 𝓼𝑘,𝑙
‡ = 𝓼𝑘,𝑙−1

‡ + 𝑑𝒆𝑙  

 𝒓𝑙 = [[𝑫]𝑘
∗ 𝐹(𝒙𝑘)] + [𝑫∗𝑫]𝑘𝓼𝑘,𝑙

‡  

 𝑙 = 𝑙 + 1 

Until ‖[𝑫∗𝑫]𝑘𝓼𝑘‖
2 ≤ 𝜂𝑘‖[𝑫]𝑘

∗𝐹(𝒙𝑘)‖2 

Return (𝓼𝑘,𝑙
‡ ) 

6.3.2 Backtracking strategy 

The nonlinear MWT-objective function may not actually be reduced by the 

direction of the solution. The linear model can be directed toward some local 

minima since the initial point for the inexact Newton method cannot be 

guaranteed to be near a solution of the nonlinear system. To improve the 

global convergence, the value of 𝓼𝑘 and 𝜂𝑘 is determined to follow some 

criteria. The global criteria of the inexact Newton are used to ensure the 

direction of the relative norm of the MWT objective function. The inexact 

Newton method is globalized by a backtracking strategy. This method is 

defined as Inexact Newton Backtracking Method (INBM) 

 ‖[𝐹(𝒙𝑘 + 𝓼𝑘)]‖2 ≤ [1 − 𝑡(1 − 𝜂𝑘)]‖𝐹(𝒙𝑘)‖
2 

Equation (6.28) guarantees the reduction of the objective function 

norm with the direction defined. By given the direction 𝓼𝑘 and force term 𝜂𝑘, 
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there, at least, is a fraction of reduction of functional which is guaranteed by 

founding the term 𝑡 ∈ [0, 1).  

Backtracking method can be applied to accommodate the selection of 

𝓼𝑘 and 𝜂𝑘 which are suitable for both (6.27) and (6.28) criteria. The 

backtracking keeps a not too long step of Newton method. If 𝓼𝑘 is not 

acceptable by the criteria, then it is shortened until it reaches the criteria. The 

correction of the parameter follows 

 𝓼𝑘 = 𝓇 ∙  𝓈𝑘; 

𝜂𝑘 = 1 − 𝓇 ∙ (1 − 𝜂𝑘)

𝓇 ∈ (𝓇𝑚𝑖𝑛, 𝓇𝑚𝑎𝑥)

The fraction of reduction should be selected in the range of𝓇 ∈ [0, 1). 

Backtracking is the type of inexact line search. It keeps the step not too long, 

but does not guard the steps for becoming not too short.   

Algorithm 6-3: BK: Backtracking strategy of INM 

Function BK(𝓼𝑘 , 𝐹(𝒙𝑘)) 

 Do While ‖[𝐹(𝒙𝑘 + 𝓼𝑘)]‖2 ≤ [1 − 𝑡(1 − 𝜂𝑘)]‖𝐹(𝒙𝑘)‖2 

  𝓼𝑘 = 𝓇 ∙ 𝓼𝑘; 

  𝜂𝑘 = 1 − 𝓇 ∙ (1 − 𝜂𝑘) 

End of Do While 

Return (𝓼𝑘) 

6.3.3 Forcing term 

Nonnegative forcing term 𝜂𝑘 is used to control the levels of accuracy. Finds 𝜂𝑘 

at 𝜂𝑘 ∈ [0, 1) so that any vector 𝓼 that satisfies (6.27) where 𝜂𝑘 < 1 is assigned 

as the stopping criteria of the INM-MWT. The inexact Newton method is 

locally convergent, if forcing term 𝜂𝑘 is uniformly less than 1. Under the 

present assumptions, if 𝒙0 is sufficiently close to 𝒙†, and  0 ≤ 𝜂𝑘 ≤ 𝜂𝑚𝑎𝑥 < 1 

for each 𝑘, then,𝒙0 converges to 𝒙∗[146; 147; 148]. If  𝜂𝑘 is zero for all 

iterations, then, it is similar to the GNI method. The forcing term is 

independent on the iteration index(𝑘). The forcing term is applied to 
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guarantee the decrease of the linear model of the MWT inverse problem. The 

convergence rate of the method is explained in [149].  

The convergence rate of the method is determined by the appropriate 

choice of the sequence of the forcing term. The term may be determined using 

the agreement of the MWT objective function and the linear model of the 

corresponding problem [146] 

 𝜂𝑘 =
‖𝑫∗𝐹(𝒙𝑘)‖2−‖[𝑫∗𝐹(𝒙𝑘−1)]−[𝑫∗𝑫]𝑘−1𝓼𝑘−1‖2

‖𝑫∗𝐹(𝒙𝑘−1)‖2
𝑘 = 1,2, 

An alternative strategy is explained in [150]. The forcing term is adjusted 

depending on the ratio of the actual reduction and predicted reduction. The 

ratio is defined as 

 𝑟𝑘 =
‖𝑫∗𝐹(𝒙𝑘)‖2−‖𝑫∗𝐹(𝒙𝑘+𝓼𝑘)‖2

‖𝑫∗𝐹(𝒙𝑘)‖2−‖𝑫∗𝐹(𝒙𝑘)−[[𝑫∗𝑫]𝑘𝓼𝑘1]‖2 

The forcing term is determined according to the ratio𝑟𝑘 

 𝜂𝑘 = {

1 − 2𝑝,        𝑟𝑘−1 < 𝑝1

𝜂𝑘−1,             𝑝1 < 𝑟𝑘−1 < 𝑝2

0.8𝜂𝑘−1,       𝑝2 < 𝑟𝑘−1 < 𝑝3

0.5𝜂𝑘−1,       𝑟𝑘−1 ≥ 𝑝3

 

where𝑝1 < 𝑝2 < 𝑝3 < 1 are prescribed with 𝑝1 ∈ (0, 1

2
) 

6.3.4 Inexact Newton Backtracking Method (INBM) 

It has been shown that Inexact Newton is sufficiently general as to encompass 

most exiting method for solving nonlinear inverse problem [147]. In this 

thesis, inexact Newton is combined with the linearized method in the form of 

LM. The LM is a type of a regulated Newton method. The Newton equations 

of the LM for solving the MWT inverse problem is stated as follows 

 [𝝌]𝑘+1 = [𝝌]𝑘 + 𝜓([𝑫∗𝑫]𝑘 , 𝛼𝑘)[[𝑫]𝑘
∗𝐹([𝝌]𝑘)] 

The linear filter of LM is defined as 
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 𝜓([𝑫∗𝑫]𝑘, 𝛼𝑘) =
1

‖
[𝑫]

√𝛼
‖
2 

Linear filter 𝜓([𝝌]𝑘)is an inexact Newton iteration if the filter satisfies 

 ‖𝐼 − 𝜓([𝝌]𝑘)‖
2 ≤ 𝜂𝑚𝑎𝑥 < 1 

With the assumption that  

 ‖𝒓𝑘‖
2 = ‖[𝑫]𝑘

∗ [[𝑫]𝑘𝓼𝑘 + 𝐹([𝝌]𝑘)]‖
2 ≪ ‖𝐼 − 𝜓([𝝌]𝑘)‖

2‖𝐹([𝝌]𝑘)‖
2 

 ≤ 𝜂𝑚𝑎𝑥‖𝐹([𝝌]𝑘)‖
2 

Rieder describes that any Newton iterative methods which include LM for 

solving MWT inverse problem can be made to converge with weak order if 

inner iterations are applied to the Newton equations at kth outer iteration[149]. 

In this thesis, inexact Newton with backtracking criteria is used to find the 

solution of Newton equations. It is conducted at the inner loop. The 

computation generally is terminated according to 

‖[𝑫]𝑘
∗ [[𝑫]𝑘𝓼𝑘,𝑙

‡ + 𝐹([𝝌]𝑘)]‖
2

≤ 𝜂𝑘‖𝐹([𝝌]𝑘)‖
2 

 ≤ ‖[𝑫]𝑘
∗ [[𝑫]𝑘𝓼𝑘,𝑖

‡ + 𝐹([𝝌]𝑘)]‖
2
𝑖 = 1,2… 𝑙 − 1 

The Newton iteration is the outer loops of the INBM. It has to be 

stopped above the noise level to avoid noise amplification. Discrepancy 

principle can be used to define the stopping rule   

 ‖𝐹([𝝌]𝐾)‖2 ≤ 𝑅𝛿 ≤ ‖𝐹([𝝌]𝑘)‖
2,    𝑘 = 1,2…𝐾 − 1 

where𝛿 is the noise level and 𝑅 > 0is the  real positive number.  

The INBM for solving MWT inverse problem is summarized as in 

algorithm (6.4): Stating the initial solution of the Newton sequence starts the 

algorithm. Then, the MWT inverse problem is linearized by means on Fréchet 

derivative. The ill posedness of the system is immersed into the linear system. 

The approximation of regulated solution is determined iteratively. It is 

controlled with forcing term.  The MWT solution is updated using 
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approximated regulated solution. The Newton iteration is terminated until 

stopping rule is satisfied 

Algorithm 6-4: INBM: Inexact Newton Method with Backtracking for 

Microwave Inverse Problem 

 Function INBM([𝒚𝛿]) 

 Set  :  𝑘 = 1 

    𝐹([𝝌]0) = [𝒃𝜀]0 = [𝒚𝛿] − [𝑬𝑠([𝝌]0)] 

While ‖𝐹([𝝌]𝑘)‖2 > 𝑅𝛿 

  [𝑫]𝑘 = [𝐹𝑖𝑗
′ = (

𝜕𝐹𝑖([𝝌]𝑘)

𝜕[𝝌]𝑗
)]

1≤𝑖≤∑ 𝑀𝑡
𝑇
𝑡=1

1≤𝑗≤𝑁

 

  [ 𝓈𝑘]=INM(([𝑫]𝑘 , 𝐹([𝝌]𝑘))) 

  [𝜹𝝌]𝑘 =BK((𝓼𝑘 , 𝐹(𝒙𝑘))) 

  [𝝌]𝑘+1 = [𝝌]𝑘 + [𝜹𝝌]𝑘 

  𝑘 = 𝑘 + 1 

  𝐹([𝝌]𝑘) = [𝒚𝛿] − [𝑬𝑠([𝝌]𝑘)] 

End of Do While 

Return ([𝝌]) 

6.4 Numerical Study of INBM 

The INBM algorithm is evaluated using synthetic data. The object of interest 

is a homogeneous dielectric cylindrical object of interest with relative 

dielectric parameter 𝜀𝑟 = 3. The radius of the cylinder is 1 cm. Figure 6-1 

shows the cross section of OI inside the object domain. 

Numerical synthetic data are used to test the algorithm. The simulated 

data is based on a MWT system. The system consists of 16 antennas which 

can be used as a microwave signal transmitter and receiver. The data are 

constructed by assuming that 16 Tx antennas sequentially illuminate 4.5 GHz 

microwave signal. The source of the signal is approximated as an equivalent 

infinitive current line.  
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Figure 6-1: The cross section of the object of interest with 

complex permittivity 𝜀𝑟 = 3 − 𝑗0. The background of the MWT 

system is air where the parameter of the dielectric is 𝜀𝑟 = 1. 

At each illumination, 16 Rx antennas measure the scattered electric field. 

Positions of Tx antennas are the same as the position of Rx antennas in which 

it is assumed that the reflection of electric field can be measured. Total of 256 

data are collected on each set of MWT measurement. A random number 

which is assigned as introduced noise and any other additional errors are 

added to the data. Table 6.1 summarizes the parameter of MWT data 

measurement. 

Table 6-1 the parameter of the simulated system for numerical 
testing of LM and INBM methods 

Parameter Value 

Diameter of Object Domain(𝓞) 9.5 𝑐𝑚 

Diameter of Data Domain (𝓓) 13.0 𝑐𝑚 

Transmitting Antenna 𝑻𝒙 16 𝑇𝑥 

Receiving Antenna 𝑹𝒙 16 𝑅𝑥  × 16 𝑇𝑥 

Number of data 256 

SNR 28.3, 34.2, 40.5 𝑑𝐵 

Number of cells 50 × 50 = 2500 

𝜺𝒓 3 

Radius of 𝑶𝑰 1.5 𝑐𝑚 

Frequency 4.5 GHz 
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INBM reconstructs the numerical synthetic data. The quality of the 

algorithm in solving MWT inverse problem is compared with the results of 

LM. Generally, the quality of the algorithm is studied using three parameters, 

which are 

1. The relative value of the discrepancy. 

Discrepancy defines the termination of the iterative process of the 

algorithms. The discrepancy is defined using successive norm of the MWT 

objective function. The iteration is stopped if the relative value of the 

discrepancy is below the defined tolerance. The ratio is calculated using 

 𝑅(𝐹([𝝌]𝑘)) =
‖𝐹([𝝌]𝑘)‖2−‖𝐹([𝝌]𝑘−1)‖2

‖𝐹([𝝌]𝑘−1)‖2  

2. The relative norm of the MWT-objective function 

The process of the iteration is studied using the relative norm of the 

MWT-objective function. The norm is calculated relative to the 

measurement. It is defined as 

 ℱ([𝝌]𝑘) =
‖𝐹([𝝌]𝑘)‖2

‖ℰ𝑠‖2  

3. The relative error of the value of the dielectric contrast of OI 

The quality of the solutions of MWT inverse problem is quantified using 

the error of the value of dielectric contrast of object domain. Relative 

errors are computed for all cells inside OI.  

 𝐸𝑟𝑟([𝝌]𝑘) =
‖[𝝌]𝑡𝑎𝑟𝑔𝑒𝑡−[𝝌]𝑘‖

2

‖[𝝌]𝑡𝑎𝑟𝑔𝑒𝑡‖
2  

Several regulator techniques and forcing term selector are studied.  

6.4.1 Solving Newton equations using INBM 

Newton method is applied to solve the MWT inverse problem. The Newton 

iteration is composed using a linearization technique. There are two major 

loops of Newton scheme for solving this inverse problem. The outer is 

Newton method for solving the nonlinear system of the MWT inverse 
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problem. It is an iterative method in which the Newton steps are the solution 

of Newton equations which are the linearization of MWT inverse problem by 

means Frechet derivative. The inner loop computes the solution of Newton 

equations. The equations are ill posed. Tikhonov regularization is applied. It 

is presented in regulated singular value decomposition.  Two different 

methods are used to solve the Newton equations. They are: 

1. Lavenberg Marquardt method (LM) 

 𝓼𝑘 = 𝜓([𝑳]𝑘, 𝛼𝑘)[[𝑫]𝑘
∗ [𝒃𝜀]𝑘] 

It is categorized as a direct regularization method. The equations are 

regularized by means of Tikhonov regularization, then, solved using a 

pseudoinverse problem.  

2. Inexact Newton Backtracking method (INBM) 

 𝒆𝑙 = 𝜓([𝑳]𝑘, 𝛼𝑘)[[𝑫]𝑘
∗ [𝒃𝜀]𝑘 − [𝑳]𝑘𝓼𝑘,𝑙

‡ ] 

𝓼𝑘,𝑙+1
‡ = 𝓼𝑘,𝑙

‡ + 𝑑𝒆𝑙

INBM solves the Newton equations in unspecific manner. It replaces 

the solution of equations by LM which is 𝓼𝑘 with its iterative 

approximation(𝓼𝑘
‡ = 𝓼𝑘,𝑙

‡ ). The intermediate solution of the iterative 

method is selected as the solution if the ratio of the residual norm with 

the norm of Newton equations output is below a forcing term. 

In this study, the iteration of Newton method is not terminated based 

on the discrepancy stopping rule, but it is conducted at 30 iterations per test. 

This is conducted to learn the behavior of the MWT objective function before 

and after the solution of the MWT inverse problem is gained. In practice, the 

iteration is stopped above the noise level to avoid noise amplification. The 

ratio of the discrepancy principle can be used to define the stopping rule. As 

the noise level is unknown, the Newton iteration is stopped accordingly  

 𝑅(𝐹([𝝌]𝑘)) ≤ 𝜖 ) 

where 𝜖 is a nonnegative small number. 
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Figure 6-2: The parameters of MWT inverse problem solutions 
using INBM and LM algorithms. The OI is a cylindrical with 

complex permittivity 𝜀𝑟 = 3 − 𝑗0 and radius 1.5 cm. 
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Figure 6-3: The real part of reconstructed Images using INBM 
and LM algorithms. The OI is a cylindrical object with complex 

permittivity 𝜀𝑟 = 3 − 𝑗0 and radius 1.5 cm. The data is taken at 
4.5 GHz. White Gaussian noise is introduced with signal to 

noise ratio 28 dB, 34dB and 41 dB. 

Synthetic data are reconstructed using LM and INBM algorithms. The 

parameter of process of the reconstruction is presented in Figure 6-2 and the 

reconstructed images are presented in Figure 6-3.  

Figure 6-2 shows the parameters of the Newton’s iteration when the 

stopping index of the outer loop is not set. The parameters are the relative 

value of the discrepancy, the relative norm of MWT objective function and 

the relative error of the value of the dielectric of the OI. 
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Figure 6-4: The imaginary part of reconstructed Images using 

INBM and LM algorithms. The OI is a cylindrical object with 

complex permittivity 𝜀𝑟 = 3 − 𝑗0 and radius 1.5 cm. The data is 

taken at 4.5 GHz. White Gaussian noise is introduced with 

signal to noise ratio 28 dB, 34dB and 41 dB. 

It can be seen that the relative values of the discrepancy are relatively 

similar for all types of data. It can be stated that the value of the relative 

discrepancy is not affected by the level of noise above SNR 30dB. It has been 

shown that INBM moves faster than LM for solving the MWT inverse 

problem. The discrepancy of INBM is relatively big for the first five iterations 

of Newton method, then, sharply decreases toward a tolerance level. While, 

the discrepancy value of LM moderately decreases to the level of tolerance.  
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Table 6-2: The comparison of INBM results to solve MWT 
inverse problem of cylindrical dielectric OI with complex 

permittivity 𝜀𝑟 = 3 − 𝑗0 and radius 1.5 cm and that LM 

algorithm. 

SNR 

(dB) 

LM INMB 

𝒌 ℱ 𝐸𝑟𝑟 R
 

𝒌 ℱ 𝐸𝑟𝑟 R
 

  (%) (%) (%)  (%) (%) (%) 

40.5 20 0.90 44.4 1.80 8 0.85 38.90 0.00 

34.2 18 1.90 44.69 2.61 8 1.85 39.65 0.00 

28.3 16 3.80 45.09 2.10 7 3.75 40.30 0.05 

Note 

1. The iteration is terminated at (𝑘 − 1)𝑡ℎ iteration when the 

relative value of the discrepancy is less than a tolerance, 
which is 

𝑅(𝐹([𝝌]𝑘)) =
‖𝐹([𝝌]𝑘)‖

2 − ‖𝐹([𝝌]𝑘−1)‖
2

‖𝐹([𝝌]𝑘−1)‖2
< 0.1% 

2. The relative norm of MWT objective function and the error 

of dielectric contrast is calculated at (𝑘 − 1)𝑡ℎ iteration, 

which are ℱ(𝐹([𝝌]𝑘−1)) and 𝐸𝑟𝑟([𝝌]𝑘−1) 

 

Following the pattern of relative value of the discrepancy, the relative 

norms of MWT objective functions resulted by INBM decrease faster than 

that produced by LM. The flat range of the norms line on INBM is reached 

after 8 iterations while the norms line of LM flats after 18 iterations.   

The line of the objective function norm graphs show that noise level 

determines the destination level of the objective functions. Decreasing the 

ratio of signal to noise ratio reduces the level of the norm of objective function 

value. This follows the idea that the iterations should be stopped above the 

noise level.  

The quality of the results of solving the MWT inverse problem is 

described using the relative error of the dielectric contrast value. It can be seen 

in Figure 6-2 that INBM produces better results than LM algorithm. 

Generally, the error level of INBM solution is lower than that of LM solution. 

The INBM produces relative errors 40% or less, while the LM produces 
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relative errors 5% or  higher. Moreover, Figure 6-3 shows that the images of 

OI cross section which are resulted by INBM describe the shape and the value 

of the dielectric OI accurately while the radius of cylinder on the images 

resulted by LM is slightly smaller than the original shape of OI. The 

smoothness of the Tikhonov regularization at LM directly affects the general 

solution of the Newton method. The quality of the solutions is determined by 

the parameter of the regulator, which is hard to define. On the contrary, 

INBM offers flexibility in the accuracy of the Newton equation solutions.  

Forcing the solutions of the Newton equations improves the quality of global 

solutions. The quality of MWT inverse problem solutions using INBM 

algorithm is better than that of LM solutions 

In this case, the relative discrepancy is used as the Newton method 

stopping rule. The iterations are terminated if the discrepancy is  𝑅 < 0.001. 

The results of reconstructions are summarized in Table 6-2 and the images of 

the dielectric OI are presented in Figure 6-3. It can be seen that the number of 

iterations of INBM is less than a halve of the iterations needed by LM 

algorithm. Within less iterations, INBM produces a better solution than LM 

algorithm does.   

6.4.2 Study of regularization techniques on INBM algorithm 

The Newton equations of MWT inverse problem are ill posed and highly 

nonlinear with respect to the contrast even when it is stated in a linear system. 

The regularization technique solves the ill posedness of the problem. It has 

been studied in the previous sections that the intermediate approximation 

solution, in a specific manner by means of a nonzero forcing term, enforces 

better solutions of Inexact Newton class algorithm. The approximation is 

regulated by means of Tikhonov regularization. In this section, the effect of 

the regularization technique on the solution of the MWT inverse problem 

using INBM is further studied. 
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Three different techniques are applied to solve Newton equations under 

INBM scheme. The regularizations are conducted using pseudo inverse, 

which are  

1. Tikhonov regularization (Thi) 

 𝜓([𝑳]𝑘, 𝛼𝑘) = [∑
𝜎𝑖

𝜎𝑖
2+𝛼

𝑁
𝑖=1 𝑢𝑖

𝑇𝑣𝑖]𝛼𝑘 =
𝛼(𝑘−1)

𝑐
 

2. Landweber-Friedman iteration (LF) 

 𝜓([𝑳]𝑘, 𝛼𝑘) = [∑
1−(1−𝛽𝜎𝑖

2)
𝑙

𝜎𝑖

𝑁
𝑖=1 𝑢𝑖

𝑇𝑣𝑖]𝑙𝑘 = 𝑙(𝑘−1) + 𝑐 

3. Truncated Singular Value Decomposition (TSVD) 

 𝜓([𝑳]𝑘, 𝛼𝑘) = [∑ 𝜙𝑖
𝑢𝑖

𝑇𝑣𝑖

𝜎𝑖

𝑁
𝑖=1 ]𝜙𝑖 = {

1;      𝑖 = 1,2. . 𝑛
0;  𝑖 = 𝑛 + 1. . 𝑁

 

 

The INBM algorithm with three different regulator techniques is 

applied to reconstruct the MWT synthetic data. The parameter of the 

reconstruction process which are the relative value of discrepancy criteria, the 

relative norm of MWT objective function norm and the relative errors of 

dielectric contrast distribution graphs are presented in Figure 6-5. 

Figure 6-5 shows the parameters of the iterative process of INBM with 

three different regularization techniques in solving the MWT inverse 

problems. It can be seen that the graphs of the relative value of the 

discrepancy are relatively similar for all types of the regularization techniques. 

The discrepancy values are relatively big for first five iterations, then, the 

values drop toward the zero level. This means that the accuracy of the update 

values of Newton method is not greatly influenced by the type of the 

regularization techniques. The accuracy of the Newton equations solution is 

controlled by the forcing term as the application of INBM offers possibility in 

evaluating an intermediate solution. It can be seen in Table 6-2 that the 

defined accuracy is achieved in a different number of inner iterations for 

different regularization techniques.  
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Figure 6-5:The parameters of MWT inverse problem solutions 

using INBM with Tikhonov regularization (Thi), Landweber-
Friedman iteration (LF) and Truncated Singular Value 
Decomposition (TSVD). The OI is a cylindrical with complex 

permittivity 𝜀𝑟 = 3 − 𝑗0 and radius 1.5 cm. 
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Table 6-3:The comparison of regularization technique for inner 
loops of Newton iterative (INBM) and direct regularization 

method by means of Levenberg Marquardt method (LM) as a 
result of the numerical data reconstruction 

 

 
Parameter 

INBM LM 

Tikhonov Landweber TSVD Tikhonov 

S
N

R
 4

0
.5

 d
B

 

k 8 8 8 20 

∑ lk

K

k=1

 

80 102 69 - 

R 0.00% 0.01% 0.00% 1.80 % 

ℱ 0.85% 0.87% 0.92% 0.90% 

Err 38.9% 36.99% 45.23% 44.4% 

S
N

R
 3

4
.2

 d
B

 

k 8 8 8 18 

∑ lk

K

k=1

 

90 86 75 - 

R 0.00% 0.00% 0.00% 2.61% 

ℱ 1.85% 1.81% 2.01% 1.90% 

Err 39.65% 37.14% 51.93% 44.69% 

S
N

R
 2

8
.3

 d
B

 

k 7 7 8 16 

∑ lk

K

k=1

 

86 83 91 - 

R 0.05% 0.00% 0.00% 2.10% 

ℱ 3.75% 3.71% 3.85% 3.80% 

Err 40.30% 37.75% 65.2% 45.09% 

Note 

1. k is the number of Newton method iteration (outer loop of INBM) 

2. 𝑙𝑘 is the number of inner iteration 

3. Ris the discrepancy value at (𝑘 − 1). The iteration is terminated 

when the relative value of the discrepancy is less than a tolerance 

𝑅(𝐹([𝝌]𝑘)) =
‖𝐹([𝝌]𝑘)‖

2 − ‖𝐹([𝝌]𝑘−1)‖
2

‖𝐹([𝝌]𝑘−1)‖2
< 0.3% 
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4. ℱ is the relative norm of the MWT objective function and  

Erristhe error of dielectric contrast calculated at (𝑘 − 1)𝑡ℎ iteration, 

namelyℱ(𝐹([𝝌]𝑘−1)) and 𝐸𝑟𝑟([𝝌]𝑘−1) 

 

The graphs of the relative norms of the MWT objective function can be 

seen in Figure 6-5. It shows the lines of relative norms that move towards the 

zero level. Initially, the patterns of the lines of the norms of WMT objective 

function for INBM with three different regularizations are similar; but after 

the 6th iterations, the line of INBM with Tikhonov regularization is not as 

sharp as the other lines. The choices of regularization and regulator parameter 

influence the global solution of the MWT inverse problems. The accuracy of 

the INBM is set in unspecific manner, then, the path of the iterative solutions 

are varied, especially when the solution is close to the global solution where 

the noise level is relatively high compared to the signal.  

The quality of the images resulted is evaluated via the revolution of the 

relative errors of the dielectric contrast. The pattern of the relative errors of the 

dielectric contrast can be seen in the last figure of Figure 6-5. It is shown that 

the Tikhonov and LF regularizations produce better quality images than that 

of TSVD regularization.  

The regularization of Newton equations are conducted using pseudo 

inverse. The basic idea of regularization using this techniques are based on 

modification of the singular value. The influence of the higher frequency of 

the singular value is damped or cut. The size of the filter of Tikhonov and LF 

is loosened along with the iterations. The cutoff frequency of the filter is 

moved higher by decreasing the size of the regulator. While the cutoff position 

of the TSVD filter is kept constant along the inner/outer loops, it can be seen 

in Table 6-3 that the number of outer iterations for INBM is relatively similar. 

On the other hand, the errors of the dielectric contrast distribution norm 

produced by TSVD is slightly higher than that produced by the other 

regularization techniques, nevertheless it is still better than the result of LM 

algorithm.  
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It reveals that the intermediate solution which is stated as the 

approximation solution for the linear ill posed problem of the MWT inverse 

problem improves the flexibility of the Inexact Newton class method in 

solving MWT inverse problem. This idea may be boarded by exposing 

cheaper techniques for solving a large linear ill posed problem for calculating 

the approximation solution of the inner loop of the INBM. 

6.4.3 Choice of forcing terms 

The accuracy of the solution is guarded in unspecific manner by means of 

forcing term 𝜂𝑘. This term is essential to protect the solution from the noise 

and other disturbances beside it is used to determine accuracy and the rate of 

the convergence[146]. Three different techniques to determine 𝜂𝑘 are applied 

in INBM algorithm. The techniques are   

1. Eisenstat and Walker [146] 

 𝜂𝑘 =
‖𝑫∗𝐹(𝒙𝑘)‖2−‖[𝑫∗𝐹(𝒙𝑘−1)]−[𝑫∗𝑫]𝑘−1𝓼𝑘−1‖2

‖𝑫∗𝐹(𝒙𝑘−1)‖2 𝑘 = 1,2, 

2. An et al.[151] 

 𝜂𝑘 = {

1 − 2𝑝,        𝑟𝑘−1 < 0.4
𝜂𝑘−1,             0.4 ≤ 𝑟𝑘−1 < 0.6
0.8𝜂𝑘−1,       0.6 ≤ 𝑟𝑘−1 < 0.8

0.5𝜂𝑘−1,       𝑟𝑘−1 ≥ 0.8

 

𝑟𝑘 =
‖𝑫∗𝐹(𝒙𝑘)‖2−‖𝑫∗𝐹(𝒙𝑘+𝓼𝑘)‖2

‖𝑫∗𝐹(𝒙𝑘)‖2−‖𝑫∗𝐹(𝒙𝑘)−[[𝑫∗𝑫]𝑘𝓼𝑘1]‖2


3. Constant forcing term 𝜂𝑘 = 0.04 

The most popular strategy to choose forcing terms is Eisenstat and 

Walker. This strategy reflects the relation of the nonlinear function of the 

inverse problem 𝐹(𝒙𝑘)with its solution of Newton equations𝓼𝑘. In the MWT 

inverse problem application, the relation is formulated in the normal system 

which is  between𝑫∗𝐹(𝒙𝑘) and previous Newton solutions [𝑫∗𝑫]𝑘−1𝓼𝑘−1 of 

the Newton scheme. Under suitable and well posed condition, it has been 

shown that if the initial guess of a nonlinear problem is sufficiently close to 
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the target, the INBM with this strategy iterates to a global solution. However, 

this strategy does not prevent the value of the forcing term from becoming too 

small too quickly. 

An et al. improve Eisenstat and Walker strategy using a safeguard to 

prevent the fluctuation of the forcing terms.  The change of the forcing terms 

value is rational to the previous value. The ratio is determined using the 

relations between the output of the MWT objective function and its Newton 

equation output. This is the same as the relation between the value of 

nonlinear problems and its corresponding linear solutions. The ratio is used to 

determine the rate of change of the forcing term. Thus, the value of the forcing 

term may be adjusted to prevent overcorrection. 

The last strategy sets the forcing term as a constant positive number. 

Among those three strategies for choosing forcing term, the last one does not 

refer to the quantity of the MWT objective function. The value of the forcing 

term of this strategy only reflects the rate of reduction of the MWT objective 

function. The agreement of the output of the nonlinear problem and its 

corresponding linear solution is not taken into account.  

Three strategies for determining forcing term with different types of 

relations with the output of the nonlinear problem  𝐹(𝒙) are applied in INBM 

to solve the MWT inverse problems. Three data set of the MWT problems 

which are summarized in Table 6-1 are used to test the efficiency of the 

strategies. The iterative Newton method is constructed and the Newton step is 

determined by solving the Newton equations which are constructed by 

linearizing the MWT inverse problems. Three different regularization 

techniques are also applied to regularize the Newton equations. The 

parameter of the solutions of the MWT inverse problem using INBM 

algorithm are summarized in Table 6-4 for INBM-Tikhonov, Table 6-5 for 

INBM-LF, and Table 6-6 for INBM-TSVD  implementation. 

The INBM is terminated and the solution is gained if one of the 

following conditions is reached: 1) The value of the discrepancy is less than 

0.01 and 2) The value of the relative norm of MWT objective function is less 

than 𝜖 = 10−4 
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Table 6-4: The comparison of three different techniques of 
choosing the forcing term. The MWT inverse problem is solved 

using INBM with Tikhonov regularization 

 Eisenstat& 

Walker 

An et al. 𝜼𝒌 = 𝟎. 𝟎𝟒 

dB 40.5 34.2 28.3 40.5 34.2 28.3 40.5 34.2 28.3 

k 7 6 6 8 8 7 7 7 7 

∑ lk
K
k=1   88 86 84 80 86 86 113 143 123 

R (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

ℱ (%) 0.87 1.84 3.70 0.88 1.81 3.75 0.87 1.82 3.67 

Err (%) 39.11 39.96 41.27 38.22 37.14 40.31 34.07 33.15 36.50 

Table 6-5: The comparison of three different techniques of 
choosing the forcing term. The MWT inverse problem is solved 

using INBM-Landweber Friedman. 

 Eisenstat& Walker An et al. 𝜼𝒌 = 𝟎. 𝟎𝟒 

dB 40.5 34.2 28.3 40.5 34.2 28.3 40.5 34.2 28.3 

k 8 8 7 8 8 7 8 7 7 

∑ lk
K
k=1   101 84 85 102 86 83 159 143 143 

R (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

ℱ (%) 0.87 1.81 3.67 0.87 1.81 3.71 0.86 1.82 3.64 

Err (%) 40.81 40.99 41.94 36.99 37.14 37.75 33.00 33.15 33.82 

Table 6-6: The comparison of three different techniques of 
choosing the forcing term. The MWT inverse problem is solved 

using INBM-TSVD. 

 Eisenstat& 

Walker 

An et al. 𝜼𝒌 = 𝟎. 𝟎𝟒 

dB 40.5 34.2 28.3 40.5 34.2 28.3 40.5 34.2 28.3 

k 7 7 7 8 8 8 8 7 7 

∑ lk
K
k=1   87 89 89 69 91 91 87 101 101 

R (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

ℱ (%) 0.87 2.01 3.95 0.92 2.01 3.85 0.87 1.88 3.81 

Err (%) 46.64 52.10 63.68 45.23 51.94 65.2 35.68 36.26 57.90 
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On the other hand, a failure of INBM to determine a solution is declared if 

one of the following conditions occurs during the iteration process.  

1) The number of the outer loop iteration reaches 30  

2) The backtracking iteration reaches 20, which means that the Newton 

step (𝓼𝑘) is too small due to the small value of𝓇20 

3) 𝑅(𝐹([𝝌]𝑘)) ≤ 0which means that the Newton method fails. 

Table 6-4, Table 6-5 and Table 6-6 show the parameter of the iterative 

solution of MWT inverse problem using INBM with three different 

regularization techniques. It can be seen that 𝑅drops under 1% after several 

iterations. The values of 𝑅𝑘 at the first five iterations are relatively high. These 

reflect that the rate of the convergence of the iteration is high. The forcing 

term accelerates the iteration and directs the solution toward an optimum 

point. Then, the values of 𝑅𝑘 drop after 7th index of outer iterations(𝑘)in 

which it reaches below the tolerance𝑅𝑘 < 0.01. This means that the 

minimization of MWT inverse problem reaches stationary points. The 

average number of the iterations for INBM to solve the MWT inverse 

problem is 7 iterations. The speed of the convergence is similar among the 

techniques.  

The iterative process INBM for solving the MWT inverse problems at 

early iterations shows the agreement of Newton equations solutions 

‖𝑫∗[𝐹(𝒙𝑘) + [𝑫]𝑘𝓼𝑘]‖2 and MWT objective functions ‖𝑫∗𝐹(𝒙𝑘 + 𝓼𝑘)‖
2. 

Then, the Eisenstat and Walker technique and An et al. technique increase 

the value of the forcing terms after the 6th iterations as the disagreement starts 

to rise among both functional terms. When the forcing term approaches 1 

value, the size of 𝓼𝑘 is close to zero. Then, the iteration has to be  terminated.  

The difference of the nonlinear solution norm and its linear update 

norm changes 𝜂𝑘. The application of this technique needs the limitation of 

𝜂𝑘 ∈ [min _𝜂,max __𝜂]. The technique proposed by An et al. transfers the ratio 

of a nonlinear solution and its previous nonlinear solution with correspondent 

linear update into the selection of the forcing term via the classification of the 

ratio.  
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Figure 6-6: The parameters of INBM solutions with respect to 
forcing term constant. The parameters are number of iteration 
(𝑘), objective function norm and relative error of [𝝌]𝑘. The OI is 

a cylindrical object with complex permittivity 𝜀𝑟 = 3 − 𝑗0 and 

radius 1.5 cm. The working frequency is 4.5 GHz. 
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The change of  𝜂𝑘 is determined by the class of the ratio and a real 

positive number less than 1. To protect the value of 𝜂𝑘 , the minimum class is 

defined between 0 and ½.Probably, the easiest way to determine the forcing 

term is an empirical study. The 𝜂𝑘 is set as a positive number less than 1. It 

has been discussed in [151] that this technique produces higher errors than 

those which apply the agreement of nonlinear and linear solutions. 

Tables of the comparison of the parameter of iterative solutions of 

MWT inverse using INBM show that the relative errors of the dielectric 

contrast reconstructed by INBM with constant 𝜂𝑘 = 0.04 is the smallest. 

Other parameters of the reconstruction results show that the choice of 𝜂𝑘 = 𝑐 

is flexible and effective to be applied in the INBM algorithm. A slight 

limitation of this selection is that the total inner iteration to solve the Newton 

equations is the largest among the other choice of forcing terms. 

Further test for 𝜂𝑘 = 𝑐 is done by scanning the constant 𝑐. INBM 

algorithm with constant 𝜂𝑘is used to reconstruct noisy data of the MWT 

inverse problem with SNR 34.2 dB. The results of the reconstructions in term 

of the number of iterations, objective function norm and relative error of the 

dielectric contrast distribution are presented in Figure 6-6. 

The graphs show the flexibility of the choice of the forcing terms. The 

number of iterations needs to terminate outer loop with 𝑅 = 0.01 is between 6 

to 9 iterations for 𝜂𝑘 = 0.01to 𝜂𝑘 = 0.25. The final objective function norm is 

less than 1%. The relative error of the dielectric contrast is also relatively flat 

over the span of the forcing terms.  The simplicity and the flexibility of setting 

forcing term as 𝜂𝑘 = 𝑐 for MWT inverse problems promote the possibility of 

applying the technique for further MWT inverse problem applications. 
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6.5 The application of INBM to Solve MWT- inverse 

problem of lossy object 

6.5.1 Cylindrical homogeneous lossy object 

Complex permittivity of lossy material OI is presented as 

 𝜀 = 𝑅𝑒(𝜀) − 𝑗𝐼𝑚𝑎𝑔(𝜀) 

Where 𝑅𝑒(𝜀) and 𝐼𝑚𝑎𝑔(𝜀) are the real part and imaginary part of complex 

permittivity, and  𝑗 is an imaginary sign which equals to 𝑗 = √−1. 

The first numerical data for lossy material application is obtained from 

the solution of the direct MWT scattering problem of two dimensional models 

of cylindrical homogeneous lossy object. The OI is placed in a free space 

object domain with radius 4.5 cm. The image of 2D model is shown in Figure 

6-7. The domain is placed in a square area which is divided into 50 × 50 

squared cells.  

 

 

Figure 6-7: a cross sectional view of a homogeneous lossy object 
of interest. The real part of OI complex permittivity is 3.5. The 

imaginary part of OI is varied. 
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In a 2D homogeneous lossy object problem, 16 antennas are used for 

transmitting and receiving 2.5 GHz microwave signals. The source of the 

signals is assumed to be an infinite current line source which is computed 

using Hankel’s function. The points of electric field measurement are placed 

at radius 6.5 cm around the object domain. At each set of measurement, 256 

data are generated and 40dB White Gaussian noise is added to the data using 

𝑎𝑤𝑔𝑛 Matlab function.  

The noisy data is reconstructed using INBM and LM algorithms. The 

initial value of the dielectric contrast is free space 𝜀𝑟 = 0. The tolerance of the 

discrepancy is set to be 𝑅(𝐹([𝝌]𝑘)) ≤ 0.003, and the solution gained is the 

relative norm of the MWT objective function  ℱ(𝐹([𝝌]𝑘)) ≤ 10−4.  The 

reconstructed images of 2D model of homogeneous cylindrical OI using 

INBM and LM algorithms are presented in Figure 6-8 and Figure 6-9. 

The image of OI is presented in real and imaginary parts of complex 

permittivity. It can be seen that the real parts of LM suffers from a high lossy 

object. The quantity of 𝑅𝑒(𝜀) in a lossy object which is 𝑅𝑒(𝜀) = 3.5 cannot be 

reconstructed. The image is blurred and the value of 𝐼𝑚𝑎𝑔(𝜀) is missed. 

When the 𝐼𝑚𝑎𝑔(𝜀) of OI equals to -3.8, the value of the real part is a halved 

of the target value. 

The effect of 𝐼𝑚𝑎𝑔(𝜀) on the images resulted by INBM is shown in 

Figure 6-9. It can be seen that the shape and the value of the complex 

permittivity of OI is relatively well constructed. INBM solves the MWT 

inverse problem of a lossy OI with a small value of 𝐼𝑚𝑎𝑔(𝜀) well. The 

improvement of 𝐼𝑚𝑎𝑔(𝜀) of OI influences the reconstruction of 𝑅𝑒(𝜀). At a 

high value of 𝐼𝑚𝑎𝑔(𝜀), the shape of the OI is clearly seen on both real and 

imaginary images, but the value of 𝑅𝑒(𝜀) is overdetermined. However, the 

images of the lossy OI resulted by INBM are still better than those produced 

by LM algorithm. 
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Figure 6-8: The real part of reconstructed images using INBM 

and LM algorithms. Four different cylindrical OI with radius 2 

cm and permittivity 𝜀 = 3.5 − 𝑗1, 𝜀 = 3.5 − 𝑗4.8, 𝜀 = 3.5 − 𝑗5.4 

and 𝜀 = 3.5 − 𝑗5.8 are applied. The data are taken at 2.5 GHz. 

White Gaussian noise is introduced with signal to noise ratio 40 

dB 
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Figure 6-9: The imaginary part of reconstructed images using 

INBM and LM algorithms. Four different cylindrical OI with 

radius 2 cm and permittivity 𝜀 = 3.5 − 𝑗1, 𝜀 = 3.5 − 𝑗4.8, 

𝜀 = 3.5 − 𝑗5.4 and 𝜀 = 3.5 − 𝑗5.8 are applied. The data are taken 

at 2.5 GHz. White Gaussian noise is introduced with signal to 

noise ratio 40 dB 
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Figure 6-10 The parameter of iterative solutions for INBM and 
LM algorithms for solving the MWT inverse problem of 

homogeneous lossy object  a) relative norm of objective function 
b) relative error of the dielectric contrast of OI. 

INBM produces better images. The shape and the value of the 

parameter of INBM result is closer to the target value than that resulted by the 

LM algorithm. The INBM produces good images of a high lossy cylindrical 

object. In contrast, the LM suffers from a high imaginary part of OI 

permittivity. INBM produces a stable solution of MWT inverse problem of 

lossy material when LM fails. 

 

 

0 5 10 15 20 25 30
10

-4

10
-3

10
-2

10
-1

10
0

iteration

M
W

T
 o

b
je

c
ti
v
e
 f
u
n
c
ti
o
n
 n

o
rm

 

 

LM

INBM

r of OI = 2 cm

=3.5-j2

0 5 10 15 20 25 30
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iteration

re
la

ti
v
e
 e

rr
o
r 

o
f 


k

 

 

LM

INBM

r of OI = 2 cm

=3.5-j2



151 

 

 

Figure 6-11: The effect of the imaginary part of the complex 
permittivity to the results of INBM and LM algorithms. The 

parameters of the solutions are a) MWT objective function norm 
b) the relative error of the dielectric contrast. The parameters are 

plotted with respects to the imaginary part of the complex 
permittivity of OI. 

The parameters of iterations are presented in Figure 6-10. It can be 

seen that the application of INBM offers a tradeoff between the accuracy with 

which the Newton equations are solved in the amount per work per iterations. 

The number of the outer iterations to get the global result is reduced by more 

than a half, besides the accuracy of the result is improved by more than 20%. 

The graph of the parameters shows that the relative norm of the objective 

function of INBM declines faster than that of LM algorithm and the line of 
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the relative errors of INBM is lower than that of the LM. Based on the 

parameter of the solutions, the INBM for solving the MWT inverse problem is 

better than the LM algorithm.  

The effect of the value of the imaginary part (𝐼𝑚𝑎𝑔(𝜀))of complex 

permittivity of the OI is done by reconstructing series of noisy data of the 

MWT problem of a lossy object. 𝐼𝑚𝑎𝑔(𝜀)varies from 0 to 5 while the real part 

𝑅𝑒(𝜀) of complex permittivity is kept constant 𝑅𝑒(𝜀) = 3.5.  

Figure 6-11 shows that the value of 𝐼𝑚𝑎𝑔(𝜀) influences the relative 

norm of MWT-objective function of LM.  The relative norm increases as the 

value of 𝐼𝑚𝑎𝑔(𝜀) rises. The effect of 𝐼𝑚𝑎𝑔(𝜀) value to LM results is also seen 

in the relative error of the dielectric contrast graph. The error rises along with 

the increase of the value of 𝐼𝑚𝑎𝑔(𝜀). On the other hand, the parameters of 

INBM solutions are relatively unaffected by the high value of 𝐼𝑚𝑎𝑔(𝜀).  The 

lines of the relative norm of the MWT objective function and the relative error 

of INBM solutions are relatively flat over 𝐼𝑚𝑎𝑔(𝜀) = 0 to 𝐼𝑚𝑎𝑔(𝜀) = 5 . The 

INBM produces a stable solution of the MWT inverse problem of a simple 

lossy material 

6.5.2 Dielectric tube model for INBM test 

The MWT system which is used in the previous sections is applied to generate 

the MWT data of the dielectric tube model. The MWT data are measured at 

16 antennas around the OI. The working frequency is 2.5 GHz. 40 dB white 

Gaussian noise is added to the data. 

The OI is a cylindrical dielectric tube. The inner and outer radiuses of 

the tube are 3 cm and 4.75 cm, respectively.  There are two models of the 

dielectric tubes, which are a dielectric tube in free space and a tube containing 

a lossy material. The models are presented in Figure 6-12. 
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Figure 6-12: the Architecture of a dielectric tube model for 

INBM test. A) the Dielectric tube is placed in a free space. B) the 
dielectric cylinder is placed inside dielectric tube. 

 

The data are reconstructed using INBM and LM algorithms. The 
results of the reconstruction are presented in the images of 

𝑅𝑒𝑎𝑙(𝜀),𝐼𝑚𝑎𝑔(𝜀) and 𝐴𝑏𝑠(𝜀). The reconstructed images of the 

dielectric tube model A are presented in  

Figure:6-13. It can be seen that the INBM produces better images than the 

LM algorithm. The shape of the tube in the images resulted by INBM are 

clearly reconstructed. INBM defines the value of the tube complex 

permittivity closer than LM algorithm does. 

The images of the dielectric tube model B resulted using INBM and 

LM algorithms are presented in Figure:6-14. It can be seen that the 

introduction of a dielectric lossy material inside the tube influences the 

reconstructed images. The shape and the dielectric value of the tube are 

disturbed by the presence of different materials. The accuracy of the images 

resulted by INBM is better than that resulted by LM algorithm. INBM draws 

the cylinder lossy material well when LM fails to define the shape and 

position of the material.   
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Figure:6-13: The reconstructed images of the dielectric tube 

model A. The OI is presented in the images of 𝑅𝑒𝑎𝑙(𝜀),𝐼𝑚𝑎𝑔(𝜀) 

and 𝐴𝑏𝑠(𝜀).. The images are resulted using INBM and LM 

algorithms. 
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Figure:6-14: the reconstructed images of the dielectric tube 

model B. The OI is presented in the images of the real part and 
imaginary part of complex permittivity. The images are resulted 

using INBM and LM algorithms 
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Figure 6-15: The parameter of iterative solutions of INBM and 
LM algorithm for solving MWT inverse problem of the dielectric 

tube model  a) the relative norm of the objective function b) the 
relative error of the dielectric contrast of OI. 

The unspecific solutions of MWT linear problems in INBM algorithm 

upgrade the accuracy of the MWT inverse problem solutions. The accuracy of 

MWT INBM solutions are 22% and 31% for tube model A and model B 

problems, sequentially. These improve the LM solutions by 10%. The norms 

of INBM objective function are 1.16 × 10−5 for tube model A and 4.05 ×

10−4 for tube model B. These are better than those resulted by the LM 

algorithms which are bigger than 1 × 10−3. The application of INBM to 
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dielectric tube containing different material improves the accuracy and the 

speed of the LM algorithm. 

6.5.3 Human arm model 

A synthetic model of human forearm is considered as OI of MWT inverse 

problem. The model consists of bone, cortical bone, muscle and skin. The 

complex permittivity of the material is listed in Table 6-7.The images of the 

2D arm model are shown in Figure 6-16. There are two types of models, 

which are centred circular bone and off centre bone. The OI is immersed in 

the liquid background which has permittivity constant 77.3. The cross section 

of the object domain is divided into 2500 cells. The domain which is squared 

in shape is immersed in a liquid background medium. The circular shaped 

human arm model is placed inside the object domain.  

The MWT system which has 16 antennas is considered. The antennas 

are placed around the object with radius 6.5 cm. Each antenna is arranged to 

transmit and receive 1.5 GHz microwave signal sequentially in order to create 

a set of a multi view projection with the OI remaining static. Measured 

scattered data is developed by solving a direct scattering problem of MWT. 

The data which is added with 40dB white Gaussian noise is reconstructed 

using INBM and LM algorithms. 

The reconstructed images of a human arm model-A which is bone-

centered using INBM and LM algorithms are presented in Figure 6-17. It can 

be seen that the images of imaginary part of the OI model are better than the 

real part. The bone is clearly distinguished from the muscle. However, the 

skin is hard to separate from the muscle, besides the border of cortical bone is 

fuzzy. The images of the real part are worse than those of the imaginary part. 

The real part of skin and cortical bone are hard to see. The contrast of 𝑅𝑒(𝜀) 

of skin with respect to muscle is higher than the contrast of 𝐼𝑚𝑎𝑔(𝜀) of the 

same material, but it still cannot be defined based on the images. It is due to 

the effect of 𝐼𝑚𝑎𝑔(𝜀) to the images of real part of OI complex permittivity.  
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Figure 6-16: Two-dimensional models of human arms a) 
centered bone (left) b) off center bone (right) 

Table 6-7:Complex permittivity materials of a synthetic model of 
a human forearm 

Material Complex permittivity 

Bone 5.5 − 0.55 

Cortical Bone 12.6 − 𝑗2.4 

Muscle 54.8 − 𝑗13 

Skin 39.4 − 𝑗12.9 

Background 77.3 

 
INBM produces better solution of MWT inverse problem of a human 

arm model than LM does. The relative error of the dielectric contrast resulted 

by the  INBM is 23.5% which is lower than that produced by the LM. INBM 

reconstructs a better image of bone than the LM. The shape and position of 

bone are clearly defined, while LM fails to define the shape of bone in the real 

part image. 
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Figure 6-17: The images of a human arm model A (centered 
bone) resulted using INBM and LM algorithms. 

The images of  a human arm model-B which is off center bone resulted 

by INBM and LM algorithm are presented in Figure 6-18. It can be seen that 

the images of the real part are not as good as those of the imaginary part. In 

the real part images, the position of the bone is relatively defined, but the size 

and shape of the bone are missed. On the other hand, the image of the bone is 

well defined in the images of the imaginary part. The position is well defined 

and the size is relatively close to the target OI.  
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Figure 6-18: the images of a human arm model B (off center 

bone) resulted using INBM and LM algorithms. 

INBM performs better in solving MWT inverse problem of human arm 

model than LM algorithm. The position and shape of the material of the arm 

can be defined using INBM, especially the bone and the muscle. The value of 

permittivity computed using INBM is closer to the target value than that of 

LM algorithm. The relative error of the dielectric properties of INBM is 27.8% 

, which is lower than the error s of the LM. 
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Figure 6-19: The parameter of iterative solutions for INBM and 
LM algorithms for solving the MWT inverse problem of the 
human arm model a)the  relative norm of the objective function 

b) the relative error of the dielectric contrast of OI. 

6.6 Conclusions 

INBM has been developed to solve the MWT inverse problem. It is a Newton 

Iterative which is done in two stages. 1) linearizing the inverse problem by 

means of Frecher derivative. This step is the Newton method scheme which is 
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done at the outer loop; and 2) solving the linear Newton equations which are 

ill posed. This is the use of iterative method where a nonzero forcing term is 

applied to control the iteration in unspecific manner. 

The INBM has been applied to solve the MWT inverse problem of 

lossless and lossy objects. The noisy data used is generated by solving the 

direct scattering problem and added with white Gaussian noise. INBM 

produces a better solution for the problem of lossless OI than LM. It is also 

faster than LM. The flexibility of INBM in solving the linear problem of 

Newton equations is determined by the choice of the forcing terms and the 

regularization. The level of accuracy of INBM is determined by the choice of 

forcing terms while the technique of regularization determines the 

intermediate solution of Newton equations. The accuracy and the amount of 

work to solve MWT inverse problem is better than that of  the LM algorithm. 

The solution of INBM has a negative effect from the introduction of 

imaginary part of complex permittivity of OI. However, the quality of INMB 

in solving lossy object problem is still better than that of the LM algorithm 
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Newton Iterative-conjugate gradient on normal equation (NI-cgne) is 

developed for Microwave Tomography application. The method is a 

Newton method for solving nonlinear problems, which is formulated 

in the outer and inner loop scheme. The outer loop is a Newton 

minimization of the problem and the inner loop is the application of 

conjugate gradient on normal equation for solving Newton equations. 

The method proposed is tested to solve MWT inverse problems which 

include the problems of lossless material, lossy material and human 

arm model. The quality of the proposed method is evaluated by 

comparing the results of NI-cgne with the results of the direct iterative 

regularization method by means of Levenberg Marquardt method. 

7.1 Newton Iterative 

The MWT inverse problem is a nonlinear problem. It can be stated as 

minimization of the MWT objective function relative norm 

7  

Newton Iterative – 

Conjugate Gradient on 

Normal Equation 
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 [𝝌] = min𝝌‖𝐹([𝝌])‖𝒟
2  

The iterative solver proposed is a Newton type algorithm. The iterative 

solution is updated in the current actual solution ([𝝌]𝑘) by a correction step 

which is also known as the direction of Newton (𝓼𝑘). 

 [𝝌]𝑘+1 = [𝝌]𝑘 + 𝓼𝑘 

The iterative step of Newton method is computed via linear Newton equation. 

The linear system of Newton equation is constructed using linearization by 

means of Fréchet derivative. For multiple illuminations of the MWT system, 

the Newton equation of MWT inverse problem is stated as 

 [𝑫]𝑘𝓼𝑘 = 𝐹([𝝌]𝑘) 

where Fréchet derivative of the MWT inverse problem which is denoted by 

𝑫 = 𝐹′ is defined as 

 𝑫 = [𝐹𝑖𝑗
′ = (

𝜕𝐹𝑖(𝝌)

𝜕𝝌𝑗
)]

1≤𝑖≤𝑚
1≤𝑗≤𝑛

 (7.4)

The stationary point of 𝐹which is the optimum solution of (7.1) is a point 

[𝝌]𝑘 ∈ ℝ𝑛 where 𝒔𝑘 does not exist  such that    

 ‖[𝑫]𝑘
∗ [𝐹([𝝌]𝑘) + 𝑫𝑘𝓼𝑘]‖𝒟

2 < ‖[𝑫]𝑘
∗𝐹([𝝌]𝑘)‖𝒟

2  

This includes the local minimizer of 𝓕([𝝌]). This procedure is done in the 

outer loop of Newton iterative. 

Assuming that 𝓼𝑘
𝛿 is the exact solution of the Newton equation which 

minimizes the residue of the noisy problem  

 ‖[𝑫]𝑘[𝓼𝑘
𝛿 − 𝓼𝑘]‖

2
= (𝓼𝑘

𝛿 − 𝓼𝑘)
∗
[𝑫]𝑘

∗ [𝑫]𝑘(𝓼𝑘
𝛿 − 𝓼𝑘) 

 ([𝑫]𝑘𝓼𝑘
𝛿 − [𝑫]𝑘𝓼𝑘)

∗
(𝐷𝑘𝓈𝑘

𝛿 − 𝐷𝑘𝓼𝑘) 

 (𝐹([𝝌]𝑘) − [𝑫]𝑘𝓼𝑘)
∗(𝐹([𝝌]𝑘) − [𝑫]𝑘𝓼𝑘) = ‖𝒓‖ 

Then, the solution of the Newton equation is the minimizer of the residue 

norm. 
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 𝓼𝑘 = min𝓈𝑘
‖𝐹([𝝌]𝑘) − [𝑫]𝑘𝓼𝑘‖

2 

which is done in the inner loop of NI-cgne.  

The iterative scheme of NI-cgne is conducted in the outer and inner loops in 

which the sequence of the process can be summarized in the following 

algorithm. 

Algorithm 7-1NI-cgne: Newton Iterative with Conjugate gradient on 

normal equation 

Function NI-cgne([𝝌]0) 

Repeat 𝑁𝐼 

 𝐹([𝝌]) = [𝑬𝑠([𝝌]0)] − [𝓔𝑠] 

 𝑫 = [𝑭𝑖𝑗
′ = (

𝜕𝐹𝑖(𝑥)

𝜕𝑥𝑗
)]

1≤𝑖≤𝑚
1≤𝑗≤𝑛

  

 Repeat 𝑐𝑔𝑛𝑒 

  𝓼𝑘 = min𝓈𝑘
‖𝐹([𝝌]𝑘) − [𝑫]𝑘𝓼𝑘‖2 

 Until 𝑐𝑔𝑛𝑒_𝑠𝑡𝑜𝑝𝑝𝑒𝑑(𝑖𝑛𝑛𝑒𝑟𝑙𝑜𝑜𝑝) 

 [𝝌]𝑘+1 = [𝝌]𝑘 + 𝓼𝑘 

Until 𝑁𝐼_𝑠𝑡𝑜𝑝𝑝𝑒𝑑(𝑜𝑢𝑡𝑒𝑟𝑙𝑜𝑜𝑝) 

Return (𝝌) 

The number of the unknowns of the MWT inverse problems is large 

thus computing the exact solution of the Newton equation using the direct 

method like the LM can be expensive. Therefore, it seems reasonable to use a 

cheap and effective iterative method and to find the estimated solution of the 

Newton equation. The unspecified solution of Newton equation, in which the 

correction step of the Newton method 𝓈𝑘 follows the forcing term 𝜂𝑘, has been 

studied in the previous chapter under INBM algorithm. The 𝓈𝑘is calculated 

using regularized methods, such as the truncated singular value 

decomposition, Landweber Friedman method (LF), and Tikhonov 

regularization. However, the regularizations need singular value 

decomposition which is expensive for a large scale matrix. In this chapter,  

conjugate gradient method (CG), as is used in [152; 153], is applied to solve 

Newton equations of MWT inverse problems. It is a semi regularized method 



166 

in which the regularization of the ill posedness is controlled using stopping 

criteria. 

7.2 Conjugate Gradient on Normal Equation 

The conjugate gradient on normal equation (cgne) is known as a semi-

convergent method for solving asymmetric and ill posed systems as it has 

been described that the cgne regularizes and solves a non-symmetric positive 

definite linear system with a normal equation [154]. 

The cgne is developed to solve Newton equation of the MWT inverse 

problem which is generally asymmetric in the form of underdetermined and ill 

posed. It differs from the iterative regularization scheme operator (𝜓) 

described in (6.2.1). The linear operator 𝜓((𝑫𝑘
∗𝑫𝑘), 𝛼𝑘),which applies 

regularization, is defined as a normal equation. Then, regularized Newton 

equation for cgne purposes is transformed in a normal equation.  

 𝓼𝑘 = 𝜓((𝑫𝑘
∗𝑫𝑘), 𝛼𝑘)[𝑫]𝑘

∗𝐹([𝝌]𝑘) 

Where 

𝜓−1((𝑫𝑘
∗𝑫𝑘), 𝛼𝑘) = [𝑫∗𝑫]𝑘 = [𝑳]𝑘

[𝑳]𝑘𝓼𝑘 = [𝑫]𝑘
∗𝐹([𝝌]𝑘)

The operator [𝑳]𝑘 is assumed to be large. The application of singular value 

decomposition to get regulated solution is expensive.  Therefore, conjugate 

gradient is applied as an alternative method. 

The conjugate gradient method iteratively starts with the selection of a 

guess𝓼𝑘,0. The solution 𝓼𝑘,𝑙 at the 𝑙𝑡ℎ index is corrected according to 

 𝓼𝑘,𝑙+1 = 𝓼𝑘,𝑙 + 𝛾𝑙𝒑𝑙 

where𝒑𝑙 is the conjugate direction which is updated based on the gradient of 

the problem at the current solution 𝑞𝑙. According to the presentation on 
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normal equation, the gradient which is set as an update direction is defined as  

𝒒𝑙 = ([𝑫]𝑘
∗𝐹([𝝌]𝑘) − [𝑳]𝑘𝓼𝑘) 

 𝒑𝑙+1 = 𝒒𝑙 − 𝛽𝑙𝒑𝑙 

where 𝛾𝑙 is the solution of scalar optimization problem 

 𝛾𝑙 = min𝛾‖[𝑫]𝑘
∗ [𝐹([𝝌]𝑘) − [𝑫]𝑘(𝓼𝑘 + 𝛾𝑙𝒑𝑙)]‖

2 

and coefficient (𝛽𝑙) may be determined using Fletcher-Reeves formula 

 𝛽𝑙 = {
0,                      𝑙 = 0

〈𝒒𝑙,𝒒𝑙〉

〈𝒒𝑙−1,𝒒𝑙−1〉
,       𝑙 ≥ 1

 

where〈𝑨, 𝑨〉 = 𝑨𝑇𝑨 is the inner product of vector 𝑨. Another formula is Polak-

Riniere which is expressed as 

 𝛽𝑙 = {
0,                      𝑙 = 0
〈𝒒𝑙,𝒒𝑙−𝒒𝑙−1〉

〈𝒒𝑙−1,𝒒𝑙−1〉
,    𝑙 ≥ 1

 

The algorithm of the conjugate gradient on normal equation can be seen in 

Algorithm 7-2. The iteration starts with initial condition of  𝑝0 =  𝑞0 =

[𝑫]𝑘
∗𝐹([𝝌]𝑘)for 𝑙 = 0. Then, the solution is updated according to the 

conjugate gradient procedure. The step of the conjugate gradient is 

determined using the minimization of residue norm . The residue norm 

is a convex system; thus, the minimization is ∇∅ = 0, that is 


𝑑‖[𝑫]𝑘

∗ 𝐹([𝝌]𝑘)−[𝑳]𝑘(𝓼𝑘+𝛾𝑙𝒑𝑙)‖
2

𝑑𝛾
= 0 

which can be written as 

 𝛾𝒑𝑙
∗[𝑳]𝑘𝒑𝑙 − 𝒑𝑙

∗[𝑫]𝑘
∗𝐹([𝝌]𝑘) − 𝒑𝑙

∗[𝑳]𝑘𝓼𝑘,𝑙 = 0 

 𝛾𝒑𝑙
∗[𝑳]𝑘𝒑𝑙 = 𝒑𝑙

∗[[𝑫]𝑘
∗𝐹([𝝌]𝑘) − [𝑳]𝑘𝓼𝑘,𝑙] 

 𝛾 =
𝒑𝑙

∗[[𝑫]𝑘
∗ 𝐹([𝝌]𝑘)−[𝑳]𝑘𝓼𝑘,𝑙]

𝒑𝑙
∗[𝑳]𝑘𝒑𝑙

 
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This implies that 𝛾 = 0 then 𝓈𝑘,𝑙 is the solution of the normal equation. The 

conjugate gradient step for cgne is presented in the following algorithm. 

Algorithm 7-2: CG: Conjugate gradient step 

 Function cg_step([𝑳]𝑘, [𝑫]𝑘
∗ 𝐹([𝝌]𝑘), 𝓼𝑘,𝑙) 

  If  𝑙 = 0 

   𝓼𝑘,0 = 0 

   𝒑0 = 𝒒0 = [𝑫]𝑘
∗ 𝐹([𝝌]𝑘) 

  Else if 

   𝛾𝑙 =
𝒑𝑙

∗[[𝑫]𝑘
∗ 𝐹([𝝌]𝑘)−[𝑳]𝑘𝓼𝑘,𝑙]

𝒑𝑙
∗[𝑳]𝑘𝒑𝑙

 

   𝓼𝑘,𝑙+1 = 𝓼𝑘,𝑙 + 𝛾𝑙𝒑𝑙 

   𝒒𝑙 = ([𝑫]𝑘
∗ 𝐹([𝝌]𝑘) − [𝑳]𝑘𝓼𝑘) 

   𝛽𝑙+1 =
〈𝒒𝑙,𝒒𝑙〉

〈𝒒𝑙−1,𝒒𝑙−1〉
 

   𝒑𝑙+1 = 𝒒𝑙 − 𝛽𝑙𝒑𝑙  

  End if 

 Return𝓼𝑘,𝑙+1 

It is important to check the direction of Newton solution. The evaluation is 

done by considering.  

 𝒑𝑇[𝑳]𝑘𝒑 ≤ 0 

where([𝑳]𝑘) is the approximation of the Hessian of the inverse problem in the 

form of normal equation. This is similar to the Hessian of the GNI. The failed 

direction is detected, then, cgne is stopped. The failed condition is avoided, 

then, the inner iteration proceeds to update the linear solution until a 

maximum iteration is reached or the stopping rule of the cgne is satisfied. The 

output of the inner iteration is the direction of the Newton scheme.  

In the case of noise level is known  

 ‖[𝑫]𝑘
∗ [𝐹𝑒([𝝌]𝑘) − 𝐹([𝝌]𝑘)]‖

2 ≤ 𝛿 

where𝐹𝑒([𝝌]𝑘) is an exact objective function containing exact data, and 

𝐹([𝝌]𝑘) is an objective function containing error measurement, noise and 

other disturbances, then, the most prominent stopping rule of the cgne is the 
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discrepancy principle. The solution of the linear problem is stopped when the 

residue of the linear system is comparable with the noise level  

 ‖[𝑫]𝑘
∗𝐹([𝝌]𝑘) − [𝑳]𝑘𝓼𝑘‖

2 ≤ 𝐶𝛿 

where 𝐶 is a real positive number bigger than 1.  

The algorithm of cgne with the discrepancy principle is stated as 

follows 

Algorithm 7-3cgne : Conjugate Gradient on Normal Equation 

Function cgne([𝑫]𝑘 , 𝐹([𝝌]𝑘)) 

Set [𝑳]𝑘 = [𝑫∗𝑫]𝑘 

 𝑙 = 0; 𝓈𝑘,0 = 0  

Repeat 

 𝓼𝑘,𝑙+1 =cg_step([𝑳]𝑘, [𝑫]𝑘
∗ 𝐹([𝝌]𝑘), 𝓼𝑘,𝑙) 

 𝑙 = 𝑙 + 1 

Until ‖[𝑫]𝑘
∗ 𝐹([𝝌]𝑘) − [𝑳]𝑘𝓼𝑘‖

2 ≤ 𝐶𝛿 

Return 𝓈𝑘,𝑙 

The cgne is very sensitive to the perturbation of the right hand side of the 

problem and often the noise enters iteration very quickly.  The regularizing 

efficiency of the cgne depends on the effectiveness of the stopping rule. 

Nevertheless, the exact objective function is unknown. It is replaced by the 

noisy objective function. This makes the level of the noise cannot be 

determined. Therefore, the stopping rule of the cgne has to be determined 

without considering noise levels. 

7.3 Stopping Rule of CGNE 

The normal equation in MWT inverse problem is defined in [𝑫]𝑘
∗ [𝑫]𝑘 where 

[𝑫]𝑘
∗ is the adjoint of [𝑫]𝑘at[𝝌]𝑘. The operator [𝑫]𝑘is nonsymmetrical. The 

operator  [𝑫]𝑘
∗ [𝑫]𝑘 is the square but its condition is poor. The difference of the 

smallest singular value in a higher frequency and the highest singular value at 

a lower frequency is significantly big. The inverse of operator [𝑫]𝑘
∗ [𝑫]𝑘is 
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unstable due to the higher frequency of the singular value. It has been 

discussed that by regulating the higher frequency, stable solution is gained. 

The application of Tikhonov regulator decreases the effect of the higher 

frequency of the singular value. A stable and accurate solution of the MWT 

inverse problems is resolved by setting the regulator in accordance with the 

iteration. Nevertheless, the introduction of noise brings the solution into semi 

convergence. The error increases when the level of noise is sufficiently big 

compared to the signal.  It appears at the point where the scattered field as the 

measured signal is comparable to the level of noise. Besides that, the 

computational cost of the singular value of the system is expensive. 

Empirically, the exact function which is written as,   

 [𝑳]𝑘𝓼𝑘,𝑙 = [𝑫]𝑘
∗𝐹([𝝌]𝑘) 

is not defined and the exact solution 𝓼𝑘
†
 is not known. Furthermore, the 

approximated 𝓼𝑘
⋆  is considered as the solution of (7.17) in which the right 

hand side contains unknown terms like measurement error, noise and other 

disturbances. Furthermore, operator [𝑳]𝑘 is a normalized linear system of the 

MWT inverse problem, which is a large and ill conditioning matrix. For this 

reason, 𝓼𝑘 is computed iteratively in term of 𝓼𝑘,𝑙.  

Iteratively, the solution is computed using a conjugate gradient method 

on normal equation. The solution of the linear problem at first iteration 

sequence 𝑙 = 1, 2, … 𝑙𝑐, (𝓼𝑘,𝑙) usually moves toward the solution of the residue 

norm , which is  

 𝓼𝑘,𝑙 → 𝓈𝑘
⋆ 

where ‖[𝑫]𝑘
∗𝐹([𝝌]𝑘)−[𝑳]𝑘𝓼𝑘,𝑙+1‖2

2
< ‖[𝑫]𝑘

∗𝐹([𝝌]𝑘) − [𝑳]𝑘𝓼𝑘,𝑙‖2

2
 

The optimum solution is defined at 𝑙𝑐 in which the error of the solution 

‖𝓼𝑘,𝑙𝑐 − 𝓼𝑘
⋆‖

2
 is minimum. The error increase for 𝑙 > 𝑙𝑐 due to the influence of 

noise levels. Therefore, the stopping rule of the iteration needs to be designed 

to avoid the solution 𝓼𝑘,𝑙𝑐+𝑛
, where 𝑛 is a real positive number. 
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The iteration should be stopped at the correct inner iteration index as 

the method starts to reconstruct the noise. The decreasing of the residue norm 

may not the similar to the reduction of the errors of the solution. The iteration 

could exceed the optimum point of the solution. The stopping rule is essential 

to the regularization of the cgne[155].  Therefore, several stoppings will be 

discussed in the following section. The rule is developed based on an 

unknown noise level. The flexibility of the rule is discussed by applying the 

method to noisy data. 

7.3.1 Discrepancy principle 

Considering that the MWT objective function suffers from noise, then, the 

iterative sequence has to be stopped before the noise governs the process of 

finding the solutions. In the case of the level of noise is known, then, the 

discrepancy principle can be used to design the stopping rule. 

 ‖𝒓𝑘‖
2 = ‖[𝑫]𝑘

∗𝐹([𝝌]𝑘) − [𝑳]𝑘𝓼𝑘,𝑙‖
2

≤ 𝛿2 

The inner iteration is stopped at the first index where the residue of the linear 

system is less than the noise level.  


‖𝒓𝑘‖2

𝛿
≤ 𝐶 

The ratio of residue and noise level 𝐶 is set to be bigger than 1. It is used to 

guarantee the reconstruction of the solution above the level of the noise.  

The distance of inner solution 𝓼𝑘,𝑙 to the level of the noise depends on  

the position of the Newton method solution in the outer iteration. The 

corresponding Newton method and Newton equation in the inner iteration 

can be presented in the residue function. The direction of cgne relates to the 

residue term of the scheme. The residue is updated inside the inner iteration. 

Thus, the iteration can be monitored and stopped if (7.22) is satisfied.  

The simplest rule to choose the stopping criteria sets the residue norm 

which equals to some upper bound related to 𝛿2. Even though 𝛿 is not 

known, the iterative solution step for Newton equation has to be stopped 
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before the level of noise influences the solution. It can be assumed that there is 

a confident area in which the level of noise is less than the norm of the residue 

of the linear problem. 

 𝜌 = √𝒓𝑘
𝑇 ∙ 𝒓𝑘 < 𝐶𝛿2 

The solution of the linear problem is gained in the area 

  𝜌𝑙  ≥ 𝜏𝜌0 

where 𝜏 < 1.  

Stopping rule generally is used at CG method in which the operator is 

positive definite and exact noise level is known [156]. The stopping rule is 

applied to the cgne to regularize the linear ill posed problem which suffers 

from noise. By choosing the correct 𝜏, the linear ill posed problem can be 

regularized by avoiding the unstable solution. Lower value of 𝜏 opens the 

filter of the linear solution wider. At this set, the solution of 𝓼𝑘,𝑙 is closer to the 

approximated direction𝓼𝑘
⋆ . The solution of the MWT inverse problem can be 

gained faster, but it is unstable. On the other hand, a bigger value of 𝜏 will 

stabilize the solution, but it takes more time than the previous set.  

Algorithm 7-4 shows cgne with discrepancy principle for stopping rule. 

The constant 𝜏 is determined empirically.   

Algorithm 7-4: cgne-𝜏: cgne with discrepancy Principle 

Function cgne-𝜏 ([𝑫]𝑘 , 𝐹([𝝌]𝑘)) 

Set 𝑙 = 0; 𝓼𝑘,0 = 0  

  [𝑳]𝑘 = [𝑫∗𝑫]𝑘 

 𝜌0 = ‖[[𝑫]𝑘
∗𝐹([𝝌]𝑘) − [𝑳]𝑘𝓼𝑘,0]‖

2
 

Repeat 

  𝓼𝑘,𝑙+1 =cg_step([𝑳]𝑘, [𝑫]𝑘
∗ 𝐹([𝝌]𝑘), 𝓼𝑘,𝑙) 

  𝜌𝑙+1 = ‖[[𝑫]𝑘
∗𝐹([𝝌]𝑘) − [𝑳]𝑘𝓼𝑘,𝑙]‖

2
 

  𝑙 = 𝑙 + 1 

Until  𝜌𝑙 < 𝜏𝜌0 

Return [𝓼𝑘,𝑙] 
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7.3.2 The application of NI-cgne-𝜏to solveMWT inverse problem 

The INBM-CGNE with discrepancy principle as the stopping rule (NI-cgne-𝜏) 

is applied to reconstruct the MWT inverse problem. The object of interest is a 

dielectric disk with parameter 𝜀 = 3 − 𝑗1 and diameter 4.75 cm. There are two 

similar holes; which are centered at (−2,0)and (2,0). The radius of the hole is 

1 cm.  The OI is placed in a background medium with 𝜀 = 1. 

It is assumed that a MWT system is constructed by 16 antennas which 

can be used as a microwave signal transmitter and receiver. The data is 

constructed by assuming that 16 Tx antennas sequentially illuminate 1.5 GHz 

microwave signal. The source of the signal is approximated as an equivalent 

infinitive current line. At each illumination, 16 Rx antennas measure the 

scattered electric field. Positions of Tx antennas are the same as the positions 

of Rx antenna, in which it is assumed that the reflection of electric field can be 

measured.. 

 

 

Figure 7-1: the two dimensional cross section of cylindrical 
dielectric object with two similar holes. 
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Table 7-1: the parameter of the simulated system for the 

numerical testing of Ni-cgne−𝜏 method 

Parameter Value 

Diameter of Object Domain(𝓞) 9.5 𝑐𝑚 

Diameter of Data Domain (𝓓) 13.0 𝑐𝑚 

Transmitting Antenna 𝑻𝒙 16 𝑇𝑥 

Receiving Antenna 𝑹𝒙 16 𝑅𝑥  × 16 𝑇𝑥 

Number of data 256 

SNR 40 𝑑𝐵 

Number of cells 60 × 60 = 3600 

𝜺 3 − 𝑗1 

Radius of 𝑶𝑰 4.75 𝑐𝑚 

Frequency 1.5 GHz 

 

Total 256 data are collected on each set of MWT measurement. A random 

number which is assigned as introduced noise and any other additional errors 

are added to the data. Table 7-1 summarizes the parameter of MWT data 

measurement. The Ni-cgne−𝜏reconstructs the numerical synthetic data which 

is added with 40dB white Gaussian noise. The solution of the method is 

compared with the results of LM. The quality of the algorithm is studied 

using: the relative norm of the MWT-objective function and the relative errors 

of the value of the dielectric contrast of OI.  

Figure 7-2 shows that the parameters of NI-cgne algorithm solution are 

better than that of LM algorithm. The MWT objective function norm and the 

dielectric contrast relative error resulted by NI-cgne decreases faster along 

iterations than the solution of Lm algorithm. The solutions of NI-cgne are 

better than LM solution. The objective function norm and the relative errors 

of NI-cgne solutions are lower than those of the LM solution, besides NI-cgne 

is faster than LM. 
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Figure 7-2: The parameters of MWT inverse problem solutions 

using NI-cgne and LM algorithm. The problem is a dielectric 

object with two circular holes. NI-cgne with discrepancy 𝜏 is 

applied.  Three different discrepancy values 𝜏 = 0.05, 𝜏 = 0.01 

and 𝜏 = 0.005 are applied. 
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Figure 7-3: The reconstructed images of a dielectric lossy 

material with two circular holes. The 𝑅𝑒𝑎𝑙(𝜀),𝐼𝑚𝑎𝑔(𝜀) and 

𝐴𝑏𝑠(𝜀).. images are resulted using Ni-cgne- 𝜏 and LM 

algorithms. 

The images of permittivity of OI is presented in the image of 𝑅𝑒𝑎𝑙(𝜀), 

𝐼𝑚𝑎𝑔(𝜀) and 𝐴𝑏𝑠(𝜀) as seen in Figure 7-3. It can be seen that NI-cgne 

produces better images than LM algorithm. NI-cgne with 𝜏 = 0.005 solves 

MWT inverse problem of cylindrical lossy object in 9 iterations with the 

dielectric contrast error less than 20%. The iteration is half of the  iteration of 

LM method and the errors of solution are 10% less than that of  the solution 

of LM. The free space holes inside the dielectric cylinder are clearly seen on 

the images resulted by NI-cgne. On the other hand, LM method fails to 

describe the holes. 
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Figure 7-4: The graph or the parameters of solution with respect 

to discrepancy constant. The parameters are objective function 
norm, relative error of dielectric contrast and number of iteration 

𝑘 of the results of NI–cgne algorithm with scanning discrepancy 

criteria 𝜏𝑘 
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The regularization of Newton equations is dependent on the proper 

stopping position of the inner iteration. It can be seen from Figure 7-2 that the 

selection of 𝜏influences the accuracy and the speed of MWT inverse problem 

solution.Setting 𝜏 = 0.005for NI-cgne results in fast solution, but the accuracy 

of the solution is not as good as 𝜏 = 0.01 set of NI-cgne. It can be seen that 

NI-cgne with the lower value of 𝜏 is fast, but it is less accurate than NI-cgne 

with high value of 𝜏.  

Further study of 𝜏𝑘 = 𝑐 is done by setting a constant value for 𝜏𝑘 of NI-

cgne and applying the algorithm to solve MWT inverse problem of cylindrical 

dielectric OI with free space holes in which the parameter of the problem is 

summarized in Table 7-1.  The quality of the solution is studied through three 

parameters of the solution which are: the WMT objective function norm, the 

relative error of the dielectric contrast and the number of Newton method 

iteration (𝑘). The results of the evaluation are presented in Figure 7-4. 

.Figure 7-4  shows that the algorithm generally solves the MWT 

inverse problem, but it fails if the 𝜏𝑘 are too small (𝜏𝑘 = 𝑐 < 4−3). The 

accuracy of the solution is not affected by the choice of 𝜏𝑘 = 𝑐 in which the 

relative errors of the dielectric contrast are between 20% to 30% and the 

MWT objective function norm is below 10-3. On the other hand, the speed of 

the algorithm is influenced by the choice of 𝜏𝑘 = 𝑐. Decreasing the value of 𝜏𝑘 

improves the speed of the algorithm by more than a halve, however if the 

value of 𝜏𝑘 is too small, the algorithm fails to solve the problem. 

The selection of 𝜏 is done empirically. The optimum regularization is 

hard to define using the discrepancy principle. The range of the ratio of the 

residue which is used to define the 𝜏 is varied among the outer iteration 

index(𝑘). At a lower outer iteration index, a small value of 𝜏 is possible to be 

reached where it cannot be approached at a higher 𝑘. This makes the inner 

iteration terminated because the maximum number of iterations is reached. 

Therefore, the stopping rule for the NI-cgne needs to be defined by 

considering the noise level. One of the popular methods is L-curve technique. 
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7.3.3 L-curve criterion for regularizing linear ill posed problem 

L-curve is a method for determining regularization parameter in solving ill 

posed problems proposed by Hansen [157; 158]. The choice of the regulator 

parameter is based on the plot of the residue norm with respect to the solution 

norm. Usually, the line of the graph is L shaped and the optimum value of the 

regularization is defined at the corner of the plot. The regularization is defined 

in a graphical approach. The minimization of the linear ill posed problem is 

described in the behavior of the least squared minimization problems in the 

form of normal equation. The regulator is defined by compromising the fitting 

of the data and the smoothing of the solution. Finding the corner of the L 

shaped curve can be used as the alternative solution to regulate the ill 

conditioning of the linear problems.  

Let us refresh the application of the direct regularization by means of 

Tikhonov regularization to the linear ill posed problem of Newton equation 

(7.3). Regularized parameter 𝛼 should be found to minimize the residue 

norm. In a normal system, Newton equation is defined as 

 𝓼𝑘, 𝛼𝑘 = min𝛼𝑘,𝓈𝑘
‖[𝑫]𝑘

∗𝐹([𝝌]𝑘) − [𝑫∗𝑫 + 𝛼𝑘]𝑘𝓼𝑘‖
2 

which is equivalent to solving Euler equation 

 [𝑫]𝑘
∗ [𝑫]𝑘𝓼𝑘 + 𝛼𝑘𝓼𝑘 = [𝑫]𝑘

∗𝐹([𝝌]𝑘) 

where𝛼𝑘 is the regularization parameter which should be chosen, and a 

regularized solution which is written as 𝓼𝑘 that satisfies (7.23). 

The regulated solution of the linear problem is solved using the pseudo 

inverse. The linear operator is constructed in singular value decomposition 

and the singular values of the system are filtered by means of Tikhonov 

regularization.  

 𝜔(𝜎𝑖
2, 𝛼2) =

𝜎𝑖
2+𝛼2

𝜎𝑖
2

 
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Figure 7-5: L curve criteria for continuous regularization 
parameter. Top: a discrete L curve for Tikhonov regularization 

of the linear ill posed problem of the first iteration of the 
nonlinear MWT inverse. Bottom: the part of the Tikhonov L-

curve with noisy data for various SNR. 

The function is minimized with Tikhonov regularization. The norm of 

associated solution is defined as   

 𝜌(𝛼𝑘) = ‖𝐹([𝝌]𝑘)−[𝑫]𝑘𝓼𝑘‖
2 

 𝜂(𝛼𝑘) = ‖𝓼𝑘‖
2 

The L-curve initial is introduced as 𝑝𝑙𝑜𝑡(𝜌(𝛼𝑘), 𝜂(𝛼𝑘)). There are two main 

characteristic parts of the curve, which are the flat part and the vertical part. 

In the flat area, the regularized solution is dominated by regularized errors 
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while in the vertical part, the solution, it  is dominated by noise and other 

disturbances [158]. The optimum regularization is defined in the corner of flat 

and vertical parts. To define the corner, a corresponding curvature as a 

function of the regularization parameter is plotted based on (log (𝜌), log (𝜂)) 

plot. The suggested regularization parameter is the maximum point of the 

curvature.  

The L-curve criterion is  defined using log-log plot of the residue norm 

of the linear problem versus its solution norm. It can be seen in Figure 7-5 that 

the line of the log-log plot is L shaped for noise less and noisy data. The 

corner for all lines can be visually distinguished. The optimum regularization 

at the inner iteration step defined is dependent on the condition of the data. 

For noise less data, a very low regulator which is 𝛼 = 2.8𝑒 − 16, is added to 

gain the optimum solution. While much larger regulator is needed to get an 

optimum solution of the linear problem of data with SNR around 34 dB, 

which is 𝛼 = 3.9𝑒 − 05 

For different positions of the iterative sequence, the corner of the lines 

can generally be located. The Tikhonov regulator can be set according to the 

ill conditioning of the linear system, as the parameter lies in between𝛼 ∈

(1, 0|. 

Regularizing the linear ill posed problem can be done by applying the 

iterative cgne. The iterative solution of the normal equation demonstrates 

semi convergence of the linear problem solution. Initially, the iterations 

approach the exact solution, then, it moves away from the target. The number 

of the inner iteration plays regularization for the ill conditioning of the linear 

ill posed problem. Different from Tikhonov regularization, the regulator 

parameter of the cgne cannot be adjusted, thus, it leads to a discrete L curve 

criterion. The number and position of the points on the log-log plot follows 

the iterative solution by the cgne. 

Several algorithms have been reported for locating the corner of an L 

curve given by a finite set of points. In this section, the solution of the ill 

posed problem is the approximation of the Newton iterative step, 

 



182 

 

 
 

Figure 7-6: L curve criteria for discontinuous regulator 

parameter by means of CGNE. 

Thus, the solution is expected under monotonicity condition on ‖𝓼𝑘,𝑙‖
2
 which 

is strictly increasing with 𝑙 and ‖𝐹([𝝌]𝑘)−[𝑫]𝑘𝓼𝑘,𝑙‖
2
 which is strictly 

decreasing with 𝑙 is considered, while other points where any of the 

conditions are not satisfied are discharged. 

A Triangle method is an algorithm to determine the corner of discrete 

L-curve. It is based on the geometrical idea of considering all the triangles 

formed by two fixing vertices and another scanned vertex. The candidate 

corner is determined using an angle of the triangle segments and its oriented 
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area [159]. Adaptive pruning algorithm is proposed in [160]. The basic idea of 

the algorithm is omitting the right amount of the points from the discrete L-

curve which are not categorized as a corner candidate. A corner selector is 

based on angles between successive points in the line of curve. The selected 

corner is determined by the global behavior of the angles. 

7.3.4 Discrete L-curve criterion 

L-curve method has been successfully applied in various inverse problems 

[161]. However, under certain conditions, the L-curve method is not 

convergent. This occurs when the solution is rough [162] or with very smooth 

solutions [163]. The INI-cgne provides discrete regularization points. It is seen 

in Figure 7-6 that the log-log plot of the residue norm of the linear ill posed 

and its corresponding solution is fluctuated. The corner of the L curve is hard 

to define using a triangle or pruned method. An alternative method to define 

the “corner” of the L shaped graph is developed based on the angle between 

two vectors which are constructed from three selected points of data. This 

method is the simplification of the triangle method in which the prospective 

corner of L shape is based on the angle of the vector. 

It is assumed that the points of the data to be examined are  𝐴, 𝐵and 𝐶. 

Point 𝐴 is selected to be the most left positon of the data points, which means 

that the data points with minimum residue norm are ‖𝐹([𝝌]𝑘)−𝐷𝑘𝓈𝑘‖
2.  

 [𝐴, 𝑁] = 𝑚𝑖𝑛(𝜌𝑙) 

 𝜌𝑙 = ‖𝐹([𝝌]𝑘)−[𝑫]𝑘𝓼𝑘,𝑙‖
2
 

This point is also assigned as the maximum point data (𝑁)to be examined. 

Point 𝐵 is the potential corner to be examined, and 𝐶 is the right vertex of the 

L curve. Due to the roughness of the data, pattern 𝐶  is selected only for the 

first four data that is  𝐶𝑛, 𝑛 = 1,2…4, and 𝐵 is evaluated at  𝐵𝑚, 𝑚 = 𝑛 +

1, 𝑛 + 2…𝑁 − 1.  

Defining the pair of vectors which are 𝐵𝐴⃗⃗⃗⃗ ⃗⃗  and 𝐶𝐵⃗⃗⃗⃗⃗⃗  to be  
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 𝐵𝐴⃗⃗⃗⃗ ⃗⃗ = 𝑋∠𝑥 = 𝐴 − 𝐵⃗⃗ 

 𝐶𝐵⃗⃗⃗⃗⃗⃗ = 𝑌∠𝑦 = 𝐵⃗⃗ − 𝐶 

The angle of the vectors ∠𝑥 and ∠𝑦 are measured anticlockwise from the real 

positive axis. The prospected corner is defined from the difference of both 

angles of the vectors. 

 

Figure 7-7: Angles between two vectors which construct the 

vertex of L-curve regularization 

 𝜃 = ∠𝑦 − ∠𝑥 

The point 𝐵 is assigned as a prospected corner if the angle 𝜃 is positive, 𝜃 > 0, 

which is categorized as the steep angle while the other is defined as the flat 

angle which is eliminated.  

Algorithm 7-5: Lcurve : Lcurve regularization for cgne 

Function Lcurve (𝜌𝑙 = ‖𝐹([𝝌]𝑘)−[𝑫]𝑘𝓼𝑘,𝑙‖
2
, 𝜂𝑙 = ‖𝓼𝑘,𝑙‖

2
) 

Set 

 [𝑁] = 𝑚𝑖𝑛(𝜌𝑙); 𝐴 = (log(𝜌𝑁), log (𝜂𝑁));  𝐵⋆ = 0 

For 𝑛 = 1: 4 

 𝐶 = (log(𝜌𝑛), log (𝜂𝑛)) 

 For 𝑚 = 𝑛 + 1:𝑁 − 1 

  𝐵 = (log(𝜌𝑚), log (𝜂𝑚)) 

  𝑋∠𝑥 = 𝐴 − 𝐵⃗⃗; 𝑌∠𝑦 = 𝐵⃗⃗ − 𝐶 

  𝜃 = 𝑓𝑖𝑛𝑑((∠𝑦 − ∠𝑥) > 0) 

  𝐵⋆ = 𝑚𝑖𝑛 |𝜃 −
𝜋

2
| 

 End for 𝑚; End for 𝑛 

Return 𝐵⋆ 

 
Flat angle Steep angle
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The algorithm for finding corner of the L-curve of the cgne is stated in 

Algorithm 7-5. The corner 𝐵⋆ is selected from set of 𝜃 which is closest to 
𝜋

2
 as 

 𝐵⋆ = 𝑚𝑖𝑛 |𝜃 −
𝜋

2
| 

To protect from irregularities of the log-log plot, some considerations 

are proposed, which include: 

1. Determining of the  steep angle of the corner of the curve 

𝐵⋆is assigned as steep corner is 

 |𝜃 −
𝜋

2
| ≤

𝜋

3
 

2. Defining regularized solution with Nil solution of angle between two vectors  

In the case of 𝜃 = [ ]and∀(∠𝑦 − ∠𝑥) < 0 ,then, the corner is defined at 

𝑁or 𝐵⋆ = 𝑁. The inner loop reaches a maximum iteration, but it does not 

stretch the level of noise. The approximated regularized solution is defined 

in the last index of the inner iteration.  

In the case of 𝜃 = [ ] and    not(∀(∠𝑦 − ∠𝑥)) < 0,then, the corner is 

defined at 1or 𝐵⋆ = 1. The pattern of the log-log plot is too rough or the 

angle of 𝑌∠𝑦 vectors is too steep that it makes the difference of the vectors 

unsatisfied (6.100) thus, the corner cannot be defined properly.  

3. Normalizing the point data of the log-log plot 

To avoid the small difference between point data of the log-log plot, data 

are adjusted into [0…100,0…100] value. The plot is adjusted, thereto, it 

starts from 𝐶1 = (100,0)to 𝐴 = (0,100). The rest of the data are projected 

using an interpolation technique 

 𝒙𝑛𝑒𝑤 =
100(𝑥𝑜𝑙𝑑−𝑚𝑖𝑛(𝒙))

𝑚𝑎𝑥(𝑥)−𝑚𝑖𝑛(𝒙)
 

Projected data are rounded to the nearest integer to decrease the roughness of 

the curve pattern.  

7.4 Numerical experiment 
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7.4.1 Dielectric tube model of NI-cgne test 

MWT measurement setup is designed from 16 sources with 16 antennas 

which can be used as a transmitter and a receiver. The radius of antennas is 

6.5 cm and the frequency of operation is 1.5 GHz. The system is applied in a 

free space in which the complex permittivity of the background at this 

frequency of operation is 𝜀 = 1 − 𝑗0. The object domain is assumed to be a 

square with 9.5 cm side. The domain is divided into 60 × 60 cells. The 

parameter of the MWT system is summarized in Table 7-2. 

 

 

Figure 7-8: Architecture of dielectric tube model for NI-cgne. 
Two cylindrical dielectric materials are placed in three different 

positions inside dielectric tube. 
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Table 7-2 the parameter of the simulated system for the 
numerical testing of the dielectric tube model 

Parameter Value 

Diameter of Object Domain(𝓞) 9.5 𝑐𝑚 

Diameter of Data Domain (𝓓) 13.0 𝑐𝑚 

Transmitting Antenna 𝑻𝒙 16 𝑇𝑥 

Receiving Antenna 𝑹𝒙 16 𝑅𝑥  × 16 𝑇𝑥 

Number of data 256 

SNR 40 𝑑𝐵 

Number of cells 60 × 60 = 3600 

𝜺 
OI 1 3 − 𝑗1 

OI 2 4 − 𝑗0 

Radius of 𝑶𝑰 4.75 𝑐𝑚 

Frequency 1.5 GHz 

 

 

Dielectric tube model consists of a lossy tube with parameter ε=3−𝑗1. 

The outer and inner radius of tube is 4.75 cm and 3 cm, respectively. The tube 

is placed in a free space. Two identical cylindrical objects with ε = 4 − 𝑗0 are 

placed inside the object domain. The architecture and the cross section of the 

original OI are presented in Figure 7-8.   

The data are added with a random noise. The noise is introduced using 

white Gaussian function with SNR of 40dB. The noisy data are reconstructed 

using NI-cgne and LM method. Two different stopping rules of CGNE are 

applied which are discrepancy principle and L-curve criteria. The images of 

dielectric tube model resulted by the algorithms are presented in Figure 7-9. 
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Figure 7-9: The images of 𝑅𝑒𝑎𝑙(𝜀)of the dielectric tube model for 

NI-cgne test. The tube contains different materials. The images 
are resulted using NI-cgne and LM algorithms. 
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Figure 7-10: The images of 𝐼𝑚𝑎𝑔(𝜀)of dielectric tube model for 

NI-cgne test. The tube contains different materials. The images 

are resulted using NI-cgne and LM algorithms. 
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Table 7-3: The results of NI-cgne and LM algorithms in solving 
the MWT inverse problem of the dielectric tube containing 

different materials. 

Problem Parameter Algorithms 

  NI-cgne- NI-cgne-LC LM 

Model A k 10 8 30 

ℱ 1.08 × 10−4 2.74 × 10−4 6.16 × 10−3 

Err(χk) 28% 31% 37% 

Model B k 30 11 22 

ℱ 1.07 × 10−4 1.32 × 10−3 9.67 × 10−3 

Err(χk) 33% 39% 43% 

Model C k 13 13 21 

ℱ 7.67 × 10−4 1.11 × 10−3 1.46 × 10−2 

Err(χk) 39% 44% 47% 

 

Table 7-3 summarizes the inversion results from TM polarization 

measurement after 30 outer iterations of Newton method.  NI-cgne moves 

faster than LM method does. After 5 iterations, the MWT objective function 

norms of NI-cgne- and NI-cgne-LC are less than 1 × 10−3 for all dielectric 

tube models, while the function norms of the LM method are still above1 ×

10−2. Adding more iterations improves the results of NI-cgne by about a tenth. 

These are lower than that of the LM method. Generally, the normalized 

errors of MWT function for all the algorithms tested are very small. The 

terminal solution of NI-cgne is gained faster than that of LM method.  

The solutions of NI-cgne are better than those of LM algorithm. The 

relative errors of the solutions of the MWT inverse problem using NI-cgne- 

and NI-cgne-LC are generally lower than those of LM method. It can be seen 

in Figure 7-9 and Figure 7-10 that the dielectric cylinder can be reconstructed 

using NI-cgne. Although the shape and position of the cylinders are slightly 

missed,  the dielectric contrast of the material can be defined. On the other 

hand, the LM fails to draw the cylindrical objects. 
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7.4.2 Human Arm model 

The same measurement setup which is summarized in Table 7-2, is still used 

as the previous numerical test, but now the system is immersed in the water 

which has a complex permittivity 𝜀 = 77.3 − 𝑗0. A human arm model is 

contained in the object domain. The model is constructed by skin, muscle 

bone and cortical bone. The complex permittivities of human arm material 

are listed in Table 7-4. The model consists of cylindrical muscle surrounded 

by skin. There are two identical bones which are placed inside the arm. The 

architecture of the arm is presented in Figure 7-11. The cross section of the 

complex permittivity images of OI in term of real, imaginary and absolute 

terms are presented in Figure 7-12. 

Table 7-4 complex permittivity materials of a synthetic model of 
human forearm 

Material Complex permittivity 

Bone 5.5 − 𝑗0.55 

Cortical Bone 12.6 − 𝑗2.4 

Muscle 54.8 − 𝑗13 

Skin 39.4 − 𝑗12.9 

Background 77.3 

 

Numerical data is obtained by solving direct scattering problems. The 

OI is immersed in the background medium which is water. The dielectric 

contrast of OI is relative to the permittivity of the background. A white 

Gaussian noise with 40dB is added to the data. The data is reconstructed 

using NI-cgne and LM algorithms.  

The parameter of the solutions obtained from initial estimates which 

are set in background dielectric contrast 𝜀𝑟 = 0, is given in  Figure 7-13. The 

results show that the Newton method moves toward the solution. The 

objective function norm reduces along with iterations. The NI-cgne moves 

faster than LM. 
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Figure 7-11: The architecture of human arms model for NI-cgne 

algorithm test 

 

 

Figure 7-12: Two dimensional cross section of human arm 
model for NI-cgne test. The model is presented in a) real part b) 

imaginary part of complex permittivity 
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Figure 7-13:The parameter of the iterative solutions of NI-cgne 

and LM for solving the MWT inverse problem of human arm 
model  a) the relative norm of objective function b) the relative 

error of the dielectric contrast of OI. 

The solution of MWT inverse problem using NI-cgne moves very fast. 

After 9 iterations, the norm of the NI-cgne objective function reaches 2.05 ×

10−4. This is significantly below the solution of LM which is 8.77 × 10−4. 

Generally, the objective functions of MWT inverse problems are relatively 

small. The solutions are toward global solutions. Contrast to the solution, the 

relative errors of the dielectric contrast is high. The relative errors of the 

dielectric contrast are above 30%. This indicates that the solution is lack of 

information.  
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Figure 7-14: Images of human arm model reconstructed by Ni-
cgne  and LM methods. 

The results of MWT inverse problem inversion method by minimizing 

the MWT objective function are given in Figure 7-14. It can be seen that the 

bone of the arm can already be observed in the imaginary plot of NI-cgne 

images, but the indication of the presence of bones in the other images is very 

poor. The values of the permittivity of the material are fairly defined. On the 

other hand, LM method fails to reconstruct the arm model. The shape of 

bones cannot be defined, besides the reconstructed values of the material are 

completely wrong.  LM method needs a priori information like the location of 

the OI and its approximate permittivity value. Without using this a priori 

data, the method fails to produce acceptable results [126]. 
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7.5 Conclusions 

The numerical experiments using lossy material shows that NI-cgne leads to 

an effective method for solving MWT inverse problem. The algorithm is fully 

iterative. It consists of two major loops, the outer loop is used to update the 

solution of the Newton method and the inner loop is applied to solve Newton 

equations. The equations are the linearization of the nonlinear MWT inverse 

problem. The step size of Newton method is determined in unspecific manner 

the inner iteration which does not involve forward problems. This makes the 

method suitable for large scale computation.    

From the feasibility study results of two dimensional lossy dielectric 

cylinder simulations, it is observed that the algorithm can be used to 

determine free space holes inside the lossy OI while the LM method fails. It is 

also able to describe a dielectric object which is smaller than half of the wave 

length. The value of permittivity is relatively close to the target, though the 

shape and location of the target interest is fairly determined. 

The numerical study of the syntactic human arm model represents a 

feasibility study of algorithm in handling heterogeneous lossy objects. The 

algorithm is not able to reconstruct tissues with the dimension less than the 

wavelength. The bone of the arm can only be determined at the imaginary 

images of complex permittivity distributions resulted by NI-cgne. This 

limitation which is known as Rayleigh criterion may be reduced by increasing 

the working frequency. However, the nonlinearity of the problem and the 

complexity of the computation increase due to the diffraction effect. Thus, in 

order to improve the robustness of the solution using the algorithm, 

regularization and smoothness can be applied in the inverse problem instead 

of the procedure of solutions. Multi frequency approach can be introduced to 

reduce the ill posedness of the problem. This is one of some subject of the 

future work. 
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Microwave Tomographic System is developed in The University of 

Manchester. The system is a circular microwave scanner with the 

frequency of operation centered as 5 GHz. It consists of a 12.5 cm 

radius circular array of 16 ground plane antennas. The system is placed 

in a free space. Each of the array antennas can operate either in 

transmitting or receiving mode. The measurement procedure records 

the disturbed electric field which is the field when the object is 

presented. The scattered electric field data are the difference between 

disturbed and undisturbed fields. The data are reconstructed using 

developed methods which are INBM and NI-cgne. The results are 

compared with the results of LM. 

8.1 Introduction 

Microwave tomography (MWT) is a promising alternative of industrial and 

biomedical nondestructive imaging modalities. The advantages of MWT 

application include: low cost and portability, safe nonionizing radiation, and 

describing the cross section of the interest through the distribution of electric 

8  

Microwave Tomography 
System 
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properties. In MWT system, the object of interest (𝑂𝐼) is irradiated by a 

known incident field and reconstructs electromagnetic field measurement in a 

range of  a few hundred megahertz up to a few gigahertz into the distribution 

of electrical properties of 𝑂𝐼cross section.   

Various types of MWT system which provides MWT measured 

electric field for given incident field has been reported. A few of them include: 

a microwave scanner operating at 2.33 GHz consists of a 25-cm diameter 

circular array of 64 water-immersed horn antennas [164; 165],  24 Vivaldi 

antennas, co-resident antenna elements are connected to a vector network 

analyser via a 2 × 24 port matrix switch [166; 167],  6-12 Double Layered 

Vivaldi Antenna probes vary in Tx-Rx arrangement [168]; 32 identical 

measurement channels of microwave imaging system[169]; 32 channel 

monopole antennas [170]; 16 monopole antennas mounted circularly inside a 

cylindrical Plexiglas tank of 28 cm diameter [171]; and 12  modulated 

scattered technique antennas of remote field measurement approach [172]. 

Generally, the system is configured circularly and designed for liquid 

immersed object domain. A low cost MWT system with free space object 

domain needs to be developed. In this chapter, the prototype of a designed 

MWT system is described. The architecture and MWT data collection and 

calibration are explained. Then, the reconstruction of data by means of 

Newton iterative methods is applied. The MWT system is studied by 

evaluating the result of images of object of interest cross section.   

8.2 Microwave Tomographic System 

A microwave tomography system is developed in the Microwave and 

Communications (MACS) research group of school of Electrical engineering 

and Electronics, The University of Manchester. The MWT system is 

addressed to be low cost as a monopole ground plane antenna array is used.  

It works in a free space domain, thus, further extension in industrial and 

biomedical application could be done.  
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Figure 8-1: The University of Manchester microwave 

tomography prototype. The 16 ground plane antennas are 
connected to VNA via Cytec 2x16 matrix switch. 

 

 

Figure 8-2:The architecture of the University of Manchester-

MWT system. The system is computer controlled via GPIB 
IEEE 488.2. NI GPIB-USB-HS interface is used to connect the 
system to portable computer. 
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The prototype of the (the University of Manchester-MWT) system is 

shown in figure 7-1. It is designed from 16 ground plane antennas which are 

computer controlled via 2x16 Cytec multiplexer. The antennas are designed to 

transmit and receive microwave signals. The transmission and measurement 

of the electric field are conducted by Vector Network Analyzer (VNA) 

The background medium of the University of Manchester-MWT 

system is a free space. OI is immersed in the free space and the scattered field 

is measured in the data domain which is placed in the free space. The 

dielectric contrast of the reconstructed image is defined relative to the free 

space, that is(𝜀𝑟(𝑞) − 1). OI is placed inside the object domain. The shape, 

position and dielectric contrast of OI are unknown. The object domain 

represents the drawing area of the MWT images. The image is the distribution 

of the dielectric contrast which represents two dimensional cross sections of 

OI inside the domain object. The background medium is a free space which 

permittivity is 1, thus, the value of the image background is zero.  

The MWT system of the University of Manchester is modeled works 

in TM mode at 𝑧̂direction, which means that the antennas are orientated at 𝑧̂ 

direction and the images are described in (𝑥̂, 𝑦̂) plane. The measured scattered 

field is assumed to be  ℰ𝑡
𝑠 =  𝐸𝑡

𝑠𝑧̂ and the incident field is formulated as 𝐸𝑡
𝑖 =

 𝐸𝑡
𝑖𝑧̂. For simplicity, both terms are written as  ℰ𝑡

𝑠 and  𝐸𝑡
𝑖 , respectively. 

Practically, the scattered field cannot be measured directly. It is defined from 

the difference of undisturbed and disturbed fields. The undisturbed field is 

similar to the incident field at the data domain, while the disturbed field is 

measured electric field at the data domain due to the presence of 𝑂𝐼. For each 

set of measurement, microwave signal is transmitted via a𝑇𝑥 antenna, then, 

pairs of undisturbed and disturbed fields are measured at (𝑀 − 1)𝑅𝑥 antennas 

at data domain. Additionally, incident field 𝐸𝑡
𝑖 that illuminates 𝑁,𝑁 ∈ 𝒪 cell 

of domain object and (𝑀 − 1)𝑅𝑥,𝑀 point of antennas are modeled. The 

modeled fields are used to transform and calibrate the known incident field at 

the object domain and the measured scattered field at the data domain.   
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8.3 Architecture of the University of Manchester 

MWT System 

The schematic MWT System is illustrated in Figure 8-2.The system is 

constructed by four basic instruments, which are portable computers, Vector 

Network Analyzed (VNA), multiplexer, and ground plane antenna arrays. 

The system is fully controlled using computer where the interface used is a 

USB port based National Instrument GPIB-USB-HS. There are two buses in 

the design, a data bus and a signal bus. National instrument IEEE 488.2 

GPIB data cable is used as the data bus between multiplexer (sensor), 

computer, and VNA. The data bus is used to transfer two types of text data: 

mnemonic instruction from computer to multiplexer and VNA, and series of 

numeric data from VNA to computer. An RD 318 coaxial cable is used as the 

signal bus. The computer transfers transmitting microwave signal from port 1 

of the VNA to port In0 of the multiplexer via the signal bus, then, the 

computer transfers the signal through the bus from port In1 of the multiplexer 

to port 2 of the VNA.  

Algorithm 8-1 MWT: Microwave Tomography Measurement Sequence 

Function MWT(𝑜𝑏𝑗𝑉𝑁𝐴, 𝑜𝑏𝑗𝑀𝑢𝑙) 

 [𝑛, 𝑑, 𝑠] = 𝑔𝑒𝑡𝐹𝑟𝑒𝑞(𝑜𝑏𝑗𝑉𝑁𝐴) 

 𝑓 = 𝑙𝑖𝑛𝑠𝑝𝑎𝑐𝑒(𝑠, 𝑠 + 𝑑, 𝑛) 

For 𝑇𝑥 = 1:𝑀𝑇𝑥 

 For 𝑅𝑥 = 1:𝑀𝑅𝑥 

  𝑠𝑒𝑡𝑀𝑈𝐿(𝑜𝑏𝑗𝑀𝑢𝑙, 𝑇𝑥, 𝑅𝑥) 

  𝑑𝑎𝑡𝑎(𝑇𝑥, 𝑅𝑥) = 𝑔𝑒𝑡𝐷𝑎𝑡(𝑜𝑏𝑗𝑉𝑁𝐴) 

 End For 𝑅𝑥 

End For 𝑇𝑥 

Return [𝑓, 𝑑𝑎𝑡𝑎] 

The measurement is fully controlled using a computer. For example, 

the computer conducts several activities to measure fields at a point of 

observation. The computer writes mnemonic text to a Cytec multiplexer 

asking the multiplexer to connect to desirable pairs of antennas to VNA. 
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Then, the computer asks VNA to measure  𝑠2,1 of the pairs. Finally, the 

computer reads and records the 𝑠2,1. The procedure for the  whole set of 

measurement is illustrated in algorithm 7-1.  

The procedure is described as follows. Initially, the calibration of the 

VNA is restored. Both VNA and Multiplexer are defined in two instrument 

object variables which are input to the measurement function. The 

measurement starts by collecting three parameters of frequency swap which 

are numbers of point data (POINT), frequency span (SPAN) and start of 

frequency swap (STAR). The parameters are kept in 𝑛, 𝑑, 𝑠 variables, 

respectively. The parameters are used to define the working frequency. The 

University of Manchester-MWT system addresses a single frequency, 

however, for evaluation purposes the frequency is swapped across frequency 

domains. Function 𝑔𝑒𝑡𝐹𝑟𝑒𝑞(𝑜𝑏𝑗) is used to get the working frequency. Data 

collected is an electric field which is measured in pairs of 𝑇𝑥 and 𝑅𝑥 antennas. 

The transmitting antenna is scanned using outer for loop. At each 

illumination, the field is measured at the rest of the antennas which is done at 

the nested for loop. To handle measurement 𝑠𝑒𝑡𝑀𝑈𝐿 subroutine is used to set 

the antenna connection and 𝑔𝑒𝑡𝐷𝑎𝑡 function is used to gain data. 

8.4 Antennas Arrangement 

Sixteen monopole antennas are applied in the University of Manchester-

MWT system. The antennas used are 16 monopole ground planes. The 

ground plane is connected among the antennas as seen in Figure 8-3 (a). It is 

specified for the MWT system which is designed for near field application as 

it is introduced for microwave imaging [169; 173].  

The antennas are connected using RD 316 coaxial cable, with SMA 

Plug Crimp Gold connectors Figure 8-3 (b). The impedance is 50 ohm with 

attenuation 1.0 dB at 3GHz. Though the maximum frequency of the cable is 3 

GHz, it can still be used to transmit microwave signals up to 5 GHz. 



202 

 
 

 
 

Figure 8-3: The array of antennas of MWT system. a) 16 

monopole antennas are placed in a single ground plane. b)  the 
antenna connectors are connected using RD 316 coaxial cable. 
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Figure 8-4:𝑠11 parameter of the monopole antenna in free space. 

The antennas are designed to transmit microwave signals from 2 to 7 

GHz, although in the practice it is found that the usable frequency based on 

the 𝑠11 characteristic is 4 GHz to 6 GHz as seen in Figure 8-4. The University 

of Manchester-MWT is a frequency dependent system. The efficiency of the 

system to adapt frequency is done by evaluating the capability in 

reconstructing the cross section of interest over the frequency 1GHz up to 5 

GHz.  

8.5 Object Domain of the University of Manchester-

MWT System 

The 16 antennas are positioned in a cylindrical array with radius 6.5 

cm. This architecture ensures that the entire imaging domains in the form of 

object domain are evaluated as seen in Figure 8-5 . The antennas are oriented 

vertically equal in space and radius. A circular hole with radius 5 cm is made 

in the center of the antenna array to place the object of interest. The decrease 

of the ground of the antenna may influence the approximation of the antenna 

model and produce additional errors. However, the OI should cross the 

ground plane  
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Figure 8-5: the architecture of ground plane antennas. The 

antennas are arranged circularly around object domain (𝒪) of 

MWT system 
The size of the monopole and the distance between antennas produce 

cross polarization level of the radiation pattern. Therefore, the measured 

scattered field near the transmitting antenna suffers from noise more than the 

other receiving antennas. To reduce the noise effect, the data near the 

transmitting antenna may not be used. In this experiment, measurements are 

acquitted for all receiving antennas at each illumination. The effect of the 

position and the number of antennas are studied with respect to the quality of 

the image resulted and the time consumed. 

8.6 Antenna Multiplexing Using Microwave Switching 

System 

The multiplexer is constructed by 16 bidirectional switch ports with two 

modules. The antennas from the sensors are connected into the switch ports 

using RD 318 coaxial cable. The switch can be controlled to connect the port 

into the modules. Module 1 is assigned as the transmitting antenna. It is 

connected to the input 1 of the VNA. Module 2 is addressed as the 

transmitting antenna. It is connected to input 2 of the VNA. For example, as 

it is seen in Figure 8-6, port 1 and port 2 are addressed as the transmitter and 

receiver, respectively. 

 

(𝒪) 

Object 
Domain 
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Figure 8-6: the architecture of the matrix switch of Cytec 
Microwave Multiplexer 

Cytec CXM series is used as the multiplexer. This passive bidirectional 

device switches 50 ohm coaxial microwave signals. It has 16 ports and 2 

output points. The ports are controlled by 16 individual switch points, which 

can be manual or computer controlled. The manual switching can be done 

using front panel keypad. Basically, the switch is handled using one letter 

mnemonic function which is mnemonic L for latch, meaning closing the 

specified point while all others are unaffected. Letter U for unlatch means 

opening addressed point while all other points are not affected. Letter X for 

multiplexer means closing the specified points to the desired output and open 

all other points. The last mnemonic function is usually used to reset the 

connection to the default assigned.  

The multiplexer is commanded by the computer. The command lines 

are received at the control module, and executed after all of the lines are 

transmitted. Multiple commands can be sent as long as they do not exceed 36 

characters. The commands are cleared using GPIB device clear, like instrclear 

in MATLAB command,  for example, clear all switch and module, close module 0 

to switch 1, then, close module 1 to switch 2. Instruction is executed by sending 

following text to the multiplexer 

1 2 3 4 5 6 7 8 

9 10 11 12 13 14 15 16 

Module1 Module 2 
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 𝑋 0 1; 𝐿 1 2  

The text is sent using 𝑓𝑤𝑟𝑖𝑡𝑒(′𝑡𝑒𝑥𝑡′) command that is 

 𝑓𝑤𝑟𝑖𝑡𝑒(𝑜𝑏𝑗𝑀𝑢𝑙 ,
′ 𝑋, 0, 1; 𝐿, 1, 2′) 

The instruction in the form of text data is written in a multiplexer via GPIB. 

The multiplexer is addressed as 𝑜𝑏𝑗𝑀𝑢𝑙. The multiplexer object should be 

defined. The address of multiplexer interface is set manually and it can be 

automatically detected by the available MATLAB command. 

The Cytec multiplexer interface is controlled via IF-4 IEEE 488 bus. 

The talk/listen addresses are defined using five position DIP switch. The 

setting is binary, the first switch is the least significant and the fifth is the most 

significant. In this research, the multiplexer is addressed at 7 decimal or 11100 

of the DIP switch. The object address is detected using function instrfind of 

MALTAB function. The visa address is set at 7. The interface of the Cytec 

multiplexer will be recognized as the GPIB object as 

 𝑂𝑏𝑗𝑀𝑢𝑙 = 𝐺𝑃𝐼𝐵𝑂𝑏𝑗𝑒𝑐𝑡𝑈𝑠𝑖𝑛𝑔𝑁𝐼𝐴𝑑𝑎𝑝𝑡𝑜𝑟 ∶  𝐺𝑃𝐼𝐵0 − 7   

Once the object is detected, the connection is established using an open 

command 𝑓𝑜𝑝𝑒𝑛(𝑂𝑏𝑗𝑀𝑢𝑙).  

Algorithm 8-2: setMUL: Setting Multiplexer switch 

Subroutine setMUL(𝑜𝑏𝑗𝑀𝑢𝑙, 𝑇𝑥, 𝑅𝑥) 

 𝑓𝑜𝑝𝑒𝑛(𝑜𝑏𝑗𝑀𝑢𝑙) 

 𝑀𝑈𝐿𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 = [′𝑋, 0,′ 𝑛𝑢𝑚2𝑠𝑡𝑟(𝑇𝑥)′; 𝐿, 1,′ 𝑛𝑢𝑚2𝑠𝑡𝑟(𝑅𝑥)] 

 𝑓𝑤𝑟𝑖𝑡𝑒(𝑜𝑏𝑗𝑀𝑢𝑙, 𝑀𝑈𝐿𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛) 

 𝑓𝑐𝑙𝑜𝑠𝑒(𝑜𝑏𝑗𝑉𝑁𝐴) 

End of setMUL 

The multiplexer is used to connect an appropriate transmitting antenna 

(𝑇𝑥) to module 0 means port In0 which is connected to Input 1 of VNA, and 

receiving antenna (𝑅𝑥) to module 1 and connected to Input 2 of VNA. The 

MATLAB subroutine for handling this instruction can be seen in Algorithm 

8-2. 
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In MATLAB command, the instruction is defined in a string data 

format. Initially, the data bus is established to communicate computer and 

multiplexer objects. 𝑓𝑜𝑝𝑒𝑛(𝑜𝑏𝑗𝑀𝑢𝑙)is used to define the communication line. 

Then, it is followed by sending instruction to the multiplexer. The 𝑇𝑥 and𝑅𝑥 

are defined by outer and nested loops which are numeric types of data format. 

They should be transferred in a string format using 𝑛𝑢𝑚2𝑠𝑡𝑟(𝑛𝑢𝑚𝑒𝑟𝑖𝑐) 

MATLAB command. Once the instruction is recognized and executed by the 

multiplexer, the communication line is closed. The data bus can be used to 

communicate between computer and VNA.  

8.7 Read and Write Data from VNA 

The scattered field data is measured using Vector Network Analyzer (VNA) 

HP 8720D. The VNA is communicating with the computer via GPIB data 

bus. In general, the communication is conducted in the following steps: 

1. Create an instrument object 

2. Connect to the instrument 

3. Configure properties 

4. Write and read data 

5. Disconnect from the instrument 

The VNA is detected as the object in GPIB, it is addressed at 16 decimals. It is 

assigned using instruction in MATLAB command 

 𝑖𝑛𝑠𝑡𝑟𝑓𝑖𝑛𝑑(′𝑇𝑦𝑝𝑒′,′ 𝑣𝑖𝑠𝑎′,′ 𝑅𝑠𝑟𝑐𝑁𝑎𝑚𝑒′, 𝑣𝑖𝑠𝑎𝑎𝑑𝑑𝑟 ,
′ 𝑇𝑎𝑔′, ′′) 

The VNA object is detected using VGvna function which is stated in 

algorithm 7-3. The address of VNA can be defined using local-instrument 

state-push button front panel. The address is set at 16, thus the GPIB-VISA 

instrument is defined at 16, otherwise it is assigned using instrument type 

(′𝑎𝑔𝑖𝑙𝑒𝑛𝑡′). 

 



208 

Algorithm 8-3: VGvna: VISA-GPIB object of VNA 

Function VGvna(−) 

 𝑖𝑛𝑠𝑡𝑟𝑟𝑒𝑠𝑒𝑡 

 𝑣𝑖𝑠𝑎𝑎𝑑𝑑𝑟 =
′ 𝐺𝑃𝐼𝐵0 ∷ 16 ∷ 𝐼𝑁𝑆𝑇𝑅′  

 𝑜𝑏𝑗 = 𝑖𝑛𝑠𝑡𝑟𝑓𝑖𝑛𝑑(′𝑇𝑦𝑝𝑒′,′ 𝑣𝑖𝑠𝑎′,′ 𝑅𝑠𝑟𝑐𝑁𝑎𝑚𝑒′, 𝑣𝑖𝑠𝑎𝑎𝑑𝑑𝑟 ,
′ 𝑇𝑎𝑔′, ′′)  

 𝑖𝑓𝑖𝑠𝑒𝑚𝑡𝑦(𝑜𝑏𝑗) 

  𝑜𝑏𝑗𝑉𝑁𝐴 = 𝑣𝑖𝑠𝑎(′𝑎𝑔𝑖𝑙𝑒𝑛𝑡′, 𝑣𝑖𝑠𝑎𝑎𝑑𝑑𝑟) ; 

 𝑒𝑙𝑠𝑒 

 𝑓𝑐𝑙𝑜𝑠𝑒(𝑜𝑏𝑗) 

 𝑜𝑏𝑗𝑉𝑁𝐴 = 𝑜𝑏𝑗(1) 

𝑒𝑛𝑑 

Return (𝑜𝑏𝑗𝑉𝑁𝐴) 

 

Algorithm 8-4: getFreq: Acquire Frequency Parameter of VNA 

Function getFreq(𝑜𝑏𝑗𝑉𝑁𝐴) 

 𝑓𝑜𝑝𝑒𝑛(𝑜𝑏𝑗𝑉𝑁𝐴) 

 𝑓𝑤𝑟𝑖𝑡𝑒(𝑜𝑏𝑗𝑉𝑁𝐴, ′𝐹𝑂𝑅𝑀4;  𝑂𝑃𝐶? ;  𝑆𝐼𝑁𝐺′) 

 𝑓𝑝𝑟𝑖𝑛𝑡𝑓(𝑜𝑏𝑗𝑉𝑁𝐴,′ 𝑃𝑂𝐼𝑁? ′) 

 𝑛 = 𝑠𝑐𝑎𝑛𝑠𝑡𝑟(𝑜𝑏𝑗𝑉𝑁𝐴) 

 𝑓𝑝𝑟𝑖𝑛𝑡𝑓(𝑜𝑏𝑗𝑉𝑁𝐴,′ 𝑆𝑃𝐴𝑁? ′) 

 𝑑 = 𝑠𝑐𝑎𝑛𝑠𝑡𝑟(𝑜𝑏𝑗𝑉𝑁𝐴) 

 𝑓𝑝𝑟𝑖𝑛𝑡𝑓(𝑜𝑏𝑗𝑉𝑁𝐴,′ 𝑆𝑇𝐴𝑅? ′) 

 𝑠 = 𝑠𝑐𝑎𝑛𝑠𝑡𝑟(𝑜𝑏𝑗𝑉𝑁𝐴) 

 𝑛 = 𝑐𝑒𝑙𝑙2𝑚𝑎𝑡(𝑛) 

 𝑑 = 𝑐𝑒𝑙𝑙2𝑚𝑎𝑡(𝑑) 

 𝑠 = 𝑐𝑒𝑙𝑙2𝑚𝑎𝑡(𝑠) 

 𝑓𝑐𝑙𝑜𝑠𝑒(𝑜𝑏𝑗𝑉𝑁𝐴) 

Return [𝑛, 𝑑, 𝑠] 

 

Algorithm 8-5: getDat: Acquire 𝑠21 signal 

Function getDat(𝑜𝑏𝑗𝑉𝑁𝐴) 

 𝑓𝑜𝑝𝑒𝑛(𝑜𝑏𝑗𝑉𝑁𝐴) 

 𝑠𝑒𝑡(𝑜𝑏𝑗𝑉𝑁𝐴, ′𝐼𝑛𝑝𝑢𝑡𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒′, 80050) 

 𝑓𝑤𝑟𝑖𝑡𝑒(𝑜𝑏𝑗𝑉𝑁𝐴, ′𝐹𝑂𝑅𝑀4;  𝑂𝑃𝐶? ;  𝑆𝐼𝑁𝐺′) 

 𝑓𝑤𝑟𝑖𝑡𝑒(𝑜𝑏𝑗𝑉𝑁𝐴, ′𝑂𝑈𝑇𝑃𝐷𝐴𝑇𝐴′) 

 𝑑𝑎𝑡𝑎 = 𝑠𝑐𝑎𝑛𝑠𝑡𝑟(𝑜𝑏𝑗𝑉𝑁𝐴) 

 𝑓𝑤𝑟𝑖𝑡𝑒(𝑜𝑏𝑗𝑉𝑁𝐴, ′𝑂𝑃𝐶? ;  𝑆𝐼𝑁𝐺′) 

 𝑓𝑤𝑟𝑖𝑡𝑒(𝑜𝑏𝑗𝑉𝑁𝐴, ′𝑐𝑜𝑛𝑡′) 

 𝑓𝑐𝑙𝑜𝑠𝑒(𝑜𝑏𝑗𝑉𝑁𝐴) 

Return (𝑑𝑎𝑡𝑎) 
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The connection of the computer and the instrument is established by 

opening data bus line to the appropriate object address. The object of VNA is 

opened using 𝑓𝑜𝑝𝑒𝑛(𝑜𝑏𝑗𝑉𝑁𝐴) function. Furthermore, the computer 

communicates with VNA using 𝑜𝑏𝑗𝑉𝑁𝐴 variable.  

The data is gained using format type 𝐹𝑂𝑅𝑀4 that is an ASCII number 

with 24 bytes per data value. To express the phase of measured data at each 

scan of the field, the data is taken at 201 points with a maximum span of 0.5 

GHz. The data is transferred using 𝑂𝑈𝑇𝑃𝐷𝐴𝑇𝐴 instruction, output the error 

of the corrected data from the active channel.  

The 𝑂𝑈𝑇𝑃𝐷𝐴𝑇𝐴 syntax is selected to handle the data acquisition of 

𝐹𝑂𝑅𝑀4 format. The data gained is the data from the active channel with a 

suitable display format. The raw data with error-correction is applied. The 

array represents the currently measured parameter. It is transmitted in real-

imaginary pairs. To access appropriate data location, the data is indexed using 

the array of frequency. The procedure of gaining data using VNA is illustrated 

in algorithm 7-4 and algorithm 7-5. 

8.8 Data Collection and Calibration 

8.8.1 Data collection 

The measurement data is gathered in undisturbed and disturbed 

electric fields. The data is scanned from 1 to 5 GHz with 1.5 GHz 

span, therefore, it is taken at the eight set of calibration. The MWT 

inverse problem needs scattered field measurement. Practically, the 

field which can be measured is the total field and the incident field. 

The former field is the measured data when the 𝑂𝐼 is introduced and 

the latter is the data when the scatterer is not present. Figure 8-7 

illustrates the sample of the raw data of both types of fields. The graphs 

visualize the absolute value of electric field at R1, Rx 4 and Rx8 when 

the microwave signal is transmitted from Tx1. 
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Figure 8-7: Undisturbed and disturbed electric fields measured at 
Rx2 and Rx9 when microwave signal is transmitted from Tx1  
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Figure 8-8: Raw data of measured Electric field at Rx antennas 

around object domain when three different microwave signals 
are transmitted from first three Tx antennas. 
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The frequency is scanned from 1 to 5 GHz. Moreover, the difference of 

both measured electric fields at all data points (all Rx antennas) at three 

different frequencies are presented at Figure 8-8 it can be seen that the 

effective frequency of the University of Manchester-MWT system is between 

4.5 GHz to 5 GHz. This is in line with the parameters of S11 of the antenna. 

The reflection coefficient is below -10dB above 4.5 GHz where the difference 

of undisturbed and disturbed signals is clearly seen. For this reason, the 

measurement test is concentrated between 4.5 GHz to 5 GHz. 

8.8.2 Calibration 

The scattered field is the subtraction of the total field with the incident 

field. The raw data is calibrated. The pairs of real-imaginary of the field 

measured of 𝑆2,1 value needs to be transformed into recognized fields term. 

The calibration is also reasoned to compensate the errors of measurements. 

This is used to eliminate the data which suffers from errors more than the 

others. 

It is assumed that the unperturbed and perturbed measured fields in 

𝑆2,1 value are defined as 𝐸𝑚𝑒𝑎
𝑖  and 𝐸𝑚𝑒𝑎

𝑡 , respectively. The magnitude and 

phase of the measured field are varied due to several variables, such as, the 

position of the antennas, the initial of the magnitude and the phase of the 

fields and the calibration of the VNA. The complexity of the system and the 

unknown line length on the multiplexer make the multiplexer allocated at the 

sensor block, and the calibration of the VNA done before the multiplexer. The 

measurement procedure creates variations of the data gathered. Therefore, the 

ratio of the measured value is used instead of the factual value. The ratio 

eliminates the difference of the magnitude of the data. 
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Figure 8-9: The absolute and phase of calibrated scattered field at 
4.5 GHz when a plastic rod is introduced 
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Equation 8 6) produces the simulated scattered field with respect to the 

ratio of measurement data. The calibration is done by assigning the ratio 

equals to simulated and measuring data. Then, the desirable scattered field 

which can be used as the input of inverse problem is done by 

 𝐸𝑚𝑒𝑎
𝑠 = (𝑅𝑚𝑒𝑎

𝑡 − 1)𝐸𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑
𝑖  

Applying calibration 8 7) to measure disturbed and undisturbed electric 

field resulted calibrated electric field at the data domain with known 

simulated incident field at the object data. The illustration of the calibrated 

electric field is presented in Figure 8-9. 

The disturbance is a cylindrical plastic rod which is made from 

homogeneous Teflon which utilizes published contrast of contrast of 𝜒𝑟 ≈

2.1 + 𝑗0.0 at 3 GHz. The cylinder is placed roughly in the center of the object 

domain. Referring to the result of the direct scattering numerical experiment 

(chapter 3), the pattern of scattered field of homogeneous cylindrical object is 

smooth. However, the pattern of the line in Figure 8-9 is fluctuated. The 

noise, model error, calibration error and other disturbances influence the 

quantity of calibrated scattered field.  

8.9 The Results of Reconstructing Experimental Data 

8.9.1 The effect of antenna arrangement 

The calibrated scattered field is fluctuated. The noise level is different among 

measurement points. The number of point data at receiver is essential to the 

results of reconstruction. The effect of arrangement of working antennas at 

each microwave illumination is studied. The indexed measurement point 

which is Rx antennas is illustrated in Figure 8-10 and the arrangement of Rx 

antennas is described in Table 8-1. The architecture of the mode is similar to 

all projections of set measurement. The second projection is done by shifting 

the position of Tx and Rx one index leftward or anticlockwise.  
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Figure 8-10: The arrangement of antennas. Tx1 is set as a 

transmitting antenna and Rx1 to Rx15 are defined as receiving 
antennas 

 

Calibrated electric field with five different antenna arrangements are 

reconstructed using Inexact Newton and Newton iterative algorithms. The 

value of functional norm at stopping iterative index at 4.5 to 5 GHz is 

presented in Figure 8-11. It can be seen that decreasing the number of 

receiving antenna decreases the terminal value of the functional norm.  

 

Table 8-1: The arrangement of Rx antenna when Tx1 is defined 
as transmitting antenna. 

Transmitter 
Receiver 

Mode No of Antenna (Rx) 

Tx1 

A 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15. 

B 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14. 

C 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13. 

D 4, 5, 6, 7, 8, 9, 10, 11, 12. 

E 3, 4, 5, 6 , 10, 11, 12, 13 
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Figure 8-11: The effect of the architecture of the receiver to the 

pattern of the objective function norms of INBM-Tikhonov and 

NI-cgne-LC at 4.5 to 5.0 GHz 

Mode A uses all the points of measured data while mode E 

applies half of the data point. The speed of reconstruction of mode E is 

faster and functional norm is smaller than that of the mode A. 

Decreasing the number of receiving antennas reduces the number of 

equation. The complexity of the computational problem is simplified, 

then, the minimizer results in a smaller functional norm 
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Figure 8-12: The results of antenna arrangement test: Images 

of plastic rod cross section when receiving antennas are set at 
five different modes. The working frequency is 4.5 GHz 



218 

However, reducing data points may be resulting in the shortfall of 

additional information. The number of antennas should be selected. Higher 

number of antennas increases computational burden while lower number of 

antennas reduces the amount of information.  Beside the levels of noise at 

points data are varied. The position of the points data relative to the 

transmitting antenna influences the level of the noise. The calibrated scattered 

field which is varied in number and arrangement of the receiving antenna is 

studied. The effect of number of receiving antenna to the reconstructed images 

is presented in Figure 8-12. 

In can be seen from the reconstructed images of calibrated scattered 

field in mode A antenna set where 15 Rx antennas are used that the shape and 

position of the Teflon cross section is clearly seen, the quantity of dielectric 

contrast is defined closed to the target value. However, the effect of noise is 

relatively higher than the reconstructed images of other antenna set modes.  

Better images are resulted from the reconstruction of calibrated 

scattered field of less number of the receiving antennas. In mode C, Eleven 

out of 15 Rx antennas are used where the Rx antennas which are close to Tx 

are eliminated. It creates the best images. The shape and position of the object 

are clearly defined. The value of dielectric contrast is close to the target value 

and the image is clear from the noise effect. Further decreasing of the number 

of antennas is done in mode D. It declines the quality of the images. 

Modifying mode C by eliminating Rx antenna in the opposite side of Tx 

antenna improves the speed of the reconstruction and the quality of minimizer 

without losing the information and the quality of the images. Based on this 

empirical study, mode E is used in the next study. 

8.9.2 The application of reconstruction algorithms 

The algorithms which are Levenberg Marquardt (LM), Inexact Newton 

(INBM), and Newton iterative (NI-cgne) are applied to reconstruct the 

calibrated scattered field due to the introduction of the cylindrical Teflon. The 

methods are regulated using Tikhonov regularization, Landweber Friedman 
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iteration and conjugate gradient on normal equation. The results of the 

reconstruction are summarized in Table 8-2.  It can be seen that 

approximation solution of linear ill posed problems is an alternative of the 

direct solution which is applied in LM algorithm with Tikhonov 

regularization. It is faster and more efficient than the direct solution. 

The iterative approximation of linear ill posed problem of MWT 

inverse problem speeds up the process of reconstruction more than 4 times. 

The LM algorithm needs at least 21 iterations to solve the problem. While, 

the Newton iterative algorithm solves before the 10th iteration. The quality of 

iterative solution is also better than the direct solution. 

 

Table 8-2: The number of iterations and objective functional 
norm of Levenberg Marquardt, Inexact Newton and Newton 

Iterative algorithms when reconstructing the images of the cross 
section of cylindrical  Teflon 

 

Algorithm 

𝒌 𝓕 

4.3 

GHz 

4.6 

GHz 

5.0 

GHz 

4.3 

GHz 

4.6 

GHz 

5.0 

GHz 

LM -Tikhonov 21 30 25 0.3152 0.2795 0.2795 

INBM-Tikhonov 4 4 4 0.3067 0.2665 0.2465 

INBM-Ladweber 4 4 4 0.3167 0.2569 0.2125 

NI-CGNE 4 8 5 0.2831 0.2440 0.1925 

the objective function norm is calculated using (ℱ) 

ℱ([𝝌]𝑘) =
‖𝐹([𝝌]𝑘)‖

2

‖ℰ𝑠‖2
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Figure 8-13: The objective functional norm and number of 

iterations of four different algorithms reconstructing the 
calibrated scattered field due to the presence of homogeneous 

dielectric cylinder. 

Conjugate gradient provides better regulated approximation solution of 

the linear ill posed problem. The method is used at Newton iterative 

algorithm while other iterative regularizations are applied in inexact Newton. 

It can be seen in Figure 8-13  that the functional norm of the Newton iterative 

is the best among the other algorithms tested though it needs slightly more 

iterations to terminate the iteration of Newton method.  The images resulted 

at three different frequencies are presented in Figure 8-14. 
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Figure 8-14: Images of plastic rod cross section resulted by 

various algorithms which are Levenberg Marquardt method, 
Inexact method and Newton Iterative with conjugate gradient at 

three different frequencies. 
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Figure 8-14 illustrates the images of Teflon cross section reconstructed 

by LM, INBM and NI-cgne algorithms. It can be seen that the images of NI-

cgne algorithm are better than those resulted by the algorithms. The shape and 

the position of the interest are clearly seen, and the contrast of the object is 

closely determined at 4.6 and 5.0 GHz while the noise can relatively be 

eliminated.  

Generally, the shape of the object can be reconstructed at a low 

frequency where the coefficient of reflection of the antennas is higher than -

10dB. However, the contrast of the object can only be computed at a 

frequency where the coefficient of the antenna reflection is lower. Except for 

the Levenberg Marquardt method, the Newton method with various iterative 

regularized methods determines the contrast value of the dielectric of the 

object relatively close to the target. Tikhonov regulator shows the capability in 

delimiting the effect of the noise, while Ladweber Friedman iteration is 

sensitive to the noise.  The conjugate gradient on normal equation which is 

regularized with L-curve stopping provides the best approximation 

regularized solution of the linear ill posed problem. The approximation directs 

the Newton method toward best global minimum point. 

8.9.3 Object of interest variation 

Inexact Newton with iterative Tikhonov regularization and Newton iterative 

with conjugate gradient on normal equation methods as regularized linear ill 

posed solvers are proved to be useful as alternative methods for solving 

microwave inverse problems. They build images that describe the shape 

position and contrast value of the object fairly close to the exact object. 

Further study is done to learn the flexibility of the algorithms in handling the 

shape and position of several objects.  
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8.9.3.1 Variation of objects of interest  

 

Figure 8-15: three different objects of interest used to test the 
adaptability of the inexact Newton and Newton iterative 

algorithms. 

Three different objects of interest are introduced in this study. The 

objects of interest are illustrated in Figure 8-15, which include  

 Object of interest A (OI A): a small cylindrical Teflon which is 

placed approximately in the center of the object domain. 

 Object of interest B (OI B): a medium cylindrical Teflon which is 

placed approximately in the center of the object domain. 

 Object of interest C (OI C): two small cylindrical Teflons which 

are bound and placed in the center of the object domain. 

 

The University of Manchester-MWT system is set to be working 

at 4.5 GHz. 16 projections are applied at each measurement of 

undisturbed and disturbed electric fields where the receiver 

arrangement follows mode E of Table 8-1. Thus, the calibrated 

scattered field at each illumination consists of 8 data points, and the 

total number of data to be reconstructed is 128.  
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Figure 8-16: Images of three different objects of interest cross 

section resulted by INBM and NI-cgne at 4.5 GHz 

 

Table 8-3: The result of reconstruction of varied objects of 
interest cross sectioned by Inexact Newton and Newton iterative 
algorithms 

Algorithm 
𝒌 

a
) 𝓕 

OI A OI B OI C OI A OI B OI C 

INBM-Tikhonov 3 4 4 0.3093 0.2665 0.219 

NI-CGNE(Lcurve) 5 8 6 0.2380 0.2440 0.1910 
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The results of the reconstruction of three objects of interest are 

summarized in Table 8-3.. It can be seen that NI-cgne is 2 to 4 

iterations slower than the INBM, however it produces better minimizer 

for all types of the object. Applied to both algorithms, the Newton 

iteration is terminated using ratio of the discrepancy of the objective 

functional norm. The stopping criteria is set to be 𝑅 < 0.05. It can be 

seen that NI-cgne with L-curve as a regulator provides better Newton 

step than INBM with Tikhonov regularization. Figure 8-16 shows that 

NI-cgne describes the value of the contrast of the object better than 

INBM-Tikhonov. This is in line with the result of the minimizer.  

8.9.3.2 Separation of two cylindrical objects of interest  

Further adaptive study of the algorithm is done by applying it to 

distinguish the separation of two objects. Two small cylindrical Teflons 

are placed at various distance as seen in Figure 8-17 

 
 

 

Figure 8-17: Two small cylindrical Teflons which are placed at 
object domain with four different gaps. 
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Table 8-4: The result of reconstruction of two small cylindrical 
Teflons with four different gaps by Inexact Newton and Newton 

iterative algorithms 

Algorithm 
𝒌 

a
) 𝓕 

b
)A 

c
)B 

d
)C 

e
)D A B C D 

INBM-Thi 4 4 4 4 0.2151 0.2134 0.2095 0.2167 

NI-CGNE 8 9 9 4 0.1520 0.1487 0.1400 0.1298 
a) objective functional norm 

b) position A with gap 3 mm 

c) position B with gap 6 mm 

d) position C with gap 9 mm 

e) position D with gap 12 mm 

 

The measurement is done at 4.6 GHz with mode E antenna 

arrangement.  The results of reconstruction are summarized in table 7-

4. It can be seen that Newton iterative is slower than the inexact 

Newton. The INBM with Tikhonov regularization terminates after 4 

iterations. On the contrary, the NI generally needs double. However, 

the objective functional norm of NI is smaller than that of INBM. The 

minimum functional norm of NI reaches 12% while the minimum 

functional norm of INBM is more than 20%.  

The NI builds better reconstruction images than the INBM as 

seen in Figure 8-18. The separation of the object of interest can be 

clearly seen in the images built by Newton iterative with CGNE. The 

gap of 3 mm can be distinguished. The number of objects can be 

clearly seen and the contrast of the dielectric is close to the exact value. 

The effect of the noise appears at the edge of the object domain. This is 

due to the approximation model of ground plane antenna used. 

However, the effect of the noise in the image can still be separated 

from the original objet. On the other hand, the INBM is unable to 

separate 6 mm gap object, and moderately reconstructs contrast of two 

objects with 9 mm and 12 mm gaps 
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Figure 8-18: Images of two small cylindrical Teflons with four 

different gaps resulted by INBM and NI-cgne at 4.6 GHz 
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8.10 Conclusions 

Microwave tomography system has been developed. 16 array ground plane 

antennas are used as a transmitter and a receiver of microwave signal which 

are generated and measured by a vector network analyzer. The switching is 

automatically controlled by computer via Cytec multiplexer. The data 

measured is undisturbed and disturbed electric fields. The scattered field is 

generated using pairs of measured fields and simulated incident fields at an  

object domain. The calibrated scattered field is reconstructed using developed 

algorithms.  

The pattern of calibrated scattered field fluctuates due to noise effect, 

approximation model and other disturbances. To optimize the reconstruction, 

the arrangement of the set transmitter and receiver is studied. The optimum 

solution is found if the receiving antenna which is near and directly at the 

other side of the transmitter is eliminated.  

The results of the experiment reveal that the NI-cgne which is the 

combination of inexact Newton class with iterative regularized linear ill posed 

problem produces a stable solution for MWT image inverse problem. The 

conjugate gradient on normal equation is used for iterative regularization. The 

regularization is determined using L-curve stopping rule. It has been shown 

that the NI-cgne reconstructs the contrast, shape and gap between objects of 

the objects of interest well, when other methods studied face several 

limitations. 
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9.1 Conclusions 

Direct scattering problems of Microwave Tomography (MWT) have been 

solved using the moment of method with pulse basis function. The problems 

are solved in two-dimensional TM mode. It has been shown that with respect 

to the analytical solution, the moment of method provides accurate solution 

of the direct scattering problem.  

The numerical solutions are developed to provide solutions of MWT 

forward problems which deal with a heterogeneous scatterer. The volume 

electric field integral equations for scattering from a dielectric cylinder are 

solved using the moment of method with a pulse basis function and a delta 

testing function. The numerical investigations reveal that the numerical 

scattered fields are sensitive to the radius of the cells and dielectric value. A 

radius 0.03 𝜆0 of the cell is the reasonable size for a homogeneous dielectric 

object of interest with the mean error less than 0.1% while the value of 

dielectric moderately effects on the error of the field. The increase of the 

contrast value does not directly change the errors. The numerical errors rise if 

9  

Conclusions and Future 
works 
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the object is too small or too big relative to the object domain. The errors also 

increase at the place of observation near the transmitter. Therefore, the 

arrangement of receiver antenna which is the number and position or so 

called receiver (Rx) is studied to obtain optimum reconstruction results. 

The formulation of forward problems is used to derive the inverse 

problems of MWT. The MWT inverse problems are formulated in non-linear 

objective function norm instead of a least squared cost function. It has been 

studied that the solution MWT objective function presents more information 

than the solution of least squared cost function.  

The MWT inverse problems are solved using Newton approach where 

the linearization is conducted using Fréchet deferential. The linear ill posed 

Newton equations are solved using a direct regularized method. Levenberg 

Marquardt method (LM) with Tikhonov regularization. Numerical 

experiments show that LM method can be used to solve MWT inverse 

problems. The MWT objective function norm decreases and the errors of the 

images improve. However, the drawback of the LM method is that Newton 

equations have to be solved at each stage of the scheme which is expensive for 

MWT system and the solution may not be justified if the initial value is far 

from exact solution; beside it suffers from the noise effect. 

The Inexact Newton Backtracking Method (INBM) is developed to 

solve MWT inverse problems. It is an inexact Newton class method which 

applies an implicit solution of the Newton equations by adding a residual of 

inexact Newton on the equations. The INBM is a nested loops algorithm 

where the main loop is Newton method to solve nonlinear problems and the 

nested loop solves the Newton equations which is functioning as the step of 

the Newton method. The solutions of Newton equations are iteratively 

determined in unspecific manner with a forcing term. The term defines the 

speed and accuracy of the MWT inverse problem solutions. The term is 

determined by the relation of the current nonlinear problem and its linear 

solution. It has been shown that the forcing term is relatively flexible to be 

defined. The use of a forcing term reduces the dependence on regulator 

techniques and its parameter. The solutions of Newton equations are any 
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intermediate solutions that meet the forcing term criteria. The results of the 

numerical experiment show that INBM is faster and more adaptive to the 

lossy material and noise levels than the LM method. 

Newton Iterative-conjugate gradient on normal equation (NI-cgne) is a 

Newton Iterative method where the Newton step is the solutions of the 

normal form of the Newton equations.  The conjugate gradient solves the 

Newton normal equations. The CGNE iteratively solves the Newton 

equations by constructing a normal equation of the equations. The method is 

a semi regulated algorithm. The regularization is done by setting a proper 

stopping rule. Two different techniques to define stopping rule are studied. 

They are the discrepancy principle and L-curve criteria. The techniques are 

modified to adapt with unknown levels of noise and the irregularity of the 

solutions of the Newton equations. The discrepancy parameter is empirically 

determined by defining a level of confidence. While the triangle method of L-

curve criteria is modified to deal with limited and roughness of discrete 

number linear solutions. The method is applied to solve MWT inverse 

problems of lossy material. Numerical experiments with noisy data show that 

NI-cgne produces more stable solution of MWT inverse problems than LM 

method. Techniques to define stopping point of the iteration can be used to 

regulate the Newton equations.  

Microwave tomography system is developed in the University of 

Manchester. The measurement system is constructed by an array of ground 

plane antennas where the microwave signal is transmitted and measured 

using vector network analyzer. The system is computerized via Cytec 

multiplexer. The command is written in MATLAB syntax, in which the 

mnemonic function of the interface is addressed in a text list via GPIB 

interface. The measured scattered field is calculated based on the difference of 

the measurements of undisturbed and disturbed electric field. The difference 

of the electric field is calibrated toward modeled incident field in object 

domain and data domain. The incident is assumed to be illuminated from an 

infinitely long line current source. The calibrated scattered field is 

reconstructed using LM, INBM and NI-cgne algorithms. The experiments 
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show that NI-cgne is the most adaptive method. It reconstructs the cross 

section of the target object better over a wider frequency range. NI-cgne and 

INBM produce clearly defined shape and location of the OI in which the 

contrast values are relatively close to the target value while the LM method 

can only plainly define the shape and location of the object and poorly 

compute the contrast of the object. . The NI-cgne describes various object 

shapes and gaps between objects clearly, while the LM fails and INBM can 

only defines the gap of OI more than 10 mm, besides the contrast of multiple 

objects is poorly defined.     

9.2 Future works 

The results of the research promote the idea of developing tomography. The 

works that will be done include: 

 Investigating higher frequency. Tomography system may be developed in a 

higher frequency range. The application of higher frequency such as 

millimeter and Terahertz waves which have unique characteristics may 

extend the application of Tomography to the wider application. The 

interaction of higher frequency signal with object of interest will be studied 

and the application of time domain method is considered.  

 Investigating the statement of MWT inverse problem and its optimization. The 

statement of inverse problem is extended in term of contrast-source 

variables. The problem will be stated as a multi varied system with 

contrast and field variables as the unknowns and object function and data 

function as the systems to be solved. It will also be stated with respect to 

contrast source variable, in which the unknown contrast distributions of 

the interest are extracted from the solution of the inverse problem. The 

investigation involves the development of cheap linear solvers and 

alternative optimization methods. The goal of reconstruction of 

tomography is building images of the object of interest accurately and 

quickly. A cheap solver is essential to support approximation of the linear 
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ill posed problems. Various linear ill posed solvers will be investigated, 

which include stochastic methods and other adaptive regulators of ill 

posed problem solvers.  

 Developing a portable microwave tomography system. It has been shown that 

the inverse problem developed could handle the noise level of the 

experimental measurement system in which monopole antenna is 

designed as the transmitter and transducer of the electric field. The 

development of signal generator and acquisition technique will be studied. 

This research will eliminate the use of expensive and immobile vector 

network analyzer. Furthermore, the use of Cytec multiplexer is possible to 

be substituted with digital multiplexer. The microwave tomography 

system in the portable system can be applied in a wider area of 

applications and may be connected to other possible devices. 
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Appendix A Integral Equation of Microwave Tomography 

Inverse Problem 

This thesis presents MWT inverse problem in volume integral 

equations of electromagnetic scattering by a dielectric cylinder [12]. The 

scattering field is defined in frequency domain where a harmonic wave 

varying in time is considered as 𝑒−𝑗𝜔𝑡. The symbol 𝑗 represents the imaginary 

part 𝑗 = √−1, while 𝜔 and 𝑡 symbolize the radial frequency of the utilized 

field and the time respectively. Assume that an incident field with an electric 

field 𝐸𝑖 illuminates an inhomogeneous dielectric object (𝑂𝐼) of complex 

permittivity 𝜀𝑟 and arbitrary shape. The 𝑂𝐼 with Ω cross section is placed in 

object domain (𝒪) and immersed in background medium of complex 

permittivity 𝜀𝑏. The scattered field 𝐸𝑠 due to the present of the 𝑂𝐼 are 

measured in 𝑀 observation points at data domain (𝒟). According to the field 

described, the integral equation of total electric field everywhere inside 𝒪 and 

𝒟 is defined as in [16] 

 𝐸(𝒓) = 𝐸𝑖(𝒓) + ∫ 𝔾(𝒓, 𝒓′)𝜒(𝑟′)
Ω

𝐸(𝒓′)𝑑𝒓′ 

The volume integral equation is bound in the object domain 𝒪 ∈ ℝ2 in 

which a non magnetic 𝑂𝐼 is immersed, and the measurement domain is 

defined at 𝒟 ∈ ℝ2 outside the 𝑂𝐼. Vectors 𝑝, 𝑞, 𝑟 and 𝑟′ are position vector of 

the imaging. Vectors 𝑝 and 𝑞 define the points of observation and cells of 

interests respectively, 𝑝 ∈ 𝒟 and 𝑞 ∈ 𝒪, and the position vectors and position 

vectors 𝑟 and 𝑟′ are selected to be arbitrary vectors in ℝ2. 

An arbitrary electromagnetic field can be expressed as the sum of a 

transverse magnetic (TM) and a transverse electric (TE). The kernel or the 

dyadic Green's function which denotes the point source solution of the 

electromagnetic wave equation at the background medium, can be stated for 

2D-TM  , 2D-TE (A-3) and 3D (A-4) modes  as it is defined at [63; 64] 

  𝔾(𝒓, 𝒓′) = 𝑔(𝒓, 𝒓′) 
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 𝔾(𝒓, 𝒓′) = (𝕀 + 1

𝑘𝑏
2∇𝑟∇𝑟′) 𝑔(𝒓, 𝒓′) 

 𝔾(𝒓, 𝒓′) = (𝕀 + 1

𝑘𝑏
2∇𝑟∇𝑟′)

𝑒𝑗𝑘𝑏|𝒓−𝒓′|

4𝜋|𝒓−𝒓′|
 

where 𝑘𝑏 is the wave number in background medium with 𝑘𝑏
2 = 𝜔2𝜇0𝜀0𝜀𝑏. 

The permeability and permittivity of the free space is assigned as 𝜇0and𝜀0 

respectively. The dyad 𝑔(𝑟, 𝑟′) is the scalar of the Green's function for the 

homogeneous background. The 2D scalar may be written in Hankel function 

of zero order of the first kind as 𝑔(𝑟, 𝑟′) = 𝑗

4
𝐻0

(1)(𝑘𝑏|𝑟 − 𝑟′|).  

Two dimensional microwave imaging model can be described by 

defining three forms of electric fields which are total, incident, and scattered 

field on the MWT system. The total field (𝐸), which is known as the 

disturbance field, is the electric field in the presence of the 𝑂𝐼. The incident 

field is electric field (𝐸𝑖) in the absence of the 𝑂𝐼. This field is known as non-

disturbance field. In the thesis, radiation of line source equivalent is used as 

the source of the field. Thus, the value of the incident field is defined using 

Hankel's function. The scattered field (𝐸𝑠) is electric field due to the presence 

of the 𝑂𝐼. This field is the difference of the total and incident fields. The 

electric field relation everywhere outside the 𝑂𝐼 in MWT system is defined as: 

 𝐸(𝒓) = 𝐸𝑠(𝒓) + 𝐸𝑖(𝒓) 

The incident is defined in 2D-TM mode, which is presented in single 

rectangular component as  𝐸𝑧
𝑖 𝑧̂.  Therefore, the total and scattered fields have 

only single wave component 𝐸𝑧𝑧̂ and 𝐸𝑧
𝑠𝑧̂. To simplify the notation of the 

total, incident and scattered fields in 2D-TM mode are written as 𝐸, 𝐸𝑖 and 𝐸𝑠 

respectively for the rest of the thesis. 

Microwave tomography inverse problem is defined using a pair of 

objects and data equations. The integral equation (A-1) speaks for the object 

equation. The 𝐸(𝒓′)represents the field inside 𝒪 and 𝐸𝑖(𝒓′) illuminates 𝒪 in 

the present of an unknown 𝜒(𝒓′).  Then, the object equation can be written by 

following [23] 
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 𝐸(𝒓) = 𝐸𝑖(𝒓) + ∫ 𝔾(𝒓, 𝒓′)𝜒(𝒓′)
𝒪

𝐸(𝒓′)𝑑𝒓′𝒑 ∈ 𝒪 

where 𝜒(𝒓′) is the contrast of the 𝑂𝐼 with respect to the background. Different 

formulation of (A-8) in which equivalent current density replaces the dielectric 

contrast and total fields inside 𝒪 can be found in [81]. 

In MWT application the 𝑂𝐼 is illuminated with 𝐸𝑖 at several 

transmission points (𝑡 = 1, 2 . . 𝑇) on which at each illumination the scattered 

fields are measured at 𝒟. At each illumination (𝑡) , the object equation can be 

stated symbolically in a matrix form as it is introduced in [23] 

 [𝑬𝑖]
𝑡
= [𝑬]𝑡 − [𝔾(𝒓, 𝒓′)][(𝝌, [𝑬]𝑡)] 

Defining inner product of cells in integral equation as 

 [(𝒂, 𝒃)] = [

𝑎1𝑏1

𝑎2𝑏2

⋮
𝑎𝑁𝑏𝑁

] = [

𝑎1 0
0 𝑎2

0 0
0 0

0 0
0 0

⋱ 0
0 𝑎𝑁

] [

𝑏1

𝑏2

⋮
𝑏𝑁

] = [diag(𝒂)][𝒃] 

Applying (A-10) into (A-9) 

 [𝑬𝑖]
𝑡
= [𝐼 − [𝔾(𝒓, 𝒓′)][diag(𝝌)]][𝑬]𝑡 

Operator 𝔾(𝒓, 𝒓′)is an integral operator mapping 𝐿2(𝒪) into 𝐿2(𝒪), which 

means that position vector 𝒓 in (A-8) is directing to 𝒪.  

The scattered fields in (𝒟)[𝑬𝑠]𝑡 ∈ 𝒪 are defined using the following integral 

equation: 

 𝐸𝑠(𝒓) = ∫ 𝔾(𝒓, 𝒓′)𝜒(𝒓′)
Ω

𝐸(𝒓′)𝑑𝒓′𝒑 ∈ 𝒟 

The position vector 𝒓 points 𝒟, where the scattered fields are measured. 

Equation (A-12) is assigned as the data equation. At each projection(𝑡), it can 

be symbolized as  

 [𝑬𝑠]𝑡 = [𝔾(𝒓, 𝒓′)]𝑡[(𝝌, [𝑬]𝑡)] = [𝔾(𝒓, 𝒓′)]𝑡[diag(𝝌)][𝑬]𝑡 

where operator [𝔾(𝒓, 𝒓′)]𝑡 is an integral operator mapping 𝐿2(𝒟) into 𝐿2(𝒟). 

The subscribes 𝑡 on the operator [𝔾(𝒓, 𝒓′)]𝑡 is used to make clear the address 

of position vector 𝒓. On each projection, the position of observation point 
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could be vary. The position of total field, incident field and contrast are 

directed to 𝒪, while the position vector of scattered field is pointed at 𝒟.  

The scattered fields in 𝑀 points of observation at  𝒟 are the measured 

data. For each illumination of microwave signal, the MWT data can be 

defined as 

 [𝓔𝑠]𝑡 = [𝔾(𝒓, 𝒓′)]𝑡[(𝝌, [𝑬]𝑡)]𝒑 ∈ 𝒟 

MWT data [𝓔𝑠]𝑡are gathered at 𝑝 ∈ 𝒟, where in factual measurement, it 

contains measurement error, model error, noise and other disturbance 

parameters.  

The calculation of approximated scattered fields from predicted 

contrast and given incident fields is assigned as the forward problem. The 

approximation of the contrast from the discrepancy of data and approximated 

scattered field is known as the inverse problem.  
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Appendix B Scattering by a dielectric circular cylinder 

Two different incident fields, which are a normalized uniform plane 

wave and an equivalent line source, are used to derive the analytic solution of 

scattering by a dielectric circular cylinder.   

B.1 Normalized Plane Wave 

  
 

Figure B-1: A 𝑇𝑀𝑧 Uniform plane wave incident on a dielectric 

circular cylinder. 

 

The incident electric field in the form of the normalized plane wave can be 

written as 

 𝑎̂𝑧𝐸0𝑒
𝑗𝑘0(𝑥cos𝜙𝑖+𝑦sin𝜙𝑖) 

Assuming that the wave travels in the +𝑥 and −𝑥 direction, then the wave can 

be written respectively as  

 𝐸𝑧
+ = 𝑎̂𝑧𝐸0𝑒

−𝑗𝑘0𝑥and𝐸𝑧
− = 𝑎̂𝑧𝐸0𝑒

+𝑗𝑘0𝑥 
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The wave equations in (B-2) can be expressed in cylindrical wave functions as 

follows 

 𝐸𝑧
+ = 𝑒−𝑗𝑘𝑥 = 𝑒−𝑗𝑘𝜌cos𝜙 ∑ 𝑗−𝑛𝑱𝑛(𝑘𝜌)𝑒𝑗𝑛𝜙+∞

𝑛=−∞  

 𝐸𝑧
− = 𝑒+𝑗𝑘𝑥 = 𝑒+𝑗𝑘𝜌cos𝜙 ∑ 𝑗+𝑛𝑱𝑛(𝑘𝜌)𝑒𝑗𝑛𝜙+∞

𝑛=−∞  

where 𝑱𝑛 is the Bessel function of the first kind.  

The scattering by dielectric circular cylinder is defined as 

 𝐸𝑠 = 𝑎̂𝑧𝐸0 ∑ [𝑎𝑛𝐻𝑛
2(𝑘0𝜌)𝑒𝑗𝑛∅] ⟶ 𝐸𝑠(𝜌 ≥ 𝑎) ∈ 𝒟+∞

𝑛=−∞  

where the coefficient 𝑎𝑛 is determined using  

 𝑎𝑛 =
𝜂0𝐽𝑛(𝑘0𝑎)𝐽′𝑛(𝑘1𝑎)−𝜂1𝐽′𝑛(𝑘0𝑎)𝐽𝑛(𝑘1𝑎)

𝜂1𝐽𝑛(𝑘1𝑎)𝐻′𝑛
2 (𝑘0𝑎)−𝐽′𝑛(𝑘1𝑎)𝐻𝑛

2(𝑘0𝑎)
 



B.2 Electric Line Source 

The electric line source is a straight line electric current that extends to 

infinity. Assume that the electric current is directed along 𝑧 axis. It will radiate 

nonzero 𝑇𝑀𝑧 fields. If an infinity line source of electric current 𝐼0 is located at 

(𝜌 = 𝜌′)⋀𝜙 = 𝜙′, then, it will produce electric fields which is described in a 

cylindrical system as 

 𝐸𝑧(𝜌, 𝜙) = −
𝑘𝑜

2𝐼0

4𝜔𝜀
𝐻0

2(𝑘0𝐑) 

The electric field component is proportional to a Hankel’s function of the 

second kind over the distance from source to observation points. Theorem of 

Hankel’s functions expands the line source function by defining 𝐑 as radial 

distance between the source and the observation point 𝐑 = |𝜌 − 𝜌′|. 

 𝐸𝑧
𝑖 = −

𝛽2𝐼0

4𝜔𝜀
∑ 𝐽𝑛(𝛽𝜌)𝐻𝑛

(2)(𝛽𝜌′)𝑒𝑗𝑛(𝜙−𝜙′)+∞
𝑛=−∞  

The incidence equation (B-8) is used to illuminate a dielectric circular 

object. The transmitting antenna is placed near the object.  
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Figure B-2: An infinitely long line source current directed at 𝑧̂ is 

placed near a dielectric cylindrical object 

 

As the geometry of the object is simple; thus, the solution of (B-5) can 

be derived using harmonic expansion. The expansion of scattering field is 

followed Balanis[183], where The line source scattering by a dielectric circular 

cylinder is calculated using 

 𝐸𝑧
𝑠 = −

𝑘0
2𝐼0

4𝜔𝜀
∑ 𝑐𝑛

+∞
𝑛=−∞ 𝐻𝑛

(2)(𝑘0𝜌)𝑒𝑗𝑛(𝜙−𝜙′) 

Where the coefficient 𝑐𝑛 is determined using 

 𝑐𝑛 =

𝜇1
𝜇0

𝐽′𝑛(𝑘0𝑎)𝐽𝑛(𝑘1𝑎)𝐻𝑛
(2)

(𝑘0𝜌′)−
𝑘1
𝑘0

𝐽′𝑛(𝑘1𝑎)𝐽𝑛(𝑘0𝑎)𝐻𝑛
(2)

(𝑘0𝜌′)

𝑘1
𝑘0

𝐻𝑛
(2)

(𝑘0𝑎)𝐽′𝑛(𝑘1𝑎)−
𝜇1
𝜇0

𝐻′𝑛
(2)

(𝑘0𝑎)𝐽𝑛(𝑘1𝑎)
 
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Appendix C  Regularization of linear ill posed problem 

Let us define the operator of the normal equation  [𝑳] is positive definite 

matrix, 𝒃  is a vector measurement and 𝓼† is the exact solution of the linear 

system.  

 [𝑳]𝓼† = 𝒃 (C-1) 

The unique solution is hard to be defined. Though the matrix  [𝑳] is 

symmetrical, but it is ill conditioning. Therefore, an approximation solution 

𝓼‡ is computed to estimate the exact solution. It is gained by considering the 

regulated operator[𝑳𝛼]. The techniques to calculate the approximation 

solution is stated in the following section.  

C.1 Truncated Singular Value Decomposition 

Assuming that operator [𝑳] is an invertible complex matrix. It is squared 

matrix and has a singular value decomposition 

 [𝑳] = 𝑈 Σ 𝑉𝑇 (C-2) 

The singular value decomposition produces coupled unitary matrix 𝑈 and 𝑉 

which are 𝑈𝑇 = 𝑈−1and 𝑉𝑇 = 𝑉−1. The diagonal matrix of Σ is 𝜎𝑖where 

𝑖 = 1,2 . . 𝑁.If the column vectors of 𝑉 is 𝑣𝑖 and the column vectors of 𝑈 is 𝑢𝑖 

then, it the relation can be stated as follows 

 [𝑳]𝑣𝑖 = 𝜎𝑖𝑢𝑖;  [𝑳]𝑇𝑢𝑖 = 𝜎𝑖𝑣𝑖 (C-3) 

The solution of (C-1) is stated using the singular value decomposition as 

 𝓼 = [∑
𝑢𝑖𝑣𝑖

𝜎𝑖

𝑁
𝑖=1 ] 𝒃 (C-4

The truncated singular value decomposition (TSVD) regularizes the ill-

posed by truncating the matrix([𝑳]). A small value of singular value (𝜎𝑖) is 

ignored. The ill-conditioned system is regularized as 

 [𝑳𝛼]−1 = ∑ 𝜙𝑖
𝑢𝑖𝑣𝑖

𝑠𝑖

𝑁
𝑖=1  (C-5) 



256 

Where the regularization 𝜙𝑖 is defined as 

 𝜙𝑖 = {
1;      𝑖 = 1,2. . 𝑘
0;  𝑖 = 𝑘 + 1. . 𝑁

 (C-6) 

Equation (C-5) is known as the truncated singular value decomposition 

(TSVD) solution. It solves the linear ill-posed of MWT inverse problem. It 

should be note that the instability could be occurred during the computation 

of 𝓼 as some information is omitted.  

Basically, the inversion of the operator is done by inverting the singular 

values (𝜎𝑖)
−1 of the operator. This is due to the singular vector which is the 

orthonormal of the Eigen vector. The inversion of the singular vector is 

represented by its transpose while the singular values matrix is a diagonal 

matrix in which its cell is constructed by the eigenvalues of the matrix 

operator. The inversion equals to the division of the singular values  (𝜎𝑖)
−1 =

1
𝜎𝑖

⁄ . The instability arises at the high frequency where the division by small 

singular values appeared. To overcome this problem, the inversion is 

modified.  

The simplest method to modify the inversion is applying a low pass 

filter 𝜙𝑖 to the inversion. The high frequency is cut at a desirable point where 

desirable information is gained. The filter omits the influence of high 

frequency It stabilizes the solution, but loss detailed information.  

C.2 Tikhonov Regularization 

The Instability of (C-5) can be decreased by applying a parametric filter 

𝜔(𝜃, 𝛼). One of the well-known filters is the Tikhonov regularization. It is 

defined as  

 𝜔(𝜎𝑖
2, 𝛼) =

𝜎𝑖
2+𝛼

𝜎𝑖
2  C

where 𝛼 is the Tikhonov regularization parameter. It addresses the singular 

decomposition values as  

 𝜔(𝜃, 𝛼)𝜎𝑖 =
𝜎𝑖

2+𝛼

𝜎𝑖
 (C-8) 
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Determining 𝛼 is essential to the stability and accuracy of the solution. 

The regulator should be relatively small compared to the largest singular 

values and relatively big compared to the largest singular values. For largest 

singular values, the regulator contributes small effect while the smallest 

singular value contributes the biggest inversion values. 

 𝜔(𝜃, 𝛼)𝜎𝑖 =
𝜎𝑚𝑎𝑥

2+𝛼

𝜎𝑚𝑎𝑥
≈ 𝜎𝑚𝑎𝑥 C-9).

The filtered singular value is approximated as 

 𝜔(𝜃, 𝛼)𝜎𝑖 =
𝜎𝑚𝑖𝑛

2+𝛼

𝜎𝑚𝑖𝑛
≈ 𝛼 C-10

Substituting the regularization (C-8) into (C-4) results in Tikhonov regularized 

ill-posed solution as follows    

 𝓼 = [∑
𝜎𝑖

𝜎𝑖
2+𝛼

𝑁
𝑖=1 𝑢̅𝑖𝑣𝑖] 𝒃 C-11

Generally, the filter applied is similar to low pass filter in the previous 

section.  The regulator 𝛼 determines the cut off frequency. When the 𝛼 is very 

small, the threshold points decrease and the solution is highly oscillated as the 

noise could be relatively high compared to the invested values. On the other 

hand, when the regulator is high, the singular filter is low and the noise 

components are filtered out, but most information are also cancelled out and 

the solution is overly smooth. 

C.3 Truncated Landweber method 

 [𝑳𝛼]−1 = ∑ (1 − 𝛽[𝑳])𝑗𝐼−1
𝑗=0  C-12)

The solution of linear system is regulated using the inner iterative index 

𝑙 = 1,2, …  𝐼 and guarded with positive nonzero number𝛽. The 𝑙𝑡ℎregulative 

iteration can be expressed in terms of the singular value decomposition system 

 𝓼𝑘,𝑙+1 = ∑
1−(1−𝛽𝜎𝑖

2)
𝑙

𝜎𝑖

𝑁
𝑖=1 〈𝑏𝑘

𝜀 , 𝑢𝑖
𝑇〉𝑣𝑖 C-13) 

The 𝛽 is chosen according to the largest singular values. The 𝛽 lies between 
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 0 < 𝛽 <
2

𝜎1
2 C-14

The techniques explained are categorized as direct regularized 

methods. The direct solution is a predictable number of steps, but it 

does not support intermediate solution. The solution is in a specified 

manner according to the regularization technique used. The accuracy 

of the solution is dependent on the type of regulator and the size of the 

parameter of the regularization in which both parameters are hard to 

be defined. 
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Appendix D The Application of Born Approximation in 

MWT-Inverse Problem 

When the contrast or the size of the object of interest is small, the microwave 

inverse scattering problem can be simplified by applying the Born 

Approximation. The Born Approximation estimate the inverse in domain 

function as  

 [𝑰 + [𝒁𝑛𝑛′][diag(𝝌𝒏′)]]
−1

≈ 𝐼 D

Considering the assumption (D-1) with respects to domain equation means 

that the source over domain 𝒪 equals to the incident fields inside the imaging 

domain. This is similar to the undisturbed fields. 

D.1 The solution of MWT inverse problem using Born Approximation 

Applying the Born approximation, then the MWT objective function 𝑭𝑡([𝝌]) 

can be written as  

 𝑭𝑡([𝝌]) = [−[𝒁𝑚𝑛′]𝑡[diag(𝝌𝒏′)][𝑬𝑛
𝑖  ]𝑡] − [𝓔𝑚

𝒔 ]𝑡 D-

Assigning that the [𝓔𝑚
𝒔 ]𝑡 is the measured scattered fields, then, the distribution 

of the contrast [𝝌] which is representing the image of object cross section is 

the solution of microwave inverse problem. Although (D-2) is now linear, the 

system underdetermines these remains and ill-posed problems. The iterative 

solution is gained by updating the contrast as 

 [𝝌]𝑘+1 = [𝝌]𝑘 + 𝑑𝑘[𝜹𝝌]𝑘 D-3

where𝑑 𝑘 is an appropriate step length to enforce the reduction of the error of 

(D-2), [𝜹𝝌] is the direction of the correction and 𝑘 = 1,2 . . 𝐾 is the index of 

iteration.. [𝜹𝝌]is determined by solving linear system, by means of Fréchet 

derivative of 𝒃𝑡([𝝌]) at [𝝌]. 


𝑑𝒃𝑡([𝝌])

𝑑[𝝌]
[𝜹𝝌]𝑘 = −𝒃𝑡([𝝌]𝑘)  D-4

Where 
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𝑑𝒃𝑡([𝝌])

𝑑[𝝌]
=

𝑑[𝑬𝑚
𝑠 ]𝑡

𝑑[𝝌]
=

𝑑(−[𝒁
𝑚𝑛′]

𝑡
[diag(𝝌𝒏′)][𝑬𝑛

𝑖  ]𝑡)

𝑑[𝝌]
= −[𝒁𝑚𝑛′]𝑡[𝑬𝑛

𝑖  ]𝑡

Assuming that the MWT system illuminates 𝑡 = 1, 2…  𝑇 incident fields, then, 

the linear system of (D-4) can be illustrated as  

 𝑫[𝜹𝝌]𝑘 = −𝒃([𝝌]𝑘)  D-5

where 

𝑫 =

[
 
 
 
 
 
𝑑𝒃1([𝝌])

𝑑[𝝌]

𝑑𝒃2([𝝌])

𝑑[𝝌]

⋮
𝑑𝒃𝑇([𝝌])

𝑑[𝝌] ]
 
 
 
 
 

=

[
 
 
 
−[𝒁𝑚𝑛′]1[𝑬𝑛

𝑖  ]1
−[𝒁𝑚𝑛′]2[𝑬𝑛

𝑖  ]2
⋮

−[𝒁𝑚𝑛′]𝑇[𝑬𝑛
𝑖  ]𝑇]

 
 
 



𝒃([𝝌]𝑘) =

[
 
 
 
 
[−[𝒁𝑚𝑛′]1[diag(𝝌𝒏′)][𝑬𝑛

𝑖  ]1]−[𝓔𝑚
𝒔 ]1

[−[𝒁𝑚𝑛′]2[diag(𝝌𝒏′)][𝑬𝑛
𝑖  ]2]−[𝓔𝑚

𝒔 ]2
⋮

[−[𝒁𝑚𝑛′]𝑇[diag(𝝌𝒏′)][𝑬𝑛
𝑖  ]𝑇]−[𝓔𝑚

𝒔 ]𝑇]
 
 
 
 



The Gauss Newton method is used to solve (D-5). The method 

approximates the second order derivative as the multiplication of Jacobian of 

the system.  

 [𝑫∗𝑫][𝜹𝝌]𝑘 = −𝑫∗𝒃([𝝌]𝑘)  D-6

Equation (D-6) can be solved explicitly. Nevertheless, the condition of [𝑫∗𝑫] 

is poor. A regulator should be added to reduce the ill-pose of the system. 

D.2 Minimising the MWT cost function using Born Approximation 

The residual function of MWT under Born approximation is defined as 

 𝓡𝑡([𝝌]) = [[−[𝒁𝑚𝑛′]𝑡[diag(𝝌𝒏′)][𝑬𝑛
𝑖  ]𝑡] − [𝓔𝑚

𝒔 ]𝑡]  D-7

Suppose that [𝝌]𝑘−1 is known, the updated  [𝝌]𝑘 is determined using forward 

problem. The direction [𝜹𝝌]𝑘 is calculated using the Gauss Newton inversion 

method.  It needs Fréchet derivative of the cost-functional. As the cost-

functional is stated in least-squared, it has complex conjugate transpose of the 
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dielectric contrast ([𝝌]∗)  variable. Thus the Fréchet derivative of 𝓒𝑨([𝝌])and 

𝓒𝑩([𝝌])  with respect to [𝝌] is defined by deriving the derivative of the cost 

with respect to [𝝌]∗. The application of the inner product makes the functional 

𝓒([𝝌], [𝝌]∗) become a complex function. According to Wirtinger calculus it is 

analytic with respect to [𝝌] for fixed [𝝌]∗and is analytic to [𝝌]∗for fixed [𝝌]. It 

considers 𝒞([𝝌], [𝝌]∗)  such that 𝒞([𝝌], [𝝌]∗) = 𝒞([𝝌]), then, the derivative 

can be defined as 


𝑑𝓒([𝝌])

𝑑[𝝌]
= 𝓰𝑡([𝝌]) =

1

‖[𝓔𝑚
𝑠 ]𝑡‖𝒟

2 [−[𝑬𝑛
𝑖  ]𝑡

∗[𝒁𝑚𝑛′]𝑡
∗]𝓡𝑡([𝝌])  D-8

Where [𝒁𝑚𝑛′]𝑡
∗ is the adjoins of [𝒁𝑚𝑛′]𝑡 mapping 𝐿2(𝒟)into 𝐿2(𝒪), and over 

bar denotes complex conjugate. For all projection of MWT, the Fréchet 

derivative for all incidents fields is stated as 


𝑑𝓒𝐴([𝝌]𝑘)

𝑑[𝝌]
= 𝑫 = [

𝓰1([𝝌]𝑘)

𝓰2([𝝌]𝑘)
⋮

𝓰𝑇([𝝌]𝑘)

]  D-9


𝑑𝓒𝐵([𝝌]𝑘)

𝑑[𝝌]
= 𝑫 = 𝓰1(𝜒𝑘) + 𝓰2(𝜒𝑘)…+ 𝓰𝑇(𝜒𝑘)  D-10



D.3 Numerical experiment of Born Approximation 

The MWT-inverse problem is implemented to a simple numerical MWT case. 

A homogeneous cylindrical object with permittivity 1.4 and radius 1 cm is 

placed at (-0.02,-0.02) in domain object (𝒪). The object is illuminated with 4.5 

GHz line-source-equivalence microwave signals. The signals sequentially is 

transmitted from 𝑇𝑥𝑡=1..𝑇where 𝑇 = 16. At each illumination, the scattered 

fields are received at 8 𝑅𝑥 antenna at data domain. Therefore, for complete 

scanning total data collected are 16 × 8 = 128.  

The data are gained by solving the MWT forward problems. Then, it is 

reconstructed using Gauss Newton inversion method based on three different 

inverse problem formulations which are 𝓕([𝝌]), 𝓒𝑨([𝝌])and 𝓒𝑩([𝝌]).   
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Figure D-3: Image of cylindrical cross-section object under Born 

Approximation using Gauss Newton Inversion. Three different 
MWT inverse problems which are MWT objective function, 
MWT cost function A and B, are formulated and solved using 

GNI method. 

The results of reconstruction are presented in Figure D-1. It can be 

seen that the Born Approximation problem can be presented in MWT-

objective function and least-squared cost functional. Gauss Newton Inversion 

(GNI) solves MWT problems which are stated in three different functional 

operators. A first order Newton scheme is formulated using the derivative of 

the functional of the operator. The direction of GNI steps is the solution of 

normalized first order Newton method.  The step of GNI iteration is defined 

implicitly using backtrack technique. For evaluation purposes the GNI 

method is conducted at fixed 25 iterations. 

The dielectric contrast distribution over object domain describes the 

cross section of the OI. The solution of MWT problems using GNI defines the 

value of the contrast. It is assumed that the OI is divided into N cells and at 

each cell the dielectric contrast is distributed homogeneously. 
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Figure D-4: The parameter of the solutions of Born 

approximation MWT inverse problem.  
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GNI updates the estimated dielectric contrast individually on each cell. 

Therefore, the plot of dielectric contrast value distribution over object domain 

represents the cross section of OI. It can be seen in Figure D-1 that the 

reconstructed images describe the shape, the position and the quantities of OI 

accurately. 

The iteration process of Born Approximation can be studied using 

Figure D-2. The normalized norm of MWT-objective function and least 

squared cost functional of MWT problem graphs approach zero point. It can 

be deduced that the estimated solution moves toward exact solution. 

Moreover, it can be seen that the MWT-objective function formulation for 

MWT problem is better than the cost functional of MWT problem. It 

produces error of normalized norm error less than 10-7 while the cost functions 

of MWT produce error about 10-4. 

The least-squared cost functional is a convex system, thus the solution 

is determined whenever the derivative of the functional is zero. It can be seen 

that the graphs of the Fréchet derivatives of cost functional approach zero. 

The iteration stops if the value of the cost function is below a small positive 

tolerance parameter.  On the other hand, the line of Fréchet derivative norm 

of MWT-objective function approaches a non-zero constant along iterations. 

This is implied that the stop rule for MWT-inverse problem with objective-

function formulation should be stated by considering the limit value of 

derivative. However, the limit value of derivative norm is hard to define. 

Therefore, the sopping rule may be defined using the norm of the residual 

error.  

The functional operators are derived from the residual error of the 

scattered fields. The functional respects the dielectric contrast of object under 

investigation inside domain object. The estimated solution is assigned as the 

solution of the problems if the functional is less than the determined size of 

the functional. It can also be illustrated by the relative error of the estimated 

scattered field with respect to measured scattered field. The relative error 

graphs, which can be seen at Figure D-2, move toward zero for all functional 

operators.  
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Appendix E Publications 

E.1 Newton Method for Solving Microwave Inverse Problem; 

Nugroho, Agung T and Z Wu; The UoM IEEE Electron Devices 

Poster Conference; 12th june 2013.   
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E.2 Reconstructing Image of Microwave Tomography Using Contrast 

Source Inversion Method; Nugroho, Agung T and Z Wu; The 

UoM, EE E PGR Poster Conference; 20th November 2013 
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E.3  Inexact Newton Backtracking Method for Solving Microwave 

Tomography Inverse Problem; Nugroho, Agung T and Z Wu;  2015 

IEEE, International Conference on Imaging Systems and Techniques; 

Macau, China;  September 16-18, 2015 
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E.4 Newton Iterative with Conjugate Gradient on Normal Equations for 

Reconstruction of Free Space Microwave Imaging ; Nugroho, Agung T 

and Z Wu; To be submitted to: ; Transactions of the Institute of 

Measurement and Control Journal 
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E.5 Microwave Tomography Image Reconstruction Using Inexact Newton 

Backtracking Method; Nugroho, Agung T and Z Wu; To be submitted to: 

iopscience;  Measurement Science and Technology Journal 
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