1,117 research outputs found

    A simulated annealing algorithm for router nodes placement problem in Wireless Mesh Networks

    Get PDF
    Mesh router nodes placement is a central problem in Wireless Mesh Networks (WMNs). An efficient placement of mesh router nodes is indispensable for achieving network performance in terms of both network connectivity and user coverage. Unfortunately the problem is computationally hard to solve to optimality even for small deployment areas and a small number of mesh router nodes. As WMNs are becoming an important networking infrastructure for providing cost-efficient broadband wireless connectivity, researchers are paying attention to the resolution of the mesh router placement problem through heuristic approaches in order to achieve near optimal, yet high quality solutions in reasonable time. In this work we propose and evaluate a simulated annealing (SA) approach to placement of mesh router nodes in WMNs. The optimization model uses two maximization objectives, namely, the size of the giant component in the network and user coverage. Both objectives are important to deployment of WMNs; the former is crucial to achieve network connectivity while the later is an indicator of the QoS in WMNs. The SA approach distinguishes for its simplicity yet its policy of neighborhood exploration allows to reach promising areas of the solution space where quality solutions could be found. We have experimentally evaluated the SA algorithm through a benchmark of generated instances, varying from small to large size, and capturing different characteristics of WMNs such as topological placements of mesh clients. The experimental results showed the efficiency of the annealing approach for the placement of mesh router nodes in WMNs.Peer ReviewedPostprint (author's final draft

    Performance evaluation considering iterations per phase and SA temperature in WMN-SA system

    Get PDF
    One of the key advantages of Wireless Mesh Networks (WMNs) is their importance for providing cost-efficient broadband connectivity. There are issues for achieving the network connectivity and user coverage, which are related with the node placement problem. In this work, we consider Simulated Annealing Algorithm (SA) temperature and Iteration per phase for the router node placement problem in WMNs. We want to find the optimal distribution of router nodes in order to provide the best network connectivity and provide the best coverage in a set of Normal distributed clients. From simulation results, we found how to optimize both the size of Giant Component and number of covered mesh clients. When the number of iterations per phase is big, the performance is better in WMN-SA System. From for SA temperature, when SA temperature is 0 and 1, the performance is almost same. When SA temperature is 2 and 3 or more, the performance decrease because there are many kick ups.Peer ReviewedPostprint (published version

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    An annealing approach to router nodes placement problem in wireless mesh networks

    Get PDF
    Mesh router nodes placement is a central problem to Wireless Mesh Networks (WMNs). An efficient placement of mesh router nodes is indispensable for achieving network performance in terms of both network connectivity and user coverage. Unfortunately the problem is computationally hard to solve to optimality even for small deployment areas and a small number of mesh router nodes. As WMNs are becoming an important networking infrastructure for providing cost-efficient broadband wireless connectivity, researchers are paying attention to the resolution of the mesh router placement problem through heuristic approaches in order to achieve near optimal, yet high quality solutions in reasonable time. In this work we propose and evaluate a Simulated Annealing (SA) approach to placement of mesh router nodes in WMNs. The optimization model uses two maximization objectives, namely, the size of the giant component in the network and user coverage. Both objectives are important to deployment of WMNs; the former is crucial to achieve network connectivity while the later is an indicator of the QoS in WMNs. The SA approach distinguishes for its simplicity yet its policy of neighborhood exploration allows to reach promising areas of the solution space where quality solutions could be found. We have experimentally evaluated the SA algorithm through a benchmark of generated instances, varying from small to large size, and capturing different characteristics of WMNs such as topological placements of mesh clients. The experimental results showed the efficiency of the annealing approach for the placement of mesh router nodes in WMNs.Peer ReviewedPostprint (published version

    Genetic algorithms for efficient placement of router nodes in wireless mesh networks

    Get PDF
    In Wireless Mesh Networks (WMNs) the meshing architecture, consisting of a grid of mesh routers, provides connectivity services to different mesh client nodes. The good performance and operability of WMNs largely depends on placement of mesh routers nodes in the geographical area to achieve network connectivity and stability. Thus, finding optimal or near-optimal mesh router nodes placement is crucial to such networks. In this work we propose and evaluate Genetic Algorithms (GAs) for near-optimally solving the problem. In our approach we seek a two-fold optimization, namely, the maximization of the size of the giant component in the network and that of user coverage. The size of the giant component is considered here as a criteria for measuring network connectivity. GAs explore the solution space by means of a population of individuals, which are evaluated, selected, crossed and mutated to reproduce new individuals of better quality. The fitness of individuals is measured with respect to network connectivity and user coverage being the former a primary objective and the later a secondary one. Several genetic operators have been considered in implementing GAs in order to find the configuration that works best for the problem. We have experimentally evaluated the proposed GAs using a benchmark of generated instances varying from small to large size. In order to evaluate the quality of achieved solutions for different possible client distributions, instances have been generated using different distributions of mesh clients (Uniform, Normal, Exponential and Weibull). The experimental results showed the efficiency of the GAs for computing high quality solutions of mesh router nodes placement in WMNs.Peer ReviewedPostprint (published version

    Energy Aware Router Placements Using Fuzzy Differential Evolution

    Get PDF
    The increasing demand of communication services have led to the increase in energy consumption. Energy sustainability is important and challenging research in current world. An energy aware nearest cell association algorithm is proposed to make the mesh routers (MRs) to sleep if they are in idle state. If the MRs have no associated clients, then the MR is considered to be idle. Any network device in idle state consumes power hence a sleep mechanism is introduced to place energy aware routers. A fuzzy differential evolution (FDE) is introduced to dynamically decide the state of the MR by gaining the knowledge from the fuzzy table for parameters like traffic load, minimum distance and transmission power. Transmission cost and failure rate of the deployed network is evaluated and their performance is analyzed
    • …
    corecore