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Abstract—In Wireless Mesh Networks (WMNs) the meshing
architecture, consisting of a grid of mesh routers, provides
connectivity services to different mesh client nodes. The good
performance and operability of WMNs largely depends on place-
ment of mesh routers nodes in the geographical area to achieve
network connectivity and stability. Thus, finding optimal or near-
optimal mesh router nodes placement is crucial to such networks.
In this work we propose and evaluate Genetic Algorithms (GAs)
for near-optimally solving the problem. In our approach we seek
a two-fold optimization, namely, the maximization of the size of
the giant component in the network and that of user coverage.
The size of the giant component is considered here as a criteria for
measuring network connectivity. GAs explore the solution space
by means of a population of individuals, which are evaluated,
selected, crossed and mutated to reproduce new individuals of
better quality. The fitness of individuals is measured with respect
to network connectivity and user coverage being the former a
primary objective and the later a secondary one. Several genetic
operators have been considered in implementing GAs in order to
find the configuration that works best for the problem. We have
experimentally evaluated the proposed GAs using a benchmark
of generated instances varying from small to large size. In order
to evaluate the quality of achieved solutions for different possible
client distributions, instances have been generated using different
distributions of mesh clients (Uniform, Normal, Exponential and
Weibull). The experimental results showed the efficiency of the
GAs for computing high quality solutions of mesh router nodes
placement in WMNs.

Index Terms—Mesh Wireless Networks, Genetic Algorithms,
Size of Giant Component, User Coverage, Genetic Operators.

I. INTRODUCTION

Wireless Mesh Networks (WMNs) [1], [9] are currently
attracting a lot of attention from wireless research and
technology community due to their importance as a means
for providing cost-efficient broadband wireless connectivity.
Moreover, development in WMNs is being pushed by the ever

increasing need in developing and deploying medical, transport
and surveillance applications in urban areas, metropolitan,
neighboring communities and municipal area networks [3].

WMNs are based on mesh topology, in which every node
(representing a server) is connected to one or more nodes,
enabling thus the information transmission in more than one
path. The path redundancy is a robust feature of this kind of
topology. Compared to other topologies, Mesh topology needs
not a central node, allowing networks based on such topology
to be self-healing. These characteristics of networks with mesh
topology, make them very reliable and robust networks to
potential server node failures.

In WMNs mesh routers provide network connectivity ser-
vices to mesh client nodes. Mesh routers are similar to normal
routers but incorporate also additional functions to support
mesh networking, and are usually equipped with multiple in-
terfaces to work with different wireless technologies. Another
feature of this type of routers with respect to usual ones is their
ability to provide the same coverage with much less transmitter
power through multi-hop communications.

The good performance and operability of WMNs largely
depends on placement of mesh routers nodes in the geo-
graphical area to achieve network connectivity, stability and
user coverage. The objective is to find an optimal and robust
topology of the mesh network to support intelligent telecom-
munication services to clients such as adaptive and flexible
wireless Internet access, mobile data, voice and video in
addition to supporting other preferred client services.

Unfortunately, node placement problems are shown to be
computationally hard to solve to optimality [2], [5], [7], [14],
and therefore heuristic and meta-heuristic approaches are the
de facto approach to solve the problem for practical purposes.
Several heuristic approaches are found in the literature for

2010 24th IEEE International Conference on Advanced Information Networking and Applications

1550-445X/10 $26.00 © 2010 IEEE

DOI 10.1109/AINA.2010.41

465

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/159237783?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


node placement problems in WMNs [4], [8], [10], [11], [13].
In this work we propose and evaluate Genetic Algorithms

(GAs) [6] for near-optimally solving the problem. GAs are
evolutionary algorithms that try to implement the selection
process in nature. GAs start from an initial population of
individuals, i.e. feasible solutions of the problem, each having
associated a fitness value that indicates how good it is as
compared to the rest of individuals. Thus, just as in nature,
there are natural processes of selection, reproduction and
mutation, GA goes through a similar process of evaluation,
selection, crossover, mutation and replacement yielding to the
next generation of individuals. The process is repeated through
a number of generations during which the best features of
parents are passed on to offsprings and thus individuals of
better quality are eventually obtained.

In our GA approach we seek a two-fold optimization,
namely, the maximization of the size of the giant component
in the network and user coverage. The size of the giant
component is considered thus as a main criteria for network
connectivity. The quality of individuals is thus measured with
respect to network connectivity and user coverage, being
the former a primary objective. Several genetic operators
have been considered in implementing GAs in order to find
the configuration that works best for the problem. We have
experimentally evaluated the proposed GAs using a benchmark
of generated instances varying from small to large size. In
order to evaluate the quality of achieved solutions for different
possible client distributions, instances have been generated
using different distributions of mesh clients (Uniform, Normal,
Exponential and Weibull).

The rest of the paper is organized as follows. In Section II
we present the definition of the mesh router nodes placement
problem in WMNs. The GA’s features are briefly introduced
in Section III and their application to mesh router nodes
placement in Section IV. The experimental evaluation is given
in Section V. We end the paper in Section VI with some
conclusions.

II. PROBLEM DEFINITION

In a general setting, location models in the literature have
been defined as follows. We are given:

• a universe U , from which a set C of client input positions
is selected;

• an integer, N ≥ 1, denoting the number of facilities to
be deployed;

• one or more metrics of the type d : U ×U → R+, which
measure the quality of the location, and

• an optimization model.
Then, the optimization model takes in input the universe

where facilities are to be deployed, a set of client positions
and returns a set of positions for facilities that optimize the
considered metrics.

It should be noted that different models can be estab-
lished depending on whether the universe is considered: (a)
continuous (universe is a region, where clients and facilities
may be placed anywhere within the continuum leading to an

uncountably infinite number of possible locations); (b) discrete
(universe is a discrete set of predefined positions); and, (c)
network (universe is given by an undirected weighted graph;
in the graph, client positions are given by the vertices and
facilities may be located anywhere on the graph).

We consider the version of the mesh node placement prob-
lem corresponding to the network space model above. Thus,
in this version, we are given a 2D area where to distribute
a number of mesh router nodes and a number of mesh client
nodes of fixed positions (of an arbitrary distribution) and finds
a location assignment for the mesh routers that maximizes the
network connectivity (size of the giant component) and client
coverage. An instance of the problem consists thus of:

• N mesh router nodes, each having its own radio coverage,
defining thus a vector of routers.

• An area W × H where to distribute N mesh routers.
Positions of mesh routers are not pre-determined. The
area is divided in square cells of an a priori fixed length
and mesh router nodes are to be deployed in the cells of
the grid area.

• M client mesh nodes located in arbitrary cells of the
considered grid area, defining a matrix of clients.

An instance of the problem can be formalized by an
adjacency matrix of the WMN graph, whose nodes are of two
types: router nodes and client nodes and whose edges are links
in the mesh network (there is a link between a mesh router
and mesh client if the client is within radio coverage of the
router). Each mesh node in the graph is a triple v =< x, y, r >
representing the 2D location point and r is the radius of the
transmission range. There is an arc between two nodes u and
v, if v is within the transmission circular area of u. It should be
noticed here that the deployment area is partitioned by grid
cells, representing graph nodes, where we can locate mesh
router nodes. In fact, in a cell, both a mesh and a client node
can be placed.

The objective is to place mesh router nodes in cells of
considered area to maximize network connectivity and user
coverage. Network connectivity and user coverage are among
most important metrics in WMNs. The former measures the
degree of connectivity of the mesh nodes while the later refers
to the number of mesh client nodes connected to the WMN.
Both objectives are important and directly affect the network
performance; nonetheless, network connectivity is considered
as more important than user coverage. It should also be noted
that in general optimizing one objective could affect the other
objective although there is no direct relation among these
objectives nor are they contradicting.

A. Optimization setting

For optimization problems having two or more objective
functions, two settings are usually considered: the hierarchical
and simultaneous optimization. In the former, the objectives
are classified (sorted) according to their priority. Thus, for the
two objective case, one of the objectives, say f1, is considered
as primary objective and the other, say f2, as secondary one.
The meaning is that the optimization is carried out in two
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steps: in the first we try to optimize f1, and then, we try to
optimize f2 without worsening the best value of f1. In the
later approach, both objectives are optimized simultaneously.

In this work we have considered the hierarchical approach
in which the size of the giant component is a primary objective
and the user coverage is a secondary one. Thus, GAs use this
optimization scheme when evaluating the fitness of individu-
als. In such approach, the network connectivity (through the
maximization of size of giant component) is considered as
most important since connectivity of the network is crucial
for WMNs.

B. Client mesh nodes distributions

It should be noticed from the above problem description
that mesh client nodes can be arbitrarily situated in the given
area. For evaluation purposes, it is interesting, however, to
consider concrete distributions of clients. For instance, it has
been shown from studies in real urban areas or university
campuses that users (client mesh nodes) tend to cluster to
hotspots. Therefore different client mesh nodes distributions
should be considered, for instance Weibull distribution, in
evaluating WMN metrics.

We have considered Uniform, Normal, Exponential and
Weibull distributions for client mesh nodes in the experimental
evaluation (see Section V).

III. GENETIC ALGORITHMS

GAs have shown their usefulness for the resolution of many
computationally combinatorial optimization problems. They
are of course a strong candidate for efficiently solving mesh
router node placement problem in WMNs. For the purpose of
this work we have used the template given in Alg. 1.

Algorithm 1 Genetic Algorithm template

Generate the initial population P 0 of size μ;
Evaluate P 0;
while not termination-condition do

Select the parental pool T t of size λ; T t := Select(P t);
Perform crossover procedure on pairs of individuals in T t with
probability pc; P t

c := Cross(T t);
Perform mutation procedure on individuals in P t

c with proba-
bility pm; P t

m := Mutate(P t
c );

Evaluate P t
m ;

Create a new population P t+1 of size μ from individuals in P t

and/or P t
m ;

P t+1 := Replace(P t; P t
m)

t := t + 1;
end while
return Best found individual as solution;

We briefly present next the main features of GAs (see Fig. 1
for its classification in the tree of search methods.)

• Population of individuals: Unlike local search techniques
that construct a path in the solution space jumping from
one solution to another one through local perturbations,
GAs use a population of individuals giving thus the search
a larger scope and chances to find better solutions. This

 

Fig. 1. Classification of GAs in the tree of search methods.

feature is also known as “exploration” process in differ-
ence to “exploitation” process of local search methods.

• Fitness: The determination of an appropriate adaptive
function or objective function, together with the chro-
mosome encoding are crucial to the performance of
GAs. Ideally we would construct objective functions with
“certain regularities”, i.e. objective functions that verify
that for any two individuals which are close in the search
space, their respective values in the objective functions
are similar.

• Selection: The selection of individuals to be crossed is
another important aspect in GAs as it impacts on the
convergence of the algorithm. Several selection schemes
have been proposed in the literature for selection opera-
tors trying to cope with premature convergence of GAs.

• Crossover operators: Use of crossover operators is one
of the most important characteristics. Crossover operator
is the means of GAs to transmit best genetic features
of parents to offsprings during many generations of the
evolution process.

• Mutation operators: These operators intend to improve
the individuals of a population by small changes. They
aim to provide a component of randomness in the neigh-
borhood of the individuals of the population.

• Escape from local optima: GAs have the ability to avoid
falling prematurely into local optima and can eventually
escape from them during the search process.

• Convergence: The convergence of the algorithm is the
mechanism of GAs to reach to good solutions. A prema-
ture convergence of the algorithm would cause that all
individuals of the population being similar in their genetic
features and thus the search would result ineffective and
the algorithm getting stuck into local optima. Maintaining
the diversity of the population is therefore very important
to this family of evolutionary algorithms.

It should be noted however that GAs are computationally
expensive algorithms due to heavy use of genetic operators
and usually require a large number of iterations to reach
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high quality solutions. In particular, as we will see, crossover
operator can be computationally expensive for the problem of
mesh router nodes placement due to the encoding of solutions
in a two-dimensional grid.

IV. GA FOR MESH ROUTER NODE PLACEMENT PROBLEM

We present in this section the particularization of GAs for
the problem of mesh router nodes placement in WMNs.

A. Encoding

The encoding of individuals (also known as chromosome
encoding) is fundamental to the implementation of GAs in
order to efficiently transmit the genetic information from
parents to offsprings.

In the case of the mesh router nodes placement problem, a
solution (individual of the population) contains the information
on the current location of routers in the grid area as well as
information on links to other mesh router nodes and mesh
client nodes. This information is kept in data structures,
namely, pos_routers for positions of mesh router nodes,
routers_links for link information among routers and
client_router_link for link information among routers
and clients (matrices of the same size as the grid area are
used.) Based on these data structures, the size of the giant
component and the number of users covered are computed for
the solution.

It should be also noted that routers are assumed to have
different radio coverage, therefore to any router are linked
a number of clients and other routers. Obviously, whenever
a router is moved to another cell of then grid area, the
information on links to both other routers and clients must
be computed again.

B. Fitness evaluation

The fitness function is of particular importance in GAs as it
guides the search towards most promising areas of the solution
space. Furthermore, in our case, we face an optimization prob-
lem with multiple criteria, including size of giant component
and number of users covered (but could include others such
as minimization of number of routers to deploy) and therefore
the fitness function in our particular case can be expressed
in different ways. In the multi-criteria optimization two most
common approaches are the hierarchical and simultaneous
approaches.

In the hierarchical optimization approach is one in which we
establish a priority (hierarchy) between the different criteria
so that if objective A is of higher priority than objective
B, then we first optimize objective A and next we optimize
objective B but without worsening the value achieved for
A (see also Subsec. II-A). This approach is useful when it
is needed to prioritize a certain criteria to ensure quality
of service (QoS). By contrast, the simultaneous approach
considers several objective at the same time; one simple case
of the simultaneous approach is the weighted sum of criteria,
in which each objective is given a certain weight. However, it
is not always possible to express a weighted sum of criteria

since criteria may not always be summed up. In fact this is the
case of our bi-objective approach, namely, the size of the giant
component cannot be summed up with the number of users
covered as the two objectives are expressed using different
unit measures.

We have thus adopted the bi-objective case, in which the
size of the giant component is considered primary and the
number of users covered is considered secondary.

C. Selection operators

In the evolutionary computing literature we can find a
variety of selection operators, which are in charge of selecting
individuals for the pool mate. The operators considered in this
work are those based on implicit fitness re-mapping technique.
It should be noted that selection operators are generic ones and
do not depend on the encoding of individuals.

a) Linear Ranking Selection: This operator follows the
strategy of selecting the individuals in the population with a
probability directly proportional to its fitness value. This oper-
ator clearly benefits the selection of best endowed individuals,
which have larger chances of being selected.

b) Best Selection: This operator selects the individuals in
the population having higher fitness value. The main drawback
to this operator is that by always choosing the best fitted
individuals of the population, the GA converges prematurely.

c) Tournament Selection: This operator selects the indi-
viduals based on the result of a tournament among individuals.
Usually winning solutions are the ones to better fitness value
but individuals of worse fitness value could be chose as
well, contributing thus to avoiding premature convergence.
Particular cases of this operator are the Binary Tournament
and N−Tournament Selection.

D. Crossover operators

The crossover operators are the most important ingredient
of GAs. Indeed, by selecting individuals from the parental
generation and interchanging their genes, new individuals
(descendants) are obtained. The aim is to obtain descendants of
better quality that will feed the next generation and enable the
search to explore new regions of solution space not explored
yet.

There exist many types of crossover operators explored in
the evolutionary computing literature. It is very important to
stress that the crossover operators depend on the chromosome
representation. This observation is especially important for
the mesh router nodes problem, since in our case, instead of
having strings we have a grid of nodes located in a certain
position. The crossover operator should thus take into account
the specifics of mesh router nodes encoding. We have con-
sidered the following crossover operators, called intersection
operators, which take in input two individuals and produce in
output two new individuals (see Alg. 2)

E. Mutation operators

The mutation operator is crucial for preventing the search
from getting stuck in local optima by doing small local
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Algorithm 2 Crossover operator.
1: Input: Two parent individuals P1 and P2; values Hg and

Wg for height and width of a small grid area;
2: Output: Two offsprings O1 and O2;
3: Select at random a Hg ×Wg rectangle RP1 in parent P1.

Let RP2 be the same rectangle in parent P2;
4: Select at random a Hg × Wg rectangle RO1 in offspring

O1. Let RO2 be the same rectangle in offspring O2;
5: Interchange the mesh router nodes: Move the mesh router

nodes of RP1 to RO2 and those of RP2 to RO1;
6: Re-establish mesh nodes network connections in O1 and

O2 (links between mesh router nodes and links between
client mesh nodes and mesh router nodes are computed
again);

7: return O1 and O2;

perturbations to the individuals of the population. Again, the
definition of the mutation operators is specific to encoding
of the individuals of the concrete problem under study. We
defined thus several specific mutation operators as follows:

d) SingleMutate: Select a mesh router node in the grid
area and move it to another cell of the grid area (see Fig. 2
(left)). After the move is done, network connections are
computed again.

e) RectangleMutate: This operator selects two “small”
rectangles at random in the grid area, and swaps the mesh
routers nodes in them. Certainly, in this case the modification
of the individual is larger than in the case of SingleMutate
(see Fig. 2 (right)).

  

Fig. 2. Mutation operators: SingleMutate (left) and RectangleMutate (right).

f) SmallMutate: This operator chooses randomly a router
and moves it a small (a priori fixed) numbers of cells in one
of the four directions: up, down, left or right in the grid.

g) SmallRectangleMutate: This operator is similar as
SmallMutate but now we select first at random a rectangle and
then all routers inside the rectangle are moved with a small
(a priori fixed) numbers of cells in one of the four directions:
up, down, left or right in the grid.

Again, after the mutation is done, network connections (the
links between routers and links between routers and users) are
re-computed.

V. EXPERIMENTAL STUDY

A. Parameter setup

Parameter setup is a main issues in effectively using heuris-
tic approaches since parameter values have a direct impact on

the performance of the algorithm. As usually, parameters are
classified into two groups: parameters related to the heuristic
method itself, the GA in our case, and parameters related to
the problem under study, the mesh router node placement in
our case.

h) GA parameters: In this group we have the follow-
ing parameters: population size, intermediate population size,
number of evolution steps, crossover probability, mutate proba-
bility and parameters for replacement strategies such as replace
only if better or generational replacement.

i) Mesh router node placement parameters: In this group
we have the number of routers to deploy, number of client
nodes to cover, grid area sizes, etc.

The fine tuning of parameters is known for its complexity
due to the large numbers of parameters as well as due to
possible synergies and side effects among different parameters
values. On the other hand, the values of these parameters
should be set up independently and in a way that they are
effective for any instances of the problem, although tuning will
be conducted using a selected sample of instances. To this end,
randomly generated instances of three different grid area sizes
(32x32, 64x64 and 128x128, respectively) are used. To avoid
biased results, 15 independent runs of GA were performed.
Then, the resulting setting of parameter is used for obtaining
computational results for a benchmark of instances.

To exemplify the tuning process, we present next the re-
sults for mutate operators for instances of 32x32, 64x64 and
128x128 grid area sizes.

j) Instances of 32x32 grid area size: In this case the
setting of parameters obtained is: cross probability=0.8, pop-
ulation size=26, intermediate population size=12 and mutate
probability=0.2. In the instances, the client positions were gen-
erated following a normal distribution N(μ = 16, σ = 32/10),
and 16 routers were to be placed in the 32x32 grid area to
cover 48 clients.

The averaged results of 15 independent runs showed that for
small size instances the mutation operator SingleMutate
performed best (see Fig. 3).

Mutate Operators for 32x32 grid size
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Fig. 3. Performance of mutate operators in GA algorithm for 32x32 grid
area where 16 routers were to be placed and give coverage to 48 clients.
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k) Instances of 64x64 grid area size: In this case the
setting of parameters obtained is: cross probability=0.75, pop-
ulation size=36, intermediate population size=17 and mutate
probability=0.25. In the instances, the client positions were
generated following a normal distribution N(μ = 32, σ =
64/10), and 32 routers were to be placed in the 64x64 grid
area to cover 96 clients.
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Fig. 4. Performance of mutate operators in GA algorithm for 64x64 grid
area where 32 routers were to be placed and give coverage to 96 clients.

As can be seen from Fig. 4, SingleMutate showed again
the best performance. The RectangleMutate however is also a
good candidate.

l) Instances of 128x128 grid area size: In this case the
setting of parameters obtained is: cross probability=0.8, pop-
ulation size=49, intermediate population size=24 and mutate
probability=0.20. In the instances, the client positions were
generated following a normal distribution N(μ = 64, σ =
128/10), and 64 routers were to be placed in the 128x128
grid area to cover 192 clients.
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Fig. 5. Performance of mutate operators in GA algorithm for 128x128 grid
area where 64 routers were to be placed and give coverage to 192 clients.

As can be seen from Fig. 5, the mutate operators that
perform best are those that move several mesh router nodes
(in a neighborhood area) at once, that is, MutateRectangle and
MutateSmallRectangle.

For large size instances, SingleMutate doesn’t perform well
as it moves just one mesh router node out of many candidate
ones.

B. Tuning of other parameters

The setting of the rest of the parameters is done as follows.
m) start choice: This parameter indicates the methods

used to generate the initial population. Two individuals have
been computed using StartNear and StartHotSpot (see [12]
for implementation of several ad hoc methods); the rest of
individuals of the population are generated at random.

n) population size and intermediate population size:
As replacement operator was chosen the Elitist Gen-
erational, therefore, the setting of the population size
and that of intermediate population size satisfies interme-
diate population size = population size - 2, where popula-
tion size is taken of logarithmic order Θ(log2(N)k), where
N is the total number of mesh router nodes.

o) nb evolution steps: This parameter indicates the
number of generations performed by the algorithm. Its value
is fixed according to the size of the input, namely, 5 ·
size grid x · δ, where δ is a constant for adjusting the
resulting value of number of evolutions steps.

p) cross probability and mutate probability: These pa-
rameters have been set to pc = 0.8 and pm = 0.2, respectively.

C. Benchmark of instances

We have generated a benchmark consisting of 48 instances,
having different sizes of grid area and using four probability
distributions for the positions of mesh client nodes in the grid
area. These instances aim to represent realistic-size instances1

Instances are arranged in three groups, each having 16
instances and are labelled Ix×x D k, where:

• x stands for the height and width of the grid area, that
is, the number of cells of arbitrary edge length; it takes
values 32, 64 and 128.

• D stands for the distribution of the client mesh routers in
the grid area; four distributions are considered: Uniform
(U), Normal (N), Exponential (E) and Weibull (W).

• k is the index of the instance.

Thus, we have 16 instances for each grid size (32, 64 and
128, resp.) and within each group we have 4 instances for
each distribution (Uniform, Normal, Exponential and Weibull,
resp). For instance, in this notation, I64×64 N 3 denotes the
third instance of a 64× 64 grid area, with mesh clients nodes
positions generated using Normal distribution.

Finally, notice that instances of 32 × 32 grid area consist
of 16 mesh routers nodes and 48 client mesh nodes; instances
of 64 × 64 grid area consist of 32 mesh routers nodes and
96 client mesh nodes; and, instances of 128 × 128 grid area
consist of 64 mesh routers nodes and 192 client mesh nodes.

D. Results of GA for the benchmark

Now that we have adjusted the parameters for the three
possible sizes of instances, we can run the algorithm on bench-
mark instances and evaluate the quality of obtained solutions
with respect to the four client mesh nodes distributions.

1In the literature, instances having up to 60 mesh devices are usually
considered realistic-size instances.

470



TABLE I
SIZE OF GIANT COMPONENT AND USER COVERAGE VALUES FOR 32×32

GRID SIZE INSTANCES, 16 ROUTERS NODES AND 48 CLIENTS.

Instance size of giant component Users covered
best avg dev ini best avg dev ini

I32x32 U 1 16 16 0 5 17 16 0.1 14
I32x32 U 2 16 16 0 7 17 16 0.1 9
I32x32 U 3 16 16 0 5 15 14 0.1 10
I32x32 U 4 16 16 0 5 15 14 0.1 14
I32x32 N 1 16 16 0 11 43 40 0.3 25
I32x32 N 2 16 16 0 7 41 40 0.1 21
I32x32 N 3 16 16 0 8 42 41 0.1 20
I32x32 N 4 16 16 0 6 39 38 0.1 24
I32x32 E 1 16 16 0 6 43 43 0 16
I32x32 E 2 16 16 0 6 22 18 0.4 8
I32x32 E 3 16 16 0 7 29 25 0.4 13
I32x32 E 4 16 16 0 6 37 32 0.5 10
I32x32 W 1 16 16 0 6 35 25 1 5
I32x32 W 2 16 16 0 6 30 26 0.4 14
I32x32 W 3 16 16 0 6 30 16 1.4 16
I32x32 W 4 16 16 0 6 31 25 0.6 15

q) Computational results for instances of size 32x32 grid
area: We give in Table I computational results for instances
of benchmark of 32x32 grid area. In the table, best indicates
the best value out of 15 runs, avg –the average value, dev–
the deviation, and ini the initial value of the size of the giant
component.

As can be seen from Table I, with 200 generations the
GA algorithm achieved to establish a network of all routers
connected. However, the number of the users covered depends
on the distribution of clients in the grid area, achieving the
best values for normal distribution of clients. In fact, the
algorithm achieved good results in fewer generations (about
120 generations), as shown graphically in Fig. 6. On the other
hand the evolution of the number of the users covered can be
seen in Fig. 7.
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Fig. 6. Evolution of size of giant component in GA algorithm for 32x32
grid area.

r) Computational results for instances of size 64x64:
We give in Table II computational results for instances of
benchmark of 64x64 grid area.

The evolution of the size of the giant component obtained
by GA for 64x64 grid area size is shown in Fig. 8.

s) Computational results for instances of size 128x128
grid area: We give in Table III computational results for

 

Fig. 7. Evolution of number of users covered in GA algorithm for 32x32
grid area.

TABLE II
SIZE OF GIANT COMPONENT AND USER COVERAGE VALUES FOR 64×64

GRID SIZE INSTANCES, 32 ROUTERS NODES AND 96 CLIENTS.

Instance size of giant component Users covered
best avg dev ini best avg dev ini

I64x64 U 1 32 32 0 6 11 8 0.3 13
I64x64 U 2 32 32 0 6 12 10 0.2 10
I64x64 U 3 32 32 0 7 15 15 0 13
I64x64 U 4 32 32 0 8 17 17 0 7
I64x64 N 1 32 32 0 5 64 44 2 24
I64x64 N 2 32 32 0 6 66 55 1.1 18
I64x64 N 3 32 31 0.1 8 59 49 1 24
I64x64 N 4 32 32 0 5 60 50 1 19
I64x64 E 1 32 31 0.1 4 5 3 0.2 24
I64x64 E 2 32 31 0.1 6 10 2 0.2 7
I64x64 E 3 32 31 0.1 6 10 10 0 16
I64x64 E 4 32 32 0 8 5 5 0 8
I64x64 W 1 32 32 0 4 39 32 0.7 22
I64x64 W 2 32 32 0 5 50 42 0.8 39
I64x64 W 3 32 32 0 8 10 10 0 2
I64x64 W 4 32 32 0 8 10 10 0 3

instances of benchmark of 128x128 grid area (see Fig. 9 for
the graphical representation).

As can be seen from Table III, the GA algorithm performed
very well for all but normal distribution of clients in the grid
area.

E. Analysis of the results

From the computational results we can see that the normal
and uniform distributions of clients correspond to the best

 

Fig. 8. Evolution of size of giant component in GA algorithm for 64x64
grid area.
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TABLE III
SIZE OF GIANT COMPONENT AND USER COVERAGE FOR 128×128 GRID

SIZE INSTANCES, 64 ROUTERS NODES AND 192 CLIENTS.

Instance size of giant component Users covered
best avg dev ini best avg ini

I128x128 U 1 61 55 0.6 5 17 9 12
I128x128 U 2 59 55 0.4 5 18 16 13
I128x128 U 3 63 56 0.7 4 16 10 14
I128x128 U 4 59 55 0.4 4 16 13 11
I128x128 N 1 64 57 0.7 4 70 39 17
I128x128 N 2 62 58 0.4 4 63 42 10
I128x128 N 3 62 57 0.5 4 76 46 22
I128x128 N 4 63 58 0.5 4 70 46 20
I128x128 E 1 59 55 0.4 3 62 39 26
I128x128 E 2 60 54 0.6 4 35 20 19
I128x128 E 3 61 54 0.7 6 40 12 15
I128x128 E 4 60 54 0.6 6 44 24 17
I128x128 W 1 62 54 0.8 4 36 10 12
I128x128 W 2 58 53 0.5 3 45 33 26
I128x128 W 3 61 55 0.6 5 38 34 24
I128x128 W 4 58 54 0.4 4 52 44 18
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Fig. 9. Evolution of size of giant component in GA algorithm for 128x128
grid area.

results obtained by the GA algorithm. It should be noticed
however that the uniform distribution causes premature con-
vergence. On the other hand, from the results we can see
that there is no deviation in the size of the giant component,
actually the GA achieved almost always connectivity of all
mesh router nodes; however, the deviation in the case of
number of users covered is considerable. Finally, it’s worth
observing that the results corresponding to the Weibull and
Exponential distributions are rather similar.

VI. CONCLUSIONS

In this work we have presented Genetic Algorithms (GAs)
for the problem of mesh router nodes placement in Wireless
Mesh Networks (WMNs). In this problem, we are given a
number of client mesh nodes a priori distributed in a grid area
–arranged in small cells– and a given number of mesh router
nodes are to be deployed in the cells of the grid area. We have
considered the bi-objective optimization in which we want
to maximize the network connectivity of the WMN (through
the maximization of the size of the giant component) and
the maximization of the number of the user coverage (client
mesh nodes). In the model, the former objective is considered
as primary while the later is considered secondary objective,
that is, the algorithm tries to optimize first the size of giant

component and then tries to maximize the number of clients
covered without worsening the size of the giant component.

The analysis of experimental results showed that GA are
very efficient at computing placement of mesh router nodes
and almost always achieve to establish connectivity of all mesh
router nodes. However, the user coverage is more sensible
to the distribution of mesh client nodes in the deployment
grid area. The proposed approach has practical usefulness for
designing and deploying of real WMNs. In our future work
we would like to evaluate the GA placement algorithm under
a dynamic environment.
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