5 research outputs found

    Fingerprint recognition based on shark smell optimization and genetic algorithm

    Get PDF
    Fingerprint recognition is a dominant form of biometric due to its distinctiveness. The study aims to extract and select the best features of fingerprint images, and evaluate the strength of the Shark Smell Optimization (SSO) and Genetic Algorithm (GA) in the search space with a chosen set of metrics. The proposed model consists of seven phases namely, enrollment, image preprocessing by using weighted median filter, feature extraction by using SSO, weight generation by using Chebyshev polynomial first kind (CPFK), feature selection by using GA, creation of a user’s database, and matching features by using Euclidean distance (ED). The effectiveness of the proposed model’s algorithms and performance is evaluated on 150 real fingerprint images that were collected from university students by the ZKTeco scanner at Sulaimani city, Iraq. The system’s performance was measured by three renowned error rate metrics, namely, False Acceptance Rate (FAR), False Rejection Rate (FRR), and Correct Verification Rate (CVR). The experimental outcome showed that the proposed fingerprint recognition model was exceedingly accurate recognition because of a low rate of both FAR and FRR, with a high CVR percentage gained which was 0.00, 0.00666, and 99.334%, respectively. This finding would be useful for improving biometric secure authentication based fingerprint. It is also possibly applied to other research topics such as fraud detection, e-payment, and other real-life applications authentication

    Efficiency of coupled invasive weed optimization-adaptive neuro fuzzy inference system method to assess physical habitats in streams

    Get PDF
    This study presents a coupled invasive weed optimization-adaptive neuro fuzzy inference system method to simulate physical habitat in streams. We implement proposed method in Lar national park in Iran as one of the habitats of Brown trout in southern Caspian Sea basin. Five indices consisting of root mean square error (RMSE), mean absolute error (MAE), reliability index, vulnerability index and Nash–Sutcliffe model efficiency coefficient (NSE) are utilized to compare observed fish habitats and simulated fish habitats. Based on results, measurement indices demonstrate model is robust to assess physical habitats in rivers. RMSE and MAE are 0.09 and 0.08 respectively. Besides, NSE is 0.78 that indicates robustness of model. Moreover, it is necessary to apply developed habitat model in a practical habitat simulation. We utilize two-dimensional hydraulic model in steady state to simulate depth and velocity distribution. Based on qualitative comparison between results of model and observation, coupled invasive weed optimization-adaptive neuro fuzzy inference system method is robust and reliable to simulate physical habitats. We recommend utilizing proposed model for physical habitat simulation in streams for future studies

    Metaheuristic nature-inspired algorithms for reservoir optimization operation: A systematic literature review

    Get PDF
    The purpose of this systematic literature review (SLR) article is to discuss the findings of the state-of-art metaheuristic nature-inspired algorithm (MHNIA) in reservoir optimization operation. The rationale of this approach is to elucidate the optimal way as decision making that implemented MHNIA for several complex problems in reservoir optimization operation. Commonly, the metaheuristic optimization algorithm has always been used in hydrology field, especially in reservoir optimization. Hence, this presented study reviewed a considerable amount from the previous studies of commonly nature-based optimization algorithms applied in reservoir operations. Hence, preferred reporting items for systematic review and meta-analyses (PRISMA) has been used as guidance. The source was utilized from two primary journal databases: Scopus and web of science. According to the proposed search string, the findings managed to express into nine main themes which are optimize in water release, optimize reservoir operation problems, optimize hydropower operation, optimize condensate fluids in reservoir storage, optimize water pumped storage, optimize water quality control, optimize system performance operation, optimize water demand and optimize reservoir control as flood preventing. Overall, 24 articles that passed the minimum quality were retrieved using systematic searching strategies

    Renewable Energy Resource Assessment and Forecasting

    Get PDF
    In recent years, several projects and studies have been launched towards the development and use of new methodologies, in order to assess, monitor, and support clean forms of energy. Accurate estimation of the available energy potential is of primary importance, but is not always easy to achieve. The present Special Issue on ‘Renewable Energy Resource Assessment and Forecasting’ aims to provide a holistic approach to the above issues, by presenting multidisciplinary methodologies and tools that are able to support research projects and meet today’s technical, socio-economic, and decision-making needs. In particular, research papers, reviews, and case studies on the following subjects are presented: wind, wave and solar energy; biofuels; resource assessment of combined renewable energy forms; numerical models for renewable energy forecasting; integrated forecasted systems; energy for buildings; sustainable development; resource analysis tools and statistical models; extreme value analysis and forecasting for renewable energy resources
    corecore