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ABSTRACT 

METHODOLOGIES FOR RESERVOIR SYSTEMS ANALYSIS: APPLICATION OF 

OPTIMIZATION AND DEEP LEARNING 

FEBRUARY 2020 

SOHEYL BORJIAN, B.S., ISFAHAN UNIVERSITY OF TECHNOLOGY 

M.S., UNIVERSITY OF TEHRAN 

Ph.D., UNIVERSITY OF MASSACHUSETTS 

Reservoir systems operations are challenging given that they must function to meet 

conflicting goals. Using mathematical programming and deep learning techniques, this 

dissertation presents innovative methodologies to address some of the challenges. The 

first chapter focuses on development of a mathematical programming framework for 

assessing sub-daily hydropower hydropeaking operation and flow regime outcomes of a 

system of five large sequential hydropower facilities on the mainstem Connecticut River 

under various operation scenarios. A formulation for the pumped-storage Northfield 

reservoir is presented that uses binary decision variables to properly model the reservoir 

operations. The results closely match annual historical power values that indicates the 

model can replicate the operations. The second chapter presents a novel multiple 

objective optimization methodology for trade-off analysis of river basins. The novelties 

include a weighting scheme that normalize different objectives having different range of 

variabilities and formulations for quantification of ecological and flood control objectives 

as frequencies of meeting desirable conditions. The methodology is applied to the 

Connecticut River basin. In this chapter, formulations are developed that use binary 

decision variables to quantify ecological and flood control objectives along with other 

operational goals. The key trade-offs of the system objectives are identified. The results 
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indicate hydropower revenue objective highly conflict with any other objective than flood 

control. Moreover, it is concluded that a balanced operation that equally weight different 

objectives has the potential to improve all the objectives. The third chapter presents a 

methodology for designing reservoir operation policy using optimization and deep 

learning. This chapter addresses the challenge of designing of an operation policy for a 

reservoir with conflicting objectives under uncertainty of hydrological and energy prices 

data. A deep neural network is developed to infer near-optimal operation policies under 

different foresight scenarios using the optimization modeling results. The methodology is 

applied to the Wilder reservoir on the mainstem Connecticut River. A base method is also 

developed that uses linear regression and is applied to the problem and the associated 

results are used as a comparison basis. Results indicate that the designed policies using 

neural networks perform better than the base method used while having foresight for a 

longer time improves the performance. 
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INTRODUCTION 

Optimal operation of reservoir systems is challenging due to presence of conflicting 

system objectives (Castelletti et al., 2013). Reservoir systems benefit human communities 

directly and indirectly. Direct benefits include supplying domestic water, controlling 

floods, generation of electricity, facilitating recreational uses and navigation. The indirect 

benefits include contributing to the sustainability and integrity of watershed communities 

(R.-S. Chen & Tsai, 2017). How to operate reservoir systems to best balance different 

objectives and services is a problem that requires advanced analytics to make better-

informed decisions. 

It is crucial to consider sustainability of watersheds and ecological integrity when 

designing water resources operation policies (Richter et al., 2003). The benefits of 

facilitating environmental sustainability are not as tangible as the direct benefits of 

reservoir systems while they might be more important for human welfare. Developing 

hydropower plants and operating the systems to maximize the immediate hydropower 

generation revenues alters the natural flow regime compared to the pre-development 

regime. The alteration threatens species of the watershed since many of them rely on 

specific flow regimes in their life stages to survive and thrive. Any alteration might 

severely affect watershed communities sustainability and change the whole ecosystem 

(Jager & Smith, 2008). Thus, it is necessary to consider flow regime requirements in 

water resources management studies along with other objectives of the systems. 

Optimal balance of water resources systems objectives has been studied for decades. 

However, there are still challenges in designing systems operation policies because there 
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exist multiple conflicting objectives, and uncertainties associated with hydrological 

(Quinn et al., 2018), and energy market variables. This research attempts to address some 

of the existing challenges by presenting novel methodologies that derive useful 

information for decision makers and stakeholders. Chapter 1 of this dissertation presents 

a mathematical programming model developed for evaluating hydropower and flow 

regime outcomes under different operation scenarios of a reservoir system. Using a 

mathematical programming optimization model, a modeling tool is presented that mimics 

status-quo operations on five large sequential hydropower reservoirs on the mainstem 

Connecticut River. Other versions of the model associated with alternative operation 

policies are developed and presented to assess the outcomes of the alternative operation 

scenarios. The results provide new insight regarding implications of execution of 

different operation scenarios. 

Chapter 2 focuses on development of a methodology for trade-off analysis of water 

resources systems considering conflicting objectives. Moreover, the quantification of 

different objectives is addressed by presenting new formulations for measuring ecological 

and flood control targets. The formulations measure the frequency of meeting ecosystem 

requirements and the frequency of controlling flood conditions. With an approach that 

compares each objective value to its maximum possible, a modeling framework is 

presented that quantifies various objectives and develops a subset of the Pareto front by 

running the algorithm developed for different weighting values of objectives. The 

methodology is applied to the Connecticut River basin and includes 54 of the largest 

reservoirs, ecological locations of interests on the mainstem and tributaries, and flood 
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checkpoints. Four different objectives: ecological, flood control, hydropower revenue, 

and desired storage level are modeled. The results show how objectives interact with each 

other and provides insight on compromised solutions. 

Chapter 3 presents a method for operation policy design of reservoir systems. Existing 

methods usually suffer from computational issues and lack of optimality guarantee 

(Giuliani et al., 2016). Designing optimal or near-optimal reservoir operation policies 

under uncertainty requires quantification of the system objectives and dealing with 

uncertainties associated with future system conditions. First, an optimization scheme is 

used to optimize the release schedules. Afterwards, a Deep Learning technique is used to 

approximate a near-optimal operation policy. For this purpose, a multiple objective 

optimization methodology is developed for Wilder reservoir using mathematical 

programming that optimizes the system and develops the trade-offs. Next, Deep Neural 

Networks are trained to approximate the optimal operation policy. The trade-offs 

resultant of the release decisions prescribed by the policy designed are developed and 

compared to those of the optimization model. The comparison provides insight on the 

performance of the operation policy designed since it is compared with the best possible 

performance under perfect future insight. 

 



 

4 

 

CHAPTER 1 

 

EVALUATION OF ECONOMIC AND FLOW REGIME OUTCOMES OF 

ALTERNATIVE HYDROPOWER OPERATIONS ON THE CONNECTICUT 

RIVER MAINSTEM 

1.1. Introduction 

Surface water reservoirs facilitate hydropower generation along with providing other 

services including municipal water supply, flood control, and ecological streamflow 

requirements. Hydropower is a mature technology and an inexpensive energy source with 

a low CO2 footprint (Bello et al., 2018; Koo, 2017; J. Zhang et al., 2015). The operation 

of hydropower reservoirs has implications for ecosystems because they significantly alter 

flow characteristics to follow sub-daily energy market dynamics (Benejam et al., 2014; 

Jager & Smith, 2008; Kennedy et al., 2016; Pang et al., 2015; Sabo et al., 2017; 

Winemiller et al., 2016). This kind of operation, called hydropeaking, conflicts with 

providing the ecological streamflow requirements (Anderson et al., 2014; Ding et al., 

2018; Fanaian et al., 2015; Feng et al., 2018; W. Zhang et al., 2016) since they change the 

flow regime that should be maintained for survival of aquatic communities (Arthington et 

al., 2009; Davies et al., 2014; R. Li et al., 2015; Tonkin et al., 2018). To mitigate the 

negative ecological impacts, regulatory constraints are imposed on the hydropower 

operations that usually result in reductions in the hydropower revenues generated (Jager 

& Bevelhimer, 2007; Jager & Smith, 2008; McManamay et al., 2016; Rheinheimer et al., 

2012). However, it is not often clear if enforcement of these regulations results in fully 
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meeting ecological streamflow requirements (Poff, 2009).  

Natural flow regime paradigm has widely been utilized for water flow alterations studies 

(Archfield et al., 2013; Arthington et al., 2009; Blythe & Schmidt, 2018; 

Chinnayakanahalli et al., 2011; Kiernan et al., 2012; Lehner et al., 2011; Lytle & Poff, 

2004; Maheshwari et al., 1995; Marchetti & Moyle, 2001; Olden & Naiman, 2009; Propst 

& Gido, 2004; Suen, 2011). According to this paradigm, ecological streamflow 

requirements are based on the natural patterns of the streamflow quantity and timing 

(Arthington et al., 2009; Naiman et al., 2002) and any alteration from the natural regime 

will negatively impact the river ecosystem. The natural flow regime of a river is affected 

by patterns of climate, geology, topography, soil type, and vegetation and its 

characteristics are generally defined in terms of magnitude, frequency, duration, timing, 

and rate of change (Naiman et al., 2008; Poff et al., 1997). Natural regime impacts 

structure of instream, riparian, and floodplain ecological communities (Bunn & 

Arthington, 2002; Poff et al., 1997). The scope of natural flow regime however may be 

required to be broaden given the nonstationary observed in the streamflows (Gibson et 

al., 2005; Mittal et al., 2016; Papadaki et al., 2016; N. LeRoy Poff, 2017; Wohl et al., 

2015). Thus, seeking appropriate methods and indicators that measure flow regimes 

seems to be necessary for evaluation of reservoir systems operations impacts on the 

ecosystems (Liermann, 2015; Lytle et al., 2017; Mackay et al., 2014).  

While most current ecological flow requirements are implemented as the minimum flow 

magnitudes (Arthington et al., 2006), more complex indicators and methodologies have 

been developed to quantify the degree of flow regime alterations and requirements of 
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ecosystems (Black et al., 2005; Bragg et al., 2005; Carlisle et al., 2009; Döll et al., 2009; 

Extence et al., 1999; Mathews & Richter, 2007; Olden & Poff, 2003; Richter et al., 1996, 

1998; Rougé & Tilmant, 2016; Shiau & Wu, 2008; Tilmant et al., 2010; Z. Yang et al., 

2012). Imposing sub-daily regulations reduces flexibility of hydropower operations 

(Olivares et al., 2015), but it better provides the ecological communities with flow 

requirements. It should be noted that for the purpose of analysis of hydropeaking 

operations, metrics and methods that consider flow regime alterations on a sub-daily 

scale (Bevelhimer et al., 2014) are required (Bejarano et al., 2017; Carolli et al., 2015; 

Meile et al., 2011; Sauterleute & Charmasson, 2014; Zimmerman et al., 2010). In this 

regard, Zimmerman et al. (2010) applied a few sub-daily flow metrics to assess 

alterations observed at different locations throughout the Connecticut River basin. The 

analysis demonstrated that streamflows downstream of hydropeaking facilities had a 

significantly higher degree of alteration compared to sections exposed to run-of-river 

(inflow to the reservoir equals outflow) operations or sections of the river that are not 

regulated. Thus, the metrics used and the model developed in this study have a sub-daily 

time scale to more accurately evaluate flow regime outcomes of different operation 

scenarios. 

Optimization techniques have long been applied to reservoir operations. Various 

optimization techniques including dynamic programming (Cervellera et al., 2006; 

Macian-Sorribes et al., 2016; Rougé & Tilmant, 2016), the Genetic Algorithms (F.-J. 

Chang et al., 2005; Wang et al., 2015; Zatarain Salazar et al., 2016), and mathematical 

programming (Moy et al., 1986; Reis et al., 2005) have been applied to reservoir 
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operation. Recently, optimization schemes have been applied to river systems to 

optimally balance ecological flow requirements and other system objectives  (Barbour et 

al., 2016; L.-C. Chang et al., 2010; Q. Chen et al., 2012; W. Chen & Olden, 2017; Horne 

et al., 2017; D. Li et al., 2018; Shiau & Wu, 2013; Tsai et al., 2015; N. Yang et al., 2012; 

X. Yin et al., 2009, 2010; X. Yin & Yang, 2011). Likewise, in this research, a 

mathematical optimization model is developed to assess how different operation 

scenarios might affect the economic and flow regime outcomes at the system outlet. 

Based on the Federal Power Act, non-federal hydropower in the United States is 

regulated by the Federal Energy Regulatory Commission (FERC) (Sensiba & White, 

2016). Hydropower facilities are required to obtain operating licenses from FERC. The 

Connecticut River has five large sequential hydropower reservoirs owned by two distinct 

entities that are currently undergoing a joint FERC relicensing process. This relicensing 

procedure has provided an opportunity for The Nature Conservancy (TNC) to seek 

alternative hydropower operations that minimize negative impacts on the ecology while 

maintaining the benefits of hydropower generation. To support making better decisions 

by TNC, an optimization model is developed and presented for the five sequential 

hydropower plants on the Connecticut River mainstem including Wilder, Bellows Falls, 

Vernon, Northfield, and Turners Falls reservoirs undergoing a joint relicensing process 

(Figure 1.1). The optimization modeling mimics the current operations since it 

maximizes hydropower revenues given energy prices variations. Given that energy prices 

variations during a day impact hydropower reservoirs operation, a sub-daily time-step is 

required for the proper evaluation of the hydropeaking operations and flow regime. Thus, 
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the model time-step developed in this research is hourly and takes into account hourly 

energy prices, inflows and flow regime metrics. Three different operational scenarios are 

developed and evaluated. The first scenario is called a Baseline scenario in which it is 

attempted to match the historical operations power generated. Two additional alternative 

operation scenarios including an IEO scenario in which inflows to reservoirs are enforced 

to equal outflows during any time step, and a Closed-loop scenario in which the pumped 

storage Northfield facility is assumed to operate offline (detached form the river) are 

modeled. The hydropower and sub-daily flow regime outcomes are evaluated under each 

operation scenario. The outcomes of these modeling efforts provide insight on 

implications of execution of each operation scenario regarding the flow regime and 

hydropower revenue and power generated. Having the insight beforehand make 

stakeholders and parties involved in relicensing process better-informed when choosing 

an operation scenario. 

1.2. Study Area 

The system studied is located on the Connecticut River, New England’s largest river. 

There are 38 major sub-basins contributing to the basin with more than 30,000 square 

kilometers of drainage. The river originates from Canada and ultimately discharges into 

the Long Island Sound. The basin covers New Hampshire, a small portion of Maine, 

Vermont, Massachusetts, and Connecticut. There are over 2,700 dams constructed in the 

basin that contribute to the flow regime alterations across the basin. Many of the dams 

have hydropower facilities developed during New England’s industrial revolution (Clay 

et al., 2006; Martin & Apse, 2011). Figure 1.1. shows the system schematic including the 
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five hydropeaking and pumped storage facilities and reservoirs. The Northfield facility 

(NFD) is a pump-storage power plant that is slightly off the river to the east. The other 

four facilities are large reservoirs located on the mainstem. The facilities are operated by  

 

Figure 1.1. System schematic for the Connecticut River hydropower facilities undergoing 

a joint FERC relicensing process (refer to Table 1.1. for abbreviations) 
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Table 1.1. Characteristics of the hydropower reservoirs studied 

Reservoir  

(Abbreviation) 

Operation 

type 
Operator 

Average 

inflow 

(m3/s) 

(cfs) 

Active 

storage 

million m3 

(acre-foot) 

Estimated 

refill time 

(hr) 

Power 

capacity 

(MW) 

Wilder 

(WLD) 
Peaking TransCanada 

181 

(11,010) 

16.5 

(13,350) 
25 35.6 

Bellows Falls 

(BFA) 
Peaking TransCanada 

297 

(10,500) 

9.2 

(7,480) 
8.6 48.6 

Vernon 

(VRN) 
Peaking TransCanada 

346 

(12,200) 

14.7 

(11915) 
11.8 32.4 

Northfield 

(NFD) 

Pumped 

Storage 
FirstLight N/A 

15.2 

(12,328) 
10 1,119 

Turners Falls 

(TRN) 
Peaking FirstLight 

394 

(13,900) 

10.9 

(8861) 
7.7 73.4 

 

two companies (TransCanada, and FirstLight) involved in a joint relicensing process. 

Table 1.1 provides key characteristics of the facilities studied, demonstrating their 

hydrologic and power capacity data. Northfield pumped-storage facility is one of the 

largest facilities of this kind in the world with a power capacity of 1119 MW. The other 

four hydropeaking facilities depicted in Table 1.1 have much lower power capacities. An 

average refill time is estimated and depicted in Table 1.1 using average inflow values and 

the reservoir storage capacity values. The refill time values calculated are not significant 

compared to the average flow values, suggesting these facilities do not have the potential 

to alter the mainstem flow regime on a time-scale greater than 24-hour. However, the 

facilities store water and release huge values affecting downstream flow regimes on a 

sub-daily scale. 

Figure 1.2. illustrates the real-time energy prices along with flows observed at the USGS 

gage 01144500 downstream of Wilder and the reservoir inflows for the first week in 
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January 2003. As it is evident in Figure 1.2.a. there usually exist two peaks within a day. 

Historical flows observed downstream of Wilder reservoir at USGS gage 01144500 seem 

to follow sub-daily energy price variations for the region and they too show two peaks 

during a day, matched with the energy prices peaks. Comparison of parts a, b of Figure 

1.2. reveals Wilder operators schedule releases to make as much revenue as possible by 

releasing significant volumes through turbines during peak demand hours when the 

region energy prices are higher. Hydropeaking operations at other reservoirs are expected 

to be similar given the same energy prices variations for the region. 

 

Figure 1.2. Real-time energy prices for western-central mass area, b) Flow at USGS gage 

01144500 and inflows observed, for the horizon 01/01/2003 to 01/08/2003 

Figure 1.2.b. shows Wilder inflows and flows observed at the gage downstream of the 

reservoir for the same horizon. Wilder inflows have smoother variations that is impacted 
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by operation of the upstream hydropeaking facilities. Comparing outflows and inflows of 

Wilder at Figure 1.2.b., conveys Wilder hydropeaking regulations make the outflows 

much flashier compared to the inflows to make as much revenue as possible.  

1.3. Data 

The data used in this research include reservoirs inflows, energy prices, turbine and 

generator characteristics, reservoirs minimum and maximum storage values, release 

requirements, and rates of changes for release values. Reservoir inflows are calculated 

using the Connecticut River Unimpacted Streamflow Estimation (CRUISE) tool 

developed by the United States Geological Survey (USGS) (Archfield et al., 2012a). This 

tool provides daily flow data for the horizon 1961-2011 for the reservoirs. Natural daily 

flows are calculated using the same tool and then simply disaggregated from the daily 

time-step to hourly time-step. Observed hourly flows upstream of Wilder reservoir were 

incorporated into the hourly model. Other data required to develop the model are either 

extracted from reservoirs documents or through contacting operators. 

Independent System Operator New England (ISO-NE) provides hourly energy prices. 

Historical real-time energy price data for the region were downloaded from the ISO-NE 

website and were incorporated into the model to serve as the signal which would cause 

the optimizer to mimic the current operations. Since the data is available for 2003-

present, the modeled horizon in this study is limited to the 2003-2011 period where 

available CRUISE and ISO-NE real-time energy prices overlap.  

Table 1.2. and Figure 1.3. illustrate historical power generations across the facilities for 
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years 2003-2011. Because the Northfield Mountain Project was out of operation for much 

of year 2010, the average calculated for Northfield excludes this year. The Northfield and 

Turners Falls information for year 2011 are not available. The data in the Table 1.2 are 

used to calibrate the baseline model aimed at matching the historical power generations. 

Table 1.2. Annual historical power generated (in MWH) at the five hydropower facilities 

for the horizon 2003-2011 

Year WLD BFA VRN NFD TRN 

2003 146,931 220,816 124,956 1,034,432 281,836 

2004 146,380 237,628 125,675 1,056,540 301,500 

2005 166,302 261,138 111,336 910,072 342,192 

2006 191,383 293,816 131,066 1,035,395 412,628 

2007 157,940 250,320 113,113 1,100,567 310,868 

2008 193,550 282,756 171,514 1,179,584 403,505 

2009 185,552 290,576 192,564 972,596 409,215 

2010 173,664 264,346 161,782 372,689 343,563 

2011 166,430 272,608 170,941 NA NA 

Average 169,792 263,778 144,772 1,041,312 350,663 

 

Figure 1.3. Annual historical power generated at the five hydropower facilities for years 

2003-2011 

1.4. Model Formulation Experiment 

To compare different alternative operation scenarios results with the current operations, it 
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is required to first develop a model that closely mimics the current operations. 

Afterwards, models associated with alternative operation scenarios are developed. Given, 

the reservoirs are operated to maximize hydropower generation revenues by storing water 

during non-peak hours and releasing significant water during peak hours, an optimization 

model would be capable of closely resembling this kind of operation with an objective 

function of maximizing total revenues. Revenues made are a function of power generated 

and energy prices. Power generated at each facility is a function of turbine and generator 

efficiency, specific weight of water, flow rate, and water head over turbines as follows: 

 𝑃 =  𝜂 × 𝛾 × 𝑄 × ℎ𝑒𝑎𝑑 (1.1) 

where 𝑃 denotes hydropower generated, 𝜂 denotes turbine efficiency, 𝛾 is specific weight 

of water, 𝑄 is the flow rate, and ℎ𝑒𝑎𝑑 is the water head over turbines. If water head 

variations are not significant, it can be assumed that the water head is constant. For the 

facilities studied, this assumption is reasonable given hydraulic head variations are small 

compared to average heads. This assumption makes the power term in the equation 1.1 a 

linear function of water discharge. Since mathematical programming models consider 

flow value passed through turbines in a time-step (like an hourly time-step), one can use 

flow passed through turbines instead of discharge rate in the equation 1.1. As a result, 

power generated in each hour ℎ for facility 𝑓 is dependent of water volume released 

through the turbine during the hour as follows: 

 𝑃𝑓,ℎ  =  𝑅𝑓,ℎ × 𝐶𝑓 (1.2) 

where 𝑃𝑓,ℎ is the power generated during hour ℎ for facility 𝑓,  𝑅𝑓,ℎ denotes the turbine 
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release for facility 𝑓 during hour ℎ, and 𝐶𝑓 denotes the conversion factor relating turbine 

release to power generated at facility ℎ. In this research, a model is developed that 

maximizes total hydropower revenues for the five sequential facilities. Revenue made at 

each hour of operation is product of power made and the energy price during the time-

step. Thus, the objective function can be written as: 

 𝑀𝑎𝑥 𝑍 =  ∑ ∑ 𝑃𝑓,ℎ × 𝐸ℎ

𝐻

ℎ=1

𝐹

𝑓=1

(1.3) 

where 𝑍 denotes the objective function of the programming model; and 𝐸ℎ is the real-

time energy price at the time-step (hour ℎ). The objective function in (1.3) is subject to 

some constraints that either represent operation requirements or the system operation 

limitations including minimum and maximum flow rates, generator capacities, minimum 

and maximum reservoir storage capacities, rates of changes in releases, and mass 

balances of the reservoirs. 

The objective and constraints are linear but binary variables are used in some constraints 

resulting in a mixed-binary mathematical programming model. The motivation for 

introducing binary variables is to properly model Northfield pumped-storage facility 

operations. The Northfield facility usually pumps water from the river up to the reservoir 

during non-peak hours and then release the water during peak hours when energy prices 

are higher. Since, water is not pumped and released at the same time, binary variables are 

introduced to the mass balance of the reservoir as follows: 

 𝑆ℎ+1  =  𝑆ℎ +  𝐼ℎ  −  𝑅ℎ, ∀ ℎ = 1, . . . , 𝐻 (1.4) 
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 𝐼ℎ  <=  𝑏ℎ × 𝐿, ∀ ℎ = 1, . . . , 𝐻 (1.5) 

 𝑅ℎ  <=  (1 − 𝑏ℎ) × 𝐿, ∀ ℎ = 1, . . . , 𝐻 (1.6) 

where 𝑆ℎ denotes storage value at the beginning of hour ℎ, 𝐼ℎ denotes the water volume 

pumped up to the Northfield reservoir during hour ℎ, 𝑅ℎ is the water volume released 

down during hour ℎ, 𝐻 is the number of hours modeled, 𝑏ℎ is a binary (zero-one) 

variable, and 𝐿 is an arbitrary large value. The purpose of introducing binary variables 

and these constraints is to enforce the optimizer does not assign values to the water 

pumped and water released for the same hour. For a given hour ℎ, if binary variable 𝑏ℎ 

takes value of one, then based on Constraint 1.3, 𝐼ℎ will be enforced to be less than the 

large value 𝐿 and 𝑅ℎ will take value of zero since it must be non-negative. If 𝑏ℎ takes 

value zero, then  𝐼ℎ will be zero and 𝑅ℎ can take a positive value less than 𝐿. It should be 

noted 𝐿 value has to be chosen large enough so that it does not limit operations when 𝐼ℎ, 

𝑅ℎ take positive values. 

1.5. Operational Scenarios 

Three different operation scenarios are modeled in this study. The first scenario is called 

a baseline scenario in which it is tried to match the power generations outcomes with the 

historical power generations across all the facilities. The outcomes of the baseline model 

are compared with the data presented in Table 1.2. Two other alternative scenarios 

include an IEO scenario and a Closed-loop scenario explained in the following. 

IEO, standing for inflow equals outflow, represents an operation scenario in which the 

four reservoirs on the mainstem are enforced to release flows equal to inflows while the 
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Northfield facility can still hydropeak. The reason why TNC desired to study outcomes of 

this scenario was that they expected this scenario to have a potential to improve the flow 

regime characteristics because the four sequential reservoirs would not regulate flows in 

this case. Under the IEO scenario, Northfield pumped-storage facility is assumed to 

hydropeak meaning it can pump water up from its lower reservoir, Turners Falls, and 

release water down during peak demand hours to the same reservoir. Turners Falls 

reservoir would be able to control significant flow alterations resultant of Northfield 

operations. This scenario is modeled by introducing constraints that enforce the outflows 

equal inflows at any time-step for the four reservoirs on the mainstem. 

Another scenario modeled is called Closed-loop under which it is assumed another 

reservoir as big as Northfield reservoir is constructed at the same elevation as the river. 

The hypothetical reservoir is used as the downstream reservoir for the Northfield 

operations. Under this scenario, there would be no linkage between the hypothetical 

pumped-storage system and the Connecticut River. The motivation for developing this 

scenario for TNC was to investigate flow regime and economic outcome if Northfield 

operations are completely detached from the remainder of the system. It was expected 

such a scenario significantly alleviate flow regime alterations. A version of the model that 

considers operations associated with this scenario is developed assuming a reservoir as 

big as Northfield is available with the same turbine efficiency and pumping and release 

capacities used in the baseline model. 
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1.6. Results and Analysis 

The models are developed in GUROBI (GUROBI Optimization Inc, 2018) solver 

environment. For the Baseline model, 5 reservoirs are modeled over 9 years with an 

hourly time-step. Release and storage values are decision variables in each reservoir 

operation (Eq. 1.4) while there are constraints on minimum and maximum of these 

variables in each time-step. There is a binary variable for each time-step associated with 

Northfield reservoir operation (Eq. 1.6) As a result, there are 2,995,913 constraints, 

78,840 integer (binary) variables, and 2,680,565 continuous decision variables for the 

entire analysis horizon. The run-time is less than an hour on the machine used (Intel Xeon 

Processor E5-2630 v4 25M Cache, 2.20 GHz, 16 GB RAM) with an optimality gap of 

1% (it means the optimal solution is within 1% of the solution). Three model versions 

associated with the Baseline, IEO, and Closed-loop operation scenarios are developed 

and solved. In the following sections the key results are presented and analyzed. 

1.6.1. Hydropeaking Operation 

The Baseline model was developed aimed at closely mimicking historic hydropeaking 

operations in the five sequential hydropower facilities on the mainstem. To calibrate the 

baseline version, maximum allowed ramping rates (rates of changes in release values) 

were adjusted in a way that results in modeled hydropower outcomes comparable to those 

of historical power generations across the facilities. Since the objective function in the 

model is set as maximization of total hydropower revenue made at the facilities, the 

modeled operations follow energy prices variations. Thus, the reservoirs hydropeak, 

meaning they store water during non-peak hours and release the water during hours with 
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high energy prices. A sample of the hydropeaking operations for the five reservoirs, 

along with the real-time energy prices variation for a one-week horizon are illustrated in 

Figure 1.4. Figure 1.4.a illustrates the hourly energy prices in $/MWH for the horizon. 

Figure 1.4.b illustrates modeled outflows of the four hydropeaking reservoirs WLD, 

BFA, VRN, and TRN on the mainstem. It is observed that the optimized outflows for all 

the four reservoirs usually vary accordingly since energy prices are the same for all the 

facilities modeled in this study. 

From Figure 1.4. one can conclude that the lower the reservoir, the higher release rate. 

This is because the water released from the upstream reservoirs end up in the lower 

reservoirs. Among the four reservoirs, TRN has the highest outflow rates since it is the 

lower-most reservoir on the Connecticut River mainstem. Figure 1.4.c. presents the 

Northfield pumped-storage facility outflow and intake rates for the same horizon. 

Northfield releases during peak hours and pumps water up during non-peak hours. 

Maximum releases coordinate with the other four reservoirs hydropeaking timing. The 

release and pumping rate changes are limited by the ramping rates applied. It is evident 

that Northfield release and pumping does not happen at the same time indicating the 

introduction of binary variables in the mass balance equation of the facility is working 

properly since it does not allow the optimizer to allocate positive values to release and 

pumping at the same time. 
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 Figure 1.4. a) Real-time energy prices; b) Mainstem facilities outflow rate; c) Northfield 

outflow and intake rate for the horizon 01/01/03 to 01/08/03 and the Baseline operation 

scenario 

1.6.2. Power Generation Outcomes 

Average annual historical power generations along with the hydropower outcomes for the 

three operation scenarios modeled for years 2003-2011 are depicted in Table 1.3., 

illustrated in Figure 1.5. The power made at each facility depends on several factors 

including operation type, turbine efficiency and capacity, storage size, and the amount 
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and timing of inflows. As illustrated in Figure 1.5., the power outcomes of the Baseline 

model closely match the historical power generations for each facility. This indicates the 

baseline model is accurately modeling the status-que operations in terms of power 

generations. As depicted in Table 1.3., the total historic power generation across the 

facilities is 1,970,318 MWH while the total for the Baseline model is 1,965,612 MWH, 

showing a 0.2 % difference. All facilities except for Northfield have generated very close 

hydropower under different operation scenarios. The hydropower generated for a specific 

facility is dependent on the total water volume released through turbines (not the water 

spilled out). It seems the total water released through the turbines for the four 

hydropeaking facilities on the mainstem is the same under Baseline and Closed-loop 

operation scenarios. Moreover, it seems under IEO scenario more spilling happens 

resulting in slightly lower power generation. The reason is because sometimes the inflow 

rates are higher than the turbine capacities. The ability of the reservoirs to regulate 

inflows under Baseline and Closed-loop scenarios facilitates regulating inflows when 

they are higher than turbine capacities. The turbine capacity limitation has resulted in a 

slight power generation reduction on the mainstem facilities under IEO scenario 

compared to the Baseline and Closed-loop scenarios.  
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Table 1.3. Average Annual hydropower generation (in MWH) under historic operation 

and the three modeled operation scenarios for the five facilities on the Connecticut River 

for years 2003-2011   

Operation 

Scenario 
Wilder 

Bellows 

Falls 
Vernon Northfield 

Turners 

Falls 
Total 

Historic 169,792 263,778 144,772 1,041,312 350,663 1,970,318 

Baseline 161,816 248,066 149,182 1,027,713 378,835 1,965,612 

IEO 156,657 239,436 143,242 945,645 365,455 1,850,434 

Closed-loop 161,814 248,043 149,170 1,700,649 380,346 2,640,022 

 

 Figure 1.5. Historical and modeled average annual power generation of the five 

hydropower facilities for years 2003-2011 

Northfield has generated around 8% less power under IEO scenario, and 65% more in the 

Closed-loop scenario compared to the Baseline scenario. The reason for the 8% reduction 

under IEO scenario seems to be the inability of the Northfield facility to rely on the 

upstream reservoir (Vernon) releases as the intake since the Vernon reservoir releases 

cannot be stored at Turners Falls reservoir to be used for Northfield pumping. The reason 
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for the significant 65% increase under Closed-loop scenario is because Northfield and the 

hypothetical lower reservoirs would be able to operate at their full capacity with water 

being always available for pumping or release. 

1.6.3. Hydropower Revenue Outcomes 

The average annual economic outcomes under each operation scenario is presented in 

Table 1.4 and Figure 1.6. The revenue calculated is a multiplication of the energy made 

(Eq. 1.2) and the energy price during each time-step. Historical revenue data are not 

available to be used for comparison. The results associated with the Baseline, IEO, and 

Closed-loop scenarios are presented for years 2003-2011. The revenue modeled at the 

facilities depend on power generated and the energy prices. Northfield and Turners Falls 

make higher revenues due to the larger size of the facilities and passing higher inflows 

through the turbines. 

Under IEO scenario, the revenue made at the facilities for Wilder, Bellows Falls, Vernon, 

Northfield, and Turners Falls is respectively around 10%, 8%, 9%, 11%, and 17% 

reduced compare to the Baseline scenario results. These reductions identify the loss 

associating with implementing the IEO scenario compared to the Baseline operation 

scenario. The highest reduction is observed in Northfield and Turners Falls power plants. 

Under the IEO scenario, Northfield will just rely on the Turners Falls storage capacity for 

its pumping since the Vernon releases would not be available for Northfield operations, 

resulting in a 11% reduction in the revenue made at this facility. Turners Falls 

experiences a 17% reduction under IEO compared to the Baseline, which is because 

under this scenario the reservoir just releases the volume released from Vernon and 
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would not be able to release Northfield releases when Northfield dispatches huge 

volumes of water during peak energy prices hours to the Turners Falls reservoir. The total 

revenue calculated for the system under IEO scenario is 12% less than the revenue 

associated with the Baseline scenario. Under Closed-loop scenario, reservoirs Wilder, 

Bellows Falls, and Vernon have resulted in revenues very close to that of Bassline 

scenario while Northfield revenue is 80% increased and Turners Falls revenue is 10% 

decreased. The reason for the increase in Northfield revenue is obviously due to 

utilization of the hypothetical reservoir full capacity under the scenario. The reason for 

the 10% decrease in Turners Falls revenues seems to be the inability of the reservoir to 

release Northfield release under Closed-loop scenario since in this scenario the Northfield 

is releasing into the lower hypothetical reservoir. The total revenue generated under 

Closed-loop scenario is 22% more compared to the Baseline scenario. 

Table 1.4. Average Annual hydropower revenue (in million $) under the three modeled 

operation scenarios for the five facilities on the Connecticut River for years 2003-2011 

Operation Scenario Wilder Bellows Falls Vernon Northfield Turners Falls Total 

Baseline 10.2 15.1 9.0 26.9 25.4 86.7 

IEO 9.2 13.9 8.2 23.9 21.1 76.3 

Closed-loop 10.2 15.1 9.1 48.6 23.0 106.1 
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Figure 1.6. Modeled average annual revenue results of the five hydropower facilities for 

years 2003-2011 

1.6.4. Flow Regime Outcomes 

The alternative operation scenarios, IEO and Closed-loop are expected to improve flow 

regimes for ecological goals. Figure 1.7 shows a sample of hydrograph at the system 

outlet (Turners Falls outlet) for a one-week horizon, illustrating the differences in flow 

regime between the operation scenarios. Under Baseline and Closed-loop scenarios, the 

reservoir releases indicate hydropeaking operation while under IEO scenario, releases 

variations are smooth. Although the flows under IEO scenario are not completely 

unregulated, since the variations are affected by the system upstream regulations, this 

figure shows that implementing the IEO scenario has the potential to significantly 

decrease hydropeaking effects that might be beneficial to the watershed communities. 

The flows under the Closed-loop scenario illustrate slightly less flashiness compared to 

the Baseline scenario which could be because under this alternative scenario Northfield 

hydropeaking operations are not intensifying fluctuations at the system outlet. 
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Figure 1.7. System outlet time-series for the horizon 01/01/03-01/08/03 under different 

operation scenarios 

Three flow statistics, Richard-Baker flashiness index, average daily peak flow rate, and 

average daily flow rate were of interest of TNC to be investigated. The metrics are 

measured to quantify the sub-daily flow regime characteristics under the different 

modeled operation scenarios: Baseline, IEO, and Closed-loop. The metrics are calculated 

for different seasons to investigate the sub-daily flow metric. Richard-Baker flashiness 

(RBF) index measures the rate of flow changes at a sub-daily time scale. It calculates the 

relative rate of change in flow values across a day by calculating the summation of 

average changes in flows during a day and dividing it by the summation of flow values 

during the day (Zimmerman et al., 2010).  The metric is formulated as: 

 𝑅𝐵𝐹 =
∑ 0.5(|𝐹𝑡+1 − 𝐹𝑡| + |𝐹𝑡 − 𝐹𝑡−1|)𝑁

𝑡=1

∑ 𝐹𝑡
𝑁
𝑡=1

(1.7) 

where  𝐹𝑡 denotes the flow value associated with time 𝑡; and 𝑁 denotes the number of 

steps which is 24 in this study.  



 

27 

 

 

Figure 1.8. Richard-Baker flashiness index by season under the three modeled operation 

scenarios at the system outlet (Turners Falls releases) 

RBF index is calculated for the system outlet (at Turners Falls reservoir outlet) and the 

box plots of the values calculated are presented in Figure 1.8 for different operation 

scenarios to investigate how implementation of different scenarios might affect flow 

regime at downstream of the system. As it is evident in the figure, the IEO scenario has 

significantly reduced the range of variations while the Closed-loop operation scenario has 

very slightly reduced the range compared to the Baseline operation scenario. The slight 

improvement in the Closed-loop scenario is due to the detachment of the Northfield 

facility huge releases during high energy prices that must be released out from the 

downstream reservoir, Turners Falls. The flashiness metric has higher median and ranges 

of variations during Spring for Baseline and Closed-loop scenarios which could be due to 

high inflows during the season. The metric median for the Baseline and Closed-loop 

scenarios are roughly 0.08, 0.32, 0.1, and 0.11 respectively for Winer, Spring, Summer, 

and Fall. The median flashiness associated with IEO scenario are very close in every 
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season and around 0.04. 

 

Figure 1.9. Average daily peak flow rate (cfs) for different seasons under the three 

operation scenarios modeled at the system outlet (Turners Falls releases) 

The average daily peak flow rate is calculated for the system outlet for different seasons 

under the studied operation scenarios and are presented in Figure 1.9. Compared to the 

Baseline scenario, the results for IEO scenario are much smaller in every season, showing 

a significant improvement in the magnitude component of the river’s flow regime, while 

the Closed-loop scenario results are just very slightly lower. The results for the IEO 

scenario are at least twice smaller in every season compared to the two other scenarios. 

Like the flashiness metric evaluation, this metric has higher values during Spring (around 

120,000 cfs for Baseline and Closed-loop scenarios and 30,000 cfs for IEO scenario) 

under every operation scenario while the results for the other seasons are not significantly 

different under a given operation scenario.  
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Figure 1.10. Average daily flow rate (in cubic feet per second) for seasons under the three 

modeled operation scenarios at the system outlet (Turners Falls releases) 

The average daily flow rate metric is calculated for all the seasons under the operation 

scenarios studied and are illustrated in Figure 1.10.  As it is evident in this graph, the 

results for different operation scenarios are very close. This is because the storage 

capacity at the mainstem reservoirs is not significant compared to the average daily flows 

and as a result the facilities lack the potential to change average flows on a daily or a 

larger time-scale. This result further supports the idea that the hydropeaking operations 

should be studied on a sub-daily time scale.  

1.7.  Conclusions 

Hydropower reservoir operations on the Connecticut River mainstem have altered flow 

regime on a sub-daily time-scale because the operations follow sub-daily energy market 

dynamics resulting in implications for the watershed ecology. In this research, a 

mathematical programming model was developed in GUROBI optimizer environment as 

an alternative operation scenario assessment tool to evaluate power, revenue, and flow 
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regime outcomes of different operation scenarios. The Baseline model closely matched 

historical power generations of the five large sequential reservoirs in the system studied 

and resulted in hydropeaking operation comparable to real-world hydropeaking 

operations. Two alternative operation scenarios, the IEO scenario in which releases equal 

inflows, and the Closed-loop scenario in which the Northfield pumped-storage facility is 

detached from the river, were also evaluated. 

Based on the modeling results, it was estimated implementation of the IEO scenario 

significantly improves the flow regime outcomes while it degrades the total revenue by 

12% compared to the Baseline scenario. The Closed-loop scenario improves the flow 

regime very slightly and enhances power and revenue generated at the system by 

respectively by 34% and 22% compared to the Baseline model. In terms of power 

generations, different facilities except for Northfield showed very close outcome under 

every operation scenario. Under the IEO and Closed-loop operation scenarios, Northfield 

resulted in an 8% decrease and a 65% increase respectively compared to the Baseline 

operation scenario.  In terms of revenue outcomes, the IEO scenario resulted in 8-17% 

reduction in revenues across the facilities. Under the Closed-loop scenario, the same 

revenue is generated for different facilities except for an 80% increase in Northfield and a 

10% increase in Turners Falls compared to the Baseline model. 

After assessing flow regime metrics, it is concluded the IEO operation scenario results in 

the least flow alterations since it has smoother release variations at the system outlet and 

significantly decreases RBF index median and range of variations, and average daily 

peak flow rate. Closed-loop operation scenario flow regime outcomes closely resembled 
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the Baseline operation scenario. All the three operation scenarios resulted in very close 

average daily flow rates confirming the hydropeaking operations on the Connecticut 

River do not change average flow rates on a time-scale greater than a daily time-scale.
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CHAPTER 2 

 

A MULTIOBJECTIVE OPTIMIZATION METHODOLOGY FOR RIVER BASIN 

TRADE-OFF ANALYSIS  

2.1. Introduction 

Water reservoirs meet different objectives including water supply, electricity generation, 

flood control, recreation, navigation, and ecological. Regulation of complex reservoir 

systems to best meet the objectives is challenging because the objectives are not 

commensurate and are often conflicting (Ahmadi et al., 2014; L.-C. Chang & Chang, 

2009; Foued & Sameh, 2001; Reddy & Nagesh Kumar, 2006, 2007; T. Yang et al., 

2015). Mathematical modeling can quantify the interactions between the objectives by 

evaluating future conditions of water systems based on different operation strategies. 

Various optimization methods have been presented for reservoir systems operation, each 

with specific limitations and advantages (Biglarbeigi et al., 2018; Giuliani et al., 2016; 

Labadie, 2004; Mason et al., 2018; Rani & Moreira, 2010; Yeh, 1985; Zatarain Salazar et 

al., 2016). The applicability of the methods described in the literature depends on factors 

including time and financial resources, data availability, stakeholder goals, and the 

modelers experience. Optimization modeling is often done when it is difficult to evaluate 

all the alternatives using a simulation model. In some cases, analysts develop an 

optimization model to eliminate less favorable alternatives concerning the objectives of 

interest and then evaluate the remaining alternatives using a detailed simulation model. 

Multiobjective approaches are applied to water resources systems problems when there 
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exist conflicts between the objectives of system (Aboutalebi et al., 2015; Bai, Chang, et 

al., 2015; Bai, Wu, et al., 2015; Ehteram et al., 2017; Y. Li et al., 2017; Liu et al., 2017; 

Luo, Chen, et al., 2015; Luo, Qi, et al., 2015; Madani & Hooshyar, 2014; Tsoukalas & 

Makropoulos, 2015). Multiple objective frameworks illustrate the trade-offs between 

different objectives and indicate how the system might be operated to improve some 

objectives without significantly sacrificing other objectives (Cohon & Marks, 1975). 

Pareto frontier can be developed using these methods that reveals the non-dominated set 

of solutions (Reed et al., 2013). More recently, different optimization techniques have 

been used for developing trade-offs in water systems including nature-inspired algorithms 

(Afshar & Hajiabadi, 2018; Niu et al., 2018; Seifollahi-Aghmiuni & Bozorg Haddad, 

2018; Srinivasan & Kumar, 2018) (in which optimization algorithms are developed 

mimicking the natural phenomena), mathematical programming (linear, mixed-integer, 

mixed-binary, or nonlinear programming) (Adams et al., 2017; Han et al., 2011), 

dynamic programming (Delipetrev et al., 2016; Zhao & Zhao, 2014) , and reinforcement 

learning (Castelletti et al., 2013). The technique chosen depends on the problem 

characteristics, accuracy required, and computational resources available. Application of 

nature-inspired algorithms has been limited to simple systems like those of dynamic 

programming and reinforcement learning. Mathematical programming methods however 

have successfully been applied to large and complex reservoir systems (Jenkins et al., 

2004; Steinschneider et al., 2014). Regardless of the optimization technique selected, 

objectives must be clearly quantified to allow for a proper evaluation of the objectives 

performance. 
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In recent decades, impacts of reservoir operation on sustainability of watersheds 

communities, and the need for providing complex ecological flow requirements have 

been studied (Arthington et al., 2006; Bain et al., 1988; Gerten et al., 2013; N. LeRoy 

Poff, 2009; Brian D Richter & Thomas, 2007; Saito et al., 2001; Sale et al., 1982; 

Shafroth et al., 2009; Symphorian et al., 2003; Tennant, 1976; X.-A. Yin et al., 2011). 

Although the implications of each reservoir is unique (McCartney, 2009), all reservoirs 

affect sustainability of watersheds to some degree by altering the flow regime in terms of 

magnitude, frequency, duration, timing and rate of changes (Poff et al., 1997). Biologists 

and ecologists have identified negative ecological impacts of flow alteration by daily and 

sub-daily reservoir regulations (Magilligan & Nislow, 2001). As Acreman et al. (2014) 

write “Environmental flows may be achieved in a number of different ways, most of 

which are based on either (1) limiting alterations from the natural flow baseline to 

maintain biodiversity and ecological integrity or (2) designing flow regimes to achieve 

specific ecological and ecosystem service outcomes. We argue that the former practice is 

more applicable to natural and semi-natural rivers where the primary objective and 

opportunity is ecological conservation. The latter “designer” approach is better suited to 

modified and managed rivers where return to natural conditions is no longer feasible and 

the objective is to maximize natural capital as well as support economic growth, 

recreation, or cultural history (466),” the common hypothesis is that flows will benefit 

ecosystems the best if they are closest to their natural state (Van Looy et al., 2014; 

Naiman et al., 2002), but if it is not possible to restore river flows, flows should be 

designed in a way that meet ecological metrics. In this regard, research has been done on 
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measuring flow alterations to determine the best management practices for riverine 

ecosystems health (Petts, 2009; N. LeRoyy Poff et al., 2010; Shiau & Wu, 2010; Vogel et 

al., 2007). Researchers have sought to: 1) identify natural flows; 2) develop measures to 

quantify the degree of alteration compared to natural flows (Gao et al., 2009; Weiskel et 

al., 2010), and 3) seek alternative operational strategies that minimize the degree of 

alteration.  

Steinschneider et al. (2014) sought to improve ecological performance of the Connecticut 

River basin by developing a linear program and examining the effects of various 

operation scenarios regarding ecological objectives and other goals. They penalized river 

flow deviations from natural flows in a piece-wise linear form to minimize the total 

amount of deviations. In another study for the same system, Julian et al. (2015) presented 

a decision support system combining hydrologic, ecological models with a simulation 

model developed in HEC-ResSim (Klipsch & Hurst, 2013). They quantified ecological 

goals using hydroperiods, defined as the number of days per year the flood plain is 

flooded. The modeling effort converts changes in operations to socio-economic and 

environmental alterations and describes how the flow regime might link to the specific 

species health. 

This research focuses on identifying the trade-offs of the Connecticut River system by 

applying a new multiple objective optimization methodology to the system. The 

methodology focuses on maximizing frequency of meeting ecological flow requirements 

rather than minimizing deviations from desired bounds performed by Steinschneider et al. 

(2014). The reason for following this approach is because it is assumed once the flows 
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violate certain boundaries, it would not matter for the watershed communities how 

beyond the boundaries the flows are. Likewise Richter et al. (2003) emphasize on 

measuring frequency of meeting ecosystem flow requirements when studying water 

resources development projects effects. It is assumed frequency is the measure that 

should be quantified when analyzing ecological flow requirements. As another objective, 

the frequency of controlling flood conditions is quantified rather than deviations from 

flood warning levels modeled by Steinschneider et al. (2014). New formulations are 

developed to quantify the reliability of meeting environmental flows within desirable 

bounds and the reliability of not violating flood warning levels. Next, an algorithm is 

designed and developed for the basin that enables solving a mathematical programming 

model for each year that carries over the end-of-year results into the next year. The 

reliabilities are optimized for the Connecticut River as objective functions for each year 

of the analysis in conjunction with other operational objectives. Binary variables are used 

in the formulations resulting a mixed-binary linear program that was solved with solver 

GUROBI (GUROBI Optimization Inc, 2018). The trade-offs between the objectives are 

developed and the associated results at different econodes, flood checkpoints, 

hydropower facilities, and reservoirs are analyzed. 

2.2.  System Description    

The Connecticut River is the largest river in New England (Figure 2.1). There are more 

than 2700 dams (Graf, 1999) in the watershed. The river originates in Canada-New 

Hampshire border and flows to the Atlantic Ocean at Long Island Sound. The mainstem 

is 410 river miles and covers parts of New Hampshire, Maine, Vermont, Massachusetts, 
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and Connecticut totaling a 30,000 km2 drainage area. The reservoirs in the basin are used 

for different purposes including hydropower, recreation, flood control, and water supply. 

The vast majority of the reservoirs are low head while a number of them are considered 

large reservoirs (“CorpsMap: The National Inventory of Dams (NID),” 2018). 

The significant alteration of flows due to reservoirs operation has significantly changed 

the natural flow regime across the basin. These changes impact the viability of various 

flood plain species during different life stages (Marks et al., 2014). The reservoirs have 

different owners and operators while the USACE operates fourteen large reservoirs on 

major tributaries, the largest number among different owners. Thirteen reservoirs of the 

fourteen are solely operated for flood control while one is conjunctively used for flood 

control and power generation. The largest water supply reservoirs are Quabbin, 

Barkhamsted, and Cobble Mountain that supply municipal water demands of Boston, 

Massachusetts, Hartford, Connecticut, and Springfield, Massachusetts, respectively. 

Cobble Mountain is a dual-purpose reservoir, used for electricity generation as well.  

Other reservoirs are used for either hydropower, recreation or just for storing water. 
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Figure 2.1. The Connecticut River basin located in New England 

2.3. The System Objectives 

2.3.1. Ecological Objective 

Richter et al. (2003) emphasize the application of frequency of violating ecosystem flow 

requirements for evaluating flow alterations in water resources systems. In this study, this 

approach is used to quantify the ecological objective. In this regard, the ranges of flows 

in which various species prosper are estimated after consultation of biologists and 

ecologists in the Connecticut River basin (Steinschneider et al., 2014).  At stakeholder 
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meetings, The Nature Conservancy (TNC) used expertise of local aquatic ecologists, 

biologists and other environmental experts to specify the levels of alterations that was 

believed to have negligible impacts on different species at different locations (econodes). 

For this research, formulations are developed that consider this measure as reliability of 

meeting flows in ecologically desirable bounds. For econode 𝑒𝑛, the reliability is 

measured using constraints (2.1) and (2.2); and the Ecological Objective for the basin is 

calculated using (2.3) as follows: 

𝐹𝑒𝑛,𝑡 < 𝑁𝑒𝑛,𝑡(1 + 𝐻𝑒𝑛,𝑡) + (1 − 𝐸𝑍𝑒𝑛,𝑡) × 𝐵𝑒𝑐𝑜 , ∀ 𝑡 = 1, . . . , 𝑇 (2.1) 

𝐹𝑒𝑛,𝑡 > 𝑁𝑒𝑛,𝑡(1 + 𝐿𝑒𝑛,𝑡) − (1 − 𝐸𝑍𝑒𝑛,𝑡) × 𝐵𝑒𝑐𝑜 , ∀ 𝑡 = 1, . . . , 𝑇 (2.2) 

 𝐸𝑐𝑜𝑂𝑏𝑗 = 100. ∑ ∑
𝐸𝑍𝑒𝑛,𝑡

𝑇 × 𝐸𝑁

𝑇

𝑡=1

 

𝐸𝑁

𝑒𝑛 = 1

(2.3) 

where 𝐹𝑒𝑛,𝑡 denotes the modeled flow at the econode 𝑒𝑛 during time t; 𝑁𝑒𝑛,𝑡 denotes the 

estimation of natural flow at the econode 𝑒𝑛 for time t; 𝐻𝑒𝑛,𝑡, 𝐿𝑒𝑛,𝑡 are fractions of natural 

flows for the same time step and econode that respectively refer to the upper and lower 

boundaries of flows (these two parameters together form a desirable flow bound beyond 

which the floodplain species are negatively affected); 𝐵𝑒𝑐𝑜 is a large value used to 

provide an extended flow bound when they deviate the desirable bound; 𝐸𝑍𝑒𝑛,𝑡 is a zero-

one variable for econode 𝑒𝑛 and time 𝑡; and 𝑇, 𝐸𝑁 are respectively number of time steps 

and econodes. Equation (2.3) characterizes the Ecological Objective that represents the 

reliability of meeting environmental flows within the desirable bounds across all the 

econodes in the basin. If the variable 𝐸𝑍𝑒𝑛,𝑡 takes value 1, Constraints (2.1) and (2.2) 
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together would ensure that the flow passing the econode during the time 𝑡, is within the 

desirable bounds specified by 𝐻𝑒𝑛,𝑡 , 𝐿𝑒𝑛,𝑡. If the variable 𝐸𝑍𝑒𝑛,𝑡 assumes a value of 0, the 

flows can violate the desirable bounds as there would be an extended bound, by 𝐵𝑒𝑐𝑜 

units from the two sides, in which the flows will fall. Equation (2.3) measures the 

reliability with which flows fall within the desirable bounds across all the nodes and 

time-steps. This measure might be used as the overall basin health indicator in studies 

that focus on reoperation of the reservoirs to seek operation alternatives that balance this 

objective along with other operational objectives. 

To assess the ecological performance across the basin, critical econodes at different 

tributaries and on mainstem have been identified (Figure 2.2). The most restrictive bound 

associated with the least flexible species at each econode is chosen as the desirable 

bound. Providing flows at these econodes within the desirable zones is important for 

different life processes of the species of the basin. The bounds depend on magnitude of 

flows and time of the year. Some of the bounds are narrow suggesting the aquatic species 

are very sensitive to alterations while some of the bounds are wider allowing more 

flexibility in reservoir operations (Steinschneider et al., 2014).  

2.3.2. Flood Control Objective 

Reservoirs can mitigate flood damages by storing floodwaters and releasing the water at a 

rate that minimizes negative impacts on downstream. A measure regarding flood control 

is the frequency of violating flow values that create flooding. To account for this 

measure, flood checkpoints at important locations were chosen in the basin (Figure 2.2). 

Flood warning levels have also been developed considering the watershed conditions. 
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The reliability of not violating flood warning levels, as another objective in this research, 

is quantified using the following constraint and equation. For a given checkpoint, 𝑓𝑐, 

flood control is modeled as: 

𝐹𝐹𝑓𝑐,𝑡 < 𝐹𝑊𝐿𝑓𝑐 + (1 − 𝐹𝑍𝑓𝑐,𝑡) × 𝐵𝑓𝑙𝑜𝑜𝑑 , ∀ 𝑡 = 1, . . . , 𝑇 (2.4) 

𝐹𝑙𝑜𝑜𝑑𝑂𝑏𝑗 = 100. ∑ ∑
𝐹𝑍𝑓𝑐,𝑡

𝑇 × 𝐹

𝑇

𝑡=1

𝐹𝐶

𝑓𝑐 = 1

(2.5) 

where 𝐹𝐹𝑓𝑐,𝑡 denotes the modeled flow at the checkpoint 𝑓𝑐 during time-step t; 𝐹𝑊𝐿𝑓𝑐 is 

flood warning level at the checkpoint 𝑓𝑐; 𝐹𝐶 is the number of flood checkpoints; 𝐹𝑍𝑓𝑐,𝑡 is 

a zero-one variable for flood checkpoint 𝑓𝑐 during time step 𝑡; and 𝐵𝑓𝑙𝑜𝑜𝑑 is a large 

value. Based on Constraint (2.4), if 𝐹𝑍𝑓𝑐,𝑡 assumes a value of one, the flow at the flood 

checkpoint is enforced to not to be greater than flood warning level, and if it assumes a 

value of zero, the flow can violate the flood warning level. Equation (2.5) quantifies the 

reliability of flood control across all the checkpoints, representing the Flood Control 

objective in this study. Applying this measure, the flow passed through the cross section 

of river at the flood checkpoint during the time step would be considered a flood if it is 

greater than the flood warning level. Although this measure does not evaluate the socio-

economic damages, it provides insight on how reliably the floods are controlled.  

2.3.3. Hydropower Revenue Objective 

Some reservoirs in the basin generate electricity through their power plants (Figure 2.2). 

The electricity constitutes 11% of total energy consumed in New England. To account for 
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Hydropower Revenue objective, the revenue generated at these facilities is considered as 

another objective to be maximized. The power generated is, in theory, a nonlinear 

function of water head over turbine and flow rate through turbine. Because many 

facilities are low head, it was assumed the head changes are negligible. Assuming a 

constant head and knowing the turbine efficiencies results in the power produced in each 

time-step to be a function of discharge rate through turbine. The revenue made each time 

step is the product of power made and the energy price during the time-step. Thus, the 

total revenue of the facilities over the analysis period is maximized applying (2.6) and 

(2.7) as follows:  

𝐻𝑦𝑑𝑟𝑜𝑂𝑏𝑗 = ∑ ∑
𝑃ℎ𝑟,𝑡 × 𝐸𝑃𝑡

𝑇 × 𝐻𝑅

𝑇

𝑡=1

𝐻𝑅

ℎ𝑟 = 1

(2.6) 

𝑃ℎ𝑟,𝑡 = 𝑃𝑅ℎ𝑟,𝑡 × 𝑃𝐶ℎ𝑟,𝑡 , ∀ 𝑡 = 1, . . . , 𝑇 (2.7) 

where 𝐻𝑅 is the number hydropower facilities;  𝑃ℎ𝑟,𝑡 denotes the power generated at 

facility ℎ𝑟 during time step 𝑡; 𝐸𝑃𝑡 is energy price at time-step 𝑡; 𝑃𝑅ℎ𝑟,𝑡  is the water 

volume released at facility ℎ𝑟 during time-step 𝑡; 𝑃𝐶ℎ𝑟,𝑡  is the coefficient converting 

water volume released through turbines to the power generated at the facility ℎ𝑟 during 

time-step 𝑡; and 𝐻𝑦𝑑𝑟𝑜𝑂𝑏𝑗 denotes the hydropower revenue objective. Equation (2.7) 

calculates the power generated at the given facility during the time-step 𝑡 and Equation 

(2.6) calculates the average daily revenue made across at all facilities. Thus, the total 

revenue generated from all the power plants and for the planning horizon is maximized. It 

should be noted that there are constraints on the maximum releases passed through 
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turbines that limit the power and revenue made at the facilities. Any release beyond the 

turbine capacity is spilled and does not contribute to the revenue made. 

2.3.4. Storage Level Objective 

Depending upon the primary purpose of reservoirs, there usually exist desired reservoir 

storage levels. For instance, water supply and recreational reservoirs are desired to be 

maintained full or at certain levels while flood control reservoirs are often drained 

(empty) in anticipation of a flood. Accordingly, storage level objectives are applied in 

this study based on the past operations in the Connecticut River basin. The USACE 

reservoirs usually fill just a small fraction of their storage enabling them to capture the 

maximum flood volume in case a flood occurs. Conversely, operators of water supply, 

hydropower, and recreational reservoirs try to maintain the reservoirs at their full 

capacity. Considering these operational preferences, three categories for storage level 

objectives are developed. The categories include USACE reservoirs, non-USACE 

reservoirs, and municipal reservoirs. The average daily storage for all the reservoirs of a 

category are optimized. These objectives minimize the USACE reservoirs average 

storage and maximize the average storage of the other reservoirs. This objective will 

cause the USACE reservoirs to be the main contributor in controlling floods which is in 

line with the current operation of the system. For a given category, this objective is 

formulated as: 

𝑆𝐿𝑂𝑏𝑗 =  1/𝑇. ( ∑ ∑ 𝑆𝑟,𝑡

𝑇

𝑡=1

 

𝑅

𝑟 = 1

) (2.8) 
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where 𝑅 denotes the number of reservoirs in the category; 𝑆𝑟,𝑡 denotes storage value at 

the beginning of time step 𝑡 for reservoir 𝑟. 𝑆𝐿𝑂𝑏𝑗 represents the Storage Level objective 

for the category considered. 

2.3.5. Water Supply 

The municipal water demands of the cities Boston, Hartford, and Springfield are supplied 

by reservoirs Mare Meadow/Bickford, Quabbin, Cobble Mountain, Barkhamsted, and 

Nepaug. These demands are always met in this modeling exercise since they are 

prioritized over other objectives. Thus, there is no need to include water supply as 

another objective. The demand time series were included with a negative sign in the mass 

balances of the modeled reservoirs.  

2.4. Data 

Flow values, energy prices, reservoirs minimum and maximum levels, minimum and 

maximum release values, power production capacities, ecologically desirable bounds, and 

flood warning levels were collected for the system. The flow data at different locations 

across the basin for the period of 1961-2011 are estimated using the Connecticut River 

Unimpacted Streamflow Estimation (CRUISE) tool developed by the United States 

Geological Survey (USGS) (Archfield et al., 2012b). The tool uses regression, based on 

watershed characteristics, to estimate the flows. 

Historic energy price data were obtained from the Independent System Operator New 

England (ISO-NE) website. Hourly regional historic locational marginal pricing (LMP) 

data are available for the period of 3/2003 – 11/2017. To develop daily prices, the 
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average hourly values for each hour of the year were aggregated to average daily values 

for each day of the year. The same prices data are used for different years of the modeling 

horizon since the energy prices are not available for the entire horizon.  

Reservoirs characteristics including minimum and maximum storage values, and 

minimum and maximum release requirements were gathered either through documents of 

reservoirs or via contacting owners/operators. The ecological bounds in which various 

species are not affected are developed after extensive consultation with biologists and 

ecologists (Steinschneider et al., 2014). These bounds are developed for various econodes 

in the entire basin. Given different species have different flow needs, the most limiting 

bounds are chosen as the desired bound. Flood warning levels across flood checkpoints 

were also developed and used as the upper bound in the constraints controlling flow 

values at the flood checkpoints. 

2.5. Algorithm Development and Execution Experiment 

54 largest reservoirs in the basin with the characteristics described in Table 2.1 were 

chosen along with 28 econodes and 13 flood checkpoints to be modeled (Figure 2.2). 

There are 23 power plants installed on 22 reservoirs. In terms of Storage Level Objective, 

reservoirs are divided into three categories of 34 Non-USACE, 14 USACE and 6 

Municipal reservoirs. To model the system with these elements, an algorithm is 

developed for the system that incorporates a mixed-binary mathematical programming 

model. The program uses binary variables to quantify ecological and flood control 

objectives. The algorithm incorporates the data, solves the model for the first year and 

exports the end-of-year (calendar year) storage values to be used for the next year and 
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this process continues until all the years are modeled. If the program is optimized for just 

one year, the solver would release as much water stored in the reservoirs as possible at 

the end of the year to optimize Hydropower Revenue. To address this problem, 

constraints were added that enforce the average storage for the last few days of any year 

be greater than or equal to the average storage for the rest of days in the year for every 

reservoir. 

The objectives have different units and ranges of variations. To be able to compare the 

objective performances, the objectives need to be normalized. To normalize the 

objectives, the maximum objective values are calculated first and then the objectives are 

divided by the maximum objective values. To calculate the maximum objective values, 

weights equal to zero are assigned to any objective than the objective of interest in 

Equation (2.9) which takes a weight equal to one. Doing so, every decision variable is 

optimized in a way that maximizes that specific objective disregarding any other 

objective. However, this makes the program infeasible for the second year. To avoid the 

issue, the algorithm is run for every year separately and the objective values are 

calculated and averaged across all the years. Thus, the average maximum possible 

objective values (AMPOVs) are calculated and indicated in Table (2.1). Next, the 

AMPOVs are used in equation (2.10) to normalize the objective values under sequent 

runs. The new objective function of the program developed is a weighted summation of 

all the objectives and is presented in Equation (2.10) as follows: 
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Figure 2.2. The system schematization with all the reservoirs, econodes and flood 

checkpoints considered 
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𝑍𝑜 = ∑ 𝑤𝑖 ×  𝑂𝑏𝑗𝑖

𝑁

𝑖 = 1

(2.9) 

𝑍 = ∑ 𝑤𝑖 ×  
𝑂𝑏𝑗𝑖

𝐴𝑀𝑃𝑂𝑉𝑖

𝑁

𝑖 = 1

(2.10) 

where 𝑍𝑜 denotes the initial objective function of the program used for calculating 

AMPOVs; 𝑍 denotes the objective function of the program and; 𝑤𝑖  is the weight 

allocated to the objective i. 𝑂𝑏𝑗𝑖 is the value of objective i; and 𝑁 is the number of 

objectives modeled.  

There are various constraints introduced in the program that either represent physical 

limitations or various operational regulations. Constraints associated with the mass 

balance equations of the reservoirs calculate storage values at the beginning of each time 

step given the release and inflow values during the time-step. There are also constraints 

on minimum and maximum storages values, minimum and maximum releases, and 

maximum flow rates passed through generators. There are around 5.4 million constraints, 

760,000 binary variables, and 4.5 million continuous variables for the entire analysis 

horizon. The run time is about an hour for the entire modeling horizon (51 years) on the 

machine used (Intel Xeon Processor E5-2630 v4 25M Cache, 2.20 GHz, 16 GB RAM). 

Table 2.1. List and some characteristics of the reservoirs modeled 

Number Reservoir Name Abbreviation 
Storage Level 

Objective Category 

Usage 

Type 

Active Storage 

( 𝑀𝑓𝑡3) 

1 Second Connecticut SCL Non-USACE Storage 505.9 

2 First Connecticut FCL Non-USACE Storage 2178.0 

3 Francis LFR Non-USACE Storage 4415.9 

4 Moore MOR Non-USACE Hydropower 4968.1 
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5 Comerford COM Non-USACE Hydropower 273.1 

6 McIndoes MCD Non-USACE Hydropower 260.8 

7 Union Village UNV USACE Flood Control 1655.3 

8 Wilder WLD Non-USACE Hydropower 581.5 

9 Goose Pond GOO Non-USACE Recreation 419.7 

10 Grafton Pond GRF Non-USACE Recreation 309.8 

11 Crystal CRY Non-USACE Recreation 167.5 

12 Mascoma MSL Non-USACE Recreation 1132.6 

13 North Hartland NHD USACE Flood Control 3096.2 

14 Lake Sunapee LSU Non-USACE Recreation 1781.6 

15 Sugar SGR Non-USACE Hydropower 1415.7 

16 North Springfield NSP USACE Flood Control 2186.7 

17 Bellows Falls BFA Non-USACE Hydropower 325.6 

18 Ball Mountain BMD USACE Flood Control 2371.8 

19 Town TWN USACE Flood Control 1433.1 

20 Surry Mountain SMD USACE Flood Control 1380.6 

21 Otter Brook OBD USACE Flood Control 760.1 

22 Vernon VRN Non-USACE Hydropower 519.5 

23 Monomonac MON Non-USACE Recreation 261.4 

24 Nekaug NEK Non-USACE Recreation 257.0 

25 Birch Hill BIR USACE Flood Control 2173.6 

26 Tully TUL USACE Flood Control 958.3 

27 Turners Falls TRN Non-USACE Hydropower 385.6 

28 Somerset SOM Non-USACE Storage 1758.3 

29 Searsburg SBG Non-USACE Hydropower 17.9 

30 Harriman HAR Non-USACE Hydropower 4007.5 

31 Sherman SHR Non-USACE Hydropower 156.5 

32 Development 5 DV5 Non-USACE Hydropower 5.1 

33 Fife Brook FBR Non-USACE Hydropower 213.4 

34 Development 4 DV4 Non-USACE Hydropower 20.3 

35 Development 3 DV3 Non-USACE Hydropower 9.6 

36 Gardner Falls GRD Non-USACE Hydropower 8.3 

37 Development 2 DV2 Non-USACE Hydropower 24.0 

38 Holyoke HOL Non-USACE Hydropower 1001.9 

39 Mare Meadow/Bickford MMB Municipal Municipal 467.0 

40 Barre Falls BFD USACE Flood Control 1045.4 

41 Conant Brook CBD USACE Flood Control 162.9 

42 Quabbin QWD Municipal Municipal 55080.2 

43 Red Bridge RBD Non-USACE Hydropower 139.4 

44 Knightville KVL USACE Flood Control 2134.4 

45 Littleville LVL USACE Flood Control 1001.9 
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46 Borden Brook BBK Municipal Municipal 334.2 

47 Cobble Mountain CMT Municipal 
Municipal\ 

Hydropower 
2846.2 

48 Otis OTI Non-USACE Recreation 670.8 

49 Colebrook COL USACE 
Flood Control\ 

Hydropower 
4212.3 

50 West Branch WBR Non-USACE Hydropower 387.7 

51 Barkhamsted BKH Municipal Municipal 3186.4 

52 McDonough LMD Non-USACE Recreation 392.7 

53 Nepaug NEP Municipal Municipal 1271.2 

54 Rainbow RBW Non-USACE Hydropower 182.1 

 

2.6. Weighting Scheme 

After calculating the AMPOVs, the algorithm is executed under different weighting 

schemes (WSs) depicted in Table 2.2, to identify the objectives trade-offs. Table 2.2 

indicates weights assigned to the objectives under each weighting scheme. In the first six 

schemes, the weights allocated to one objective is 0.60, and each of the other objectives 

take a weight equal to 0.08. Weights were selected this way to prioritize an objective in 

each run compared to the other objectives. It should be noted USACE Storage Level 

objective takes negative signs in the formulations since this objective is to be minimized. 

This approach assigns a high priority on an objective and a small weight on the remainder 

of the objectives in the first six schemes. WS7 is a balanced weighting scheme with equal 

absolute values of weights. The absolute weights values under each weighting scheme 

sum to 1. 
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Table 2.2. Weights allocated to the objectives under each weighting scheme 

Weighting 

Scheme 

Ecological 
Flood 

Control 
Hydropower 

Non-USACE 

Storage 

Level 

USACE 

Storage 

Level 

Municipal 

Storage 

Level 

1 0.60 0.08 0.08 0.08 0.08 0.08 

2 0.08 0.60 0.08 0.08 0.08 0.08 

3 0.08 0.08 0.60 0.08 0.08 0.08 

4 0.08 0.08 0.08 0.60 0.08 0.08 

5 0.08 0.08 0.08 0.08 0.60 0.08 

6 0.08 0.08 0.08 0.08 0.08 0.60 

7 (Balanced) 0.167 0.167 0.167 0.167 0.167 0.167 

 

Table 2.3. Average maximum possible objective values (AMPOVs) calculated 

Ecological 

(%) 

Flood Control 

(%) 

Hydropower 

($/day) 

Non-USACE 

Storage Level 

(𝑀𝑓𝑡3) 

USACE Storage 

Level 

(𝑀𝑓𝑡3) 

Municipal 

Storage Level 

(𝑀𝑓𝑡3) 

92.4 
99.652 

(1.27 violation/year) 

338,024  

(123.3 $M/year) 
40,289  18,429 63,353 

 

2.7. Results and Discussion 

The AMPOVs are calculated and indicated in Table 2.3. It is observed the value for the 

Ecological Objective is 92.4%. This value implies that even if any other objective is 

completely ignored, it is not possible to completely regulate the flows within the 

desirable bounds. This is mainly due to minimum/maximum release requirements that 

limit the operations. The value associated with the Flood Control objective is 99.652% 

which is equivalent to 1.27 violations of flood warning level per year on average. This 

indicates the floods can be controlled with a relatively high reliability if all the reservoirs 

contribute controlling floods across the 13 flood checkpoints considered. Other values in 

the table indicate the AMPOVs for hydropower revenue per day and the three different 

Storage Level Objectives. 
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Figure 2.3. Trade-offs of the objectives modeled 

The trade-offs are presented in Figure 2.3. The Ecological Objective varies from 66.3% 

to 85.9% while the maximum value occurs under WS1 and is expectedly less than its 

AMPOV, 92.4%. The second highest value for this objective is associated with the 

balanced weighting scheme (WS7). It is evident the WS7 results have always ranked 

second-best, except for the Flood Control objective in which it has ranked the third-best. 

Compared to the best results in the graph, it is seen adapting a balanced operation would 

most significantly degrade the Ecological Objective while it would affect the USACE 

Storage Level objective the least. This suggests a balanced WS has the potential to 

benefit all the objectives with some compromises. The lowest value for the Ecological 

Objective is 66.3% occurring under WS3. In this case, the Hydropower Revenue 

objective gets the highest value, 113.7 $M/year. This suggests the ecological objective is 

highly conflicting with the Hydropower Revenue. The Ecological Objective also highly 

conflicts with the Municipal Storage Level objectives and the reason might be because 

Municipal Storage objective encourages storing water that conflicts with providing flows 
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close to the natural flows (the Ecological Objective is targeted to provide flows close to 

the natural flows). 

The Flood Control Objective varies from 4.8 to 3.1 while the best value for this objective 

occurs under WS2 and the least desirable objective value, 4.8, occurs under WS4 in 

which the Non-USACE gets the best result across the seven WSs. This is an expected 

result since Non-USACE reservoirs have a significant storage capacity that would not be 

available to capture floodwaters if the reservoirs are kept full or close to full. Under WS2, 

Flood Control objective gets its best value, but this does not come at the expense of 

significant degradation for other objectives. Under this WS, results for the all objectives 

than the Flood Control objective are close to the results associated with the balanced WS. 

The best result for Hydropower Revenue is $113.7M per year under WS3 while the worst 

is $101.3M under WS4. It is observed the best value for Hydropower Revenue objective 

is associated with the lowest (or very low) outcome for Ecological and Storage Level 

Objectives. This result suggests this objective is highly conflicting with any objective 

other than with Flood Control. Based on the graph, a compromise of near $4M a year in 

Hydropower Revenue could significantly improve all the objectives that would be 

otherwise highly degraded when trying to maximize the Hydropower Revenue objective. 

The Non-USACE Storage Level objective varies from 67.3% to 98.8% of its AMPOV. 

The best value for the objective is 98.8% under WS4, and the lowest value is 67.3% 

under WS3. The best value is associated with the worst values for the Flood Control and 

the Hydropower Revenue objectives, indicating again there is a conflict between 
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maintaining high storages at these reservoirs and the ability to control floods and making 

high revenues. USACE Storage Level objective varies from 5.9% to 2.3% of its 

AMPOV. The least desirable result, 5.9%, occurs under WS3 in which Hydropower 

Revenue is highly prioritized indicating a significant conflict between these objectives. 

Figure 2.4 presents the reliabilities of meeting environmental flows at the 28 econodes 

across the basin for the seven WSs that can vary from 0% to 100%. Expectedly, it is 

evident that in almost every econode, the reliability associated with WS1 is higher than 

associated results of other WSs. The degree to which the associated results of WS1 are 

superior seems to depend on the location of the econode. In some case this alternative is 

significantly superior while in some other cases just slightly superior. The values 

associated with WS1 seem to have the highest differences with the results associated with 

WS3 and WS6 suggesting that Ecological Objective conflicts most with Hydropower 

Revenue and Municipal Storage Level objective. The conflict with Hydropower Revenue 

is because the revenue gained through hydropeaking conflicts with providing flows close 

to the natural flow values. The conflict with Municipal Storage Level might be because 

releasing values close to natural inflows does not allow for storing water. The results of 

WS1 and WS7 differ the least suggesting a balanced operation has the potential for 

achieving results close to the bests possible for this objective. Looking at the average 

values across the WSs and for different econodes, it seems the values are generally higher 

if the econode is not immediately downstream of a hydropower facility. This is the case 

for the econodes 5, 6, 7, among others. Some econodes immediately downstream of a 

hydropower facility are significantly negatively affected (for instance the econodes 2, 3, 
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23). The econodes that are on the mainstem and immediately downstream of a 

hydropower facility are the most negatively affected ones while the ones on tributaries or 

the ones that are not immediately downstream of a hydropower facility are the least 

degraded ones. Econodes 24, and 25 in Deerfield tributary, downstream of a few 

hydropower facilities, have shown low reliabilities. The low values are the case because 

the revenue those facilities generate conflict with the Ecological Objective. 

Figure 2.5 presents the reliabilities of controlling flood conditions across the 13 flood 

checkpoints under the seven WSs. The reliabilities vary from 96.3% to 100%. The Flood 

Control objective is the average of the values across different checkpoints. That is why 

the results under WS2 are not always superior. For econode 9, there is a significant 

superiority of the Flood Control value under WS2 which highly contributes to the 

average value of the Flood Control objective. This is also the case for checkpoints 6, but 

less significantly. Checkpoint 1, located on the mainstem and not immediately 

downstream of a hydropower facility, has values close to 100%. Checkpoint 2 is on the 

mainstem and immediately downstream of two in-series hydropower facilities. As a 

result, the results for this checkpoint are relatively low. Checkpoints 7, and 8 have very 

high values which could be because they are located downstream of large Municipal 

reservoirs (MMB and QWD) providing significant capability to control flood conditions. 

Figure 2.6. presents the average revenue made per day for various facilities across the 

basin under different WSs. The figure shows how different facilities contribute to the 

total revenue made. Under WS3 in which the greatest weight is assigned to hydropower 

revenue, the value of hydropower is maximized at almost every facility. It is evident 
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facilities on the mainstream including HOL, TRN, VRN, BFA, WLD, COM, and MOR 

make higher revenue since they pass higher flows through their turbines. 

Figure 2.7. presents the average active storage percent values for the Non-USACE 

reservoirs under the seven WSs. Under WS4, storage reservoirs expectedly get the 

highest values while they get low values under WS3 compared to the results associated 

with other WSs. It is evident that reservoirs without a power plant including NEK, MON, 

SGR, LSU, MSL, CRY, GRF, and GOO have higher active storage percent values. The 

reason is because there is no immediate revenue gained if they empty their storages. 

Reservoir SOM gets a very low value under WS3 that might be because it is located 

immediately upstream of a few in-series hydropower reservoirs in Deerfield tributary. 

Figure 2.8. presents average active storage percent values for the USACE reservoirs. The 

USACE reservoirs average storage values are more desirable if they are lower. The WS5, 

the weighting scheme that most heavily weights minimizing USACE storage levels, has 

resulted in the least values (close to zero). It is evident that results associated with WS3 

(the WS that heavily weights hydropower revenue) have the least desirable values for this 

objective. Significant values are resulted under this WS for reservoirs COL, UNV, NHD, 

NSP, BMD, and TWN because they are immediately upstream of large hydropower 

reservoirs. The water is stored in the reservoirs under WS3 to be released later into 

hydropower facilities that themselves release significant water when the energy prices are 

higher. 

Figure 2.9. presents the average active storage percent values across the municipal 
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reservoirs for the WSs. The best results are associated with the WS6. For these reservoirs, 

it was required to introduce constraints that limit the maximum release from these 

reservoirs to be the maximum of their inflow and the minimum release requirements. 

These constraints will not allow the stored water in these reservoirs to be released for 

improving any objective. The stored water can be released for meeting minimum release 

requirements and/or municipal withdrawals. Introduction of the constraints facilitated 

avoiding infeasibilities during solving the program. QWD (Quabbin) reservoir turned out 

to be robust to the infeasibilities due to its very large size. 

2.8.  Conclusions 

Trade-off analysis of river basins requires methodologies that quantify objectives of the 

system and the interactions. In this regard, a multiobjective optimization methodology 

was presented that facilitates quantifying various objectives and was applied to the 

Connecticut River watershed as a case study. Results suggest the flow regime across the 

basin is highly altered since it is not possible to fully meet Ecological Objective even if 

any other objective is ignored. It was realized that the econodes on tributaries are less 

affected while the econodes on the mainstem and\or downstream of hydropower facilities 

are more severely affected. The system was found to be capable of controlling flood 

conditions with a high reliability if all the reservoirs contribute. Hydropower Revenue 

was found to be around $123M per year if other objectives are completely ignored. If the 

other objectives are assigned small weights equal to 0.08, the Hydropower Revenue 

would be around $113M per year. Much of the revenue is made by facilities on the 

mainstem and on the Deerfield tributary. The objective was found to be a highly 
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conflicting objective with any objective than with the Flood Control. An attempt to 

maximize the objective will significantly deteriorate any objective except for Flood 

Control. Results suggested a compromise as big as $4M in Hydropower Revenue would 

significantly improve Ecological and Storage Level Objectives and would slightly 

improve Flood Control. The location of hydropower reservoirs is found to be an 

important factor in affecting results associated with econodes, and flood checkpoints. 

Most Econodes or flood checkpoints immediately downstream of hydropower facilities 

are found to be significantly affected by the hydropower operations. Reservoirs 

immediately upstream of a hydropower facility were usually emptied because of the 

hydropower operations. 

A balanced weighting scheme that prioritize all the objectives equally showed 

performances close to the bests possible regarding any objective. This indicates there is a 

potential to benefit all the objective performances near to bests possible if the reservoirs 

are operated appropriately. It should be noted operation of hydropower reservoirs follows 

sub-daily variations of energy prices. The model developed in this study has a daily time-

step that may not fully represent the hydropower operations dynamics. Thus, a more 

detailed study might be needed to more accurately assess hydropower operations. 
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Figure 2.4. Reliability of meeting Environmental flows at Econodes for the 7 WSs 
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Figure 2.5. Reliability of controlling flood conditions across the 13 flood checkpoints for 

the 7 WSs 
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Figure 2.6. Average Revenue made per day (in $) for various power generation facilities 

for different WSs. (Hol_D refers to the Holyoke dam and HOL_C refers to the Holyoke 

Canal power plant facilities) 
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Figure 2.7. Average Active Storage Percent values for the Non-USACE reservoirs across 

the WSs 
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Figure 2.8. USACE reservoirs average active storage percent values across the 7 WSs 

 

 

 

Figure 2.9. Water Supply reservoirs average active storage percent for the 7 WSs 
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CHAPTER 3 

 

DEEP LEARNING AND OPTIMIZATION: COMPLEMENTARY TECHNIQUES 

FOR OPERATION POLICY OF MULTIPLE OBJECTIVE RESERVOIR 

SYSTEMS UNDER ENERGY MARKET AND HYDROLOGICAL 

UNCERTAINTIES 

3.1. Introduction 

Reservoir systems play an important role in developing human communities by providing 

drinking water, energy, flood control, recreational opportunities, and ecological services. 

Efficient management of the systems requires evaluation of different management 

alternatives using decision analytics. For this reason, optimization modeling and machine 

learning approaches can be applied to water resources systems planning and management 

problems. The literature on application of optimization methods to water resources 

systems planning is rich, including dynamic programming (Macian-Sorribes et al., 2016; 

Rougé & Tilmant, 2016), the Genetic Algorithms (Wang et al., 2015; Zatarain Salazar et 

al., 2016), and mathematical programming (Moy et al., 1986; Reis et al., 2005) while the 

application of machine learning approaches seems to be limited. 

Optimization approaches consider the large range of planning alternatives to come up 

with the best alternative (known as prescriptive analytics) (Song et al., 2013) while 

machine learning approaches address the bigness of past and present data for coming up 

with predictions of future (known as predictive analytics) (Bertsimas & Kallus, 2014). 

There are three primary subfields in machine learning: supervised learning (LeCun et al., 

2015), unsupervised learning (Barlow, 1989) and reinforcement learning (Sutton & 
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Barto, 2018) that are applicable to different problems. Supervised learning is applicable 

to a variety of classification and regression tasks to forecast a variable or label based on 

the past data. Unsupervised learning is applicable to clustering of similar data. 

Reinforcement learning approach is applied for optimization of sequential decision-

making problems using Markov decision process (Sutton & Barto, 2018). This approach 

has recently been applied to some reservoir systems to design operation policies and to 

develop the system objectives trade-offs (e.g. by Castelletti et al., 2013; Madani & 

Hooshyar, 2014). 

Optimization and machine learning techniques are highly related. Optimization 

techniques are used in machine learning algorithms to minimize prediction errors (L 

Bottou et al., 2018; Jain & Kar, 2017). Conversely, machine learning approaches can be 

used for some optimization problems, e.g., by learning the optimal policies in a 

reinforcement learning approach. Moreover, machine learning techniques might be able 

to interpret and learn what optimization methods do (Li & Malik, 2016) by mining the 

optimization results. Optimization and learning complement each other for making better 

decisions. These techniques, when used jointly, have the potential to be applied to a wide 

variety of water resources systems problems. Machine learning provides more accurate 

forecasts improving the performance of optimization methods when the systems are 

prone to uncertainty. In the context of hydrology and water resources systems, machine 

learning can focus on improving predictions of hydrological and energy market variables. 

On the other hand, optimization can focus on prescriptions of best policies given the 

system objective(s), constraints and the uncertainties. Machine learning models can 
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enable more accurate forecast of water demand, precipitation, temperature, streamflow, 

and energy prices by analyzing real-time or historic data. The predictions could then be 

fed as inputs to optimization models and algorithms to identify the system objectives 

trade-offs and recommendations of the optimal policy to meet conflicting objectives of 

water resource systems. 

Another approach applicable to operation of water resources systems, followed in this 

research, is to optimize the systems and train machine learning algorithms on the optimal 

state-decisions pairs to investigate if the optimal (or near-optimal) operation policies can 

be derived. In fact, the machine learning algorithm parameters are adjusted in a way that 

minimize the prediction accuracy of the optimal policy developed based on the 

optimization input-output pairs. This is a form of supervised learning since for the system 

states, the optimal release schedule is known while training the machine learning 

algorithms. An applicable machine learning technique is deep learning (DL) (LeCun et 

al., 2015; Schmidhuber, 2015), an extension of the artificial neural networks. DL 

discovers complicated non-linear structures in data using the backpropagation algorithm 

(Neftci et al., 2017) by optimizing the internal parameters that are used to compute the 

representation in each layer. In the past, finding patterns in data required careful 

engineering to extract features that transformed raw data into appropriate representations 

(LeCun et al., 2015). DL has removed the need for feature extraction since it automates 

the task of finding the patterns. A deep neural network (DNN) with enough number of 

hidden layers and neurons provides the capacity to capture the patterns and specially 

performs well in large data sets. As a result, it is expected that DL can find an 
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approximate relationship (operation policy) between the optimization input-output sets. 

Operation policy design of reservoir systems is challenging mainly because of presence 

of conflict between the objectives that are usually incommensurable (Castelletti et al., 

2013), and presence of multiple sources of uncertainties in water resources systems future 

conditions. Hydrological uncertainties (extreme precipitation, drought), and energy 

market dynamics both contribute to the uncertainties. To overcome these challenges, it is 

required to develop methodologies that 1) quantify the system objectives 2) identify the 

objectives trade-offs, and 3) prescribe an operation policy given a deeply uncertain 

future. Many optimization techniques have been used for this purpose while each method 

has its own difficulties and advantages usually in respect to applicability to a wide variety 

of problems, computational resources required, and optimality guarantee, (Labadie, 2004; 

Mason et al., 2018b; Yeh, 1985). Direct Policy Search (DPS) approach, also known as 

parameterization-simulation-optimization approach has been studied for water resources 

systems policy design. In this approach, the operation policy is characterized as a 

function of the system states while different functions can be used given the 

characteristics of the system under study (Giuliani et al., 2014). The function parameters 

are then optimized using optimization methods. One difficulty with this approach is the 

choice of appropriate policy function class since a bad choice could noticeably affect the 

optimality. As Giuliani et al. (2016) write “…when the complexity of the system 

increases, more flexible structures depending on a high number of parameters are 

required to avoid restricting the search for the optimal policy to a subspace of the 

decision space that does not include the optimal solution.”, highly flexible approximators 
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should be used to parameterize policy functions. Neural networks are nonlinear flexible 

approximators that can be used as the policy functions. They can relate system states to 

operation schedules using the parameters of the neural network. In this case, parameters’ 

values would be decision variables that are determined in a way that optimize the system 

objectives. Number of parameters in the neural network depends on number of layers and 

neurons used. Using more layers and neurons provide more flexibility but it adds to the 

computational attempts required to optimize the parameters. Multiple objective 

evolutionary algorithms (Hadka & Reed, 2015; Reed et al., 2013) have been linked to 

DPS to optimize the policy functions chosen (Giuliani et al., 2018, 2016; Quinn et al., 

2018). These algorithms solve for all the objectives at the same time and develop a subset 

of Pareto frontier after a specified number of iterations. Application of these algorithms 

has some difficulties: 1) they do not guarantee achieving optimal solution which is a 

characteristic of every nature-inspired optimization algorithm; 2) for a complex system 

with several objectives, the number of simulations needed increases considerably and as a 

result the algorithms would require significant computational efforts (Castelletti et al., 

2013); 3) algorithms parameters (the parameters used in the optimization algorithm) 

whose values affect the performance of the algorithms need to be carefully adjusted 

(Quinn et al., 2018); and 4) algorithm parallelization scheme implicated affects the 

robustness of the policies to the system’s uncertainties (Giuliani et al., 2018). Although 

multi-layered neural networks could be used as a nonlinear and flexible policy functions 

but optimization of the policy parameters with the evolutionary algorithms is 

computationally intractable. The difficulties of application of evolutionary algorithms 
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from one side, and the effect of choosing any policy function on the optimality, from 

another side, limit application of multiple objective evolutionary algorithms DPS. 

Aimed at overcoming the challenges, this study presents a novel methodology utilizing 

DL and optimization for developing operation policy of multiple objective reservoir 

systems under hydrological and energy market uncertainties. For the first time, this 

research investigates the application of DL for developing operation policies using the 

optimization results. The methodology is applied to the Wilder reservoir located on the 

mainstem Connecticut River considering hydropower revenue and ecological objectives. 

For the ecological objectives, formulations are developed that measure the frequency of 

meeting flows within the desirable bounds. A multiple objective optimization 

methodology is used that quantifies the system objectives and develops the system 

objectives trade-offs. Next, DL algorithms are trained on the state-decision pairs to 

develop an operation policy. Finally, the system is simulated using the designed policy 

under new set of historical hydrological and energy market variables and its performance 

regarding the objectives considered is compared to the best performances that could be 

achieved using optimization and perfect foresight of future variations. The performance 

of the methodology is compared with the performance of a baseline method. 

3.2. System Description 

The system studied incorporates the Wilder reservoir located on the mainstem of the 

Connecticut River (Figure 3.1), the largest river in New England. The river-basin covers 

parts of Maine, Vermont, Massachusetts, and Connecticut. The 400 river-mile long river 

originates from Canada and ultimately discharges into the Atlantic Ocean. There are 2700 
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dams constructed on the mainstem and tributaries, many of which are operated for 

hydropower. Most of these hydropower facilities were developed during New England’s 

industrial revolution (Clay et al., 2006; Martin & Apse, 2011).  

 

Figure 3.1. Wilder reservoir schematic located on the Connecticut River basin 

The hydropower operations have caused flow regime alterations across the basin since 

they store water to be released when energy prices are higher during a day. The 

alterations have implications for the riverine ecosystem health (Benejam et al., 2014; 

Jager & Smith, 2008; Kennedy et al., 2016; Pang et al., 2015; Sabo et al., 2017; 

Winemiller et al., 2016). The Wilder reservoir whose characteristics are depicted in Table 

3.1., is mainly operated for hydropower. An estimated refill time is calculated and 
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depicted in Table 3.1. The refill time for Wilder is 25 hours, indicating the reservoir is on 

average filled in 25 hours. This means Wilder is not able to change average flow values 

on a scale greater than approximately a day. But the capacity is large enough to affect 

sub-daily flow regime since the operations usually follow sub-daily energy market 

dynamics during a day to maximize the hydropower generation revenues.  

Table 3.1. Wilder reservoir key characteristics 

Reservoir  

(Abbreviation) 

Operation 

type 
Operator 

Average 

inflow 

(m3/s) 

(cfs) 

Active 

storage 

million m3 

(acre-foot) 

Estimated 

refill time 

(hr) 

Power 

capacity 

(MW) 

Wilder 

(WLD) 
Peaking TransCanada 

181 

(11,010) 

16.5 

(13,350) 
25 35.6 

 

Figure 3.2. illustrates the real-time energy prices along with the Wilder reservoir outflows 

and inflows for the first week of January 2003. It is evident in the Figure 3.2.a, there are 

usually two peaks within a day. The observed inflows and flows read from USGS gage 

01144500) are illustrated in Figure 3.2.b. It is evident that the flow values downstream of 

the reservoir follow sub-daily energy price variations and usually peak twice during a 

day. One can conclude Wilder operators schedule releases to generate as much revenue as 

possible. Comparison of the reservoir approximate outflows (read from the USGS gage) 

and inflows indicates how the flow regime is altered. This kind of operation, called 

hydropeaking, conflicts with meeting the ecological objectives of the downstream of the 

reservoir (Anderson et al., 2014; Ding et al., 2018; Fanaian et al., 2015; Feng et al., 2018; 

W. Zhang et al., 2016) since many watershed communities rely on the flow regime 

characteristics like magnitude, timing and rate of change to survive and thrive 
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(Arthington et al., 2009; Davies et al., 2014; R. Li et al., 2015; Tonkin et al., 2018). 

 

Figure 3.2. Real-time energy prices for western-central mass area, b) Wilder (WLD) 

approximate outflows and observed inflows for the horizon 01/01/2003 to 01/08/2003 

The data collected for the system include the reservoir inflows, the flows that would have 

occurred if there was no regulation in the basin (called natural flows in this study), energy 

prices, turbine and generator characteristics, minimum and maximum storage levels, and 

release requirements. The natural flow data are calculated using the Connecticut River 

Unimpacted Streamflow Estimation (CRUISE) tool, developed by the United States 

Geological Survey (USGS) (Archfield et al., 2012a). Since the CRUISE outputs are daily, 

they are disaggregated into an hourly time-scale required for this research. Observed 

hourly flows at the USGS gage upstream of the reservoir (gage 01138500) are used as the 
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Wilder reservoir inflows. Other required data are extracted from the reservoir documents. 

Hourly real-time energy prices are obtained from the Independent System Operator New 

England (ISO-NE) website. Since the energy prices are available from year 2003, while 

the CRUISE data are available up to year 2011, the modeling horizon in this study is 

limited to 2003-2011.  

3.3. Methodology 

3.3.1. Overview 

The methodology developed has four steps as indicated in Figure 3.3. The first step 

optimizes release schedules given the objectives considered and identify the objective 

trade-offs. The second step focuses on training DNN on the optimized state-release pairs 

trying to find the best policy that relates the system states to the release decisions made. 

The third step focuses on simulation of the reservoir operations based on the prescriptions 

of the operation policy derived in the second step for a test-set of system states that is not 

used in the training process. The last step focuses on developing the objectives trade-offs 

resultant of the simulated operations and comparing them with the trade-offs of the 

optimization method. This last step indicates how well the operation policy designed  

 

Figure 3.3. The steps in the methodology presented for operation policy design 

Optimize release  
schedules using 
an optimization 

method

Train DL on 
the optimized 
state-release 

pairs to 
develop a 

policy

Using the 
policy, 

prescribe the 
release 

schedules for a 
test-set of 

system states

Using the 
prescriptions, 
calculate the 

objectives 
performance
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performs in respect to any objective considered compared to the best performance that 

could be achieved using an optimization method. 

The trade-off developed using the optimization outputs indicate a subset of Pareto 

frontier that serves as a comparison basis since those non-dominated solutions are 

optimized using the perfect foresight. In the following sections, it is explained how the 

optimization model and the DNN are developed and applied to the case study. 

3.3.2. Operation Schedules Optimization 

A mathematical (mixed-binary) programming model is developed to optimize operation 

schedules. Using mathematical programming solvers has a considerable advantage 

compared to other optimization techniques; they can find the optimal solution (or make 

sure the solution found is within a specified bound of the optimal solution) in a relatively 

short time no matter how many decision variables exist. In this study, a multiple objective 

optimization methodology is developed to identify the trade-offs between objectives 

modeled by using a mixed-binary programming model executed under different objective 

weights. Maximum possible objective values (MPOVs) are calculated to be used for 

normalizing the objective values by dividing them by their MPOVs. Doing so, the 

objective values are maximized compared to their MPOVs under different weightings. To 

calculate the MPOVs, the objective function of the mathematical programming model is 

formulated as follows in (3.1). 

𝑀𝑎𝑥 𝑍𝑜 = ∑ 𝑤0,𝑖 ×  𝑂𝑏𝑗𝑖

𝑁

𝑖 = 1

(3.1) 



 

75 

 

where 𝑍𝑜 is the initial objective function used for calculating the MPOVs; 𝑁 is the number 

of objectives modeled; 𝑤0,𝑖 is the weight allocated to the objective i; 𝑂𝑏𝑗𝑖  is the value of 

the objective i. To calculate the MPOVs, the 𝑤𝑖  value specific to 𝑂𝑏𝑗𝑖  is assigned to 1, 

while the other weight corresponding to the other objectives takes values of 0. Each time 

the program is executed, 𝑍𝑜 returns the MPOV associated with an objective. After 

calculating the MPOVs, the values are used in the new formulation of the program 

objective function as follows in equation (3.2). The model is run with new weight values 

to identify the objectives trade-offs. 

𝑀𝑎𝑥 𝑍 = ∑ 𝑤𝑖 ×  
𝑂𝑏𝑗𝑖

𝑀𝑃𝑂𝑉𝑖

𝑁

𝑖 = 1

(3.2) 

where 𝑍 denotes the objective function of the program; 𝑤𝑖  is the weight value associated 

with 𝑂𝑏𝑗𝑖. 𝑀𝑃𝑂𝑉𝑖 is the maximum possible objective value calculated for objective 𝑖. It 

should be noted the weight values used here are different to those weights used earlier in 

equation (3.1). The weight values here can vary from values close to 0 to values close to 1 

for one objective while at the same time the other objective weight values vary from values 

close to 1 to values close to 0. Assigning the weights this way facilitates development of 

the objectives trade-offs. 

The objectives considered for Wilder reservoir include ecological and hydropower revenue 

objectives. Ecological objective is modeled as the frequency of meeting ecological flow 

requirements as recommended by Richter et al., 2003. To model this objective, the range 

of desired flows for the communities downstream of the reservoir are developed after 
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consultation of biologists and ecologists in the Connecticut River basin (Steinschneider et 

al., 2014). The levels of flow alteration that have negligible effects on different species 

were determined at stakeholder meetings held by The Nature Conservancy (Steinschneider 

et al., 2014). The narrowest bound associated with the least flexible species at the econode 

(en) downstream of the reservoir is chosen as the desirable bound. In this regard, 

constraints (3.3) and (3.4), and equation (3.5) are quantify the ecological objective as the 

frequency of meeting flows in desirable bounds as follows:  

𝐹𝑒𝑛,𝑡 < 𝑁𝑒𝑛,𝑡(1 + 𝐻𝑒𝑛,𝑡) + (1 − 𝐸𝑍𝑒𝑛,𝑡) × 𝐵𝑒𝑐𝑜 , ∀ 𝑡 = 1, . . . , 𝑇 (3.3) 

𝐹𝑒𝑛,𝑡 > 𝑁𝑒𝑛,𝑡(1 + 𝐿𝑒𝑛,𝑡) − (1 − 𝐸𝑍𝑒𝑛,𝑡) × 𝐵𝑒𝑐𝑜 , ∀ 𝑡 = 1, . . . , 𝑇 (3.4) 

 𝐸𝑐𝑜𝑂𝑏𝑗 = 100. ∑
𝐸𝑍𝑒𝑛,𝑡

𝑇

𝑇

𝑡=1

(3.5) 

where 𝐹𝑒𝑛,𝑡 is the modeled flow value at the econode 𝑒𝑛 during the time t; 𝑁𝑒𝑛,𝑡 is the 

estimation of natural flow at the econode 𝑒𝑛 in time t; 𝐻𝑒𝑛,𝑡, 𝐿𝑒𝑛,𝑡 are fractions of natural 

flows that respectively refer to the upper and lower boundaries (these two parameters 

jointly form a flow bound beyond which the species are negatively affected); 𝐵𝑒𝑐𝑜 is a 

large value utilized to provide an extended flow bound when desirable bounds are 

deviated; 𝐸𝑍𝑒𝑛,𝑡 is a zero-one binary variable for the econode 𝑒𝑛 and time 𝑡; and 𝑇 is the 

number of time steps. If the variable 𝐸𝑍𝑒𝑛,𝑡 takes value 1, Constraints (3.3) and (3.4) 

would ensure that the flow passed through the econode during the time-step 𝑡 falls in the 

desirable bounds identified by 𝐻𝑒𝑛,𝑡 , 𝐿𝑒𝑛,𝑡. If the variable 𝐸𝑍𝑒𝑛,𝑡 takes a value of 0, the 

flows can deviate the desirable bounds since there would be an extended bound by 𝐵𝑒𝑐𝑜 
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units from the two sides. Equation (3.5) quantifies the Ecological Objective in percent 

that returns the reliability of flows falling in the desirable flow bound.  

The revenue generated at Wilder facility is considered as another objective to be 

maximized. In theory, power generated has a nonlinear relation with water head over 

turbine and the flow rate passed through turbine. Since Wilder reservoir water head 

variations are negligible, it is assumed the head is constant making the power generated a 

linear function of the volume of water released in each time-step. The revenue made at 

each time step is the product of power made and the real-time energy price during the 

time-step. The total revenue of the facility over the analysis horizon is maximized 

applying (3.6) and (3.7) as follows.  

𝐻𝑦𝑑𝑟𝑜𝑂𝑏𝑗 =  8760 × ∑
𝑃𝑡 × 𝐸𝑃𝑡

𝑇

𝑇

𝑡=1

(3.6) 

𝑃𝑡 = 𝑃𝑅𝑡 × 𝑃𝐶𝑡 , ∀ 𝑡 = 1, . . . , 𝑇 (3.7) 

where 𝑃𝑡 is the power generated during time-step 𝑡; 𝐸𝑃𝑡 is the real-time energy price at 

the time-step 𝑡; 𝑃𝑅 𝑡 is the water amount released during the time-step 𝑡; 𝑃𝐶 𝑡 is the 

coefficient converting water amount released through turbines to the power generated 

during the time-step 𝑡; and 𝐻𝑦𝑑𝑟𝑜𝑂𝑏𝑗 denotes the average hydropower revenue made per 

year. It should be noted that the maximum release passed through the Wilder turbines is 

limited which itself limits the revenue made at the facility. A release value beyond the 

turbine capacity, would be spilled and would not contribute to the revenue made. 

3.3.3. Developing Operation Policy 
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Before describing the design of the operation policy in this section, it should be noted the 

optimization solver schedules sequential releases to optimize the objective function based 

on various current and future system states plugged into the model. This means the 

optimization solver assigns release values using the perfect foresight of future hydrologic 

and energy market variables. That’s how the task would have ideally been accomplished 

in a real-world water resources system as well if there existed a perfect foresight when 

deciding release schedules. This is usually not the case and uncertainties make the 

decision-making challenging and different to what an optimization method does. Thus, 

based on the information that reservoir operators might have access to when deciding 

release schedules, DNN are developed and trained to relate release schedules to current 

(or current and forecasted) system states including the inflow, storage and energy prices. 

The optimized release series along with the system states series including energy prices, 

storage values, and inflows are used in the training. This is a form of supervised learning 

in which for every time-step there is a correct release schedule based on the energy price, 

storage, and the inflow values. The goal is to develop an operation policy that relate 

release schedule to the system states by analyzing the system states and the optimal 

release schedules that are output of the optimization model. This is done by optimizing 

the parameters of a DNN. After training the network, there would be an operation policy 

whose performance could be evaluated by comparing to that of the optimization method 

using a new set of system states. The state series are divided into three sets: training set, 

validation set, and the test set with division fractions respectively equal to 64%, 16%, and 

20% of the entire series while the original sequence in the series is maintained. The 
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training set is used for training the network parameters while the validation set is used 

during training to identify if the network is over-trained and finally the test set is used 

after training is completed to evaluate the operation policy developed performance. The 

series values need to be scaled before starting the training process. Thus, they are 

subtracted by their mean and are divided by their standard deviation. This preprocessing 

makes the training process less computationally intense. 

A DNN with 5 sequential hidden layers is constructed in which there is a connection 

from any neuron in any hidden layer to any neuron in the next layer (fully connected 

network). Rectified linear unit (Relu) activation function (Dahl et al., 2013; Hara et al., 

2015) is used in the neuron units. Different loss functions could be used during the 

training including mean absolute error or mean absolute squared error. Different 

optimizers could be used for training the network including ADAM (Kingma & Ba, 

2014) and stochastic gradient descent (Bottou, 2010) among others. While there is no 

established rule for constructing the network architecture, usually the initial hidden layers 

in the network have more neurons while the sequent hidden layers have relatively less 

neurons. For this study, the number of neurons in the first layer equals the number of 

system states used and the last layer has just one neuron since there is one correct release 

schedule for the system states. The training process is repeated several times (each 

repetition is called an epoch) to improve the loss function. Monitoring the validation-set 

loss function during the training for various epochs determines whether the network is 

over-fitted.  
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3.3.3.1 Development of a baseline method 

In order to compare the performance of the methodology developed, it is required to 

develop a simple baseline method and apply it to the problem. The results associated with 

this baseline methods are compared with the performance of the neural networks 

developed. In this study, a linear regression-based method has been used to develop a 

relationship between release, storage and energy prices values. The relationship has been 

used as an operation policy of the Wilder reservoir that determines optimized release 

value during each time-step based on storage, inflow, and energy prices value. The 

relationship is given in 3.8. 𝛼, 𝛽, 𝛾, and 𝛿 are regression coefficients. 

𝑅𝑡 = 𝛼 ∗ 𝑆𝑡 +  𝛽 ∗ 𝐸𝑃𝑡 + 𝛾 ∗  𝐼𝑡 +  𝛿  , ∀ 𝑡 = 1, . . . , 𝑇 (3.8) 

The relationship developed is used to simulate operations for the same duration used to 

simulate operation of other foresight scenarios. Finally, the objective performances are 

calculated. 

3.4. Results and Analysis 

In the first step, a mathematical programming model was developed in GUROBI 

(GUROBI Optimization Inc, 2018) solver environment. There exist 551,883 continuous 

and 78,840 integer (zero-one) variables and 630,723 constraints for the entire horizon. 

Run times vary from 1 hour to several hours based on the weighting scheme used. For the 

two objectives modeled the MPOVs are calculated as 86% and 13.542 million $/year for 

the ecological and hydropower revenue objectives, respectively. These values are 

associated with cases in which one objective takes a weight equal to one while the other 
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objective takes a weight value equal to zero. It is concluded that even if the hydropower 

revenue objective is ignored, it is not possible to fully meet ecological flow requirements. 

This is mainly due to minimum/maximum release requirements of the reservoir that 

conflict with providing flows in ecologically desirable bounds. 9 runs are made with the 

objective weights depicted in Table 3.2. Weights vary from 0.1 to 0.9 for both objectives 

while the run 5 assigns equal weights to the objectives (called a balanced run in this 

research). 

In the second step, the optimization modeling results for the executions under different 

weighting schemes depicted in Table 3.2, along with the associated system states are used 

for developing an operation policy. To determine on how foresight of future variables 

impacts the operation policy designed performance, the algorithm is executed for two 

additional cases. In these cases, it is assumed there is a perfect foresight of energy prices 

and reservoir inflows for the next 12 and 24 hours at every hour. This is not realistic 

when operating the reservoir since accurate forecast of the variables is not possible but 

provides insight on the value of having perfect foresight. Forecast of the energy prices 

and inflows would be additional system states in the DNN. In other words, the algorithm 

developed would take those additional system states as inputs and prescribe a release 

value. It is expected that the performance of the operation policy developed associated 

with these two cases will be superior compared to the performance of original case. 

Table 3.2. The weight values used for the objectives modeled in each run 

RUN Ecological 
Hydropower 

Revenue 
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1 0.1 0.9 

2 0.2 0.8 

3 0.3 0.7 

4 0.4 0.6 

5 0.5 0.5 

6 0.6 0.4 

7 0.7 0.3 

8 0.8 0.2 

9 0.9 0.1 

 

A DNN is developed and executed in Keras (Chollet, 2015) environment under a wide 

variety of the network hyperparameters (parameters whose value is set before the 

learning process begins including the number of hidden layers, number of neurons in 

each layer, the optimizer used, loss function etc.) to find the parameters that result in the 

best performance. After trying different combinations of number of hidden layers and 

neurons, it was found the algorithm performs well in a reasonable time with 5 hidden 

layers and with respectively 2048, 2048, 1024, 512, and 512 neurons in the layers. Fewer 

layers resulted in an inferior performance. Adding more hidden layers or neurons did not 

necessarily improve the performance while it made the algorithm more computationally 

intense. The activation function RELU resulted in a better performance compared to 

other activation functions, sigmoid (Basterretxea et al., 2004) and tanh (Kalman & 

Kwasny, 1992). Optimizers stochastic gradient descent and rmsprop (Chollet, 2015) 

proved to be faster than other optimizers tried. The loss function, mean absolute error, 
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was chosen because it performed better than the other loss function tried, mean absolute 

squared error.  

The algorithm is executed for 35 epochs and each epoch improves the loss function 

compared to that of the previous epoch. Since there is a chance that the network overfits,  

 

Figure 3.4. The mean absolute error variations for the training and validation set across 

the epochs for the balanced run of the case with no foresight 



 

84 

 

 

Figure 3.5. The mean absolute error variations for the training and validation set across 

the epochs for the balanced run of the case with 12 hour foresight 

 

Figure 3.6. The mean absolute error variations for the training and validation set across 

the epochs for the balanced run of the case with 24 hour foresight 

the loss function variations are investigated for the training and validation sets across the 
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epochs. Figures 3.4, 3.5, and 3.6 show the loss function variations (mean absolute error) 

for the balanced run and for the training and validation sets of the three cases studied. In 

all the three figures, it is observed that there is a steep reduction in the error during the 

initial epochs. In figure 3.4 it is evident that after a few initial epochs, the training set 

error is declined slowly while the validation set error fluctuates across the epochs and 

does not indicate an increasing trend. The variations in Figure 3.5 are comparable to the 

variations in Figure 3.4 except for that it seems in Figure 3.5. the algorithm is starting to 

overfit after 34 epochs since the trend in the training set is decreasing but a slight 

increasing trend is observed in the validation set. An overfitting is apparent in Figure 3.6 

after 21 epochs since this point forward the training set error is constantly decreasing but 

the validation set error is slightly increasing indicating that there is no extra gain for 

repeating the training process after around 20 epochs. Once the algorithm is trained, an 

operation policy is developed for each case that can be used to prescribe the release 

decisions. In the third step, the operation policy developed for each foresight scenario is 

used to prescribe the release schedules for a test-set that the algorithm did not have access 

to during the training process. Finally, in the last step, the release prescriptions for the 

test-set are used to calculate the ecological and hydropower revenue objective values.  

The associated results for each foresight scenario and for each weighting scheme along 

with the optimized objective values associated with the optimization model are depicted 

in Tables 3.3 and 3.4 and are illustrated Figure 3.7. 
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Table 3.3. Ecological objective values for different foresight scenarios and runs (in 

percent) 

Run Optimized 
No 

foresight 

12-hour 

foresight 

24-hour 

foresight 
Regression 

1 13.6 6.7 23.2 27.1 6.0 

2 23.0 8.7 25.5 28.4 8.1 

3 30.3 11.8 27.8 32.5 10.8 

4 36.9 14.5 29.5 34.1 12.8 

5 42.2 18.3 30.8 35.2 13.4 

6 46.1 20.3 31.9 35.9 13.8 

7 49.6 21.8 32.7 36.4 14.0 

8 52.7 23.4 33.6 37.0 15.7 

9 55.2 24.0 34.4 38.5 18.1 

 

Table 3.4. Hydropower revenue objective values for different foresight scenarios and 

runs (in million dollars per year)  

Run Optimized 
No 

foresight 

12-hour 

foresight 

24-hour 

foresight 
Regression 

1 10.90 8.55 9.73 10.08 9.57 

2 10.38 9.26 9.59 9.87 9.37 

3 10.28 9.58 9.51 9.92 9.42 

4 9.96 9.09 9.66 9.53 9.05 

5 9.92 9.47 9.59 9.81 9.31 

6 9.89 9.28 9.62 9.85 9.35 

7 9.77 9.43 9.53 9.74 9.25 

8 9.62 9.28 9.44 9.53 9.05 

9 9.55 9.44 9.66 9.76 9.26 
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Figure 3.7. The objective values associated with different cases of foresight and for the 

different objective weight values along with the Pareto frontier 

The results illustrated in Figure 3.7 are labeled with the run number depicted in Table 3.2. 

The solid line indicates the results associated with the optimization modeling, the Pareto 

frontier. The frontier provides a basis for comparing the performance of the operation 

policies designed since it indicated the best possible solutions. There are 9 points 

illustrated in the figure for each operation policy that determine the performance of the 

policies associated with No foresight, 12-hour foresight, and 24-hour foresight scenarios 

in respect to the Hydropower revenue and Ecological objectives. It is evident that none of 
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the foresight scenarios has performed as well as the optimized schedules which is 

because the optimization modeling benefits from perfect foresight when deciding release 

schedules. One can observe that the 24-hour foresight scenario generally performs better 

than the 12-hour foresight scenario and the 12-hour foresight scenario does better than 

the No-foresight scenario. Moving from run 1 to run 9, the Ecological Objective 

increases continuously for all the foresight scenarios, but the Hydropower revenue does 

not change regularly. 

While the results for each run can be analyzed from the Figure 3.7, the results associated 

with run 5 (balanced run) are analyzed in the following. For this run, Ecological and 

Hydropower revenue objective values for the optimization modeling are respectively 

42.2% and 9.92 million dollars while the values for the No-foresight scenario are 

respectively 18.3% and 9.47 million dollars indicating this policy performs well 

regarding the Hydropower revenue but this comes at a cost for the Ecological objective 

equal to 23.9% absolute reduction. The results for the 12-hour foresight scenario are 

respectively 30.8% and 9.59 million dollars. Comparing this performance to that of the 

operation policy of the No-foresight case indicates a significant increase equal to 12.5% 

absolute increase in the Ecological objective while the gain for the Hydropower revenue 

is slight. The values for the 24-hour foresight scenario are 35.2% and 9.81 million dollars 

indicating an improvement in the Ecological objective equal to 16.9% compared to the 

No-foresight scenario and a slight improvement for the Hydropower revenue. It is evident 

that the results associated with the regression method are mostly inferior compared to the 

no-foresight scenario results. This indicated the benefit in using the more sophisticated 
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method presented in this study. 

3.5. Conclusions 

A methodology was presented for operation policy design of a reservoir systems and was 

with conflicting objectives and under multiple sources of uncertainty. The methodology 

uses optimization and deep learning techniques to develop an operation policy. The 

application was investigated to the Wilder reservoir located on the mainstem Connecticut 

River considering Ecological and Hydropower revenue objectives under hydrological and 

energy market uncertainties. Operation policies were developed for different foresight 

scenarios; No-foresight scenario in addition to two scenarios in which it is assumed there 

is foresight for 12 and 24 hours. A baseline method was also applied to the problem to be 

used as a comparison basis. 

DNNs were trained on the optimal state-decision pairs to develop an operation policy. 

Based on monitoring the training set and validation set loss function values, it was 

realized the network associated with the No-foresight scenario did not overfit after 35 

epochs while the network associated with the 12-hour and 24-hour foresight scenarios 

started to overfit respectively after 35 and 21 epochs. Thus, it seems the more foresight, 

the sooner the network starts overfitting. The performance of the policies designed were 

investigated by simulating the operations for a test-set of data in respect to the two 

objectives considered. The operation policies designed associated with some foresight 

indicated overall improvements in the performance of the system. The policies associated 

with the 12-hour and 24-hour foresight resulted in 12.5% and 16.9% absolute increase in 

the Ecological objective while they both slightly improved the Hydropower revenue 
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objective. All the scenarios modeled using neural network performed better than the 

baseline method which show the value in using the presented methodology. 

The difficulties of the research followed in this chapter include 1) presence of multiple 

sources of uncertainty (energy prices and hydrological uncertainties) 2) designing the 

policies at an hourly time step which is considered fine and adds to the computational 

difficulties, and 3) presence of conflicting objectives that makes the analysis more 

complex. However, the methodology presented seems to be promising and should be 

investigated for other water systems around the globe to further prove its applicability. 

Future research might focus on application of the methodology to other systems 

considering case-specific objectives.
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CONCLUSION 

The need for new methodologies and approaches in optimal policy design and operation 

of water resources systems is apparent. Using optimization and deep learning techniques, 

this dissertation presented novel analysis and methodologies for dealing with some of the 

challenges in water resources systems management. The first chapter presented a 

mathematical programming model to assess operations of five large hydropower plants 

located on the Connecticut River mainstem undertaking relicensing. Models 

representative of alternative operation scenarios were developed to analyze the economic 

and flow regime outcomes associated with different operation scenarios. Future research 

directions in this regard include better consideration of turbine efficiency in the 

hydropower equations and more accurate consideration of flow routing between 

reservoirs. In this study, turbine efficiency was assumed to be fixed but in reality, it is a 

factor of flow passed through turbines. Moreover, it is assumed the flow released from a 

reservoir reaches the downstream reservoir in the same time step while this may not be 

the case as it might take a while for the flow to reach the downstream reservoir. The 

second chapter focused on development of a new multiple objective optimization 

methodology and new formulations for quantification of objectives and identification of 

conflicting objectives trade-offs. The methodology was applied to the Connecticut River 

basin considering 54 of the largest reservoirs and different ecological nodes and flood 

checkpoints. Future research directions associated with this chapter include more 

accurate consideration of flow routing between reservoirs and development of a model 

with a sub-daily time scale because hydropower reservoirs should be modeled on a sub-
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daily scale although this considerably increase computational resources required. The 

third chapter focused on designing operation policy of a reservoir system using deep 

learning and optimization under multiple sources of uncertainty and with conflicting 

objectives. The methodology was applied to the Wilder reservoir located on the 

Connecticut River mainstem considering ecological and hydropower revenue objectives. 

It is hoped that outcomes of this research contribute to making the communities around 

the world better equipped with the tools required when designing and analyzing water 

resources systems. The methodology applied to the Wilder reservoir indicated promising 

results, but this should be studied for other reservoirs with different objectives. Thus, 

future research directions associated with this chapter include application of the 

methodology to other reservoirs around the globe to investigate the performance of the 

methodology presented. 
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