634 research outputs found

    Optimizing Weights And Biases in MLP Using Whale Optimization Algorithm

    Get PDF
    Artificial Neural Networks are intelligent and non-parametric mathematical models inspired by the human nervous system. They have been widely studied and applied for classification, pattern recognition and forecasting problems. The main challenge of training an Artificial Neural network is its learning process, the nonlinear nature and the unknown best set of main controlling parameters (weights and biases). When the Artificial Neural Networks are trained using the conventional training algorithm, they get caught in the local optima stagnation and slow convergence speed; this makes the stochastic optimization algorithm a definitive alternative to alleviate the drawbacks. This thesis proposes an algorithm based on the recently proposed Whale Optimization Algorithm(WOA). The algorithm has proven to solve a wide range of optimization problems and outperform existing algorithms. The successful implementation of this algorithm motivated our attempts to benchmark its performance in training feed-forward neural networks. We have taken a set of 20 datasets with different difficulty levels and tested the proposed WOA-MLP based trainer. Further, the results are verified by comparing WOA-MLP with the back propagation algorithms and six evolutionary techniques. The results have proved that the proposed trainer can outperform the current algorithms on the majority of datasets in terms of local optima avoidance and convergence speed

    Glowworm swarm optimisation for training multi-layer perceptrons

    Get PDF

    Advancements in Multi-Layer Perceptron Training to Improve Classification Accuracy

    Get PDF
    Neural Networks are the popular classification tools used in Medical diagnosis for early disease detection. The performance of Neural Networks is highly depended on the training process. In the training process, the individual weights between each of the neuron are adjusted for better classification results. Many Gradient-based and Meta-heuristic training algorithms are proposed and used by the researchers to improve the training performance of Neural Network. However, there are some limitations in both Gradient-based and Meta-heuristic algorithms when there are used individually. To overcome these limitations and to improve the Multi-Layer Perceptron Network performance Hybrid algorithms are useful. In this study, a review on advancements in Multi-Layer Perceptron Network training process for the improvement of classification performance is presented

    Optimising Multilayer Perceptron weights and biases through a Cellular Genetic Algorithm for medical data classification

    Get PDF
    In recent years, technology in medicine has shown a significant advance due to artificial intelligence becoming a framework to make accurate medical diagnoses. Models like Multilayer Perceptrons (MLPs) can detect implicit patterns in data, allowing identifying patients conditions that cannot be seen easily. MLPs consist of biased neurons arranged in layers, connected by weighted connections. Their effectiveness depends on finding the optimal weights and biases that reduce the classification error, which is usually done by using the Back Propagation algorithm (BP). But BP has several disadvantages that could provoke the MLP not to learn. Metaheuristics are alternatives to BP that reach high-quality solutions without using many computational resources. In this work, the Cellular Genetic Algorithm (CGA) with a specially designed crossover operator called Damped Crossover (DX), is proposed to optimise weights and biases of the MLP to classify medical data. When compared against state-of-the-art algorithms, the CGA configured with DX obtained the minimal Mean Square Error value in three out of the five considered medical datasets and was the quickest algorithm with four datasets, showing a better balance between time consumed and optimisation performance. Additionally, it is competitive in enhancing classification quality, reaching the best accuracy with two datasets and the second-best accuracy with two of the remaining.Fil: Rojas, Matias Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Información y las Comunicaciones; ArgentinaFil: Olivera, Ana Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Información y las Comunicaciones; Argentina. Universidad Nacional de Cuyo. Facultad de Ingeniería; ArgentinaFil: Vidal, Pablo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Información y las Comunicaciones; Argentina. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentin

    Automated damage diagnosis of concrete jack arch beam using optimized deep stacked autoencoders and multi-sensor fusion

    Get PDF
    A novel hybrid framework of optimized deep learning models combined with multi-sensor fusion is developed for condition diagnosis of concrete arch beam. The vibration responses of structure are first processed by principal component analysis for dimensionality reduction and noise elimination. Then, the deep network based on stacked autoencoders (SAE) is established at each sensor for initial condition diagnosis, where extracted principal components and corresponding condition categories are inputs and output, respectively. To enhance diagnostic accuracy of proposed deep SAE, an enhanced whale optimization algorithm is proposed to optimize network meta-parameters. Eventually, Dempster-Shafer fusion algorithm is employed to combine initial diagnosis results from each sensor to make a final diagnosis. A miniature structural component of Sydney Harbour Bridge with artificial multiple progressive damages is tested in laboratory. The results demonstrate that the proposed method can detect structural damage accurately, even under the condition of limited sensors and high levels of uncertainties

    An optimized deep learning method for software defect prediction using Whale Optimization Algorithm

    Get PDF
    The goal of this study is to predict a software error using Long Short-Term Memory (LSTM). The suggested system is an LSTM taught using the Whale Optimization Algorithm to save training time while improving deep learning model efficacy and detection rate. MATLAB 2022a was used to develop the enhanced LSTM model. The study relied on 19 open-source software defect databases. These faulty datasets were obtained from the tera-PROMISE data collection. However, in order to evaluate the model performance to other traditional approaches, the scope of this study is limited to five (5) of the most highly ranked benchmark datasets (DO1, DO2, DO3, DO4, and DO5). The experimental results reveal that the quality of the training and testing data has a significant impact on fault prediction accuracy. As a result, when we look at the DO1 to DO5 datasets, we can see that prediction accuracy is significantly dependent on training and testing data. Furthermore, for DO2 datasets, the three deep learning algorithms tested in this study had the highest accuracy. The proposed method, however, outperformed Li’s and Nevendra’s two classical Convolutional Neural Network algorithms which attained accuracy of 0.922 and 0.942 on the DO2 software defect data, respectively

    Adaptive Learning Based Whale Optimization and Convolutional Neural Network Algorithm for Distributed Denial of Service Attack Detection in Software Defined Network Environment

    Get PDF
    SDNs (Software Defined Networks) have emerged as a game-changing network concept. It can fulfill the ever-increasing needs of future networks and is increasingly being employed in data centres and operator networks. It does, however, confront certain fundamental security concerns, such as DDoS (Distributed Denial of Service) assaults. To address the aforementioned concerns, the ALWO+CNN method, which combines ALWOs (Adaptive Learning based Whale Optimizations) with CNNs (Convolution Neural Networks), is suggested in this paper. Initially, preprocessing is performed using the KMC (K-Means Clustering) algorithm, which is used to significantly reduce noise data. The preprocessed data is then used in the feature selection process, which is carried out by ALWOs. Its purpose is to pick out important and superfluous characteristics from the dataset. It enhances DDoS classification accuracy by using the best algorithms.  The selected characteristics are then used in the classification step, where CNNs are used to identify and categorize DDoS assaults efficiently. Finally, the ALWO+CNN algorithm is used to leverage the rate and asymmetry properties of the flows in order to detect suspicious flows specified by the detection trigger mechanism. The controller will next take the necessary steps to defend against DDoS assaults. The ALWO+CNN algorithm greatly improves detection accuracy and efficiency, as well as preventing DDoS assaults on SDNs. Based on the experimental results, it was determined that the suggested ALWO+CNN method outperforms current algorithms in terms of better accuracies, precisions, recalls, f-measures, and computational complexities

    Website Phishing Technique Classification Detection with HSSJAYA Based MLP Training

    Get PDF
    Website phishing technique is the process of stealing personal information (ID number, social media account information, credit card information etc.) of target users through fake websites that are similar to reality by users who do not have good intentions. There are multiple methods in detecting website phishing technique and one of them is multilayer perceptron (MLP), a type of artificial neural networks. The MLP occurs with at least three layers, the input, at least one hidden layer and the output. Data on the network must be trained by passing over neurons. There are multiple techniques in training the network, one of which is training with metaheuristic algorithms. Metaheuristic algorithms that aim to develop more effective hybrid algorithms by combining the good and successful aspects of more than one algorithm are algorithms inspired by nature. In this study, MLP was trained with Hybrid Salp Swarm Jaya (HSSJAYA) and used to determine whether websites are suspicious, phishing or legal. In order to compare the success of MLP trained with hybrid algorithm, Salp Swarm Algorithm (SSA) and Jaya (JAYA) were compared with MLPs trained with Cuckoo Algorithm (CS), Genetic Algorithm (GA) and Firefly Algorithm (FFA). As a result of the experimental and statistical analysis, it was determined that the MLP trained with HSSJAYA was successful in detecting the website phishing technique according to the results of other algorithms
    corecore