4,670 research outputs found

    BCI-Based Navigation in Virtual and Real Environments

    Get PDF
    A Brain-Computer Interface (BCI) is a system that enables people to control an external device with their brain activity, without the need of any muscular activity. Researchers in the BCI field aim to develop applications to improve the quality of life of severely disabled patients, for whom a BCI can be a useful channel for interaction with their environment. Some of these systems are intended to control a mobile device (e. g. a wheelchair). Virtual Reality is a powerful tool that can provide the subjects with an opportunity to train and to test different applications in a safe environment. This technical review will focus on systems aimed at navigation, both in virtual and real environments.This work was partially supported by the Innovation, Science and Enterprise Council of the Junta de Andalucía (Spain), project P07-TIC-03310, the Spanish Ministry of Science and Innovation, project TEC 2011-26395 and by the European fund ERDF

    Review of real brain-controlled wheelchairs

    Get PDF
    This paper presents a review of the state of the art regarding wheelchairs driven by a brain-computer interface (BCI). Using a brain-controlled wheelchair (BCW), disabled users could handle a wheelchair through their brain activity, granting autonomy to move through an experimental environment. A classification is established, based on the characteristics of the BCW, such as the type of electroencephalographic (EEG) signal used, the navigation system employed by the wheelchair, the task for the participants, or the metrics used to evaluate the performance. Furthermore, these factors are compared according to the type of signal used, in order to clarify the differences among them. Finally, the trend of current research in this field is discussed, as well as the challenges that should be solved in the future

    The multimodal edge of human aerobotic interaction

    No full text
    This paper presents the idea of a multimodal human aerobotic interaction. An overview of the aerobotic system and its application is given. The joystick-based controller interface and its limitations is discussed. Two techniques are suggested as emerging alternatives to the joystick-based controller interface used in human aerobotic interaction. The first technique is a multimodal combination of speech, gaze, gesture, and other non-verbal cues already used in regular human-humaninteraction. The second is telepathic interaction via brain computer interfaces. The potential limitations of these alternatives is highlighted, and the considerations for further works are presented

    Cyborgs as Frontline Service Employees: A Research Agenda

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Purpose This paper identifies and explores potential applications of cyborgian technologies within service contexts and how service providers may leverage the integration of cyborgian service actors into their service proposition. In doing so, the paper proposes a new category of ‘melded’ frontline service employees (FLEs), where advanced technologies become embodied within human actors. The paper presents potential opportunities and challenges that may arise through cyborg technological advancements and proposes a future research agenda related to these. Design/methodology This study draws on literature in the fields of services management, Artificial Intelligence [AI], robotics, Intelligence Augmentation [IA] and Human Intelligence [HIs] to conceptualise potential cyborgian applications. Findings The paper examines how cyborg bio- and psychophysical characteristics may significantly differentiate the nature of service interactions from traditional ‘unenhanced’ service interactions. In doing so, we propose ‘melding’ as a conceptual category of technological impact on FLEs. This category reflects the embodiment of emergent technologies not previously captured within existing literature on cyborgs. We examine how traditional roles of FLEs will be potentially impacted by the integration of emergent cyborg technologies, such as neural interfaces and implants, into service contexts before outlining future research directions related to these, specifically highlighting the range of ethical considerations. Originality/Value Service interactions with cyborg FLEs represent a new context for examining the potential impact of cyborgs. This paper explores how technological advancements will alter the individual capacities of humans to enable such employees to intuitively and empathetically create solutions to complex service challenges. In doing so, we augment the extant literature on cyborgs, such as the body hacking movement. The paper also outlines a research agenda to address the potential consequences of cyborgian integration
    corecore