2,337 research outputs found

    A comparative survey on high dynamic range video compression

    Get PDF
    International audienceHigh dynamic range (HDR) video compression has until now been approached by using the high profile of existing state-of-the-art H.264/AVC (Advanced Video Coding) codec or by separately encoding low dynamic range (LDR) video and the residue resulted from the estimation of HDR video from LDR video. Although the latter approach has a distinctive advantage of providing backward compatibility to 8-bit LDR displays, the superiority of one approach to the other in terms of the rate distortion trade-off has not been verified yet. In this paper, we first give a detailed overview of the methods in these two approaches. Then, we experimentally compare two approaches with respect to different objective and perceptual metrics, such as HDR mean square error (HDR MSE), perceptually uniform peak signal to noise ratio (PU PSNR) and HDR visible difference predictor (HDR VDP). We first conclude that the optimized methods for backward compatibility to 8-bit LDR displays are superior to the method designed for high profile encoder both for 8-bit and 12-bit mappings in terms of all metrics. Second, using higher bit-depths with a high profile encoder is giving better rate-distortion performances than employing an 8-bit mapping with an 8-bit encoder for the same method, in particular when the dynamic range of the video sequence is high. Third, rather than encoding of the residue signal in backward compatible methods, changing the quantization step size of the LDR layer encoder would be sufficient to achieve a required quality. In other words, the quality of tone mapping is more important than residue encoding for the performance of HDR image and video coding

    Methods for Improving the Tone Mapping for Backward Compatible High Dynamic Range Image and Video Coding

    Get PDF
    International audienceBackward compatibility for high dynamic range image and video compression forms one of the essential requirements in the transition phase from low dynamic range (LDR) displays to high dynamic range (HDR) displays. In a recent work [1], the problems of tone mapping and HDR video coding are originally fused together in the same mathematical framework, and an optimized solution for tone mapping is achieved in terms of the mean square error (MSE) of the logarithm of luminance values. In this paper, we improve this pioneer study in three aspects by considering its three shortcomings. First, the proposed method [1] works over the logarithms of luminance values which are not uniform with respect to Human Visual System (HVS) sensitivity. We propose to use the perceptually uniform luminance values as an alternative for the optimization of tone mapping curve. Second, the proposed method [1] does not take the quality of the resulting tone mapped images into account during the formulation in contrary to the main goal of tone mapping research. We include the LDR image quality as a constraint to the optimization problem and develop a generic methodology to compromise the trade-off between HDR and LDR image qualities for coding. Third, the proposed method [1] simply applies a low-pass filter to the generated tone curves for video frames to avoid flickering during the adaptation of the method to the video. We instead include an HVS based flickering constraint to the optimization and derive a methodology to compromise the trade-off between the rate-distortion performance and flickering distortion. The superiority of the proposed methodologies is verified with experiments on HDR images and video sequences

    High dynamic range video compression exploiting luminance masking

    Get PDF

    Algorithms for compression of high dynamic range images and video

    Get PDF
    The recent advances in sensor and display technologies have brought upon the High Dynamic Range (HDR) imaging capability. The modern multiple exposure HDR sensors can achieve the dynamic range of 100-120 dB and LED and OLED display devices have contrast ratios of 10^5:1 to 10^6:1. Despite the above advances in technology the image/video compression algorithms and associated hardware are yet based on Standard Dynamic Range (SDR) technology, i.e. they operate within an effective dynamic range of up to 70 dB for 8 bit gamma corrected images. Further the existing infrastructure for content distribution is also designed for SDR, which creates interoperability problems with true HDR capture and display equipment. The current solutions for the above problem include tone mapping the HDR content to fit SDR. However this approach leads to image quality associated problems, when strong dynamic range compression is applied. Even though some HDR-only solutions have been proposed in literature, they are not interoperable with current SDR infrastructure and are thus typically used in closed systems. Given the above observations a research gap was identified in the need for efficient algorithms for the compression of still images and video, which are capable of storing full dynamic range and colour gamut of HDR images and at the same time backward compatible with existing SDR infrastructure. To improve the usability of SDR content it is vital that any such algorithms should accommodate different tone mapping operators, including those that are spatially non-uniform. In the course of the research presented in this thesis a novel two layer CODEC architecture is introduced for both HDR image and video coding. Further a universal and computationally efficient approximation of the tone mapping operator is developed and presented. It is shown that the use of perceptually uniform colourspaces for internal representation of pixel data enables improved compression efficiency of the algorithms. Further proposed novel approaches to the compression of metadata for the tone mapping operator is shown to improve compression performance for low bitrate video content. Multiple compression algorithms are designed, implemented and compared and quality-complexity trade-offs are identified. Finally practical aspects of implementing the developed algorithms are explored by automating the design space exploration flow and integrating the high level systems design framework with domain specific tools for synthesis and simulation of multiprocessor systems. The directions for further work are also presented

    HDR video past, present and future : a perspective

    Get PDF
    High Dynamic Range (HDR) video has emerged from research labs around the world and entered the realm of consumer electronics. The dynamic range that a human can see in a scene with minimal eye adaption (approximately 1,000,000: 1) is vastly greater than traditional imaging technology which can only capture about 8 f-stops (256: 1). HDR technology, on the other hand, has the potential to capture the full range of light in a scene; even more than a human eye can see. This paper examines the field of HDR video from capture to display; past, present and future. In particular the paper looks beyond the current marketing hype around HDR, to show how HDR video in the future can and, indeed, should bring about a step change in imaging, analogous to the change from black and white to colour

    Lightning-Fast Dual-Layer Lossless Coding for Radiance Format High Dynamic Range Images

    Full text link
    This paper proposes a fast dual-layer lossless coding for high dynamic range images (HDRIs) in the Radiance format. The coding, which consists of a base layer and a lossless enhancement layer, provides a standard dynamic range image (SDRI) without requiring an additional algorithm at the decoder and can losslessly decode the HDRI by adding the residual signals (residuals) between the HDRI and SDRI to the SDRI, if desired. To suppress the dynamic range of the residuals in the enhancement layer, the coding directly uses the mantissa and exponent information from the Radiance format. To further reduce the residual energy, each mantissa is modeled (estimated) as a linear function, i.e., a simple linear regression, of the encoded-decoded SDRI in each region with the same exponent. This is called simple linear regressive mantissa estimator. Experimental results show that, compared with existing methods, our coding reduces the average bitrate by approximately 1.571.57-6.686.68 % and significantly reduces the average encoder implementation time by approximately 87.1387.13-98.9698.96 %

    Põhjalik uuring ülisuure dünaamilise ulatusega piltide toonivastendamisest koos subjektiivsete testidega

    Get PDF
    A high dynamic range (HDR) image has a very wide range of luminance levels that traditional low dynamic range (LDR) displays cannot visualize. For this reason, HDR images are usually transformed to 8-bit representations, so that the alpha channel for each pixel is used as an exponent value, sometimes referred to as exponential notation [43]. Tone mapping operators (TMOs) are used to transform high dynamic range to low dynamic range domain by compressing pixels so that traditional LDR display can visualize them. The purpose of this thesis is to identify and analyse differences and similarities between the wide range of tone mapping operators that are available in the literature. Each TMO has been analyzed using subjective studies considering different conditions, which include environment, luminance, and colour. Also, several inverse tone mapping operators, HDR mappings with exposure fusion, histogram adjustment, and retinex have been analysed in this study. 19 different TMOs have been examined using a variety of HDR images. Mean opinion score (MOS) is calculated on those selected TMOs by asking the opinion of 25 independent people considering candidates’ age, vision, and colour blindness

    Subjective quality assessment database of HDR images compressed with JPEG XT

    Get PDF
    Recent advances in high dynamic range (HDR) capturing and display technologies attracted a lot of interest to HDR imaging. Many issues that are considered as being resolved for conventional low dynamic range (LDR) images pose new challenges in HDR context. One such issue is a lack of standards for HDR image compression. Another is the limited availability of suitable image datasets that are suitable for studying and evaluation of HDR image compression. In this paper, we address this problem by creating a publicly available dataset of 20 HDR images and corresponding versions compressed at four different bit rates with three profiles of the upcoming JPEG XT standard for HDR image compression. The images cover different scenes, dynamic ranges, and acquisition methods (fusion from several exposures, frame of an HDR video, and CGI generated images). The dataset also includes Mean Opinion Scores (MOS) for each compressed version of the images obtained from extensive subjective experiments using SIM2 HDR monitor

    JPEG XT: A Compression Standard for HDR and WCG Images [Standards in a Nutshell]

    Get PDF
    High bit depth data acquisition and manipulation have been largely studied at the academic level over the last 15 years and are rapidly attracting interest at the industrial level. An example of the increasing interest for high-dynamic range (HDR) imaging is the use of 32-bit floating point data for video and image acquisition and manipulation that allows a variety of visual effects that closely mimic the real-world visual experience of the end user [1] (see Figure 1). At the industrial level, we are witnessing increasing traction toward supporting HDR and wide color gamut (WCG). WCG leverages HDR for each color channel to display a wider range of colors. Consumer cameras are currently available with a 14- or 16-bit analog-to-digital converter. Rendering devices are also appearing with the capability to display HDR images and video with a peak brightness of up to 4,000 nits and to support WCG (ITU-R Rec. BT.2020 [2]) rather than the historical ITU-R Rec. BT.709 [3]. This trend calls for a widely accepted standard for higher bit depth support that can be seamlessly integrated into existing products and applications. While standard formats such as the Joint Photographic Experts Group (JPEG) 2000 [5] and JPEG XR [6] offer support for high bit depth image representations, their adoption requires a nonnegligible investment that may not always be affordable in existing imaging ecosystems, and induces a difficult transition, as they are not backward-compatible with the popular JPEG image format

    Local Inverse Tone Curve Learning for High Dynamic Range Image Scalable Compression

    Get PDF
    International audienceThis paper presents a scalable high dynamic range (HDR) image coding scheme in which the base layer is a lowdynamic range (LDR) version of the image that may have been generated by an arbitrary Tone Mapping Operator (TMO). No restriction is imposed on the TMO, which can be either global or local, so as to fully respect the artistic intent of the producer. Our method successfully handles the case of complex local TMOs thanks to a block-wise and non-linear approach. A novel template based Inter Layer Prediction (ILP) is designed in order to perform the inverse tone mapping of a block without the need to transmit any additional parameter to the decoder. This method enables the use of a more accurate inverse tone mapping model than the simple linear regression commonly used for blockwise ILP. In addition, this paper shows that a linear adjustment of the initially predicted block can further improve the overall coding performance by using an efficient encoding scheme of the scaling parameters. Our experiments have shown an average bitrate saving of 47% on the HDR enhancement layer, compared to previous local ILP methods
    corecore