42 research outputs found

    Decoder-in-the-Loop: Genetic Optimization-based LDPC Code Design

    Get PDF
    LDPC code design tools typically rely on asymptotic code behavior and are affected by an unavoidable performance degradation due to model imperfections in the short length regime. We propose an LDPC code design scheme based on an evolutionary algorithm, the Genetic Algorithm (GenAlg), implementing a "decoder-in-the-loop" concept. It inherently takes into consideration the channel, code length and the number of iterations while optimizing the error-rate of the actual decoder hardware architecture. We construct short length LDPC codes (i.e., the parity-check matrix) with error-rate performance comparable to, or even outperforming that of well-designed standardized short length LDPC codes over both AWGN and Rayleigh fading channels. Our proposed algorithm can be used to design LDPC codes with special graph structures (e.g., accumulator-based codes) to facilitate the encoding step, or to satisfy any other practical requirement. Moreover, GenAlg can be used to design LDPC codes with the aim of reducing decoding latency and complexity, leading to coding gains of up to 0.3250.325 dB and 0.80.8 dB at BLER of 10510^{-5} for both AWGN and Rayleigh fading channels, respectively, when compared to state-of-the-art short LDPC codes. Also, we analyze what can be learned from the resulting codes and, as such, the GenAlg particularly highlights design paradigms of short length LDPC codes (e.g., codes with degree-1 variable nodes obtain very good results).Comment: in IEEE Access, 201

    Advanced constellation and demapper schemes for next generation digital terrestrial television broadcasting systems

    Get PDF
    206 p.Esta tesis presenta un nuevo tipo de constelaciones llamadas no uniformes. Estos esquemas presentan una eficacia de hasta 1,8 dB superior a las utilizadas en los últimos sistemas de comunicaciones de televisión digital terrestre y son extrapolables a cualquier otro sistema de comunicaciones (satélite, móvil, cable¿). Además, este trabajo contribuye al diseño de constelaciones con una nueva metodología que reduce el tiempo de optimización de días/horas (metodologías actuales) a horas/minutos con la misma eficiencia. Todas las constelaciones diseñadas se testean bajo una plataforma creada en esta tesis que simula el estándar de radiodifusión terrestre más avanzado hasta la fecha (ATSC 3.0) bajo condiciones reales de funcionamiento.Por otro lado, para disminuir la latencia de decodificación de estas constelaciones esta tesis propone dos técnicas de detección/demapeo. Una es para constelaciones no uniformes de dos dimensiones la cual disminuye hasta en un 99,7% la complejidad del demapeo sin empeorar el funcionamiento del sistema. La segunda técnica de detección se centra en las constelaciones no uniformes de una dimensión y presenta hasta un 87,5% de reducción de la complejidad del receptor sin pérdidas en el rendimiento.Por último, este trabajo expone un completo estado del arte sobre tipos de constelaciones, modelos de sistema, y diseño/demapeo de constelaciones. Este estudio es el primero realizado en este campo

    Decoder-in-the-Loop: Genetic Optimization- Based LDPC Code Design

    Get PDF
    LDPC code design tools typically rely on asymptotic code behavior and are affected by an unavoidable performance degradation due to model imperfections in the short length regime. We propose an LDPC code design scheme based on an evolutionary algorithm, the Genetic Algorithm (GenAlg), implementing a ``decoder-in-the-loop\u27\u27 concept. It inherently takes into consideration the channel, code length and the number of iterations while optimizing the error-rate of the actual decoder hardware architecture. We construct short length LDPC codes (i.e., the parity-check matrix) with error-rate performance comparable to, or even outperforming that of well-designed standardized short length LDPC codes over both AWGN and Rayleigh fading channels. Our proposed algorithm can be used to design LDPC codes with special graph structures (e.g., accumulator-based codes) to facilitate the encoding step, or to satisfy any other practical requirement. Moreover, GenAlg can be used to design LDPC codes with the aim of reducing decoding latency and complexity, leading to coding gains of up to 0:325 dB and 0:8 dB at BLER of 10¯⁵ for both AWGN and Rayleigh fading channels, respectively, when compared to state-of-the-art short LDPC codes. Also, we analyze what can be learned from the resulting codes and, as such, the GenAlg particularly highlights design paradigms of short length LDPC codes (e.g., codes with degree-1 variable nodes obtain very good results)

    Optimization of bit interleaved coded modulation using genetic algorithms

    Get PDF
    Modern wireless communication systems must be optimized with respect to both bandwidth efficiency and energy efficiency. A common approach to achieve these goals is to use multi-level modulation such as quadrature-amplitude modulation (QAM) for bandwidth efficiency and an error-control code for energy efficiency. In benign additive white Gaussian noise (AWGN) channels, Ungerboeck proposed trellis-coded modulation (TCM), which combines modulation and coding into a joint operation. However, in fading channels, it is important to maximize diversity. As shown by Zehavi, diversity is maximized by performing coding and modulation separately and interleaving bits that are passed from the encoder to the modulator. Such systems are termed BICM for bit-interleaved coded modulation. Later, Li and Ritcey proposed a method for improving the performance of BICM systems by iteratively passing information between the demodulator and decoder. Such systems are termed BICM-ID , for BICM with Iterative Decoding. The bit error rate (BER) curve of a typical BICM-ID system is characterized by a steeply sloping waterfall region followed by an error floor with a gradual slope.;This thesis is focused on optimizing BICM-ID systems in the error floor region. The problem of minimizing the error bound is formulated as an instance of the Quadratic Assignment Problem (QAP) and solved using a genetic algorithm. First, an optimization is performed by fixing the modulation and varying the bit-to-symbol mapping. This approach provides the lowest possible error floor for a BICM-ID system using standard QAM and phase-shift keying (PSK) modulations. Next, the optimization is performed by varying not only the bit-to-symbol mapping, but also the location of the signal points within the two-dimensional constellation. This provides an error floor that is lower than that achieved with the best QAM and PSK systems, although at the cost of a delayed waterfall region

    Constellation design for future communication systems: a comprehensive survey

    Get PDF
    [EN] The choice of modulation schemes is a fundamental building block of wireless communication systems. As a key component of physical layer design, they critically impact the expected communication capacity and wireless signal robustness. Their design is also critical for the successful roll-out of wireless standards that require a compromise between performance, efficiency, latency, and hardware requirements. This paper presents a survey of constellation design strategies and associated outcomes for wireless communication systems. The survey discusses their performance and complexity to address the need for some desirable properties, including consistency, channel capacity, system performance, required demapping architecture, flexibility, and independence. Existing approaches for constellation designs are investigated using appropriate metrics and categorized based on their theoretical algorithm design. Next, their application to different communication standards is analyzed in context, aiming at distilling general guidelines applicable to the wireless building block design. Finally, the survey provides a discussion on design directions for future communication system standardization processes.This work was supported in part by the Basque Government under Grant IT1234-19, in part by the PREDOC under Program PRE_2020_2_0105, and in part by the Spanish Government through the Project PHANTOM (MCIU/AEI/FEDER, UE) under Gran

    Peak to average power ratio reduction and error control in MIMO-OFDM HARQ System

    Get PDF
    Currently, multiple-input multiple-output orthogonal frequency division multiplexing (MIMOOFDM) systems underlie crucial wireless communication systems such as commercial 4G and 5G networks, tactical communication, and interoperable Public Safety communications. However, one drawback arising from OFDM modulation is its resulting high peak-to-average power ratio (PAPR). This problem increases with an increase in the number of transmit antennas. In this work, a new hybrid PAPR reduction technique is proposed for space-time block coding (STBC) MIMO-OFDM systems that combine the coding capabilities to PAPR reduction methods, while leveraging the new degree of freedom provided by the presence of multiple transmit chairs (MIMO). In the first part, we presented an extensive literature review of PAPR reduction techniques for OFDM and MIMO-OFDM systems. The work developed a PAPR reduction technique taxonomy, and analyzed the motivations for reducing the PAPR in current communication systems, emphasizing two important motivations such as power savings and coverage gain. In the tax onomy presented here, we include a new category, namely, hybrid techniques. Additionally, we drew a conclusion regarding the importance of hybrid PAPR reduction techniques. In the second part, we studied the effect of forward error correction (FEC) codes on the PAPR for the coded OFDM (COFDM) system. We simulated and compared the CCDF of the PAPR and its relationship with the autocorrelation of the COFDM signal before the inverse fast Fourier transform (IFFT) block. This allows to conclude on the main characteristics of the codes that generate high peaks in the COFDM signal, and therefore, the optimal parameters in order to reduce PAPR. We emphasize our study in FEC codes as linear block codes, and convolutional codes. Finally, we proposed a new hybrid PAPR reduction technique for an STBC MIMO-OFDM system, in which the convolutional code is optimized to avoid PAPR degradation, which also combines successive suboptimal cross-antenna rotation and inversion (SS-CARI) and iterative modified companding and filtering schemes. The new method permits to obtain a significant net gain for the system, i.e., considerable PAPR reduction, bit error rate (BER) gain as compared to the basic MIMO-OFDM system, low complexity, and reduced spectral splatter. The new hybrid technique was extensively evaluated by simulation, and the complementary cumulative distribution function (CCDF), the BER, and the power spectral density (PSD) were compared to the original STBC MIMO-OFDM signal

    Multiuser MIMO-OFDM for Next-Generation Wireless Systems

    No full text
    This overview portrays the 40-year evolution of orthogonal frequency division multiplexing (OFDM) research. The amelioration of powerful multicarrier OFDM arrangements with multiple-input multiple-output (MIMO) systems has numerous benefits, which are detailed in this treatise. We continue by highlighting the limitations of conventional detection and channel estimation techniques designed for multiuser MIMO OFDM systems in the so-called rank-deficient scenarios, where the number of users supported or the number of transmit antennas employed exceeds the number of receiver antennas. This is often encountered in practice, unless we limit the number of users granted access in the base station’s or radio port’s coverage area. Following a historical perspective on the associated design problems and their state-of-the-art solutions, the second half of this treatise details a range of classic multiuser detectors (MUDs) designed for MIMO-OFDM systems and characterizes their achievable performance. A further section aims for identifying novel cutting-edge genetic algorithm (GA)-aided detector solutions, which have found numerous applications in wireless communications in recent years. In an effort to stimulate the cross pollination of ideas across the machine learning, optimization, signal processing, and wireless communications research communities, we will review the broadly applicable principles of various GA-assisted optimization techniques, which were recently proposed also for employment inmultiuser MIMO OFDM. In order to stimulate new research, we demonstrate that the family of GA-aided MUDs is capable of achieving a near-optimum performance at the cost of a significantly lower computational complexity than that imposed by their optimum maximum-likelihood (ML) MUD aided counterparts. The paper is concluded by outlining a range of future research options that may find their way into next-generation wireless systems

    Sparse graph-based coding schemes for continuous phase modulations

    Get PDF
    The use of the continuous phase modulation (CPM) is interesting when the channel represents a strong non-linearity and in the case of limited spectral support; particularly for the uplink, where the satellite holds an amplifier per carrier, and for downlinks where the terminal equipment works very close to the saturation region. Numerous studies have been conducted on this issue but the proposed solutions use iterative CPM demodulation/decoding concatenated with convolutional or block error correcting codes. The use of LDPC codes has not yet been introduced. Particularly, no works, to our knowledge, have been done on the optimization of sparse graph-based codes adapted for the context described here. In this study, we propose to perform the asymptotic analysis and the design of turbo-CPM systems based on the optimization of sparse graph-based codes. Moreover, an analysis on the corresponding receiver will be done

    Single-Frequency Network Terrestrial Broadcasting with 5GNR Numerology

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen
    corecore