772 research outputs found

    Prediction of High-Performance Concrete Strength Using a Hybrid Artificial Intelligence Approach

    Get PDF
    This study introduces an improved artificial intelligence (AI) approach called intelligence optimized support vector regression (IO-SVR) for estimating the compressive strength of high-performance concrete (HPC). The nonlinear functional mapping between the HPC materials and compressive strength is conducted using the AI approach. A dataset with 1,030 HPC experimental tests is used to train and validate the prediction model. Depending on the results of the experiments, the forecast outcomes of the IO-SVR model are of a much higher quality compared to the outcomes of other AI approaches. Additionally, because of the high-quality learning capabilities, the IO-SVR is highly recommended for calculating HPC strength

    Prediction of High-Performance Concrete Strength Using a Hybrid Artificial Intelligence Approach

    Get PDF
    This study introduces an improved artificial intelligence (AI) approach called intelligence optimized support vector regression (IO-SVR) for estimating the compressive strength of high-performance concrete (HPC). The nonlinear functional mapping between the HPC materials and compressive strength is conducted using the AI approach. A dataset with 1,030 HPC experimental tests is used to train and validate the prediction model. Depending on the results of the experiments, the forecast outcomes of the IO-SVR model are of a much higher quality compared to the outcomes of other AI approaches. Additionally, because of the high-quality learning capabilities, the IO-SVR is highly recommended for calculating HPC strength

    Reinforced concrete confinement coefficient estimation using soft computing models

    Get PDF
    Infrastructure vulnerability toward seismic lateral loading within high seismicity has received massive attention by structural engineers and designers. This is for the purpose to provide a reliable alternative material that strengthening the bending and shear of slabs, columns and reinforced concrete (RC). Despite the utilized approaches of strengthening the concrete structure based on fiber reinforced polymers (FRP) is considerably new technique, exploring more reliable and robust methodologies is the motive of scholars for better structural behaviour understanding. In the current research, two soft computing models called artificial neural network (ANN) and support vector regression (SVR) are applied to predict lateral confinement coefficient (Ks). The models are developed based on gathered dataset from open source researches for the lateral confinement coefficient of columns wrapped with carbon FRP (CFRP) and their corresponding parameters including column width, length and thickness (b, h and t mm), column radius (r mm), compressive strength of concrete (f_c^') and elastic modulus (EFRP). Results indicated the superiority of the ANN model for predicting Ks over the SVR model. The application of the soft computing showed an optimistic approach for the structural lateral confinement coefficient determination

    Surrogate models to predict maximum dry unit weight, optimum moisture content and California bearing ratio form grain size distribution curve

    Get PDF
    This study evaluates the applicability of using a robust, novel, data-driven method in proposing surrogate models to predict the maximum dry unit weight, optimum moisture content, and California bearing ratio of coarse-grained soils using only the results of the grain size distribution analysis. The data-driven analysis has been conducted using evolutionary polynomial regression analysis (MOGA-EPR), employing a comprehensive database. The database included the particle diameter corresponding to a percentage of the passing of 10%, 30%, 50%, and 60%, coefficient of uniformity, coefficient of curvature, dry unit weight, optimum moisture content, and California bearing ratio. The statistical assessment results illustrated that the MOGA-EPR provides robust models to predict the maximum dry unit weight, optimum moisture content, and California bearing ratio. The new models’ performance has also been compared with the empirical models proposed by different researchers. It was found from the comparisons that the new models provide enhanced accuracy in predictions as these models scored lower mean absolute error and root mean square error, mean values closer to one, and higher a20−index and coefficient of correlation. Therefore, the new models can be used to ensure more optimised and robust design calculations

    Machine Learning Models for Inferring the Axial Strength in Short Concrete-Filled Steel Tube Columns Infilled with Various Strength Concrete

    Get PDF
    Concrete-filled steel tube (CFST) columns are used in the construction industry because of their high strength, ductility, stiffness, and fire resistance. This paper developed machine learning techniques for inferring the axial strength in short CFST columns infilled with various strength concrete. Additive Random Forests (ARF) and Artificial Neural Networks (ANNs) models were developed and tested using large experimental data. These data-driven models enable us to infer the axial strength in CFST columns based on the diameter, the tube thickness, the steel yield stress, concrete strength, column length, and diameter/tube thickness. The analytical results showed that the ARF obtained high accuracy with the 6.39% in mean absolute percentage error (MAPE) and 211.31 kN in mean absolute error (MAE). The ARF outperformed significantly the ANNs with an improvement rate at 84.1% in MAPE and 65.4% in MAE. In comparison with the design codes such as EC4 and AISC, the ARF improved the predictive accuracy with 36.9% in MAPE and 22.3% in MAE. The comparison results confirmed that the ARF was the most effective machine learning model among the investigated approaches. As a contribution, this study proposed a machine learning model for accurately inferring the axial strength in short CFST columns

    Novel fuzzy-based optimization approaches for the prediction of ultimate axial load of circular concrete-filled steel tubes

    Get PDF
    An accurate estimation of the axial compression capacity of the concrete-filled steel tubular (CFST) column is crucial for ensuring the safety of structures containing them and preventing related failures. In this article, two novel hybrid fuzzy systems (FS) were used to create a new framework for estimating the axial compression capacity of circular CCFST columns. In the hybrid models, differential evolution (DE) and firefly algorithm (FFA) techniques are employed in order to obtain the optimal membership functions of the base FS model. To train the models with the new hybrid techniques, i.e., FS-DE and FS-FFA, a substantial library of 410 experimental tests was compiled from openly available literature sources. The new model\u2019s robustness and accuracy was assessed using a variety of statistical criteria both for model development and for model validation. The novel FS-FFA and FS-DE models were able to improve the prediction capacity of the base model by 9.68% and 6.58%, respectively. Furthermore, the proposed models exhibited considerably improved performance compared to existing design code methodologies. These models can be utilized for solving similar problems in structural engineering and concrete technology with an enhanced level of accuracy

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    메타 휴리스틱 최적화를 이용한 기계학습 기반 선박 건조 공정 리드 타임 예측

    Get PDF
    학위논문(석사) -- 서울대학교대학원 : 공과대학 조선해양공학과, 2021.8. 하오유주.In the shipbuilding industry, each production process has a respective lead time; that is, the duration between start and finish times. Lead time is basic data that is necessary for high-efficiency production planning and systematic production management. Therefore, lead time must be accurate. However, the traditional method of lead time management is not scientific because it mostly makes the plan by calculating the average lead times derived from historical data. Therefore, to understand the complex relationship between lead time and other influencing factors, this study proposes to use machine learning (ML) algorithms, support vector machine (SVM) and artificial neural network (ANN), which are frequently applied in prediction fields. Moreover, to improve prediction accuracy, this study proposes to apply meta-heuristic algorithms to optimize the parameters of the ML models. This thesis builds hybrid models, including meta-heuristic-ANN, meta-heuristic-SVM models. In addition, this study compares model’s performance with each other. In searching for the ML model’s parameters, the results point out that the new self-organizing hierarchical particle swarm optimization (PSO) with jumping time-varying acceleration coefficients (NHPSO-JTVAC) algorithm is superior in terms of performance. More importantly, the test results demonstrate that the integrated models, based on NHPSO-JTVAC, have the smallest mean absolute percentage error (MAPE) test error in the three shipyard block process data sets, 11.79%, 16.03% and 16.45%, respectively. The results also demonstrate that the built models based on NHPSO-JTVAC can achieve further meaningful enhancements in terms of prediction accuracy. Overall, the NHPSO–JTVAC-SVM, NHPSO–JTVAC-ANN models are feasible for predicting the lead time in shipbuilding.조선 산업에서 각 공정은 리드 타임을 가진다. 리드 타임이란 공정 시작과 종료 간에 시간으로, 고효율의 생산계획과 체계적 생산관리를 위해 매우 중요한 지표이다. 특히, 생산 계획 단계에서 정확한 리드타임 예측은 납기 준수를 위한 계획 수립을 위해 매우 중요하다. 그러나 기존의 예측 방법은 과거 데이터의 평균값을 사용했기 때문에 정확도가 매우 떨어졌다. 따라서 본 연구에서는 리드 타임과 다른 영향 요인 간의 복잡한 관계를 이해하기 위해 예측 분야에서 자주 적용되는 머신 러닝 (ML) 모델인 서포트 벡터 머신 (SVM) 및 인공 신경망 (ANN) 적용을 제안한다. 또한, 기계학습 모델 예측 정확도를 향상시키기 위해 메타 휴리스틱 알고리즘을 적용하여 모델의 파라미터를 최적화하고자 한다. 본 연구는 meta-heuristics-ANN, meta-heuristics-SVM 모델을 포함하는 하이브리드 모델을 구축한다. 더불어, 본 연구는 메타 휴리스틱 알고리즘 기반으로 최적화된 기계학습 모델의 성능을 서로 비교한다. 연구 결과를 통해, ML 모델의 파라미터를 탐색하는 과정에서 particle swam optimization (PSO)의 enhanced 버전인 NHPSO-JTVAC 알고리즘이 탐색 성능 면에서 다른 알고리즘보다 우수하다는 것을 알 수 있다. 뿐만 아니라 테스트 결과를 살펴보면 NHPSO-JTVAC에 기반한 하이브리드 모델이 조선소 세 개의 블록 공정 데이터에서 (각각 11.79%, 16.03% 및 16.45%) 가장 작은 MAPE 테스트 오차임을 알 수 있다. 이것은 NHPSO-JTVAC를 기반으로 구축된 모델이 예측 정확도 측면에서 의미 있는 향상을 더 달성할 수 있음을 보여준다. 전반적으로 NHPSO-JTVAC-SVM, NHPSO-JTVAC-ANN 모델은 조선소 블록 공정의 리드 타임을 예측하는 데 적합하다는 것을 확인할 수 있다.Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Related Works 3 1.2.1 Related Works for Lead Time Prediction 3 1.2.2 Related Works for Hybrid Predictive Model 4 1.3 Thesis Organization 6 Chapter 2 Machine Learning 7 2.1 Support Vector Machine 7 2.1.1 Support Vector Machine Algorithm 7 2.1.2 Hyperparameter Optimization for SVM 10 2.2 Artificial Neural Network 11 2.2.1 Artificial Neural Network Algorithm 11 2.2.2 Hyperparameter Optimization for ANN 15 Chapter 3 Meta-heuristic Optimization Algorithms 17 3.1 Particle Swarm Optimization 17 3.2 NHPSO-JTVAC: An Advanced Version of PSO 18 3.3 Bat Algorithm 19 3.4 Firefly Algorithm 21 3.5 Grasshopper Optimization Algorithm 22 3.6 Moth Search Algorithm 24 Chapter 4 Hybrid Artificial Intelligence Models 27 4.1 Hybrid Meta-heuristic-SVM Models 27 4.1.1 Hybrid PSO-SVM Model 29 4.1.2 Hybrid NHPSO-JTVAC-SVM Model 30 4.1.3 Hybrid BA-SVM Model 31 4.1.4 Hybrid FA-SVM Model 33 4.1.5 Hybrid GOA-SVM Model 34 4.1.6 Hybrid MSA-SVM Model 35 4.2 Hybrid Meta-heuristic-ANN Models 36 4.2.1 Hybrid PSO-ANN Model 38 4.2.2 Hybrid NHPSO-JTVAC-ANN Model 39 4.2.3 Hybrid BA-ANN Model 40 4.2.4 Hybrid FA-ANN Model 41 4.2.5 Hybrid GOA-ANN Model 42 4.2.6 Hybrid MSA-ANN Model 43 Chapter 5 Lead Time Prediction Based on Hybrid AI Models 44 5.1 Data and Preparation 44 5.1.1 Data Normalization 45 5.1.2 Feature Selection 45 5.2 Lead Time Prediction 46 5.3 Performance Metrics 47 Chapter 6 Experimental Results 49 6.1 Results Based on Hybrid SVM-based Models 49 6.2 Results Based on Hybrid ANN-based Models 55 6.3 Overall Results 60 Chapter 7 Conclusions and Future Works 62 Bibliography 63 Appendix A 68 Abstract in Korean 69석

    Recent tendencies in the use of optimization techniques in geotechnics:a review

    Get PDF
    The use of optimization methods in geotechnics dates back to the 1950s. They were used in slope stability analysis (Bishop) and evolved to a wide range of applications in ground engineering. We present here a non-exhaustive review of recent publications that relate to the use of different optimization techniques in geotechnical engineering. Metaheuristic methods are present in almost all the problems in geotechnics that deal with optimization. In a number of cases, they are used as single techniques, in others in combination with other approaches, and in a number of situations as hybrids. Different results are discussed showing the advantages and issues of the techniques used. Computational time is one of the issues, as well as the assumptions those methods are based on. The article can be read as an update regarding the recent tendencies in the use of optimization techniques in geotechnics

    Optimización del diseño estructural de pavimentos asfálticos para calles y carreteras

    Get PDF
    gráficos, tablasThe construction of asphalt pavements in streets and highways is an activity that requires optimizing the consumption of significant economic and natural resources. Pavement design optimization meets contradictory objectives according to the availability of resources and users’ needs. This dissertation explores the application of metaheuristics to optimize the design of asphalt pavements using an incremental design based on the prediction of damage and vehicle operating costs (VOC). The costs are proportional to energy and resource consumption and polluting emissions. The evolution of asphalt pavement design and metaheuristic optimization techniques on this topic were reviewed. Four computer programs were developed: (1) UNLEA, a program for the structural analysis of multilayer systems. (2) PSO-UNLEA, a program that uses particle swarm optimization metaheuristic (PSO) for the backcalculation of pavement moduli. (3) UNPAVE, an incremental pavement design program based on the equations of the North American MEPDG and includes the computation of vehicle operating costs based on IRI. (4) PSO-PAVE, a PSO program to search for thicknesses that optimize the design considering construction and vehicle operating costs. The case studies show that the backcalculation and structural design of pavements can be optimized by PSO considering restrictions in the thickness and the selection of materials. Future developments should reduce the computational cost and calibrate the pavement performance and VOC models. (Texto tomado de la fuente)La construcción de pavimentos asfálticos en calles y carreteras es una actividad que requiere la optimización del consumo de cuantiosos recursos económicos y naturales. La optimización del diseño de pavimentos atiende objetivos contradictorios de acuerdo con la disponibilidad de recursos y las necesidades de los usuarios. Este trabajo explora el empleo de metaheurísticas para optimizar el diseño de pavimentos asfálticos empleando el diseño incremental basado en la predicción del deterioro y los costos de operación vehicular (COV). Los costos son proporcionales al consumo energético y de recursos y las emisiones contaminantes. Se revisó la evolución del diseño de pavimentos asfálticos y el desarrollo de técnicas metaheurísticas de optimización en este tema. Se desarrollaron cuatro programas de computador: (1) UNLEA, programa para el análisis estructural de sistemas multicapa. (2) PSO-UNLEA, programa que emplea la metaheurística de optimización con enjambre de partículas (PSO) para el cálculo inverso de módulos de pavimentos. (3) UNPAVE, programa de diseño incremental de pavimentos basado en las ecuaciones de la MEPDG norteamericana, y el cálculo de costos de construcción y operación vehicular basados en el IRI. (4) PSO-PAVE, programa que emplea la PSO en la búsqueda de espesores que permitan optimizar el diseño considerando los costos de construcción y de operación vehicular. Los estudios de caso muestran que el cálculo inverso y el diseño estructural de pavimentos pueden optimizarse mediante PSO considerando restricciones en los espesores y la selección de materiales. Los desarrollos futuros deben enfocarse en reducir el costo computacional y calibrar los modelos de deterioro y COV.DoctoradoDoctor en Ingeniería - Ingeniería AutomáticaDiseño incremental de pavimentosEléctrica, Electrónica, Automatización Y Telecomunicacione
    corecore