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Abstract 18 

This study evaluates the applicability of using a robust, novel, data-driven method in proposing 19 

surrogate models to predict the maximum dry unit weight, optimum moisture content, and 20 

California bearing ratio of coarse-grained soils using only the results of the grain size distribution 21 

analysis. The data-driven analysis has been conducted using evolutionary polynomial regression 22 

analysis (MOGA-EPR), employing a comprehensive database. The database included the particle 23 

diameter corresponding to a percentage of the passing of 10%, 30%, 50%, and 60%, coefficient of 24 

uniformity, coefficient of curvature, dry unit weight, optimum moisture content, and California 25 

bearing ratio. The statistical assessment results illustrated that the MOGA-EPR provides robust 26 

models to predict the maximum dry unit weight, optimum moisture content, and California bearing 27 

ratio. The new models’ performance has also been compared with the empirical models proposed 28 

by different researchers. It was found from the comparisons that the new models provide enhanced 29 

accuracy in predictions as these models scored lower mean absolute error and root mean square 30 

error, mean values closer to one, and higher 𝑎𝑎20 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and coefficient of correlation. Therefore, 31 

the new models can be used to ensure more optimized and robust design calculations.  32 

Keywords: maximum dry unit weight; optimum moisture content, California bearing ratio, 33 

evolutionary computing, gain size distribution  34 

 35 

 36 

 37 
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List of symbols 38 

ANN The artificial neural network 
𝐴𝐴 The percentage of amorphous 
𝐶𝐶𝑎𝑎 The percentage of calcite 
𝐶𝐶 The percentage of corund 
𝐶𝐶𝐶𝐶 The compaction energy 
𝐷𝐷10 The diameter of the particle corresponding to 10% percentage of passing 

      
𝐷𝐷30 The diameter of the particle corresponding to 30% percentage of passing 

      
𝐷𝐷50 The diameter of the particle corresponding to 50% percentage of passing 

      
𝐷𝐷60 The diameter of the particle corresponding to 60% percentage of passing 

      
𝑖𝑖  The void ratio 
ELM   The extreme learning machine 
𝐹𝐹1.18 The percentage of passing from sieve with opening of 1.18 mm 
𝐹𝐹2.36 The percentage of passing from sieve with opening of 2.36 mm 
𝐹𝐹4.75 The percentage of passing from sieve with opening of 4.75 mm 
𝐹𝐹9.5 The percentage of passing from sieve with opening of 9.5 mm 
𝐹𝐹25 The percentage of passing from sieve with opening of 25 mm 
𝐹𝐹𝑖𝑖𝐹𝐹 The percentage of feldspar 
𝐺𝐺  The percentage of gravel 
GEP  The gene expression programming 
𝐺𝐺𝐺𝐺 The grading modulus 
GPR  The Gaussian process regression 
𝐺𝐺𝐺𝐺  The specific gravity 
𝐼𝐼𝐷𝐷  The relative density 
𝐿𝐿𝐴𝐴  The result of the  Los Angeles  abrasion test, 𝑄𝑄 is the percentage of quartz 
𝐿𝐿𝐿𝐿  The liquid limit 
LRA  The linear regression analysis 
MARC-C  The multivariate adaptive regression splines with piecewise cubic 
MLRA  The multiple linear regression analysis 
MNLR The multiple nonlinear regression analysis 
MARS-L The multivariate adaptive regression splines with piecewise linear 
𝑁𝑁60  The corrected result of the standard penetration test 
𝑃𝑃𝐹𝐹 The percentage of fine content 
𝑃𝑃𝐼𝐼  The plasticity index 
𝑃𝑃𝐿𝐿 The plastic limit 
𝑃𝑃𝑃𝑃𝑃𝑃  The peak particle velocity 
𝑃𝑃𝑃𝑃𝑃𝑃2𝑚𝑚  The peak particle velocity at a distance of 2 m from the source 
𝑆𝑆  The percentage of sand 
𝑆𝑆𝐿𝐿  The shrinkage limit 
SVM The support vector machine 
SVR  The support vector regression 
𝑊𝑊𝐶𝐶  The water content 
𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑  The dry density 
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𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  The dry density at the plastic limit 
𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 The maximum dry density 
𝛾𝛾𝑠𝑠  The saturated unit weight of the soil 

Introduction 39 

Accurate determination of the maximum dry unit weight, optimum moisture content and California 40 

bearing ratio (𝐶𝐶𝐶𝐶𝐶𝐶) is essential for the construction and design of pavements and other highway-41 

related applications. However, the tests required to obtain these parameters are expensive and time-42 

consuming. Therefore, it would be better to have robust predictive models that can be readily used 43 

to obtain these parameters. In addition, these models can also be used to double-check the quality 44 

of the laboratory tests, serving as an additional quality control check of the accuracy of the tests 45 

conducted in the laboratory. Thus, due to the urgent need for tools to predict these parameters, 46 

there have been many attempts in the literature to propose models to aid the prediction using linear 47 

regression analysis (LRA) (NCHRP, 2001; Gurtug and Sridharan, 2002; Gurtug et al., 2004; Ali 48 

et al., 2019; Katte et al., 2019; Gül and Çayir, 2020), multiple linear regression analysis (MLRA) 49 

(Reddy and Pavani, 2006;   Vinod and Reena, 2008;  Breytenbach et al., 2010; Patel and Desai, 50 

2010; Yildirim and Gunaydin, 2011; Ferede, 2012; Alawi and Rajab, 2013; Mujtaba et al., 2013; 51 

Patel and Patel, 2013; Ramasubbarao and Siva Sankar, 2013; Talukdar, 2014; Erzin and Turkoz, 52 

2016a, b; Rehman et al., 2017; Saikia et al., 2017; Al-Hamdani, 2018; Farias et al., 2018; Hohn et 53 

al., 2022), and soft computing techniques (Yildirim and Gunaydin, 2011; Venkatasubramanian and 54 

Dhinakaran, 2011; Kumar et al., 2013;  Erzin and Turkoz, 2016a; Kurnaz and Kaya, 2019; Alam et al., 55 

2020). The information collected from previous studies regarding the type of soil employed in the 56 

analysis, number of data points, soil parameters employed in the prediction, technique employed 57 

in the prediction, and the proposed models (if applicable) are presented in Table 1.  58 
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Carefully looking at Table 1, it is clear that majority of past studies have been concerned with the 59 

predictions of the optimum moisture content, maximum dry unit weight, and 𝐶𝐶𝐶𝐶𝐶𝐶 for fine-grained 60 

soils. In addition, most of previous studies utilized the percentage of gravel, sand, fine content, 61 

and Atterberg limits to aid the prediction of the of the optimum moisture content, maximum dry 62 

unit weight, and 𝐶𝐶𝐶𝐶𝐶𝐶. However, there have been very few attempts to predict the optimum 63 

moisture content, maximum dry unit weight, and 𝐶𝐶𝐶𝐶𝐶𝐶 using the grain size distribution analysis. 64 

In addition, part of previous studies has employed soft computing techniques to predict the 65 

aforementioned parameters. However, these previous studies have either proposed complicated 66 

models based on limited data or did not propose any model from the artificial intelligence analysis. 67 

On the other hand, the models proposed in the literature which correlates the aforementioned 68 

parameters with the grain size distribution curve have been proposed using simple regression 69 

analyses, although it is widely recognized now that classical regression analyses are not the best 70 

solution to develop predictive models due to overfitting issues (Alzabeebee and Chapman, 2020). 71 

Based on the above review, it is clear that there are gaps in knowledge as the previous studies 72 

either proposed simple models based on simple regression analysis or complicated models based 73 

on artificial intelligence modelling and using limited data. Therefore, the present study aims to 74 

employ an extensive database of grain size distribution in an advanced regression analysis aided 75 

by a genetic algorithm to provide relatively simple and more robust models to predict the optimum 76 

moisture content, maximum dry unit weight and 𝐶𝐶𝐶𝐶𝐶𝐶 utilizing the results of the grain size 77 

distribution for coarse-grained soils.  78 
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Table 1: Review of previous studies 79 

No. Reference Type of 
soil  

Number 
of 
points 
of the 
database 

Methodology 
employed in 
the 
prediction 

Input 
variables 

Output 
variable The proposed model/s 

1* NCHRP (2001) 

Coarse-
grained 
soils with 
𝑃𝑃𝐼𝐼 = 0 

NP LRA 𝐷𝐷60 𝐶𝐶𝐶𝐶𝐶𝐶 

𝐶𝐶𝐶𝐶𝐶𝐶 = 5   for 𝐷𝐷60 ≤ 0.01 mm 

𝐶𝐶𝐶𝐶𝐶𝐶 = 28.09 𝐷𝐷600.358 for 0.01 mm< 𝐷𝐷60 <

30 mm 

𝐶𝐶𝐶𝐶𝐶𝐶 = 95 for 𝐷𝐷60 ≥ 30 mm 

2 Gurtug and 
Sridharan (2002) Clay 86 LRA 𝑃𝑃𝐿𝐿 𝑂𝑂.𝐺𝐺.𝐶𝐶 𝑂𝑂.𝐺𝐺.𝐶𝐶 = 0.92𝑃𝑃𝐿𝐿 

3 Gurtug and 
Sridharan (2002) Clay 86 LRA 𝑃𝑃𝐿𝐿 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 = 0.98𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

4* Gurtug et al. (2004) 
Coarse-
grained 
soils 

NP LRA 𝐶𝐶𝐶𝐶 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 = 13.778 𝐶𝐶𝐶𝐶0.166 

5 Sridharan and 
Nagaraj (2005) 

Fine-
grained 
soils 

64 LRA 𝑃𝑃𝐿𝐿 𝑂𝑂.𝐺𝐺.𝐶𝐶 𝑂𝑂.𝐺𝐺.𝐶𝐶 = 0.92𝑃𝑃𝐿𝐿 

6 Sridharan and 
Nagaraj (2005) 

Fine-
grained 
soils 

64 LRA 𝑃𝑃𝐿𝐿 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 = 0.23(93.3− 𝑃𝑃𝐿𝐿) 

7 Reddy and Pavani 
(2006) 

Fine-
grained 
soils 

18 MLRA 𝑃𝑃𝐹𝐹, 𝐿𝐿𝐿𝐿. and 
𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶 = −0.388𝑃𝑃𝐹𝐹 − 0.064𝐿𝐿𝐿𝐿

+ 20.38𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 
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8 Sivrikaya et al. 
(2008) 

Fine-
grained 
soils 

10 MLRA 𝑃𝑃𝐿𝐿 and 𝐶𝐶𝐶𝐶 𝑂𝑂.𝐺𝐺.𝐶𝐶 𝑂𝑂.𝐺𝐺.𝐶𝐶 = 𝑃𝑃𝐿𝐿(1.99 − 0.165 ln𝐶𝐶𝐶𝐶) 

9 Sivrikaya et al. 
(2008) 

Fine-
grained 
soils 

10 MLRA 𝑂𝑂.𝐺𝐺.𝐶𝐶 and 
𝐶𝐶𝐶𝐶 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 

𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 = 14.34 − 0.195 ln𝐶𝐶𝐶𝐶
− 𝑂𝑂.𝐺𝐺.𝐶𝐶(0.073 ln𝐶𝐶𝐶𝐶
− 0.19) 

10 Vinod and Reena 
(2008) NP NP MLRA 𝐺𝐺, 𝑆𝑆, and 𝐿𝐿𝐿𝐿 𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶 = 0.889(𝐿𝐿𝐿𝐿 �1−

𝑆𝑆 + 𝐺𝐺
100

�) + 45.616 

11 Breytenbach et al. 
(2010) Rocks 60 MLRA 𝑃𝑃𝐼𝐼 and 𝐺𝐺𝐺𝐺 𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶 = 13,984 – 0,254𝑃𝑃𝐼𝐼 + 1,963𝐺𝐺𝐺𝐺 

12 Patel and Desai 
(2010) 

Fine-
grained 
soils 

12 MLRA 

𝐺𝐺,S, 𝐿𝐿𝐿𝐿, 𝑃𝑃𝐿𝐿, 
𝑆𝑆𝐿𝐿, 𝑃𝑃𝐼𝐼, 
𝑂𝑂.𝐺𝐺.𝐶𝐶, and 
𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 

𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶 = −0.093𝑃𝑃𝐼𝐼 − 18.78𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚
− 0.3081𝑂𝑂.𝐺𝐺.𝐶𝐶 + 43.907 

13 Yildirim and 
Gunaydin (2011) 

Fine-
grained 
soils and 
coarse-
grained 
soils 

124 MLRA 

𝐺𝐺, 𝑆𝑆, 𝑃𝑃𝐹𝐹, 
𝐿𝐿𝐿𝐿, 𝑃𝑃𝐿𝐿, 
𝑂𝑂.𝐺𝐺.𝐶𝐶, and 
𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 

𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶 = 0.22𝐺𝐺 + 0.045𝑆𝑆 + 4.739𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚
+ 0.122𝑂𝑂.𝐺𝐺.𝐶𝐶 

14 Yildirim and 
Gunaydin (2011) 

Fine-
grained 
soils and 
coarse-
grained 
soils 

124 ANN 

𝐺𝐺, 𝑆𝑆, 𝑃𝑃𝐹𝐹, 
𝐿𝐿𝐿𝐿, 𝑃𝑃𝐿𝐿, 
𝑂𝑂.𝐺𝐺.𝐶𝐶, and 
𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 

𝐶𝐶𝐶𝐶𝐶𝐶 NP 

15 
Venkatasubramanian 
and Dhinakaran 
(2011) 

NP 15 ANN 

𝐺𝐺, 𝑆𝑆, 𝑃𝑃𝐹𝐹, 
𝐿𝐿𝐿𝐿, 𝑃𝑃𝐿𝐿, 𝑃𝑃𝐼𝐼, 
𝑂𝑂.𝐺𝐺.𝐶𝐶, and 
𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 

𝐶𝐶𝐶𝐶𝐶𝐶 NP 

16 Ferede (2012) 
Fine-
grained 
soils 

27 MLRA 
𝐿𝐿𝐿𝐿, 𝑂𝑂.𝐺𝐺.𝐶𝐶, 
and 
𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 

𝐶𝐶𝐶𝐶𝐶𝐶 
𝐶𝐶𝐶𝐶𝐶𝐶 = −1.764− 0.169𝐿𝐿𝐿𝐿 −  0.35𝑂𝑂.𝐺𝐺.𝐶𝐶

+ 17.965𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚  
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17 Alawi and Rajab 
(2013) 

Coarse-
grained 
soils 

19 MLRA 

𝐺𝐺, 𝑆𝑆, 𝑃𝑃𝐹𝐹, 
LA, 𝑂𝑂.𝐺𝐺.𝐶𝐶, 
and 
𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 

𝐶𝐶𝐶𝐶𝐶𝐶 
𝐶𝐶𝐶𝐶𝐶𝐶 =  −112.4335 −  0.2856 𝐿𝐿𝐴𝐴 

−  4.7280 𝑂𝑂.𝐺𝐺.𝐶𝐶 
+  98.4613 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 

18 Mujtaba et al. (2013) Sand 110 MLRA 
𝐺𝐺, 𝑆𝑆, 𝑃𝑃𝐹𝐹, 
𝐿𝐿𝐿𝐿, 𝑃𝑃𝐼𝐼, 𝐺𝐺𝐺𝐺, 
𝐶𝐶𝐶𝐶, and 𝐶𝐶𝐶𝐶 

𝑂𝑂.𝐺𝐺.𝐶𝐶 
log𝑂𝑂.𝐺𝐺.𝐶𝐶 = 1.67

− 0.193 log𝐶𝐶𝐶𝐶
− 0.153 log𝐶𝐶𝐶𝐶 

19 Mujtaba et al. (2013) Sand 110 MLRA 
𝐺𝐺, 𝑆𝑆, 𝑃𝑃𝐹𝐹, 
𝐿𝐿𝐿𝐿, 𝑃𝑃𝐼𝐼, 𝐺𝐺𝐺𝐺, 
𝐶𝐶𝐶𝐶, and 𝐶𝐶𝐶𝐶 

𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 = 4.49 log𝐶𝐶𝐶𝐶 + 1.15 log𝐶𝐶𝐶𝐶 + 10.2 

20 Patel and Patel 
(2013) 

Fine-
grained 
soils 

29 MLRA 

𝐺𝐺, 𝑆𝑆, 𝑃𝑃𝐹𝐹, 
𝐿𝐿𝐿𝐿, 𝑃𝑃𝐿𝐿, 𝑃𝑃𝐼𝐼, 
𝑂𝑂.𝐺𝐺.𝐶𝐶, and 
𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 

𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶 = 2.408𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 − 0.1283𝑂𝑂.𝐺𝐺.𝐶𝐶
− 39.345 

21 Ramasubbarao and 
Siva Sankar (2013) 

Fine-
grained 
soils 

25 MLRA 

𝐺𝐺, 𝑆𝑆, 𝑃𝑃𝐹𝐹, 
𝐿𝐿𝐿𝐿, 𝑃𝑃𝐿𝐿, 
𝑂𝑂.𝐺𝐺.𝐶𝐶, and 
𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 

𝐶𝐶𝐶𝐶𝐶𝐶 

𝐶𝐶𝐶𝐶𝐶𝐶 = 0.064𝑃𝑃𝐹𝐹 + 0.082𝑆𝑆 + 0.033𝐺𝐺
− 0.069𝐿𝐿𝐿𝐿 + 0.157𝑃𝑃𝐿𝐿
− 1.81𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚
− 0.061𝑂𝑂.𝐺𝐺.𝐶𝐶 

22 Kumar et al. (2013) 

Fine-
grained 
soils and 
coarse-
grained 
soils 

60 ANN 

𝑆𝑆, 𝑃𝑃𝐹𝐹, 𝐿𝐿𝐿𝐿, 
𝑃𝑃𝐿𝐿, 𝑃𝑃𝐼𝐼, 
𝑂𝑂.𝐺𝐺.𝐶𝐶, and 
𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 

𝐶𝐶𝐶𝐶𝐶𝐶 NP 

23 Talukdar (2014) 
Fine-
grained 
soils 

16 MLRA 

𝐺𝐺, 𝑆𝑆, 𝑃𝑃𝐹𝐹, 
𝐿𝐿𝐿𝐿, 𝑃𝑃𝐿𝐿, 𝑃𝑃𝐼𝐼, 
𝑂𝑂.𝐺𝐺.𝐶𝐶, and 
𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 

𝐶𝐶𝐶𝐶𝐶𝐶 
𝐶𝐶𝐶𝐶𝐶𝐶 = 0.127𝐿𝐿𝐿𝐿 + 0.00𝑃𝑃𝐿𝐿 − 0.1598𝑃𝑃𝐼𝐼

+ 1.405𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚
− 0.259𝑂𝑂.𝐺𝐺.𝐶𝐶 + 4.618 

24 Erzin and Turkoz 
(2016a) Sand 61 MLRA 

G, 𝐶𝐶𝐶𝐶, 𝐶𝐶𝐶𝐶, 
𝑂𝑂.𝐺𝐺.𝐶𝐶, 
𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚, 𝑄𝑄, 
𝐹𝐹𝑖𝑖𝐹𝐹, 𝐶𝐶𝑎𝑎, 𝐶𝐶, 
and 𝐴𝐴 

𝐶𝐶𝐶𝐶𝐶𝐶 

𝐶𝐶𝐶𝐶𝐶𝐶 = −140.132 − 0.16𝑄𝑄 − 0.305𝐹𝐹𝑖𝑖𝐹𝐹
− 0.195𝐶𝐶𝑎𝑎 − 0.436𝐶𝐶
− 0.45𝐴𝐴 + 102.192𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚
− 6.89𝐺𝐺 + 49.869𝐶𝐶𝐶𝐶
− 13.195𝐶𝐶𝐶𝐶 + 0.844𝑂𝑂.𝐺𝐺.𝐶𝐶 
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25 Erzin and Turkoz 
(2016a) Sand 61 ANN 

G, 𝐶𝐶𝐶𝐶, 𝐶𝐶𝐶𝐶, 
𝑂𝑂.𝐺𝐺.𝐶𝐶, 
𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚, 𝑄𝑄, 
𝐹𝐹𝑖𝑖𝐹𝐹, 𝐶𝐶𝑎𝑎, 𝐶𝐶, 
and 𝐴𝐴 

𝐶𝐶𝐶𝐶𝐶𝐶 
𝐶𝐶𝐶𝐶𝐶𝐶 = [(0.9 + tanh𝑊𝑊) × 22.4] + 2.04, 
where 𝑊𝑊 is a very complicated model with 10 
variables and 31 terms  

26 Erzin and Turkoz 
(2016b) Sand NP MLRA 

𝑂𝑂.𝐺𝐺.𝐶𝐶, 𝐺𝐺𝐺𝐺, 
𝐼𝐼𝐷𝐷, 𝐶𝐶𝐶𝐶, and 
𝐶𝐶𝐶𝐶 

𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶 = −33: 229 + 0.3𝑂𝑂.𝐺𝐺.𝐶𝐶 + 11.344𝐺𝐺𝐺𝐺
+ 0.618𝐼𝐼𝐷𝐷 − 21.440𝐶𝐶𝐶𝐶 + 1.302𝐶𝐶𝐶𝐶 

27* Erzin and Turkoz 
(2016b) Sand NP MLRA 

𝑂𝑂.𝐺𝐺.𝐶𝐶, 𝐺𝐺𝐺𝐺, 
𝐼𝐼𝐷𝐷, 𝐶𝐶𝐶𝐶, and 
𝐶𝐶𝐶𝐶 

𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶 =  74.07𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚  − 142.23 

28 Farooq et al. (2016) 
Fine-
grained 
soils 

105 LRA 𝐿𝐿𝐿𝐿, 𝑃𝑃𝐿𝐿, and 
𝐶𝐶𝐶𝐶 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 = −0.055𝐿𝐿𝐿𝐿 +  0 .014 𝑃𝑃𝐼𝐼

+  2 .21log (𝐶𝐶𝐶𝐶 )  +  12 .84 

29 Farooq et al. (2016) 
Fine-
grained 
soils 

105 LRA 𝐿𝐿𝐿𝐿, 𝑃𝑃𝐿𝐿, and 
𝐶𝐶𝐶𝐶 𝑂𝑂.𝐺𝐺.𝐶𝐶 𝑂𝑂.𝐺𝐺.𝐶𝐶 = 0.133𝐿𝐿𝐿𝐿 +  0.02𝑃𝑃𝐼𝐼

−  5.99log(𝐶𝐶𝐶𝐶)  +  28.60 

30* Rehman et al. (2017) 
Coarse-
grained 
soils 

70 MLRA 

𝐷𝐷10, 𝐷𝐷30, 
𝐷𝐷50, 𝐷𝐷60, 
𝐶𝐶𝐶𝐶, 𝐶𝐶𝐶𝐶, 𝐺𝐺𝐺𝐺, 
𝑂𝑂.𝐺𝐺.𝐶𝐶, and 
𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 

𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶 = 6.508 𝐷𝐷50 + 1.48 𝐶𝐶𝐶𝐶 + 3.97 

31 Saikia et al. (2017) 
Fine-
grained 
soils 

60 MLRA 𝐿𝐿𝐿𝐿 and 𝑃𝑃𝐿𝐿 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 = 21.07− 0.119𝐿𝐿𝐿𝐿 − 0.02𝑃𝑃𝐿𝐿 

32 Saikia et al. (2017) 
Fine-
grained 
soils 

60 MLRA 𝐿𝐿𝐿𝐿 and 𝑃𝑃𝐿𝐿 𝑂𝑂.𝐺𝐺.𝐶𝐶 𝑂𝑂.𝐺𝐺.𝐶𝐶 = 0.35𝐿𝐿𝐿𝐿 + 0.163𝑃𝑃𝐿𝐿 + 6.26 

33 Al-Hamdani (2018) 
Coarse-
grained 
soils 

36 MLRA 

𝐺𝐺, S, 
𝑂𝑂.𝐺𝐺.𝐶𝐶, 𝐶𝐶𝐶𝐶, 
𝐶𝐶𝐶𝐶, 𝐷𝐷10, 
𝐷𝐷30, 𝐷𝐷60, 
𝐹𝐹25, 𝐹𝐹9.5, 
𝐹𝐹4.75, 

𝐶𝐶𝐶𝐶𝐶𝐶 

𝐶𝐶𝐶𝐶𝐶𝐶 = 36.83 + 0.0196𝐹𝐹25 −
0.066𝐹𝐹9.5 + 0.102𝐹𝐹4.75 −
0.0184𝐹𝐹2.36 − 0.061𝐹𝐹1.18−
0.180𝐹𝐹0.3 − 2.076𝐺𝐺𝐷𝐷𝐷𝐷 − 0.141𝑂𝑂𝐺𝐺𝐶𝐶 +
0.078𝐺𝐺 + 0.1141𝑆𝑆 + 0.13𝐹𝐹 − 6.335𝐷𝐷10 −
0.207𝐷𝐷30 +  0.036𝐷𝐷60 + 0.012𝐶𝐶𝐶𝐶 −
0.004𝐶𝐶𝐶𝐶  
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𝐹𝐹2.36, and 
𝐹𝐹1.18 

 

34 Farias et al. (2018) 

Fine-
grained 
soils and 
coarse-
grained 
soils 

96 MLRA 

𝐺𝐺, 𝑃𝑃𝐹𝐹, 𝐿𝐿𝐿𝐿, 
𝑃𝑃𝐿𝐿, 𝑂𝑂.𝐺𝐺.𝐶𝐶, 
and 
𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 

𝐶𝐶𝐶𝐶𝐶𝐶 

𝐶𝐶𝐶𝐶𝐶𝐶 = 0.23 − 0.20𝐹𝐹 − 0.29𝐿𝐿𝐿𝐿 + 0.40𝑃𝑃𝐿𝐿 for 
𝐺𝐺 ≤ 35% 
 
𝐶𝐶𝐶𝐶𝐶𝐶 = 1.20 − 1.12𝐹𝐹 − 0.96𝐿𝐿𝐿𝐿 + 1.22𝑃𝑃𝐿𝐿 −
7.33𝑂𝑂.𝐺𝐺.𝐶𝐶 for 𝐺𝐺 > 35% 

35* Gurtug et al. (2018) 

Fine-
grained 
soils and 
coarse-
grained 
soils 

208 LRA 𝑂𝑂.𝐺𝐺.𝐶𝐶 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 =  51.88 𝑂𝑂.𝐺𝐺.𝐶𝐶−0.4 

36 Omar et al. (2018) 
Fine-
grained 
soils 

NP 
MLRA, 
ANN, and 
SVR 

𝐺𝐺, 𝑆𝑆, 𝑃𝑃𝐹𝐹, 
𝐿𝐿𝐿𝐿, 𝑃𝑃𝐿𝐿, 𝑃𝑃𝐼𝐼, 
𝐺𝐺𝑆𝑆,  

𝑂𝑂.𝐺𝐺.𝐶𝐶 
and 
𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 

NP 

37 Ali et al. (2019) 
Fine-
grained 
soils 

27 LRA 𝐿𝐿𝐿𝐿 and 𝑃𝑃𝐿𝐿 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 = 21.5 –  0.1𝐿𝐿𝐿𝐿 

38 Ali et al. (2019) 
Fine-
grained 
soils 

27 LRA 𝐿𝐿𝐿𝐿 and 𝑃𝑃𝐿𝐿 𝑂𝑂.𝐺𝐺.𝐶𝐶 𝑂𝑂.𝐺𝐺.𝐶𝐶 =  0.31𝐿𝐿𝐿𝐿 +  5 
𝑂𝑂.𝐺𝐺.𝐶𝐶 = 0.56𝑃𝑃𝐿𝐿 +  5.87 

39 Hasnat et al. (2019) 
Fine-
grained 
soils 

40 MLRA 𝐿𝐿𝐿𝐿, 𝑃𝑃𝐿𝐿 and 
𝑃𝑃𝐼𝐼 𝑂𝑂.𝐺𝐺.𝐶𝐶 𝑂𝑂.𝐺𝐺.𝐶𝐶 = 0.34𝐿𝐿𝐿𝐿 + 0.17𝑃𝑃𝐿𝐿 

40 Hasnat et al. (2019) 
Fine-
grained 
soils 

40 MLRA 𝐿𝐿𝐿𝐿, 𝑃𝑃𝐿𝐿 and 
𝑃𝑃𝐼𝐼 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 = 21.07− 0.119𝐿𝐿𝐿𝐿 − 0.02𝑃𝑃𝐿𝐿 

41 Karimpour-Fard et 
al. (2019) 

Fine-
grained 
soils and 
coarse-
grained 
soils 

728 MLRA 
𝐶𝐶𝐶𝐶, 𝐺𝐺, 𝑆𝑆, 
𝑃𝑃𝐹𝐹, 𝐺𝐺𝑆𝑆, 𝐿𝐿𝐿𝐿, 
and 𝑃𝑃𝐿𝐿 

𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 
and  

𝑂𝑂.𝐺𝐺.𝐶𝐶 
NP 
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42 Karimpour-Fard et 
al. (2019) 

Fine-
grained 
soils and 
coarse-
grained 
soils 

728 ANN 𝐶𝐶𝐶𝐶, 𝐺𝐺, 𝑆𝑆, 
𝑃𝑃𝐹𝐹, 

𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 
and  

𝑂𝑂.𝐺𝐺.𝐶𝐶 
NP 

43 Katte et al. (2019) 
Coarse-
grained 
soils 

33 MLRA 

𝐺𝐺, 𝑆𝑆, 𝑃𝑃𝐹𝐹, 
𝐿𝐿𝐿𝐿, 𝑃𝑃𝐿𝐿, 𝑃𝑃𝐼𝐼, 
𝑂𝑂.𝐺𝐺.𝐶𝐶, and 
𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 

𝐶𝐶𝐶𝐶𝐶𝐶 
𝐶𝐶𝐶𝐶𝐶𝐶 = 0.049𝐺𝐺 − 0.668𝑆𝑆 − 0.091𝑃𝑃𝐿𝐿

− 0.055𝑃𝑃𝐼𝐼 + 47.13𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚
− 2.895𝑂𝑂.𝐺𝐺.𝐶𝐶 − 20.19 

44* Katte et al. (2019) 
Coarse-
grained 
soils 

33 LRA 
𝐺𝐺, 𝑆𝑆, 𝑃𝑃𝐹𝐹, 
𝐿𝐿𝐿𝐿, 𝑃𝑃𝐿𝐿, 𝑃𝑃𝐼𝐼, 
𝑂𝑂.𝐺𝐺.𝐶𝐶, and 

𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶 = 99.08 − 5.162 𝑂𝑂.𝐺𝐺.𝐶𝐶 

45 Kurnaz and Kaya 
(2019) 

Fine-
grained 
soils and 
coarse-
grained 
soils 

158 MLRA 

𝐺𝐺, 𝑆𝑆, 𝑃𝑃𝐹𝐹, 
𝐿𝐿𝐿𝐿, 𝑃𝑃𝐼𝐼, 
𝑂𝑂.𝐺𝐺.𝐶𝐶, and 
𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 

𝐶𝐶𝐶𝐶𝐶𝐶 

𝐶𝐶𝐶𝐶𝐶𝐶 =  −2914.5 + 28.948𝐺𝐺 + 29.064𝑆𝑆
+ 28.812𝑃𝑃𝐹𝐹 + 0.070𝐿𝐿𝐿𝐿
− 0.128𝑃𝑃𝐼𝐼 + 1.574𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚
+ 0.406𝑂𝑂.𝐺𝐺.𝐶𝐶 

46 Kurnaz and Kaya 
(2019) 

Fine-
grained 
soils and 
coarse-
grained 
soils 

158 ANN 

𝐺𝐺, 𝑆𝑆, 𝑃𝑃𝐹𝐹, 
𝐿𝐿𝐿𝐿, 𝑃𝑃𝐼𝐼, 
𝑂𝑂.𝐺𝐺.𝐶𝐶, and 
𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 

𝐶𝐶𝐶𝐶𝐶𝐶 NP 

47 Alam et al. (2020) 
Fine-
grained 
soils 

20 GEP 

G, S, PF, LL, 
PL, O.M.C, 
and 
𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 

𝐶𝐶𝐶𝐶𝐶𝐶 NP 

48 Alam et al. (2020) 
Fine-
grained 
soils 

20 ANN 

G, S, PF, LL, 
PL, O.M.C, 
and 
𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 

𝐶𝐶𝐶𝐶𝐶𝐶 NP 
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49 Alam et al. (2020) 
Fine-
grained 
soils 

20 Krigging 
method 

G, S, PF, LL, 
PL, 𝑂𝑂.𝐺𝐺.𝐶𝐶, 
and 
𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 

𝐶𝐶𝐶𝐶𝐶𝐶 NP 

50* Duque et al. (2020) 
Coarse-
grained 
soils 

90 MLRA 𝐷𝐷10, 𝐷𝐷30, 
𝐷𝐷50, 𝐶𝐶𝐶𝐶, 𝐶𝐶𝐶𝐶 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 

𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 = 26.75− 7.1 𝐷𝐷10
+ 3.17 𝐿𝐿𝑁𝑁(𝐷𝐷10)
+ 0.53 𝐿𝐿𝑁𝑁 (𝐷𝐷50) 

51* Duque et al. (2020) 
Coarse-
grained 
soils 

90 MLRA 𝐷𝐷10, 𝐷𝐷30, 
𝐷𝐷50, 𝐶𝐶𝐶𝐶, 𝐶𝐶𝐶𝐶 𝑂𝑂.𝐺𝐺.𝐶𝐶 𝑂𝑂.𝐺𝐺.𝐶𝐶 = 9.92 𝐷𝐷50−0.175𝐶𝐶𝐶𝐶−0.058 

52* Duque et al. (2020) 
Coarse-
grained 
soils 

90 MLRA 

𝐷𝐷10, 𝐷𝐷30, 
𝐷𝐷50, 𝐶𝐶𝐶𝐶, 
𝐶𝐶𝐶𝐶, 𝑂𝑂.𝐺𝐺.𝐶𝐶, 
and 
𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 

𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶 = 11.03 + 6.61 𝐷𝐷60 

53 Tenpe and Patel 
(2020a) 

Fine-
grained 
soils and 
coarse-
grained 
soils 

389 GEP 

𝐺𝐺, 𝑆𝑆, 𝑃𝑃𝐹𝐹, 
𝐿𝐿𝐿𝐿, 𝑃𝑃𝐿𝐿, 𝑃𝑃𝐼𝐼, 
𝑂𝑂.𝐺𝐺.𝐶𝐶, and 
𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 

𝐶𝐶𝐶𝐶𝐶𝐶 

𝐶𝐶𝐶𝐶𝐶𝐶 = (𝐺𝐺 − 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚
2(𝑃𝑃𝐼𝐼 − 1.142)

− 𝑂𝑂.𝐺𝐺.𝐶𝐶)1/3

− �
(𝐿𝐿𝐿𝐿 + 𝑆𝑆 − 𝑃𝑃𝐹𝐹)

1
3

1.6056
�

+ 11.308 

54 Tenpe and Patel 
(2020a) 

Fine-
grained 
soils and 
coarse-
grained 
soils 

389 SVM 

𝐺𝐺, 𝑆𝑆, 𝑃𝑃𝐹𝐹, 
𝐿𝐿𝐿𝐿, 𝑃𝑃𝐿𝐿, 𝑃𝑃𝐼𝐼, 
𝑂𝑂.𝐺𝐺.𝐶𝐶, and 
𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 

𝐶𝐶𝐶𝐶𝐶𝐶 NP 

55 Tenpe and Patel 
(2020b) 

Fine-
grained 
soils and 
coarse-
grained 
soils 

389 ANN 

𝐺𝐺, 𝑆𝑆, 𝑃𝑃𝐹𝐹, 
𝐿𝐿𝐿𝐿, 𝑃𝑃𝐿𝐿, 𝑃𝑃𝐼𝐼, 
𝑂𝑂.𝐺𝐺.𝐶𝐶, and 
𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 

𝐶𝐶𝐶𝐶𝐶𝐶 NP 
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56 Gül and Çayir 
(2020) 

Fine-
grained 
soils and 
coarse-
grained 
soils 

21 LRA 
WC, 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 , 
N60, and 
PPV 

𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶 = 2.1199𝑁𝑁60− 2.606 
𝐶𝐶𝐶𝐶𝐶𝐶 = −7.3457𝑃𝑃𝑃𝑃𝑃𝑃2𝑚𝑚 + 116.9 

57 Bardhan et al. 
(2021a) 

Clay, silt 
and sand 312 ELM and 

SVM 

𝐺𝐺, 𝑆𝑆, 𝑃𝑃𝐹𝐹, 
𝑃𝑃𝐼𝐼, 𝑂𝑂.𝐺𝐺.𝐶𝐶, 
and 
𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 

𝐶𝐶𝐶𝐶𝐶𝐶 NP 

58 Bardhan et al. 
(2021b) 

Clay, silt 
and sand 312 

MARS-L,  
MARS-C, 
GPR, and 
GEP 

𝐺𝐺, 𝑆𝑆, 𝑃𝑃𝐹𝐹, 
𝑃𝑃𝐼𝐼, 𝑂𝑂.𝐺𝐺.𝐶𝐶, 
and 
𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 

𝐶𝐶𝐶𝐶𝐶𝐶 NP 

59 Hohn et al. (2022) 

Fine-
grained 
soils and 
coarse-
grained 
soils 

169 MNLRA 𝑃𝑃𝐹𝐹, 𝐿𝐿𝐿𝐿, 𝑖𝑖, 
𝑃𝑃𝐿𝐿, and 𝛾𝛾𝑠𝑠 

𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 = 4.1(2.31𝛾𝛾𝑠𝑠0.5 + 0.27𝑃𝑃𝐿𝐿0.73

+ 0.025𝑃𝑃𝐹𝐹)0.72 

60 Hohn et al. (2022) 

Fine-
grained 
soils and 
coarse-
grained 
soils 

169 MNLRA 

𝑃𝑃𝐹𝐹, 𝐿𝐿𝐿𝐿, 𝑃𝑃𝐿𝐿, 
𝑃𝑃𝐼𝐼, 𝑂𝑂.𝐺𝐺.𝐶𝐶, 
and 
𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 

𝑂𝑂.𝐺𝐺.𝐶𝐶 𝑂𝑂.𝐺𝐺.𝐶𝐶 = 0.1𝐿𝐿𝐿𝐿 + 0.07𝑃𝑃𝐿𝐿1.44 + 0.09𝑃𝑃𝐹𝐹
+ 2𝑖𝑖0.27 

Note: NP means that information has not been clearly illustrated in the original source 80 
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Data used in the study 81 

An extensive literature survey has been conducted in this paper to collect a useful and 82 

comprehensive database for coarse-grained soils. This resulted in collecting 90 data points from 83 

the studies of Rehman et al. (2017) and Duque et al. (2020). Duque et al. (2020) have also used 84 

this database to aid the development of his regression models. The collected data are the diameter 85 

of the particle equivalent to 10%, 30%, 50%, and 60 percentage of passing in the grain size 86 

distribution curve; these parameters have been named as 𝐷𝐷10, 𝐷𝐷30, 𝐷𝐷50 and 𝐷𝐷60. In addition, 87 

the coefficient of uniformity (𝐶𝐶𝐶𝐶) and coefficient of  curvature (𝐶𝐶𝐶𝐶), maximum dry unit weight 88 

(𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚), optimum moisture content (𝑂𝑂.𝐺𝐺.𝐶𝐶) and California bearing ratio (𝐶𝐶𝐶𝐶𝐶𝐶) have also been 89 

collected. The optimum moisture content and maximum dry unit weight have been determined in 90 

accordance with the modified Proctor test as per the ASTM-D1557 (Rehman et al., 2017; Duque 91 

et al., 2020). In addition, the 𝐶𝐶𝐶𝐶𝐶𝐶 test has been conducted for specimen at the optimum moisture 92 

content and the maximum dry density as per the modified Procter test. The statistics of the 93 

collected database are given in Table 2. Furthermore, the complete data used in the analysis are 94 

detailed in a supplementary file with this paper. 95 

It is worthy to state that correlating the grain size distribution characteristics with the optimum 96 

moisture content is valid for coarse-grained soils as the grain size distribution controls the void 97 

ratio and the latter controls the moisture content (i.e., amount of water that is needed to fill the 98 

voids). In addition, all the data used in this study are for specimens that are on the optimum 99 

moisture content and subjected to a compaction energy as per the modified Proctor compaction 100 

test. Therefore, having the same energy and the optimum moisture content mean also that the grain 101 

size distribution control the way the particles packed together due to the applied energy. This 102 

means that the grain size distribution also controls the achieved dry unit weight. Furthermore, the 103 

stiffness of the packed particles and the friction between the particles control the penetration 104 

resistance in the 𝐶𝐶𝐶𝐶𝐶𝐶 tests, and hence, the grain size distribution also controls the achieved 𝐶𝐶𝐶𝐶𝐶𝐶. 105 

 106 

 107 
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Table 2: Statistics of the database employed in this study  108 

Statistical 

measure 

𝐷𝐷10 

(mm) 

𝐷𝐷30 

(mm) 

𝐷𝐷50 

(mm) 

𝐷𝐷60 

(mm) 
𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶 

𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 

(kN/m3) 

𝑂𝑂.𝐺𝐺.𝐶𝐶 

(%) 

𝐶𝐶𝐶𝐶𝐶𝐶 

(%) 

Minimum 0.07 0.11 0.18 0.20 1.69 0.04 16.29 6.20 6.00 

Maximum 0.90 3.00 10.00 14.00 77.78 4.09 21.90 15.40 90.00 

Mean 0.21 0.49 1.24 1.70 8.93 0.85 19.63 10.95 22.06 

Standard 

deviation 
0.15 0.51 1.68 2.37 13.37 0.56 1.25 2.21 16.69 

The implementation of evolutionary polynomial regression analysis (EPR-MOGA) 109 

The novel models developed in this paper to obtain the recompression index are based on a 110 

technique called multi-objective genetic algorithm evolutionary polynomial regression analysis 111 

(EPR-MOGA) (Giustolisi and Savic, 2006; Giustolisi and Savic, 2009). This technique (i.e., EPR-112 

MOGA) is a novel hybrid intelligent modelling technique that has gained a high reputation in the 113 

literature, as it has shown its ability to provide robust models between complex dependent and 114 

independent variables (Ahangar Asr et al., 2018; Alzabeebee et al., 2018; Nassr et al., 2018a, b; 115 

Alzabeebee et al., 2019; Alzabeebee, 2019; Alzabeebee, 2020a; Alzabeebee, 2020b; Alzabeebee 116 

and Chapman, 2020; Shams et al., 2020; Wang et al., 2020). Moreover, the EPR-MOGA technique 117 

is considered as a hybrid technique because it combines the regression analysis with artificial 118 

intelligence (AI) algorithm (Alzabeebee et al., 2021a, b). The regression analysis is used to aid the 119 

process whereas the appropriate constants and exponents of the model under development are 120 
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optimized by the AI algorithm to give the best fit for the model. The EPR-MOGA modelling 121 

involves the following steps:  122 

- The input data sets are prepared for the modelling in the first step, where the data is divided 123 

into training data (80%) and validation data (20%). 124 

- The selection of the general mathematical model used to fit the input data is conducted in 125 

the second step, where the relationship between the input and output data is assumed for 126 

the modelling based on the relevant literature and optimized by trial-and-error process. 127 

This step also involves the selection of the exponents range for the mathematical model 128 

and the number of terms to be considered for the model.  129 

- The final step involves the implementation EPR-MOGA (regression analysis and AI 130 

optimization to provide the model. The developed model is carefully examined using 131 

statistical based methodology as will be discussed further in the next section. Based on the 132 

obtained statistical performance, the model might be considered appropriate or further 133 

optimization is conducted until an excellent prediction accuracy is achieved.  134 

Statistical assessment of the models 135 

The accuracy of the obtained model as well as the previously proposed models is tested by 136 

determining the coefficient of correlation (𝐶𝐶), mean absolute error (𝐺𝐺𝐴𝐴𝐶𝐶), Root mean square error 137 

(𝐶𝐶𝐺𝐺𝑆𝑆𝐶𝐶), mean (𝜇𝜇), and percentage of predictions within error range of ±20% represented by an 138 

index called 𝑎𝑎20 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. These statistical indicators have been calculated using Equations 1 to 139 

4 (Onyejekwe et al., 2015; Zhang and Goh, 2016; Moayedi and Armaghani, 2018; Moayedi and 140 

Hayati , 2018; Huang et al., 2019; Wang et al., 2019, 2020; Moayedi et al., 2019a, 2019b, 2020a, 141 

2020b; Liu et al., 2019, 2020; Goh et al., 2020; Nguyen et al., 2020a, 2020b; Zhang et al., 2020). 142 
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𝐶𝐶 =
∑ (𝑌𝑌(𝑝𝑝) − 𝑌𝑌(𝑝𝑝)𝑚𝑚𝑎𝑎𝑎𝑎𝑑𝑑𝑚𝑚𝑎𝑎𝑎𝑎

)(𝑌𝑌(𝑚𝑚) − 𝑌𝑌(𝑚𝑚)𝑚𝑚𝑎𝑎𝑎𝑎𝑑𝑑𝑚𝑚𝑎𝑎𝑎𝑎
)𝑛𝑛

𝑖𝑖=1

�∑ (𝑌𝑌(𝑝𝑝) − 𝑌𝑌(𝑝𝑝)𝑚𝑚𝑎𝑎𝑎𝑎𝑑𝑑𝑚𝑚𝑎𝑎𝑎𝑎
)2𝑛𝑛

𝑖𝑖=1 ∑ (𝑌𝑌(𝑚𝑚) − 𝑌𝑌(𝑚𝑚)𝑚𝑚𝑎𝑎𝑎𝑎𝑑𝑑𝑚𝑚𝑎𝑎𝑎𝑎
)2𝑛𝑛

𝑖𝑖=1

 
(1) 

𝐺𝐺𝐴𝐴𝐶𝐶 =  
1
𝑖𝑖
��𝑌𝑌(𝑝𝑝) − 𝑌𝑌(𝑚𝑚)�
𝑛𝑛

1

 
(2) 

𝐶𝐶𝐺𝐺𝑆𝑆𝐶𝐶 = �
1
𝑖𝑖
��𝑌𝑌(𝑝𝑝) − 𝑌𝑌(𝑚𝑚)�

2
𝑛𝑛

1

 

(3) 

𝜇𝜇 =
1
𝑖𝑖
��

𝑌𝑌(𝑝𝑝)

𝑌𝑌(𝑚𝑚)
� 

𝑛𝑛

1

 
(4) 

𝑎𝑎20 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =
𝐶𝐶𝐺𝐺𝐸𝐸 20
𝑖𝑖

 (5) 

Where, 𝑌𝑌(𝑝𝑝) is the predicted dependent variable, 𝑌𝑌(𝑚𝑚) is the measured dependent variable, 𝑖𝑖 is the 143 

number of data points used in the calculations, and  𝐶𝐶𝐺𝐺𝐸𝐸 20 is the number of estimations within 144 

error range of ±20%. 145 

Finally, the performance of the new models is compared against the available empirical models in 146 

the literature. 147 

Development of the surrogate models 148 

The database collected from previous studies has been used in the intelligent computing. As 149 

mentioned before, the database has been divided into two sets. The first set has been used to train 150 

the developed models, while the second set has been used in the model validation stage. Thus, the 151 

first set is referred to as the training set, while the second set is named the validation set. Tables 3 152 

and 4 present the statistics of the training and validation data.  153 
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Significant efforts have been given to train models to predict the maximum dry unit weight, 154 

optimum moisture content, and California bearing ratio with low error and excellent accuracy. 155 

These efforts, as has been discussed before, involved checking different exponents range, number 156 

of terms, model types and conducting statistical assessments for each produced model.  157 

The best models obtained from the intelligence computing analysis to predict the maximum dry 158 

unit weight (𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚), optimum moisture content (𝑂𝑂.𝐺𝐺.𝐶𝐶), and California bearing ratio (𝐶𝐶𝐶𝐶𝐶𝐶) 159 

are shown in Equations 6 to 8, respectively. 160 

𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 = −0.058 
𝐷𝐷50

𝐷𝐷10 𝐷𝐷60 𝐶𝐶𝐶𝐶
+ 0.355 

𝐷𝐷50
𝐷𝐷10 √𝐶𝐶𝐶𝐶 √𝐶𝐶𝐶𝐶

−
2.3
√𝐷𝐷10

− 0.0384
𝐷𝐷10

𝐷𝐷302 𝐷𝐷602 𝐶𝐶𝐶𝐶2 𝐶𝐶𝐶𝐶2
− 3.165

𝐷𝐷102

√𝐷𝐷50 √𝐶𝐶𝐶𝐶 𝐷𝐷60
+ 25.31 

(6) 

𝑂𝑂.𝐺𝐺.𝐶𝐶 = −0.0000013
𝐶𝐶𝐶𝐶2𝐷𝐷60

𝐶𝐶𝐶𝐶2𝐷𝐷102𝐷𝐷502√𝐷𝐷30
− 0.052

√𝐷𝐷30
𝐷𝐷102𝐷𝐷60

+
3.92

√𝐷𝐷30√𝐷𝐷60

− 7.245
√𝐷𝐷10√𝐷𝐷30√𝐷𝐷50

𝐷𝐷602√𝐶𝐶𝐶𝐶
+ 16.82

𝐶𝐶𝐶𝐶2𝐷𝐷102

𝐶𝐶𝐶𝐶 𝐷𝐷30√𝐷𝐷50
+ 6.76 

(7) 

𝐶𝐶𝐶𝐶𝐶𝐶 = 0.0197
√𝐷𝐷50√𝐶𝐶𝐶𝐶√𝐶𝐶𝐶𝐶
𝐷𝐷102√𝐷𝐷30

− 0.06
𝐷𝐷602

𝐷𝐷10
+ 16.41√𝐷𝐷50√𝐷𝐷60

+ 14.68
√𝐷𝐷30
√𝐷𝐷60

− 5.31
𝐷𝐷502√𝐷𝐷30

𝐷𝐷60
− 6.2 

(8) 

Figures 1a and b compare the relationship of the MOGA-EPR predictions of 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 (Equation 161 

6) and the corresponding measured values with the no error line and the ±20% error of prediction 162 

range for training and validation datasets, respectively. It is evident from the figure that the 163 

predictions are close to the no error line for both datasets. Moreover, all of the predictions are 164 

within the prediction error range of ±20% for training and validation data, indicating excellent 165 
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prediction accuracy. Both figures also show that the obtained coefficient of correlation (𝐶𝐶) is equal 166 

to 0.90 and 0.89 for both training and validation data, respectively. Figures 2a-d show the statistical 167 

performance (𝐺𝐺𝐴𝐴𝐶𝐶, 𝐶𝐶𝐺𝐺𝑆𝑆𝐶𝐶, 𝜇𝜇, and 𝑎𝑎20 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) of  Equation 6 for both training and validation 168 

data. The figures illustrate that the model obtained to predict the maximum dry density provides 169 

an excellent prediction, where the 𝐺𝐺𝐴𝐴𝐶𝐶 is very low and is equal to 0.44 and 0.37 for training and 170 

validation data, respectively. Also, the obtained 𝐶𝐶𝐺𝐺𝑆𝑆𝐶𝐶 shows that the model does not have issues 171 

related to the large error of predictions, where the obtained 𝐶𝐶𝐺𝐺𝑆𝑆𝐶𝐶 is equal to 0.57 and 0.42 for 172 

training and validation data, respectively. Furthermore, the obtained mean value is equal to 1.0 173 

(the optimum value) for both datasets. Finally, the 𝑎𝑎20 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 shows that all of the predictions 174 

are within the error range of ±20%, which has also been noticed in Figure 1. 175 

The relationship between the MOGA-EPR predictions of the 𝑂𝑂.𝐺𝐺.𝐶𝐶 (Equation 7) and the 176 

corresponding measured values of this important parameter are compared in Figures 3 a and b for 177 

both training and validation data, respectively. The figures also present the no error line, lines of 178 

prediction error of ±20%, and coefficient of correlation (𝐶𝐶). Similar to the previous paragraph's 179 

discussion, the accuracy of the predictions is clearly noticeable with the measured-predicted data 180 

very close to the no error line. It is also noticeable that almost all of the predictions are within the 181 

error range of ±20% for the training dataset, while all of the predictions are within the 182 

aforementioned error range (±20%) for the validation data. Figures 3a and b also show that the 183 

coefficient of correlation is equal to 0.89 and 0.96 for the training and validation datasets, 184 

respectively. Figures 4a-d show the statistical performance of Equation 7, where it is evident that 185 

this correlation delivers an excellent accuracy of predictions with 𝐺𝐺𝐴𝐴𝐶𝐶, 𝐶𝐶𝐺𝐺𝑆𝑆𝐶𝐶, 𝜇𝜇 and 𝑎𝑎20 −186 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 of 0.76, 0.98, 1.0 and 0.96, respectively for the training dataset and 0.49, 0.65, 1.0, and 1.0, 187 

respectively for the validation dataset.  188 
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Similarly, the relationship between the predictions of Equation 8 (the 𝐶𝐶𝐶𝐶𝐶𝐶 model) with the 189 

corresponding measured values are presented in Figures 5a and b, for both the training and 190 

validation datasets. Furthermore, the scored 𝐺𝐺𝐴𝐴𝐶𝐶, 𝐶𝐶𝐺𝐺𝑆𝑆𝐶𝐶, 𝜇𝜇 and 𝑎𝑎20 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 of this model are 191 

presented in Figures 6a-d for the training and validation dataset. Both figures indicate the excellent 192 

accuracy of the developed model with accuracy almost similar to the aforementioned models 193 

already discussed in this section. 194 

Table 3: Statistics of the training data 195 

Statistical 

measure 

𝐷𝐷10 

(mm) 

𝐷𝐷30 

(mm) 

𝐷𝐷50 

(mm) 

𝐷𝐷60 

(mm) 
𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶 

𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 

(kN/m3) 

𝑂𝑂.𝐺𝐺.𝐶𝐶 

(%) 

𝐶𝐶𝐶𝐶𝐶𝐶  

(%) 

Minimum 0.07 0.11 0.18 0.20 1.69 0.04 16.29 6.20 6.00 

Maximum 0.90 3.00 10.00 14.00 77.78 4.09 21.90 15.40 90.00 

Mean 0.21 0.51 1.33 1.76 9.00 0.88 19.59 10.97 22.69 

Standard 

deviation 
0.15 0.55 1.84 2.54 14.18 0.60 1.32 2.21 17.71 

 196 

 197 

 198 

 199 

 200 
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Table 4: Statistics of the validation data 201 

Statistical 

measure 

𝐷𝐷10 

(mm) 

𝐷𝐷30 

(mm) 

𝐷𝐷50 

(mm) 

𝐷𝐷60 

(mm) 
𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶 

𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 

(kN/m3) 

𝑂𝑂.𝐺𝐺.𝐶𝐶 

(%) 

𝐶𝐶𝐶𝐶𝐶𝐶 

(%) 

Minimum 0.12 0.18 0.20 0.27 2.06 0.25 18.10 6.70 7.00 

Maximum 0.70 1.10 2.10 5.10 36.43 1.08 21.50 14.50 43.00 

Mean 0.21 0.40 0.89 1.44 8.64 0.72 19.82 10.88 19.50 

Standard 

deviation 
0.13 0.27 0.69 1.48 9.84 0.31 0.96 2.29 11.79 

 202 

 203 

 204 

 205 

 206 
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 207 

(a) Training data 208 

 209 

(b) Validation data 210 

Figure 1: Comparison of the measured and hybrid prediction of the maximum dry unit weight 211 

(Equation 6) 212 
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(a) 𝐺𝐺𝐴𝐴𝐶𝐶 

 

(b) 𝐶𝐶𝐺𝐺𝑆𝑆𝐶𝐶 

 

(C) 𝜇𝜇 

 

(d) 𝑎𝑎20 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

Figure 2: Statistical performance of the surrogate model to predict the maximum dry unit weight 213 

of the soil (Equation 6) 214 
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 215 

(a) Training data 216 

 217 

(b) Validation data 218 

Figure 3: Comparison of the measured and hybrid prediction of the optimum moisture content 219 

(Equation 7) 220 
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(a) 𝐺𝐺𝐴𝐴𝐶𝐶 

 

(b) 𝐶𝐶𝐺𝐺𝑆𝑆𝐶𝐶 

 

(C) 𝜇𝜇 

 

(d) 𝑎𝑎20 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

Figure 4: Statistical performance of the surrogate model to predict the optimum moisture content 221 

of the soil (Equation 7) 222 
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 224 

(a) Training data 225 

 226 

(b) Validation data 227 

Figure 5: Comparison of the measured and hybrid prediction of the California bearing ratio 228 

(Equation 8) 229 
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(a) 𝐺𝐺𝐴𝐴𝐶𝐶 

 

(b) 𝐶𝐶𝐺𝐺𝑆𝑆𝐶𝐶 

 

(C) 𝜇𝜇 

 

(d) 𝑎𝑎20 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

Figure 6: Statistical performance of the surrogate model to predict the California bearing ratio of 230 

the soil (Equation 8) 231 
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donated with * in Table 1. These models available in the literature are already presented in Table 236 

1 and discussed in the introduction section. The comparisons are also based on the statistical 237 

performance (i.e., the obtained 𝐺𝐺𝐴𝐴𝐶𝐶, 𝐶𝐶𝐺𝐺𝑆𝑆𝐶𝐶, 𝜇𝜇, 𝑎𝑎20 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, and 𝐶𝐶). 238 

Tables 5 compares the statistical performance of Equation 6 with the models presented in Table 1 239 

(Gurtug et al., 2004; Gurtug et al., 2018; Duque et al., 2020). The training and validation datasets 240 

have been kept separated in this comparison to provide more accurate comparisons. The scored 241 

values presented in the table undoubtedly show that the new developed model is more accurate 242 

than previous models as this model scored lower error for both datasets, slightly higher mean for 243 

the validation dataset, and higher coefficient of correlation for both datasets. It is also clear from 244 

the table that the model proposed by Duque et al. (2020) is more accurate than the model developed 245 

by Gurtug et al. (2004) and Gurtug et al. (2018), where Gurtug et al. (2004) model scored very low 246 

coefficient of correlation and did not predict any point within error range of ±20% and the model 247 

of Gurtug et al. (2018) scored lower coefficient of correlation for both dataset, higher error for 248 

both dataset, and lower a20-index for the validation data compared with the new model. 249 

Table 6 assesses the performance of Equation 7 against the model proposed by Duque et al. (2020) 250 

to predict the optimum moisture content. The scored statistical indicators also demonstrate that the 251 

new model is better than the available one, and for both datasets. The main significant difference 252 

in both models is that the new models scored much less 𝐺𝐺𝐴𝐴𝐶𝐶 and 𝐶𝐶𝐺𝐺𝑆𝑆𝐶𝐶 for the validation dataset. 253 

In addition, the 𝑎𝑎20 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 values show that the new model provides 100% predictions within 254 

an error range of ±20% for the validation dataset, while Duque et al. (2020) model only predicted 255 

56% of the data within this error range. Furthermore, the new model also provides a lower error, 256 
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higher 𝑎𝑎20 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, and higher coefficient of correlation for the training dataset compared with 257 

Duque et al. (2020) model.     258 

Finally, Table 7 compares the performance of Equation 8 (the new model to predict the California 259 

bearing ratio) with the previous empirical models. The new model shows better performance for 260 

both datasets with a lower error, mean  closer to the optimum value,  higher percentage of 261 

predictions within an error range of ±20% and higher coefficient of correlation. Duque et al. (2020) 262 

model also scored good performance for the training dataset. However, this model only predicted 263 

11% of the validation data within an error range of 20%, although the scored coefficient of 264 

correlation was remarkably high (0.90), and the obtained mean value was also close to the optimum 265 

value. This indicates that the coefficient of correlation and the mean cannot be used alone to judge 266 

a model's accuracy. Overall, Katte et al. (2019) model provides the poorest prediction for both 267 

datasets with 𝐺𝐺𝐴𝐴𝐶𝐶, 𝐶𝐶𝐺𝐺𝑆𝑆𝐶𝐶,  𝜇𝜇, 𝑎𝑎20 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, and 𝐶𝐶 equal to 22.18, 23.29, 2.38, 0.03, and 0.72, 268 

respectively for the training dataset and 23.53, 28.22, 2.6, 0.22, and 0.87, respectively for the 269 

validation dataset. 270 

Table 5: Comparison of the developed model and the previous empirical models to predict the 271 

maximum dry unit weight  272 

Dry unit weight model Data set 𝐺𝐺𝐴𝐴𝐶𝐶 𝐶𝐶𝐺𝐺𝑆𝑆𝐶𝐶 𝜇𝜇 𝑎𝑎20 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐶𝐶 

Present study (Equation 6) 

Training data 

0.44 0.57 1.00 1.00 0.90 

Gurtug et al. (2004) 9.09 9.38 0.54 0.00 0.50 

Gurtug et al. (2018) 1.21 1.54 1.03 1.00 0.6 

Duque et al. (2020) 0.59 0.72 1.00 1.00 0.84 
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Present study (Equation 6) 

Validation data 

0.37 0.42 1.00 1.00 0.89 

Gurtug et al. (2004) 9.84 9.98 0.51 0.00 0.41 

Gurtug et al. (2018) 1.74 2.21 1.01 0.94 0.59 

Duque et al. (2020) 1.34 1.63 0.98 1.00 0.89 

Table 6: Comparison of the developed model and the previous empirical models to predict the 273 

optimum moisture content 274 

𝑂𝑂.𝐺𝐺.𝐶𝐶 model Data set 𝐺𝐺𝐴𝐴𝐶𝐶 𝐶𝐶𝐺𝐺𝑆𝑆𝐶𝐶 𝜇𝜇 𝑎𝑎20 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐶𝐶 

Present study (Equation 7) 
Training data 

0.76 0.98 1.01 0.96 0.89 

Duque et al. (2020) 0.96 1.21 1.00 0.92 0.84 

Present study (Equation 7) 
Validation data 

0.49 0.65 1.00 1.00 0.96 

Duque et al. (2020) 2.32 2.92 1.14 0.56 0.91 

 275 

 276 

Table 7: Comparison of the developed model and the previous empirical models to predict the 277 

California bearing ratio  278 

California bearing ratio Data set 𝐺𝐺𝐴𝐴𝐶𝐶 𝐶𝐶𝐺𝐺𝑆𝑆𝐶𝐶 𝜇𝜇 𝑎𝑎20 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐶𝐶 

Present study (Equation 8) 

Training data 

2.05 2.66 1.04 0.83 0.99 

Duque et al. (2020) 3.26 4.46 1.09 0.75 0.97 

Rehman et al. (2017) 7.53 16.88 1.04 0.39 0.95 

Katte et al. (2019) 22.18 23.29 2.38 0.03 0.72 
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NCHRP (2001) 9.38 10.36 1.57 0.17 0.94 

Present study (Equation 8) 

Validation data 

3.24 4.10 1.10 0.70 0.93 

Duque et al. (2020) 14.62 20.79 1.30 0.11 0.90 

Rehman et al. (2017) 17.37 26.17 1.43 0.22 0.87 

Katte et al. (2019) 23.53 28.22 2.68 0.22 0.87 

NCHRP (2001) 15.57 21.14 1.82 0.28 0.92 

Conclusions 279 

In this paper, the MOGA-EPR technique was used to developed accurate models to predict the 280 

maximum dry unit weight, optimum moisture content, and California bearing ratio of coarse-281 

grained soils based on the results obtained from grain size distribution analysis. In addition, the 282 

developed models have been compared with those available in the literature using statistical 283 

performance parameters (mean absolute error (𝐺𝐺𝐴𝐴𝐶𝐶), root mean square error (𝐶𝐶𝐺𝐺𝑆𝑆𝐶𝐶), mean (𝜇𝜇), 284 

𝑎𝑎20 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, and coefficient of correlation (𝐶𝐶)). the following conclusions can be drawn:  285 

1- The model proposed in this paper to predict the maximum dry unit weight (Equation 6) 286 

shows more reliable predications compared with the models proposed in the literature. The 287 

𝐺𝐺𝐴𝐴𝐶𝐶, 𝐶𝐶𝐺𝐺𝑆𝑆𝐶𝐶, 𝜇𝜇, 𝑎𝑎20 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and 𝐶𝐶 for this model are 0.44, 0.57, 1.00, 1.00 ad 0.90, 288 

respectively for the training dataset and 0.37, 0.42, 1.00, 1.00 and 0.89, respectively for the 289 

validation dataset (see Table 5 for detailed comparison).  290 

2-  The model proposed in this paper to predict the optimum moisture contains prediction 291 

(Equation 7) demonstrated better predictions than the model proposed by Duque et al. 292 

(2020). This model scored 𝐺𝐺𝐴𝐴𝐶𝐶, 𝐶𝐶𝐺𝐺𝑆𝑆𝐶𝐶, 𝜇𝜇, 𝑎𝑎20 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and 𝐶𝐶 of 0.76, 0.98, 1.01, 0.96, 293 
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and 0.89, respectively for the training dataset and 0.49, 0.65, 1.00, 1.00 and 0.96, 294 

respectively for the validation dataset (see Table 6 for detailed comparison).  295 

3- The third model proposed in this paper showed an enhanced prediction accuracy for the 296 

California bearing ratio (Equation 8) compared with the model proposed in the literature. 297 

The scored 𝐺𝐺𝐴𝐴𝐶𝐶, 𝐶𝐶𝐺𝐺𝑆𝑆𝐶𝐶, 𝜇𝜇, 𝑎𝑎20 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and 𝐶𝐶 for this model are 2.05, 2.66, 1.04, 0.83 298 

and 0.99, respectively for the training dataset and 3.24, 4.10, 1.10, 0.70 and 0.93, 299 

respectively for validation dataset (see Table 7 for detailed comparison).  300 

Lastly, this study has shown a coherent methodology to adopt a well-established novel AI 301 

algorithm implementation to develop simple and accurate models to predict three of the most 302 

needed parameters in the pavement design. In addition, the results demonstrated the accuracy of 303 

these models compared with the previously proposed empirical models. Hence, the proposed 304 

models can enhance the designs by reducing the time required to obtain the parameters and thus, 305 

save some costs of projects. Also, these models can also be used for experimental validation if 306 

there is a budget and time to do the compaction and 𝐶𝐶𝐶𝐶𝐶𝐶 tests. 307 
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