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Abstract: An accurate estimation of the axial compression capacity of the concrete-filled steel tubular
(CFST) column is crucial for ensuring the safety of structures containing them and preventing related
failures. In this article, two novel hybrid fuzzy systems (FS) were used to create a new framework
for estimating the axial compression capacity of circular CCFST columns. In the hybrid models,
differential evolution (DE) and firefly algorithm (FFA) techniques are employed in order to obtain
the optimal membership functions of the base FS model. To train the models with the new hybrid
techniques, i.e., FS-DE and FS-FFA, a substantial library of 410 experimental tests was compiled
from openly available literature sources. The new model’s robustness and accuracy was assessed
using a variety of statistical criteria both for model development and for model validation. The
novel FS-FFA and FS-DE models were able to improve the prediction capacity of the base model by
9.68% and 6.58%, respectively. Furthermore, the proposed models exhibited considerably improved
performance compared to existing design code methodologies. These models can be utilized for
solving similar problems in structural engineering and concrete technology with an enhanced level
of accuracy.

Keywords: CCFST; hybrid; prediction; FFA; DE; FS

1. Introduction

Concrete-filled steel tube (CFST) members make better utilization of steel and concrete
than traditional bare steel or reinforced concrete structures. The steel tube gives confine-
ment to the concrete infill, while the concrete infill prevents the inward buckling of the steel
tube. CFST members have a long history of being used in a broad range of construction
projects due to their efficiency as structural components. As an example, CFSTs have been
utilized as (1) mega columns in super high-rise buildings, (2) chord members in long-span
arch bridges, (3) bridge piers, (4) floodwall piling, and (5) underwater pipeline structures,
as described by researchers like Wang et al. [1]. For the most part, the CFST components in
these situations are utilized to support compressive forces.
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When it comes to improving the compressive strength of CFST components, there
are primarily two approaches that are used. Using bigger cross sections is one approach.
However, it may increase structural weight (and as a result the seismic impact) and
decrease useable space, making it a less feasible or cost-effective solution. Alternatively,
high strength steel (i.e., with a yield stress higher than 525 MPa) and high strength concrete
(i.e., with a compressive strength greater than 70 MPa) are two additional viable methods
[AISC 360 [2]].

According to experts like Nishiyama et al. [3], Kim [4] and Han [5] and others, many
studies have been carried out to examine the behavior of conventional-strength members of
the CFST. Several researchers have experimented with the behavior of high-strength CFST
columns facilitating their adoption in practice. For example, Cederwall et al. [6], Varma [7],
Uy [8], Liu et al. [9], Mursi and Uy [10], Sakino et al. [11], Lue et al. [12], Aslani et al. [13],
and Xiong et al. [14] have performed experimental testing on high-strength rectangular
CFST short columns. Lai and Varma [15] reviewed these experiments and provided design
equations for calculating the cross-sectional strength of high-strength rectangular CFST
columns and also effective stress-strain relationships for the steel tube and concrete infill of
such high-strength components.

Additional experimental tests on CFST columns were conducted by Gardner and Ja-
cobson [16], Bergmann [17], O’Shea and Bridge [18], Schneider [19], O’Shea and Bridge [20],
Giakoumelis and Lam [21], Sakino et al. [11], Zeghiche and Chaoui [22], Yu et al. [23],
de Oliveira et al. [24], Liew and Xiong [25], Chen et al. [26]. The experimental results
from previous studies have been employed in this study in order to build an experimental
database. It is noted, however, that experiments featuring columns with fibers in the
concrete, stainless or aluminum steel tubing, grease on the inner surface of the tubing, or
concrete infill alone were excluded from this database.

Machine learning (ML) methods have been widely used in many civil engineering
applications [27–55], particularly in compressive structures [56–59]. ML uses databases
to develop models that can solve various linear and nonlinear problems with varying
degrees of complexity. These methods, using computer processing, help considerably in
solving problems more efficiently and quickly, and is introduced as a powerful alternative
method for older, experimental and statistical models. An optimization and tree-based
approach has been developed by Sarir et al. [60] to find out the maximum capacity of
circular CFST members. Short CFST members’ load-bearing capacity was predicted by
Ahmadi et al. using an artificial neural network [61,62]. A gene expression model for
predicting circular CFST capability was established by Güneyisi et al. [63] and Ipek and
Güneyisi [64]. In the study of Moon et al. [65], the load-bearing behavior of circular CFST
was also examined using a fuzzy logic model. According to Al-Khaleefi et al. [66], the
fire resistance of CFST columns has also been studied using a machine learning method
that considers material characteristics and loading circumstances. For sections other
than circular, Ren et al. [67] recently published a study on the prediction of square CFST
members, using support vector machines and particle optimization methods. While for the
same section Tran et al. [68] used a neural network model to predict the ultimate load. Also,
Lee et al. [69] used a categorical gradient boosting algorithm to predict the strength of both
circular and rectangular CFSTs under concentric or eccentric loading. Zarringol et al. [70]
used ANN for the same problem. It can be concluded from these studies that ML methods
prove quite promising in investigating the mechanical behavior of structures made up of
CFST members.

In this research, the major goal is to develop a regression machine learning model
for compressive circular CFST, particularly in contemporary buildings. This was achieved
using a hybridizing fuzzy system (FS) with two optimization algorithms known as the
firefly algorithm (FFA) and differential evolution (DE). The input data consist of column
length, cross-section diameter and steel tube thickness in addition to concrete compressive
and steel yield stress. Precise quality metrics such as root mean-squared-error (RMSE), and
coefficient of determination (R2) were utilized throughout the model’s testing/validation
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phase. The FS-FFA and FS-DE models were evaluated and compared with existing design
code methodologies to highlight the best predictive model for the examined problem.

2. Research Significance

CFST design can be done using different methods and codes around the world.
Accurate, faster, and less costly design is one of the priorities of any structural project. Due
to the fact that an accurate CFST design has important effects on the stability of structures,
examining different techniques could give a better understanding of their effects and
behaviour. Therefore, this research, using a new generation of computational methods
developed by learning machines, is aimed at coming up with a practical solution to the
aforementioned problem. Using a combination of FS and optimization algorithms (i.e., FFA
and DE), new predictive models can be developed to more accurately and quickly evaluate
CFST design. Optimal solutions of hybrid models consisting of these conditions can be
used for new conditions and provide acceptable results considering practical applications
in industrial fields.

3. Short Literature Review on Design Codes

The design of circular CFST columns is already supported by several steel and compos-
ite codes, available worldwide. Such codes include EN1994 [71] in Europe, AISC 360 [72]
in the USA, AIJ [73] in Japan. Besides providing the squash load that is relevant for short
columns, design codes also provide methodologies to predict the resistance against flexural
buckling, which becomes the critical failure mode for long, slender columns. Local buckling
of the steel tube is also a failure mode relevant for thin-walled steel sections. It is typically
covered by placing section slenderness limits and depending on them, either accounting for
a reduced effective steel sectional area (i.e., EN1994 [71]), or limiting the ultimate stress the
composite section may reach (i.e., AISC 360 [72]). Regarding squash load, which involves
the plastic strength of the steel and concrete parts of the CFTS section, the influence of
the increased concrete confinement provided by the circular tube is typically expressed
through an increase of the concrete strength contribution. The following formulas describe
the squash loads, for the EN1994 [71], AISC 360 [72], AIJ [73] design codes (ignoring any
safety factors):

NEN1994
p =

{
ηa fy As +

(
1 + ηc

t fy
d f ′c

)
f ′c Ac , λ < 0.5

fy As + f ′c Ac , λ ≥ 0.5
(1)

NAISC360
p = fy As + 0.95 f ′c Ac (2)

NAI J
p = 1.27 fy As + 0.85 f ′c Ac (3)

Factors ηa and ηc account for the member slenderness λ. For slender columns, the
squash loads given above fail to represent the ultimate compressive load. In such cases,
buckling phenomena emerge that cause an earlier failure, depending on the global column
slenderness. The methodologies provided by the aforementioned design codes are differen-
tiated in this context. Due to space limitations the relevant expressions are not reproduced
herein however.

All design codes place specific limits on their field of application. These are related to
material strength limits, steel tube slenderness, global slenderness or steel to concrete ratio.
Table 1 presents the relevant application limits for the codes examined.
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Table 1. Design codes application limits, related to circular CFSTs.

Code
fy

(MPa)
f
′

c
(MPa)

Section Slenderness Other

EN1994 [71] 235 ≤ fy ≤ 460 25 ≤ f ′c ≤ 50 d
t ≤ 90 235 MPa

fy
0.2 ≤ As fy

Np
≤ 0.9

AISC 360 [72] fy ≤ 525 21 ≤ f ′c ≤ 69 d
t ≤

0.31Es
fy

As ≥ 0.01Asc

AIJ [73] 235 ≤ fy ≤ 355 18 ≤ f ′c ≤ 60
d
t ≤ 1.5 23500 MPa√

min{ fy ;0.7 fu}
Le
B ≤ 50

Asc, As, and Ac are the areas of the total cross section, the steel tube and the concrete core, respectively Le is the column effective length.

4. Modeling Approaches
4.1. Fuzzy System (FS)

A chapter titled “fuzzy sets” by Professor Lotfizadeh in 1965 presented the fuzzy
theory [74]. Initially, his primary objective was to create a more accurate model of how
natural language processing works. Fuzzy sets, fuzzy events, fuzzy numbers, and phases
are only a few of the innovations he made to mathematics and engineering thanks to
these ideas. A rule base, which includes If–Then rules created by application specialists,
constitutes FS’s core component [75]. Membership functions are used to deploy the fuzzy
sets. For the FS process, the most popular fuzzifiers are Gaussian, Singleton, and Triangular.
In addition, the most often used defuzzifiers in the literature are center of gravity, center
average, and maximum. Fuzzy logic principles govern the firing of If–Then rules while the
inference engine is operating. A fuzzy rule has the following syntax [76]:

I f x1 is A1 and . . . xn is An then Y is B (4)

Fuzzy sets in U R (U is the input space) are Ai and V R (V is the output space) are B,
and X is equal to the product of the variables in the input space and the variables in the
output space, respectively. There are two types of FS controller: closed-loop and open-loop.
The product inference engine and Gaussian fuzzifier were used in the following ways:

f1(x) =

{
exp[− 1

2

(
x−m1

σ

)
] x ≤ m1

1 otherwise
(5)

f2(x) =

{
1 x ≤ m2

exp[− 1
2

(
x−m1

σ

)
] otherwise

(6)

4.2. Firefly Algorithm (FFA)

Yang was the first to propose FFA as a nature-inspired, meta-heuristic algorithm [77].
Engineers have used this method to address a variety of issues. The most critical aspects of
the FFA process are the formulation of attraction and the change in light intensity. Fireflies
will operate virtually independently in FFA modelling, which is advantageous for parallel
implementation in particular. Fireflies in this algorithm tend to congregate closer to the
optimum, making it superior to the particle swarm optimization (PSO) and the genetic
algorithm (GA) [76,78]. Figure 1 depicts FFA’s foundation for a better understanding.
Several studies, including Yang [77], Zhang and Wu [79], and Apostolopoulos and Vla-
chos [80], go into great depth regarding FFA. Reviewing past research shows that the FFA
may be utilized as a powerful tool for engineering optimization in almost all fields [81,82].
Gholizadeh and Barati [83], for example, used the PSO, FFA, and harmony search (HS) to
explore the size and form optimization of truss systems. In terms of optimizing the size
and geometry of truss structures, FFA outperformed PSO and HS.
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4.3. Differential Evolution (DE)

Storn and Price (1997) first proposed the concept of differential evolution (DE) as a
stochastic population-based search technique [84]. NP members are randomly selected
from the original population (parents) before the search may begin. Using crossover,
mutation, and selection operators, the DE technique then produces a new population (i.e.,
offspring). This iteration’s members are chosen by comparing how similar they are to the
previous iteration’s members. This cycle is repeated until the desired outcome is achieved.
The following sections describe the major stages of this algorithm [84].

4.3.1. Generating the Initial Population

If the problem’s decision variables are indicated by D, the initial population vector is
produced with a random size N*D inside the decision variables allowed range, according
to the following equation:

xio = ximin + round(ϕi × ximax − ximin), i = 1, . . . , NP (7)

There are lower and higher limits on the choice variables ximin and ximax, respectively,
while index i is a random number between 0 and 1.

4.3.2. Mutation

To carry out the mutation procedure, the following equation is used:

vi,G+1 = xr1,G + F× (xr2,G − xr3,G) (8)

There are three randomly selected members of the population in this case, and the
scaling factor F ranges from zero to two, giving us a mutant vector vi,G+1 and three
randomly picked members of the population.
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4.3.3. Crossover

This operator combines the modified particles with the members of the target group
that were chosen in the first stage as follows:

uij,G+1 =

{
vji,G+1 r<Cr or j=rni

xji,G otherwise
(9)

where j = 1, 2, . . . , D; ∈ rj [0, 1] is the random number; Cr stands for the crossover constant
∈ [0, 1]; and ∈ rni (1, 2, . . . , D) is the randomly chosen index.

4.3.4. Selection

Once all operators have been initialised to their respective goal functions, a new
measurement vector and target member are created. If the measurement vector’s value
exceeds the target member’s, the member is promoted to the next generation. If this does
not happen, the target member will be added to the population of the following generation.
Figure 2 depicts the DE’s pseudo-code.

Buildings 2021, 11, x FOR PEER REVIEW 6 of 26 
 

4.3.3. Crossover  

This operator combines the modified particles with the members of the target group 

that were chosen in the first stage as follows:  

𝑢𝑖𝑗,𝐺+1 = {
𝑣𝑗𝑖,𝐺+1  𝑟<𝐶𝑟 𝑜𝑟 𝑗 = 𝑟𝑛𝑖

𝑥𝑗𝑖,𝐺     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (9) 

where j = 1, 2, …, D; ∈ rj [0, 1] is the random number; Cr stands for the crossover constant 

∈ [0, 1]; and ∈ rni (1, 2, …, D) is the randomly chosen index. 

4.3.4. Selection  

Once all operators have been initialised to their respective goal functions, a new 

measurement vector and target member are created. If the measurement vector’s value 

exceeds the target member’s, the member is promoted to the next generation. If this does 

not happen, the target member will be added to the population of the following genera-

tion. Figure 2 depicts the DE’s pseudo-code. 

 

Figure 2. Pseudo-code of the differential evolution (DE). 

4.4. Hybridization of FS 

The CCFST is predicted using two hybrid FS-FFA and FS-DE in this research. Five 

characteristics were utilized as inputs in the hybrid FS modelling procedure, with CCFST 

ultimate load being the output. The proposed FS-FFA and FS-DE models were trained 

and tested using 328 datasets of data in the training phase and 82 datasets of data in the 

testing phase. Fuzzy-based modifications to FFA and DE are suggested in this research to 

remove or minimize model drawbacks. In this structure, the member (population) of op-

timization algorithms in each step may affect each other’s movements. For determining 

progress in the program, we used two metrics to indicate how close the algorithms are 

getting to the ideal answer. We call this loop counter (iteration) Count and its value is 

Figure 2. Pseudo-code of the differential evolution (DE).

4.4. Hybridization of FS

The CCFST is predicted using two hybrid FS-FFA and FS-DE in this research. Five
characteristics were utilized as inputs in the hybrid FS modelling procedure, with CCFST
ultimate load being the output. The proposed FS-FFA and FS-DE models were trained and
tested using 328 datasets of data in the training phase and 82 datasets of data in the testing
phase. Fuzzy-based modifications to FFA and DE are suggested in this research to remove
or minimize model drawbacks. In this structure, the member (population) of optimization
algorithms in each step may affect each other’s movements. For determining progress
in the program, we used two metrics to indicate how close the algorithms are getting to
the ideal answer. We call this loop counter (iteration) Count and its value is decided by
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expertise or via trial and error [85]. The fuzzy controller will have to deal with this last
problem. The following is an introduction to the delta parameter:

Deltai = F
(

Besti
)
− F

(
TBesti−1

)
(10)

Iteration i yields Besti, which is the best solution, whereas iteration i−1 yields TBesti−1,
which is the best solution. One of the benefits of the hybrid FS is that it regulates the
fundamental database, i.e., physics of the examined problem. As a result, convergence
speed may be improved by making the appropriate initial adjustments. A MATLAB
programme was used to implement the hybrid FS model’s code. The following equation is
used to standardize datasets before beginning hybrid FS modelling:

Xnorm =
X− Xmin

Xmax− Xmin
(11)

where X, Xmin, and Xmax represent the parameters’ real values, minimum and maximum
values, respectively, while Xnorm represents the parameter’s normalized value. FS-FFA
modeling’s most critical parameters are Npop (swarm size), Alpha (mutation coefficient),
Gamma (light absorption coefficient), Beta (attraction coefficient base value) and Maxiter
(maximum number of iterations), according to prior research [81,82,85]. Parameters’ num-
ber of iteration, crossover constant and population (Npop) are also effective for the DE
algorithm [84,86]. Following the trial and error technique, Npop of FFA was set to 50, Npop
of DE was set to 80, Alpha was set to 0.25, Gamma was set to 1, crossover constant was set
to 0.8, Beta was set to 2, and the number of iterations for both algorithms was set to 500.
Figure 3 depicts the steps involved in putting hybrid FS into practice.
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5. Data Setup

A variety of sources were used to compile the database for this study such as
Wang et al. [87], Geng [88], Dong et al. [89], Wang et al. [90], Chen et al. [91], Yang et al. [92],
Wang et al. [93], Wei et al. [94] Hoang and Fehling [95], He et al. [96]. These sources include
axial compression tests on circular CFST columns that make up 410 samples in total (whole
used datasets for modeling are presented in Appendix A). Several geometrical factors and
mechanical characteristics were utilized in these tests to investigate the failure of CFST
columns under axial stress. These are column length (L), diameter (D), and thickness (t)
as geometrical input variables. Additionally, the steel tube yield stress (fy) and the com-
pressive strength (fc) of the filling concrete are the material specific variables representing
their mechanical properties. The only output of the problem is the CFST column ultimate
experimental axial compressive load (Pexp). Table 2 shows a statistical examination of
the dataset.

Table 2. General information of dataset.

Parameter Unit Min Average Max SDT

L mm 180 720.73 4000 594.56
D mm 60 169.41 550 74.04
t mm 0.86 4.47 16.72 2.59

fy MPa 184.8 388.38 1153 170.29
fc MPa 23.2 74.98 188.1 44.01

Pexp KN 215 2992.71 29590 3213.2

6. Development of the Hybrid Models

The performance of FS-FFA and FS-DE models is discussed in this part, presenting
how well it can predict the circular CFST ultimate compressive load. In order to do this,
three quantitative standard statistical performance measures, namely R2, the a20-index,
and RMSE, have been used, as described by Equations (12)–(14) [52,58,97–102]:

RMSE =

√
1
n ∑n

i=1

(
y f r,i − ŷ f r,i

)2
(12)

R2 = 1−
∑n

i=1

(
y f r,i − ŷ f r,i

)2

∑n
i=1

(
y f r,i − y f r,i

)2 (13)

a20− index =
m20

n
(14)

where, the predicted and measured values for n data are indicated by ŷ f r,i and y f r,i, respec-
tively, and m20 is the number of samples with a value of (experimental value)/(predicted
value) ratio, between 0.80 and 1.20. The best performance of the models is achieved when
the errors (RMSE) are zero and the R2 is close to one. The performance of the developed
FS-FFA and FS-DE is presented in Table 3 in terms of R2, RMSE, and a20-index. The optimal
model values have been optimally picked having as objective to achieve the best possible
performance metrics.

Table 3. The final result of hybrid fuzzy system (FS) models.

Model
Training Testing

a20-Index R2 RMSE a20-Index R2 RMSE

FS-FFA 0.9604 0.9854 482.0362 0.8659 0.9880 415.4471

FS-DE 0.9634 0.9571 655.4708 0.8659 0.9876 419.4502
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In Table 3, it can be shown that the proposed FS-FFA and FS-DE have a good per-
formance for predicting CFST values. In the training section, the performance of the
FS-FFA model seems better in terms of RMSE and a20-index, compared to the FS-DE model
whereas the latter scores a higher R2 value. However, in the test section, the performance
of the two models proves more closely matched, with the FS-FFA achieving slightly better
metrics. Given that the FS-FFA model has been able to provide better predictions in both
sections, it becomes the preferred one for the estimation of circular CFST ultimate compres-
sive load. Figures 4 and 5 show separately for the training and the testing datasets graphs
of predicted vs. experimental loads for both hybrid models. It can be seen that both models
exhibit a consistent performance throughout the range of available compressive loads.
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7. Discussion
7.1. Comparison against Alternative Hybrid Models

In this section, a comparison is made between the developed hybrid models with
the base model and the other two traditional hybrid models. Given that optimization
algorithms have different performances for each problem, it is possible to identify their
differences and compare their performances by examining several algorithms together.
Therefore, two hybrid models, FS-genetic algorithm (GA) and FS-particle swarm opti-
mization (PSO), were developed to compare with the two developed models in this study.
The findings showed that the FS-FFA, FS-DE, FS-GA, and FS-PSO models outperformed
FS in terms of prediction accuracy for training data by 9.68%, 6.58%, 5.68%, and 1.56%
respectively. Among the hybrid models, the FS-FFA model provided the best performance
according to the various criteria for predicting circular CFST ultimate load values.

7.2. Comparison against Design Codes

In this section a comparison between the two developed models against the predictions
of the three design codes, mentioned earlier in the text (EN1994, AISC360 and AIJ) is
presented. The design code calculations were performed ignoring any safety factors. Also,
the calculations were not focused on the squash load only but took into account the relevant
for more slender columns buckling failure methodologies available in each code.

Table 4 presents the performance indices for the two developed models and the
respective ones for the design codes. The results correspond to the designated testing
datasets among the specimens in the experimental database, amounting to 82 specimens.
The various models in the Table are ranked according to their RMSE index. It appears
that the two developed models achieve a considerable improvement in almost all indices,
compared to the design codes. In particular the improvement from the best performing
code which proves the Japanese AIJ [73], is remarkable for both the RMSE and a20-index.
A marginal improvement is also found in terms of R2 index. Among design codes, the
AIJ [73] achieves improved performance compared to the other codes.

Table 4. Performance indices on the testing datasets.

Ranking Model a20-Index R2 RMSE

1 FS-FFA 0.8659 0.9880 415.4471

2 FS-DE 0.8659 0.9876 419.4502

3 AIJ [73] 0.6341 0.9842 786.3858

4 EN1994 [71] 0.5732 0.9681 1119.6477

5 AISC 360 [72] 0.3659 0.9814 1330.6249

Figure 6 illustrates for the two hybrid models and for the examined design codes,
the individual experimental vs. predicted load values for all specimens in the testing
datasets. It can be visually inspected that the FS-FFA hybrid model achieves a better fit to
the experimental values, with less outliers, over the entire range of specimens.

7.3. Limitations and Future Works

This research developed several hybrid models using artificial intelligence to predict
the ultimate compressive load of CCFST columns. These models are based on data col-
lected from laboratory works of previous research. Given that the structure of models is
highly dependent on the number of parameters, their types must be taken into account in
measuring and using such data. Laboratory outline data reduce the accuracy of prediction.
On the other hand, the purpose of this study is to develop non-linear models to more
accurately evaluate the target parameter. Therefore, a balance between the input data and
their statistical characteristics must be elaborated. By doing this, a wider range of data
can be analyzed and a model with higher power can be developed. Since these models
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have used two optimization algorithms to improve the performance of the base model,
some other optimization techniques such as the whale optimization algorithm can be
examined to increase the base model performance. The base model in this research was
made using the FS model, which has special features, while by changing the basic model to
other predictive models such as neuro-fuzzy, new results can be achieved. The last future
direction of this research can be related to increasing the number of data samples with
circular cross sections to develop a new model with a level of more generalization.

Buildings 2021, 11, x FOR PEER REVIEW 12 of 26 
 

 

(a) 
 

(b) 

 
(c) 

 
(d) 

 

(e) 

Figure 6. Experimental vs. predicted ratios: (a) the FS-FFA model, (b) the FS-DE model, (c) the AIJ design code model 

[73], (d) the EN1994 design code model [71], (e) the AISC360 design code model [72]. 

7.3. Limitations and Future Works 

This research developed several hybrid models using artificial intelligence to predict 

the ultimate compressive load of CCFST columns. These models are based on data col-

lected from laboratory works of previous research. Given that the structure of models is 

highly dependent on the number of parameters, their types must be taken into account in 

measuring and using such data. Laboratory outline data reduce the accuracy of predic-

Figure 6. Experimental vs. predicted ratios: (a) the FS-FFA model, (b) the FS-DE model, (c) the AIJ design code model [73],
(d) the EN1994 design code model [71], (e) the AISC360 design code model [72].



Buildings 2021, 11, 629 13 of 27

8. Conclusions

In this study, a novel artificial intelligence-based prediction model is used to correctly
evaluate CCFST columns’ axial compression capacity. FS and two recent nature meta-
heuristic optimization methods known as FFA and DE were combined to create two hybrid
FS-FFA and FS-DE models. It was also combined with two common optimization tech-
niques, the GA and PSO. An extensive database of 410 experimental tests for the CCFST
columns was gathered from openly available papers for this research project. A statistical
and visual analysis was undertaken to determine the effectiveness and correctness of the
findings, and the following conclusions can be reached.

According to the research findings, the suggested hybridization models outperformed
the basic FS model when it came to resolving the axial compression capacity problem.
The findings showed that the FS-FFA, FS-DE, FS-GA, and FS-PSO models outperformed
FS in terms of prediction accuracy for training data by 9.68%, 6.58%, 5.68%, and 1.56%,
respectively. According to all performance assessments, the new suggested FS-FFA model
is optimal for the prediction of the axial compression capacity of CCFTS columns, with
improved RMSE and a20-index compared with FS-DE. Additionally, the proposed model
achieved a significantly improved prediction of the ultimate compressive load compared
to available design code predictions. In particular, RMSE of the FS-FFA model was reduced
by 47% from AIJ [73] and more from the EN1994 [71] and AISC360 [72], whereas a20-index
was also considerably increased.

The base model in this research was made using the FS model, which has special
features, while by changing the basic model to other predictive models such as neuro-fuzzy,
new results can be achieved. The last future direction of this research can be related to
increasing the number of data samples with circular cross sections to develop a new model
with a greater generalization level.

This model’s performance and machine learning methods are largely reliant on the
database used. However, a more sophisticated and bigger database may have significant
effects on the hybrid FS model’s final outcomes. Other optimization techniques such as the
whale optimization algorithm can be examined to increase the base model performance.
Furthermore, other sections’ geometries of CFTS, such as squares and round-ended squares,
can also be investigated by the proposed hybrid models in this research. Close form
equations of this issue using machine learning models will be very beneficial to engineering
in the future.
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Nomenclature

DE differential evolution
D diameter
HS harmony search
CFST concrete-filled steel tubular
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CCFST circular concrete-filled steel tubular
FS fuzzy systems
FFA firefly algorithm
fc the compressive strength
fy the steel tube yield stress
PSO particle swarm optimization
L column length
t thickness
GA genetic algorithm
R2 coefficient of determination
RMSE root mean square error
Pexp ultimate axial compressive load
Npop population
ML machine learning

Appendix A

Table A1. The database used for analysis in this study.

Dataset Number fc (MPa) D (mm) L (mm) t (mm) fy (MPa) Pexp (KN)

1 34.04 60 180 1.48 307 215

2 51.3 101.9 305.7 3.03 371 926

3 34.08 60 180 1.48 307 220

4 164.4 114.3 200 6.3 428 2866

5 103.4 100 300 1.9 404 1100

6 103.4 100 300 1.9 404 1125

7 103.4 100 300 1.9 404 1170

8 51.3 101.5 304.5 3.03 371 859

9 23.1 101.6 304.8 3.03 371 635

10 23.2 101.6 304.8 3.03 371 635

11 40 101.6 304.8 3.03 371 864

12 93.6 114.57 300 3.99 343 1308

13 34.1 101.7 203.3 3.07 605.1 1112.10

14 40 101.7 305.1 3.03 371 803

15 48.3 165 562.5 2.82 363.3 1759

16 23 101.8 305.4 3.03 371 679

17 23.2 101.8 305.4 3.03 371 632

18 40.2 101.6 304.8 3.03 371 864

19 51 101.9 305.7 3.03 371 926

20 34.08 60 180 1.48 307 215

21 25.4 108 324 6.47 853 2275

22 56.99 114.3 342.9 6 342.95 1425.3

23 40.5 108 324 6.47 853 2402

24 43.9 108 1296 4 336 839

25 43.92 108 324 4 336 1235

26 77 108 324 6.47 853 2713

27 40.5 109 327 6.47 853 2446
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Table A1. Cont.

Dataset Number fc (MPa) D (mm) L (mm) t (mm) fy (MPa) Pexp (KN)

28 25 114 1250 5.91 486 1177

29 37 114 850 1.79 266 515

30 37 114 850 6 486 1334

31 31.9 114.09 300.5 3.85 343 948

32 97.2 114.26 300 3.93 343 1359

33 57.6 114.29 300 3.75 343 1067

34 31.7 114.3 1143 3.35 287.3 563.6

35 31.7 114.3 342.9 3.35 287.3 816.2

36 31.7 114.3 1143 6 343 909.7

37 31.7 114.3 800.1 6 343 1000.4

38 31.7 114.3 571.5 6 343 1218.7

39 31.75 114.3 342.9 3.35 287.33 816.2

40 31.75 114.3 342.9 6 342.95 1380

41 56.9 114.3 342.9 3.35 287.33 995.7

42 25.4 108 324 6.47 853 2275

43 57 114.3 1143 3.35 287.3 904.2

44 57 114.3 571.5 3.35 287.3 937

45 57 114.3 342.9 3.35 287.3 995.7

46 57 114.3 800.1 6 343 1244.4

47 57 114.3 571.5 6 343 1389.3

48 86.1 114.3 342.9 6 343 1673.9

49 86.2 114.3 1143 3.35 287.3 1200

50 86.2 114.3 571.5 3.35 287.3 1281.4

51 86.2 114.3 1143 6 343 1389.1

52 86.2 114.3 800.1 6 343 1509.3

53 86.2 114.3 571.5 6 343 1564.7

54 86.21 114.3 342.9 3.35 287.33 1242.2

55 86.21 114.3 342.9 6 342.95 1673.9

56 88.8 114.3 342.9 3.35 287.3 1136.20

57 88.8 114.3 571.5 3.35 287.3 1180.70

58 102.4 114.3 1143 3.35 287.3 1481.2

59 102.4 114.3 800.1 3.35 287.3 1513.5

60 102.4 114.3 571.5 3.35 287.3 1598.9

61 102.4 114.3 342.9 3.35 287.3 1610.6

62 102.4 114.3 1143 6 343 1613.5

63 102.4 114.3 800.1 6 343 1788.9

64 102.4 114.3 571.5 6 343 1827.1

65 102.43 114.3 342.9 3.35 287.33 1610.6

66 102.43 114.3 342.9 6 342.95 1943.4

67 107.2 114.3 300 2.74 235 1295.10
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Table A1. Cont.

Dataset Number fc (MPa) D (mm) L (mm) t (mm) fy (MPa) Pexp (KN)

68 107.2 114.3 600 5.9 355 1968.10

69 164.35 114.3 200 6.3 428 2595

70 164.35 114.3 200 6.3 428 2866

71 37.5 60 180 1.48 307 215

72 173.5 114.3 250 3.6 403 2340

73 173.5 114.3 250 3.6 403 2422

74 173.5 114.3 250 6.3 403 2610

75 31.4 114.43 300 3.98 343 948

76 57.6 114.49 299.3 3.75 343 1038

77 98.9 114.54 300 3.84 343 1359

78 40.2 101.7 305.1 3.03 371 803

79 34.7 114.88 300.5 4.91 365 1380

80 89.2 115 300 4.92 365 1787

81 57.6 115.02 300.5 5.02 365 1413

82 104.9 115.04 300 4.92 365 1787

83 23.2 101.8 305.4 3.03 371 679

84 34.08 120 360 1.48 307 610

85 34.08 120 360 1.48 307 660

86 36.6 159 650 5 390 2120

87 64.2 159 650 4.8 433 2210

88 56.1 165 581 2.82 363.3 2040

89 110.6 121 370 5 295 2016

90 116.7 121 370 5 295 1996

91 25.4 122 366 4.54 576 1509

92 25.4 122 366 4.54 576 1509

93 40.2 122 366 4.54 576 1657

94 40.5 122 366 4.54 576 1657

95 40.5 122 366 4.54 576 1663

96 40.5 122 366 4.54 576 1663

97 77 122 366 4.54 576 2100

98 77.2 122 366 4.54 576 2100

99 110.6 127.4 390 5.7 295 2217

100 116.7 127.4 390 5.7 295 2266

101 116.7 127.4 390 8.5 295 3106

102 42.1 133 465 2.9 325 476

103 42.1 133 465 4.5 325 492

104 42.1 133 465 4.5 325 576

105 42.2 133 2730 4.5 325 282

106 42.2 133 2730 4.5 325 293

107 42.2 133 1670 4.5 325 335
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Table A1. Cont.

Dataset Number fc (MPa) D (mm) L (mm) t (mm) fy (MPa) Pexp (KN)

108 42.2 133 1670 4.5 325 347

109 42.2 133 1670 4.5 325 412

110 42.2 133 1670 4.5 325 430

111 42.2 133 465 2.9 325 466

112 42.2 133 465 2.9 325 476

113 42.2 133 465 4.5 325 500

114 42.2 133 465 4.5 325 559

115 42.2 133 465 4.5 325 576

116 42.2 133 465 4.5 325 591

117 42.2 133 1862 4.5 325 715

118 42.2 133 2793 4.5 325 784

119 42.2 133 2793 4.5 325 800

120 95 133 405 5 295 2002

121 110.6 133 405 5 295 2142

122 116.7 133 405 5 295 2178

123 28.2 140 635 6.68 537 2715

124 52.5 140 420 4.42 1020.00 3020

125 52.5 140 420 8.36 813 4436

126 52.5 140 420 10.46 773 5420

127 125 140 420 6.21 359 3202

128 125 140 420 8.19 389 3354

129 125 140 420 8.19 389 3398

130 125 140 420 11.58 367 4104

131 125 140 420 11.58 367 4300

132 125 140 420 4.42 1020.00 4312

133 125 140 420 4.42 1020.00 4516

134 125 140 420 16.72 389 5120

135 125 140 420 6.27 1153.00 5386

136 125 140 420 8.36 813 5502

137 125 140 420 10.46 773 6187

138 125 140 420 10.46 773 6339

139 40.5 149 447 2.96 308 1080

140 77 149 447 2.96 308 1781

141 77.1 149 447 2.96 308 1781

142 95 152 465 5.5 295 2662

143 116.7 152 465 5.5 295 2851

144 170 152.4 942.9 8.8 392.6 3919.9

145 170 152.4 551.9 8.8 392.6 4200.8

146 178.4 152.4 940.2 6.3 373.4 3584.7

147 178.4 152.4 552.7 6.3 373.4 4033
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Table A1. Cont.

Dataset Number fc (MPa) D (mm) L (mm) t (mm) fy (MPa) Pexp (KN)

148 178.8 152.4 943.8 8.8 392.6 4099.8

149 180.9 152.4 949.7 5 445.9 3383.4

150 182.8 152.4 950.5 5 445.9 3995.7

151 182.8 152.4 540.7 5 445.9 4224

152 185.7 152.4 947.3 6.3 373.4 3535.3

153 185.7 152.4 554.7 6.3 373.4 3808

154 185.7 152.4 951.3 8.8 392.6 4178.7

155 185.7 152.4 559.7 8.8 392.6 4288.5

156 185.8 152.4 951.3 5 445.9 3724.1

157 185.8 152.4 548.5 5 445.9 3997.5

158 188.1 152.4 553 6.3 373.4 3692.8

159 188.1 152.4 948.5 6.3 373.4 3861.1

160 42 152.6 304.9 4.93 633.4 2909.10

161 43.4 152.6 304.9 4.9 633.4 2913.60

162 37.5 120 360 1.48 307 660

163 36.6 159 650 6.8 402 2830

164 36.6 159 650 10 355 3400

165 64.1 159 650 4.8 433 2210

166 38 165 571 2.82 363.3 1649

167 37.5 120 360 1.48 307 660

168 48.3 190 658 1.52 306.1 1841

169 48.2 165 562.5 2.82 363.3 1759

170 64.5 159 650 4.8 433 2240

171 93.6 159 650 5 390 2970

172 93.6 159 650 10 355 3400

173 93.8 159 650 5 390 2970

174 93.8 159 650 6.8 402 3410

175 106 159.6 3500 4.98 270 1454

176 71 159.7 2500 5.2 281 1562

177 101 159.7 3000 4.97 275 1636

178 70 159.8 2000 5.01 283 1650

179 73 159.8 3000 5.1 276 1468

180 100 159.8 2500 5.01 275 1818

181 102 159.8 4000 4.97 270 1333

182 45 159.9 4000 4.98 281 1091

183 40 160.1 2000 4.98 280 1261

184 74 160.1 3500 4.98 276 1326

185 100 160.1 200 4.99 275 2550

186 41 160.2 2500 4.96 281 1244

187 71 160.2 4000 5.02 281 1231
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Table A1. Cont.

Dataset Number fc (MPa) D (mm) L (mm) t (mm) fy (MPa) Pexp (KN)

188 43 160.3 3000 5 270 1236

189 99 160.3 2000 5.03 281 2000

190 158.46 164.2 652 2.5 377 3501

191 64.3 159 650 4.8 433 2210

192 38.1 165 571 2.82 363.3 1649

193 64.2 159 650 4.8 433 2240

194 48.1 165 562.5 2.82 363.3 1759

195 38.1 190 657 1.13 185.7 1308

196 37.5 120 360 1.48 307 610

197 34 120 360 1.48 307 660

198 95.8 168.6 645 3.9 363 3339

199 56.4 165 581 2.82 363.3 2040

200 67.9 165 500 2.76 350 2250

201 67.94 165 500 2.81 350 2160

202 67.94 165 500 2.76 350 2250

203 77 165 571 1.82 363.3 2608

204 34.08 180 540 1.48 307 1280

205 80.2 165 580.5 2.82 363.3 2295

206 108 165 577.5 2.82 363.3 2673

207 74.7 190 663.5 0.86 210.7 2451

208 29.5 165.2 200 3.7 366 1630.56

209 43.5 165.2 200 3.7 366 1676.42

210 43.5 165.2 200 3.7 366 1737.94

211 58 165.2 200 3.7 366 2094.15

212 58 165.2 200 3.7 366 2221.62

213 81.6 165.2 200 3.7 366 2511.3

214 81.6 165.2 200 3.7 366 2922.24

215 158.7 168.1 645 8.1 409 5254

216 48.2 190 658 1.52 306.1 1841

217 36.2 168.6 645 3.9 363 1771

218 56.3 165 581 2.82 363.3 2040

219 95.8 168.6 645 3.9 363 3339

220 165.49 168.6 648 3.9 363 4216

221 77.1 190 664 0.86 210.7 2553

222 158.75 168.7 645 5.2 405 4751

223 151.9 168.8 650 5.7 452 4930

224 56.4 190 664.5 0.86 210.7 1940

225 167.87 169 645 4.8 399 4330

226 38.2 165 571 2.82 363.3 1649

227 34 180 540 1.48 307 1280



Buildings 2021, 11, 629 20 of 27

Table A1. Cont.

Dataset Number fc (MPa) D (mm) L (mm) t (mm) fy (MPa) Pexp (KN)

228 38.2 216.5 649.5 6.61 452 4200

229 34.08 180 540 1.48 307 1311

230 37.2 180 540 1.48 307 1280

231 64.4 159 650 4.8 433 2210

232 37.5 180 540 1.48 307 1311

233 158.46 189 756 3 398 4837

234 38 190 657.5 0.86 210.7 1240

235 38 190 657 1.13 185.7 1308

236 38.1 190 657.5 0.86 210.7 1240

237 108 190 660 1.94 256.4 3360

238 38.1 190 659.5 1.94 256.4 1652

239 38.2 190 657.5 0.86 210.7 1240

240 41.1 300 900 2.96 279 3277

241 77.1 165 571 2.82 363.3 2608

242 48.1 190 658 1.52 306.1 1841

243 151.91 168.8 650 5.7 452 4930

244 77.2 190 656 1.94 256.4 3083

245 56.1 190 664.5 0.86 210.7 1940

246 56.2 190 661.5 1.13 185.7 1862

247 56.2 190 664.5 0.86 210.7 1940

248 56.2 190 655.5 1.94 256.4 2338

249 56.4 190 661.5 1.13 185.7 1862

250 165.5 168.6 648 3.9 363 4216

251 37.5 180 540 1.48 307 1280

252 74.2 190 657.5 0.86 210.7 2433

253 113.5 190 660 2 271.9 3360

254 113.5 165 577.5 3 364.3 2673

255 74.7 190 663.5 1.94 256.4 2592

256 77 190 664 0.86 210.7 2553

257 77 190 658 1.52 306.1 2830

258 77 222 666 6.47 843 7304

259 167.9 169 645 4.8 399 4330

260 77.1 190 658 1.52 306.1 2830

261 77.1 190 656 1.94 256.4 3083

262 39.2 318.4 955.2 10.37 335 7742

263 24.3 216.5 649.5 6.61 452 3568

264 80.1 190 662.5 1.13 185.7 2295

265 80.2 190 663.5 1.52 306.1 2602

266 80.2 190 658.5 1.52 306.1 2870

267 85.1 450 1350.00 2.96 279 11,665
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Table A1. Cont.

Dataset Number fc (MPa) D (mm) L (mm) t (mm) fy (MPa) Pexp (KN)

268 108 190 661 1.13 185.7 3220

269 108 190 661.5 1.52 306.1 3260

270 38.2 190 659.5 1.94 256.4 1652

271 108.1 190 661.5 1.13 185.7 3220

272 40.5 222 666 6.47 843 5714

273 113.5 190 660 1.15 184.8 3058

274 113.5 190 662 0.95 211.2 3070

275 113.5 190 661.5 1.55 315.3 3260

276 25.4 337 1011.00 6.47 823 8475

277 46.7 216.4 649.2 6.61 452 4283

278 24.1 216.5 649.5 6.61 452 3568

279 56.4 190 655.5 1.94 256.4 2338

280 38.1 216.5 649.5 6.61 452 4200

281 41.1 337 1011 6.47 823 9835

282 108 219 708 6.3 300 5410

283 148.8 219.1 600 6.3 300 6838

284 163 219.1 600 6.3 300 6915

285 174.5 219.1 600 6.3 300 7569

286 175.4 219.1 600 6.3 300 7407

287 185.1 219.1 600 5 380 7837

288 185.1 219.1 600 10 381 9085

289 25.4 222 666 6.47 843 4964

290 108.2 190 661 1.13 185.7 3220

291 26.9 550 1000.00 16 546 28,830

292 77 222 666 6.47 843 7304

293 77.2 190 658 1.52 306.1 2830

294 40.5 238 714 4.54 507 3583

295 40.5 238 714 4.54 507 3647

296 25.4 239 717 4.54 507 3035

297 74.7 190 657.5 0.86 210.7 2433

298 34.08 240 720 1.48 307 2150

299 34.08 240 720 1.48 307 2300

300 41.1 337 1011.00 6.47 823 9668

301 37.5 240 720 1.48 307 2150

302 41.1 361 1083 4.54 525 7260

303 38.2 190 657 1.13 185.7 1308

304 25.4 301 903 2.96 279 2382

305 80.3 301 903 2.96 279 5540

306 52.2 318.3 954.9 10.37 335 9297

307 39.1 318.4 955.2 10.37 335 7742
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Table A1. Cont.

Dataset Number fc (MPa) D (mm) L (mm) t (mm) fy (MPa) Pexp (KN)

308 77 190 656 1.94 256.4 3083

309 24.2 318.5 955.5 10.37 335 6901

310 92.3 323.9 1000.00 5.6 443.9 11,481

311 25.4 337 1011 6.47 823 8475

312 34.01 240 720 1.48 307 2300

313 41.1 337 1011 6.47 823 9668

314 158.75 168.1 645 8.1 409 5254

315 37.5 240 720 1.48 307 2300

316 41.1 337 1011.00 6.47 823 9835

317 85.1 337 1011 6.47 823 13,776

318 41.1 360 1080 4.54 525 7045

319 85.1 360 1080 4.54 525 11,505

320 37.2 240 720 1.48 307 2300

321 41.1 361 1083.00 4.54 525 7260

322 25.4 450 1350 2.96 279 4415

323 41.1 450 1350 2.96 279 6870

324 41.1 450 1350 2.96 279 6985

325 85.1 450 1350 2.96 279 11,665

326 108 190 660 1.13 185.7 3058

327 40.5 222 666 6.47 843 5714

328 26.9 550 1000.00 16 546 29,590

329 37.5 60 180 1.48 307 215

330 103.4 100 300 1.9 404 1085.00

331 51.3 101.5 304.5 3.03 371 859

332 33.9 101.7 203.3 3.07 605.1 1067.60

333 23.2 101.8 305.4 3.03 371 632

334 40.5 109 327 6.47 853 2446

335 25 114 1280 5.94 486 1285

336 37 114 850 3.35 291 785

337 37 114 850 4.44 332 902

338 31.7 114.3 800.1 3.35 287.3 736.8

339 31.7 114.3 571.5 3.35 287.3 749.4

340 31.7 114.3 342.9 6 343 1380

341 31.9 114.3 300 3.85 343 998

342 57 114.3 800.1 3.35 287.3 932.9

343 57 114.3 1143 6 343 1141.3

344 57 114.3 342.9 6 343 1425.3

345 86.2 114.3 800.1 3.35 287.3 1206.5

346 86.2 114.3 342.9 3.35 287.3 1242.2

347 102.4 114.3 342.9 6 343 1943.4
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Table A1. Cont.

Dataset Number fc (MPa) D (mm) L (mm) t (mm) fy (MPa) Pexp (KN)

348 105.5 114.3 571.5 3.35 287.3 1407.10

349 105.5 114.3 342.9 3.35 287.3 1453.10

350 107.2 114.3 600 2.74 235 1296.60

351 107.2 114.3 300 5.9 355 1989.90

352 173.5 114.3 250 6.3 403 2633

353 98.9 114.37 299.5 3.85 343 1182

354 34.7 114.43 300 3.82 343 929

355 84.1 114.5 300 3.84 343 1359

356 79.6 114.6 300 3.99 343 1308

357 77.1 190 662 1.13 185.7 2630

358 95 127.4 390 8.5 295 2544

359 110.6 127.4 390 8.5 295 2623

360 42.2 133 2730 4.5 325 268

361 42.2 133 1670 4.5 325 416

362 42.2 133 465 4.5 325 568

363 42.2 133 465 4.5 325 582

364 42.2 133 1862 4.5 325 882

365 52.5 140 420 6.27 1153.00 4274

366 125 140 420 6.21 359 3215

367 125 140 420 16.72 389 5135

368 125 140 420 6.27 1153.00 5354

369 95 127.4 390 5.7 295 2078

370 25.4 149 447 2.96 308 941

371 40.5 149 447 2.96 308 1064

372 110.6 152 465 5.5 295 2734

373 178.8 152.4 549.8 8.8 392.6 4354.1

374 93.8 159 650 10 355 3400

375 77.1 190 662.5 1.13 185.7 2630

376 80 190 658.5 1.52 306.1 2870

377 158.5 164.2 652 2.5 377 3501

378 67.9 165 500 2.81 350 2160

379 41 160.2 3500 4.97 273 1193

380 29.5 165.2 200 3.7 366 1428.32

381 36.2 168.6 645 3.9 363 1771

382 158.7 168.7 645 5.2 405 4751

383 158.5 189 756 3 398 4837

384 38.2 190 659.5 1.94 256.4 1652

385 56.4 190 661.5 1.13 185.7 1862

386 56.4 190 655.5 1.94 256.4 2338

387 74.7 190 657.5 0.86 210.7 2433
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Table A1. Cont.

Dataset Number fc (MPa) D (mm) L (mm) t (mm) fy (MPa) Pexp (KN)

388 77.1 190 664 0.86 210.7 2553

389 93.8 159 650 6.8 402 3410

390 125 140 420 8.36 813 5531

391 77.1 190 662 1.13 185.7 2630

392 77 165 571 2.82 363.3 2608

393 80.2 190 658.5 1.52 306.1 2870

394 108 190 662 0.86 210.7 3070

395 46.7 216.4 649.2 6.61 452 4283

396 25.4 222 666 6.47 843 4964

397 40.4 222 666 6.47 843 5638

398 40.5 222 666 6.47 843 5638

399 77 238 714 4.54 507 5578

400 77 238 714 4.54 507 5578

401 41.1 300 900 2.96 279 3152

402 80.3 301 903 2.96 279 5540

403 52.2 318.3 954.9 10.37 335 9297

404 24.2 318.5 955.5 10.37 335 6901

405 85.1 337 1011.00 6.47 823 13,776

406 41.1 360 1080.00 4.54 525 7045

407 85.1 360 1080.00 4.54 525 11,505

408 25.2 361 1083.00 4.54 525 5633

409 25.4 361 1083 4.54 525 5633

410 26.9 550 1000.00 16 546 29,050
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