22 research outputs found

    Vision-Based Autonomous Control in Robotic Surgery

    Get PDF
    Robotic Surgery has completely changed surgical procedures. Enhanced dexterity, ergonomics, motion scaling, and tremor filtering, are well-known advantages introduced with respect to classical laparoscopy. In the past decade, robotic plays a fundamental role in Minimally Invasive Surgery (MIS) in which the da Vinci robotic system (Intuitive Surgical Inc., Sunnyvale, CA) is the most widely used system for robot-assisted laparoscopic procedures. Robots also have great potentiality in Microsurgical applications, where human limits are crucial and surgical sub-millimetric gestures could have enormous benefits with motion scaling and tremor compensation. However, surgical robots still lack advanced assistive control methods that could notably support surgeon's activity and perform surgical tasks in autonomy for a high quality of intervention. In this scenario, images are the main feedback the surgeon can use to correctly operate in the surgical site. Therefore, in view of the increasing autonomy in surgical robotics, vision-based techniques play an important role and can arise by extending computer vision algorithms to surgical scenarios. Moreover, many surgical tasks could benefit from the application of advanced control techniques, allowing the surgeon to work under less stressful conditions and performing the surgical procedures with more accuracy and safety. The thesis starts from these topics, providing surgical robots the ability to perform complex tasks helping the surgeon to skillfully manipulate the robotic system to accomplish the above requirements. An increase in safety and a reduction in mental workload is achieved through the introduction of active constraints, that can prevent the surgical tool from crossing a forbidden region and similarly generate constrained motion to guide the surgeon on a specific path, or to accomplish robotic autonomous tasks. This leads to the development of a vision-based method for robot-aided dissection procedure allowing the control algorithm to autonomously adapt to environmental changes during the surgical intervention using stereo images elaboration. Computer vision is exploited to define a surgical tools collision avoidance method that uses Forbidden Region Virtual Fixtures by rendering a repulsive force to the surgeon. Advanced control techniques based on an optimization approach are developed, allowing multiple tasks execution with task definition encoded through Control Barrier Functions (CBFs) and enhancing haptic-guided teleoperation system during suturing procedures. The proposed methods are tested on a different robotic platform involving da Vinci Research Kit robot (dVRK) and a new microsurgical robotic platform. Finally, the integration of new sensors and instruments in surgical robots are considered, including a multi-functional tool for dexterous tissues manipulation and different visual sensing technologies

    Learning Needle Pick-And-Place without expert demonstrations

    Get PDF
    We introduce a novel approach for learning a complex multi-stage needle pick-and-place manipulation task for surgical applications using Reinforcement Learning without expert demonstrations or explicit curriculum. The proposed method is based on a recursive decomposition of the original task into a sequence of sub-tasks with increasing complexity and utilizes an actor-critic algorithm with deterministic policy output. In this work, exploratory bottlenecks have been used by a human expert as convenient boundary points for partitioning complex tasks into simpler subunits. Our method has successfully learnt a policy for the needle pick-and-place task, whereas the state-of-the-art TD3+HER method is unable to achieve success without the help of expert demonstrations. Comparison results show that our method achieves the highest performance with a 91% average success rate

    Modeling, Sensorization and Control of Concentric-Tube Robots

    Get PDF
    Since the concept of the Concentric-Tube Robot (CTR) was proposed in 2006, CTRs have been a popular research topic in the field of surgical robotics. The unique mechanical design of this robot allows it to navigate through narrow channels in the human anatomy and operate in highly constrained environments. It is therefore likely to become the next generation of surgical robots to overcome the challenges that cannot be addressed by current technologies. In CSTAR, we have had ongoing work over the past several years aimed at developing novel techniques and technologies for CTRs. This thesis describes the contributions made in this context, focusing primarily on topics such as modeling, sensorization, and control of CTRs. Prior to this work, one of the main challenges in CTRs was to develop a kinematic model that achieves a balance between the numerical accuracy and computational efficiency for surgical applications. In this thesis, a fast kinematic model of CTRs is proposed, which can be solved at a comparatively fast rate (0.2 ms) with minimal loss of accuracy (0.1 mm) for a 3-tube CTR. A Jacobian matrix is derived based on this model, leading to the development of a real-time trajectory tracking controller for CTRs. For tissue-robot interactions, a force-rejection controller is proposed for position control of CTRs under time-varying force disturbances. In contrast to rigid-link robots, instability of position control could be caused by non-unique solutions to the forward kinematics of CTRs. This phenomenon is modeled and analyzed, resulting in design criteria that can ensure kinematic stability of a CTR in its entire workspace. Force sensing is another major difficulty for CTRs. To address this issue, commercial force/torque sensors (Nano43, ATI Industrial Automation, United States) are integrated into one of our CTR prototypes. These force/torque sensors are replaced by Fiber-Bragg Grating (FBG) sensors that are helically-wrapped and embedded in CTRs. A strain-force calculation algorithm is proposed, to convert the reflected wavelength of FBGs into force measurements with 0.1 N force resolution at 100 Hz sampling rate. In addition, this thesis reports on our innovations in prototyping drive units for CTRs. Three designs of CTR prototypes are proposed, the latest one being significantly more compact and cost efficient in comparison with most designs in the literature. All of these contributions have brought this technology a few steps closer to being used in operating rooms. Some of the techniques and technologies mentioned above are not merely limited to CTRs, but are also suitable for problems arising in other types of surgical robots, for example, for sensorizing da Vinci surgical instruments for force sensing (see Appendix A)

    Medical Robotics

    Get PDF
    The first generation of surgical robots are already being installed in a number of operating rooms around the world. Robotics is being introduced to medicine because it allows for unprecedented control and precision of surgical instruments in minimally invasive procedures. So far, robots have been used to position an endoscope, perform gallbladder surgery and correct gastroesophogeal reflux and heartburn. The ultimate goal of the robotic surgery field is to design a robot that can be used to perform closed-chest, beating-heart surgery. The use of robotics in surgery will expand over the next decades without any doubt. Minimally Invasive Surgery (MIS) is a revolutionary approach in surgery. In MIS, the operation is performed with instruments and viewing equipment inserted into the body through small incisions created by the surgeon, in contrast to open surgery with large incisions. This minimizes surgical trauma and damage to healthy tissue, resulting in shorter patient recovery time. The aim of this book is to provide an overview of the state-of-art, to present new ideas, original results and practical experiences in this expanding area. Nevertheless, many chapters in the book concern advanced research on this growing area. The book provides critical analysis of clinical trials, assessment of the benefits and risks of the application of these technologies. This book is certainly a small sample of the research activity on Medical Robotics going on around the globe as you read it, but it surely covers a good deal of what has been done in the field recently, and as such it works as a valuable source for researchers interested in the involved subjects, whether they are currently “medical roboticists” or not

    Planning and control of robotic manipulation actions for extreme environments

    Get PDF
    A large societal and economic need arises for advanced robotic capabilities, where we need to perform complex human-like tasks such as tool-use, in environments that are hazardous for human workers. This thesis addresses a collection of problems, which arise when robotic manipulators must perform complex tasks in cluttered and constrained environments. The work is illustrated by example scenarios of robotic tool use, grasping and manipulating, motivated by the challenges of dismantling operations in the extreme environments of nuclear decommissioning Contrary to popular assumptions, legacy nuclear facilities (which can date back three-quarters of a century in the UK) can be highly unstructured and uncertain environments, with insufficient a-priori information available for e.g. conventional pre-programming of robot tasks. Meanwhile, situational awareness and direct teleoperation can be extremely difficult for human operators working in a safe zone that is physically remote from the robot. This engenders a need for significant autonomous capabilities. Robots must use vision and sensory systems to perceive their environment, plan and execute complex actions on complex objects in cluttered and constrained environments. Significant radiation, of different types and intensities, provides further challenges in terms of sensor noise. Perception uncertainty can also result from e.g. vision systems observing shiny featureless metal structures. Robotic actions therefore need to be: i) planned in ways that are robust to uncertainties; and ii) controlled in ways which enable the robust reaction to disturbances. In particular, we investigate motion planning and control in tasks where the robot must: maintain contact while moving over arbitrarily shaped surfaces with end-effector tools; exert forces and withstand perturbations during forceful contact actions; while also avoiding collisions with obstacles; avoiding singularity configurations; and increasing robustness by maximising manipulability during task execution. Furthermore, we consider the issues of robust planning and control with respect to uncertain information, derived from noisy sensors in challenging environments. We explore the Riemannian geometry and robot's manipulability to yield path planners that produce paths for both fixed-based and floating-based robots, whose tools always stay in contact with the object's surface. Our planners overcome disturbances in the perception and account for robot/environment interactions that may demand unexpected forces. The task execution is entrusted to a hybrid force/motion controller whose motion space behaves with compliance to accommodate unexpected stiffness changes throughout the contact. We examine the problem of grasping a tool for performing a task. Firstly, we introduce a method for selecting the grasp candidate onto an object yielding collision-free motion for the robot in the post-grasp movements. Furthermore, we study the case of a dual-arm robot performing full-force tasks on an object and slippage on the grasping is allowed. We account for the slippage throughout the task execution using a novel controller based on the sliding mode controllers

    Large space structures and systems in the space station era: A bibliography with indexes (supplement 04)

    Get PDF
    Bibliographies and abstracts are listed for 1211 reports, articles, and other documents introduced into the NASA scientific and technical information system between 1 Jul. and 30 Dec. 1991. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems

    Lifelines

    Get PDF
    Harris Solomon takes readers into the trauma ward of one of Mumbai’s busiest public hospitals, narrating the stories of the patients, providers, families, and frontline workers who experience and treat traumatic injury from traffic

    Lifelines

    Get PDF
    Harris Solomon takes readers into the trauma ward of one of Mumbai’s busiest public hospitals, narrating the stories of the patients, providers, families, and frontline workers who experience and treat traumatic injury from traffic
    corecore