2,119 research outputs found

    Integrating Ontologies and Relational Data

    Get PDF
    In recent years, an increasing number of scientific and other domains have attempted to standardize their terminology and provide reasoning capabilities through ontologies, in order to facilitate data exchange. This has spurred research into Web-based languages, formalisms, and especially query systems based on ontologies. Yet we argue that DBMS techniques can be extended to provide many of the same capabilities, with benefits in scalability and performance. We present OWLDB, a lightweight and extensible approach for the integration of relational databases and description logic based ontologies. One of the key differences between relational databases and ontologies is the high degree of implicit information contained in ontologies. OWLDB integrates the two schemes by codifying ontologies\u27 implicit information using a set of sound and complete inference rules for SHOIN (the description logic behind OWL ontologies. These inference rules can be translated into queries on a relational DBMS instance, and the query results (representing inferences) can be added back to this database. Subsequently, database applications can make direct use of this inferred, previously implicit knowledge, e.g., in the annotation of biomedical databases. As our experimental comparison to a native description logic reasoner and a triple store shows, OWLDB provides significantly greater scalability and query capabilities, without sacrifcing performance with respect to inference

    Inconsistency-tolerant Query Answering in Ontology-based Data Access

    Get PDF
    Ontology-based data access (OBDA) is receiving great attention as a new paradigm for managing information systems through semantic technologies. According to this paradigm, a Description Logic ontology provides an abstract and formal representation of the domain of interest to the information system, and is used as a sophisticated schema for accessing the data and formulating queries over them. In this paper, we address the problem of dealing with inconsistencies in OBDA. Our general goal is both to study DL semantical frameworks that are inconsistency-tolerant, and to devise techniques for answering unions of conjunctive queries under such inconsistency-tolerant semantics. Our work is inspired by the approaches to consistent query answering in databases, which are based on the idea of living with inconsistencies in the database, but trying to obtain only consistent information during query answering, by relying on the notion of database repair. We first adapt the notion of database repair to our context, and show that, according to such a notion, inconsistency-tolerant query answering is intractable, even for very simple DLs. Therefore, we propose a different repair-based semantics, with the goal of reaching a good compromise between the expressive power of the semantics and the computational complexity of inconsistency-tolerant query answering. Indeed, we show that query answering under the new semantics is first-order rewritable in OBDA, even if the ontology is expressed in one of the most expressive members of the DL-Lite family

    A Customized ILP-Based Solver for Description Logic Reasoners

    Get PDF
    Artificial intelligence based systems are known for conveying knowledge through machines. This knowledge is often represented using logic representation languages. One of the well-known families of such languages is called Description Logic (DL) which formally reasons and represents knowledge on the concepts, roles and individuals of an application domain. DL reasoners have been evolving and upgraded through the years, however when it comes to handling more complicated ontologies with big values occurring in number restrictions, the current reasoners mostly fail to perform efficiently. One of the techniques used in DL reasoners is the so-called atomic decomposition technique which combines arithmetic and logical reasoning. This thesis presents a customized CPLEX-based solver for enhancing DL reasoners through optimizing the atomic decomposition technique. Furthermore, we provide evidence on how this method can improve the reasoning performance by optimizing atomic decomposition. For such purpose, an empirical evaluation of our system for a set of synthesized benchmarks is demonstrated

    Evaluation of properties over phylogenetic trees using stochastic logics

    Get PDF
    Background: Model checking has been recently introduced as an integrated framework for extracting information of the phylogenetic trees using temporal logics as a querying language, an extension of modal logics that imposes restrictions of a boolean formula along a path of events. The phylogenetic tree is considered a transition system modeling the evolution as a sequence of genomic mutations (we understand mutation as different ways that DNA can be changed), while this kind of logics are suitable for traversing it in a strict and exhaustive way. Given a biological property that we desire to inspect over the phylogeny, the verifier returns true if the specification is satisfied or a counterexample that falsifies it. However, this approach has been only considered over qualitative aspects of the phylogeny. Results: In this paper, we repair the limitations of the previous framework for including and handling quantitative information such as explicit time or probability. To this end, we apply current probabilistic continuous-time extensions of model checking to phylogenetics. We reinterpret a catalog of qualitative properties in a numerical way, and we also present new properties that couldn't be analyzed before. For instance, we obtain the likelihood of a tree topology according to a mutation model. As case of study, we analyze several phylogenies in order to obtain the maximum likelihood with the model checking tool PRISM. In addition, we have adapted the software for optimizing the computation of maximum likelihoods. Conclusions: We have shown that probabilistic model checking is a competitive framework for describing and analyzing quantitative properties over phylogenetic trees. This formalism adds soundness and readability to the definition of models and specifications. Besides, the existence of model checking tools hides the underlying technology, omitting the extension, upgrade, debugging and maintenance of a software tool to the biologists. A set of benchmarks justify the feasibility of our approach

    On the Computation of Common Subsumers in Description Logics

    Get PDF
    Description logics (DL) knowledge bases are often build by users with expertise in the application domain, but little expertise in logic. To support this kind of users when building their knowledge bases a number of extension methods have been proposed to provide the user with concept descriptions as a starting point for new concept definitions. The inference service central to several of these approaches is the computation of (least) common subsumers of concept descriptions. In case disjunction of concepts can be expressed in the DL under consideration, the least common subsumer (lcs) is just the disjunction of the input concepts. Such a trivial lcs is of little use as a starting point for a new concept definition to be edited by the user. To address this problem we propose two approaches to obtain "meaningful" common subsumers in the presence of disjunction tailored to two different methods to extend DL knowledge bases. More precisely, we devise computation methods for the approximation-based approach and the customization of DL knowledge bases, extend these methods to DLs with number restrictions and discuss their efficient implementation

    Towards a systematic benchmarking of ontology-based query rewriting systems

    Get PDF
    Query rewriting is one of the fundamental steps in ontologybased data access (OBDA) approaches. It takes as inputs an ontology and a query written according to that ontology, and produces as an output a set of queries that should be evaluated to account for the inferences that should be considered for that query and ontology. Different query rewriting systems give support to different ontology languages with varying expressiveness, and the rewritten queries obtained as an output do also vary in expressiveness. This heterogeneity has traditionally made it difficult to compare different approaches, and the area lacks in general commonly agreed benchmarks that could be used not only for such comparisons but also for improving OBDA support. In this paper we compile data, dimensions and measurements that have been used to evaluate some of the most recent systems, we analyse and characterise these assets, and provide a unified set of them that could be used as a starting point towards a more systematic benchmarking process for such systems. Finally, we apply this initial benchmark with some of the most relevant OBDA approaches in the state of the art
    • …
    corecore