
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

November 2007

Integrating Ontologies and Relational Data Integrating Ontologies and Relational Data

Sören Auer
University of Pennsylvania, auer@seas.upenn.edu

Zachary G. Ives
University of Pennsylvania, zives@cis.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Sören Auer and Zachary G. Ives, "Integrating Ontologies and Relational Data", . November 2007.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-07-24.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/716
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76361666?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F716&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/716
mailto:repository@pobox.upenn.edu

Integrating Ontologies and Relational Data Integrating Ontologies and Relational Data

Abstract Abstract
In recent years, an increasing number of scientific and other domains have attempted to standardize their
terminology and provide reasoning capabilities through ontologies, in order to facilitate data exchange.
This has spurred research into Web-based languages, formalisms, and especially query systems based on
ontologies.

Yet we argue that DBMS techniques can be extended to provide many of the same capabilities, with
benefits in scalability and performance. We present OWLDB, a lightweight and extensible approach for the
integration of relational databases and description logic based ontologies. One of the key differences
between relational databases and ontologies is the high degree of implicit information contained in
ontologies. OWLDB integrates the two schemes by codifying ontologies' implicit information using a set
of sound and complete inference rules for SHOIN (the description logic behind OWL ontologies. These
inference rules can be translated into queries on a relational DBMS instance, and the query results
(representing inferences) can be added back to this database. Subsequently, database applications can
make direct use of this inferred, previously implicit knowledge, e.g., in the annotation of biomedical
databases. As our experimental comparison to a native description logic reasoner and a triple store
shows, OWLDB provides significantly greater scalability and query capabilities, without sacrifcing
performance with respect to inference.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-07-24.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/716

https://repository.upenn.edu/cis_reports/716

Integrating Ontologies and Relational Data

Sören Auer
Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104, USA
auer@seas.upenn.edu

Zachary Ives
Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104, USA

zives@cis.upenn.edu

ABSTRACT
In recent years, an increasing number of scientific and other
domains have attempted to standardize their terminology
and provide reasoning capabilities through ontologies, in or-
der to facilitate data exchange. This has spurred research
into Web-based languages, formalisms, and especially query
systems based on ontologies.

Yet we argue that DBMS techniques can be extended
to provide many of the same capabilities, with benefits in
scalability and performance. We present OWLDB, a light-
weight and extensible approach for the integration of rela-
tional databases and description logic based ontologies. One
of the key differences between relational databases and on-
tologies is the high degree of implicit information contained
in ontologies. OWLDB integrates the two schemes by cod-
ifying ontologies’ implicit information using a set of sound
and complete inference rules for SHOIN – the description
logic behind OWL ontologies. These inference rules can be
translated into queries on a relational DBMS instance, and
the query results (representing inferences) can be added back
to this database. Subsequently, database applications can
make direct use of this inferred, previously implicit knowl-
edge, e.g., in the annotation of biomedical databases. As
our experimental comparison to a native description logic
reasoner and a triple store shows, OWLDB provides signif-
icantly greater scalability and query capabilities, without
sacrificing performance with respect to inference.

1. INTRODUCTION
The problem of encoding information in a standardized

way has been a challenge addressed in different ways by dif-
ferent communities. In the database world, entity-relationship
models, inheritance, and declarative views are the basic mech-
anisms for expressing concepts and their relationships. An
alternative approach has been adopted by the knowledge
representation community, namely ontologies and descrip-
tion logics. In contrast to database formalisms, which focus
on a subset of first-order logic that scales to large numbers of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

facts by running in polynomial data complexity, the descrip-
tion logics used to define ontologies are a different subset
that allows richer specification of classes and relationships,
but is less computationally tractable. Both approaches have
a role in encoding and sharing information today, and in
fact the two worlds are increasingly being interconnected:
Bioinformatics data is generally represented in a variety of
databases, which categorize the data entries by referenc-
ing classes in the Open Biomedical Ontologies (OBO) [25];
anatomical measurements are stored in databases that then
reference the Foundational Model of Anatomy [22]; prod-
ucts in e-commerce reference categories in eClassOWL [15];
personal information management systems need class and
relationship information such as that in FOAF [9]. Hence,
ontology and database integration is already a problem to-
day — it will be even more so if the Semantic Web is to
succeed today’s Web.

As we begin to integrate systems based on these disparate
formalisms, a natural question arises about which architec-
ture to use: a mediator that partitions computations across
independent database and ontology-based systems, a single
system that extends a description logics engine to include
database query capabilities, or a database engine extended
with certain description logics reasoning capabilities. Our
thesis in this paper is that the third approach — a single
reasoning engine that builds upon database query process-
ing capabilities — is the most useful, as we explain and then
validate.

Systems developed for description logic reasoning focus
mainly on three basic capabilities:

• subsumption reasoning, i.e. the inference of implicit
subclass-superclass relationships,

• satisfiability and consistency checks, i.e. whether a
class can potentially have instances; if not, whether
there is a contradiction with explicitly defined ones,

• classification of objects, i.e. the determination of class
membership for objects or the retrieval of all instances
of a certain class.

They are generally optimized for fairly complex reasoning
about relatively few facts.

Unfortunately, with the adoption of ontologies in science,
we are increasingly encountering the challenges of scale, both
in terms of large amount of instance data and large numbers
of concepts. For instance, the WordNet linguistic ontol-
ogy includes 100,000 concepts and the NCI cancer ontology
has 30,000 classes; biomedical data from different sources

adopt a variety of ontologies (e.g., OBO [25], FMA [22],
MGED [33]). In contrast to the assumptions of description
logics reasoners, these ontologies have large, relatively sim-
ple terminological parts (i.e., concept and role definitions),
and an even larger number of data instances. Ontologies
such as the NCI cancer ontology exceed the capabilities of
most current description logics reasoners. This inadequacy
has been observed by a number of authors (e.g. [37, 30, 16]).

Some efforts have been made to employ databases to per-
form limited tasks to assist description logics reasoners (e.g.
[8, 6]), using the reasoner to perform reasoning about classes
and roles and the DBMS to reason about data. However,
it has been shown that the full power of certain common
description logics can be expressed using disjunctive data-
log [17], and we argue that the best approach in many set-
tings is to perform almost all of the reasoning in the DBMS,
thus avoiding the overhead implicit in coupling systems. We
exploit the fact that most large real-world ontologies do not
use arbitrarily complex and unique representation methods
for every single class definition: rather, they define many
similar classes that can be reasoned about “in bulk,” and
the strengths of DBMS query processing are more suited
for such tasks. This is especially useful because most de-
scription logics reasoners already use database technology
to store data instances, and since our goal is to combine
ontology and database data under a single query interface.

We make the following contributions:

• a methodology for translating SHOIN inference rules
into relational database queries,

• a database schema and encoding scheme for high per-
formance inferencing by means of the derived queries,

• stratification policies for the OWL inference rules, al-
lowing for efficient execution within a fixpoint algo-
rithm executing in middleware above a DBMS.

This paper is structured as follows. We provide an overview
of the description logic SHOIN in Section 2. Section 3 de-
scribes the concept of description logic reasoning by means
of inference rules and how suitable inference rules can be
obtained. Section 4 presents our scheme for reasoning (in-
ference) using a“thin”middleware layer over an SQL DBMS.
We experimentally validate our scheme in Section 5, discuss
related work in Section 6, and conclude in Section 7.

2. PRELIMINARIES
Web Ontology Language. The Web Ontology Lan-

guage OWL is a semantic markup language for publishing
and sharing ontologies on the World Wide Web [5]. It is
an established standard and widely used in applications in
science and increasingly often also in industry. OWL is de-
veloped as a vocabulary extension of RDF (the Resource
Description Framework) [19]. Hence, OWL ontologies are
encoded as statements adhering to the subject-predicate-
object data model of RDF (see the OWL/XML example
column in Table 1). OWL has three increasingly-expressive
sublanguages: OWL Lite, OWL DL, and OWL Full. While
OWL Lite is not expressive enough for many applications,
OWL Full (the most expressive sublanguage) provides no
computational guarantees. However, OWL DL (where DL
stands for Description Logic) provides high expressiveness
while retaining computational tractability.

inferredinferred inferredinferredexplicit

A-Box

InfectiveAgent123

InfectiveAgent
≡ MicroOrganism u ∃isCausalAgentOf.Infection

MicroOrganism

Bacterium

MicroOrg123
isCausalAgentOf:Infect123 Bacter123

…

…
…

explicitinstanceOf:SubsumptionSubsumption::

Figure 1: Subsumption and classification in a bio-
medical ontology.

Description logic. Description logics are decidable frag-
ments of first order logic. They represent knowledge in terms
of objects, concepts, and roles. Objects correspond to con-
stants, concepts to unary predicates, and roles to binary
predicates in first order logic. In Description Logic systems
information is stored in a knowledge base, which is a set of
axioms. It is divided in two parts: TBox and ABox. The
ABox contains assertions about objects. It relates objects
to concepts and roles. The TBox describes the terminology
by relating concepts and roles.

The description logic SHOIN . We briefly introduce
the SHOIN description logic, which is the base language
for OWL DL ontologies and refer to [3] for further back-
ground on description logics. The syntax and semantics of
SHOIN concept constructors is shown in Table 1. As usual
in logics, interpretations are used to assign a meaning to
syntactic constructs. An interpretation I consists of a non-
empty interpretation domain ∆I and an interpretation func-
tion ·I , which assigns to each object o (symbolized by ovals
in the example depicted in Figure 1) an element of ∆I , to
each concept name c (symbolized by squares) a set cI ⊆ ∆I ,
and to each role r (symbolized by arrows) a binary relation
rI ⊆ ∆I ×∆I . Interpretations are extended from elements
to concepts as shown in Table 1, and to other elements of a
knowledge base in a straightforward way. An interpretation
that satisfies an axiom (set of axioms) is called a model of
this axiom (set of axioms).

Inference tasks. Inference algorithms extract implicit
knowledge from a given knowledge base. Standard reason-
ing tasks include instance checks, consistency checks and
subsumption. We explicitly define the last: Let c1, c2 be
concepts and T a TBox. c1 is subsumed by c2, denoted by
c1 v c2, iff for any interpretation I we have cI

1 ⊆ cI
2. c1 is

subsumed by c2 with respect to T (denoted by c1 vT c2) iff
for any model I of T we have cI

1 ⊆ cI
2. c1 is equivalent to

c2 (with respect to T), denoted by c1 ≡ c2 (c1 ≡T c2), iff
c1 v c2 (c1 vT c2) and c2 v c1 (c2 vT c1).

Computing the subsumption relation between concepts is
a key to render other reasoning services as well:

• Instance checks (used for query answering): if c1 is
subsumed by c2, all instances of c1 will be also instan-
tiations of c2.

• Consistency : a knowledge base is inconsistent, if a
class c is known to be subsumed by the bottom concept
⊥ and contains an instance.

Example. The reasoning tasks subsumption and instance
check and their interrelation is illustrated in Figure 1 with

Constructor name Syntax Semantics OWL/RDF example

atomic concept a aI ⊆ ∆I

role r rI ⊆ ∆I ×∆I

individual o oI ∈ ∆I

top concept > >I = ∆I owl:Thing

bottom concept ⊥ ⊥I = ∅ owl:Nothing

inverse role r− (r−)I = (rI)− r1 owl:inverseOf r2

conjunction c1 u c2 (c1 u c2)I = cI
1 ∩ cI

2 c owl:intersectionOf rdflist

disjunction c1 t c2 (c1 t c2)I = cI
1 ∪ cI

2 c owl:unionOf rdflist

negation ¬c (¬c)I = ∆I \ cI c1 owl:complementOf c

oneOf {o1, . . . } ({o1, . . . })I = {oI
1, . . . } c owl:oneOf rdflist

exists restriction ∃r.c (∃r.c)I = {x|∃y : 〈x, y〉 ∈ rI and y ∈ cI} c1 owl:someValuesFrom c

value restriction ∀r.c (∀r.c)I = {x|∃y : 〈x, y〉 ∈ rI → y ∈ cI} c1 owl:allValuesFrom c

atleast restriction ≥ nr (≥ nr)I = {x|#({y : 〈x, y〉 ∈ rI}) ≥ n} c owl:minCardinality n

atmost restriction ≤ nr (≤ nr)I = {x|#({y : 〈x, y〉 ∈ rI}) ≤ n} c owl:maxCardinality n

Axiom Name Syntax Semantics OWL/RDF example

concept inclusion c1 v c2 cI
1 ⊆ cI

2 c1 rdfs:subClassOf c2

role inclusion r1 v r2 rI
1 ⊆ rI

2 r1 rdfs:subPropertyOf r2

role transitivity r ≡ r+ rI = (rI)+ r rdf:type owl:TransitiveProperty

role symmetry r ≡ r− rI = (rI)− r rdf:type owl:symmetricProperty

individual inclusion o : c oI ∈ CI o rdf:type c

individual equality o1 = o2 oI
1 = oI

2 o1 owl:sameAs o2

individual inequality o1 6= o2 oI
1 6= oI

2 o1 owl:differentFrom o2

Table 1: Syntax and semantics of SHOIN and RDF examples (we use the common RDF, RDF-Schema
and OWL namespace prefixes and assume a default namespace defined; rdflist refers to an RDF resource
representing an RDF list containing the constituents of the union, intersection or exhaustive enumeration).

an example from the Galen medical terminology ontology
[31]. After inferring that InfectiveAgent is subsumed by the
class MicroOrganism the instance InfectiveAgent123 will also
instantiate MicroOrganism. A similar inference can be made
for the instance Bacter123, however, here the subsumption
relation between Bacterium and MicroOrganism is already
explicit. The conclusion that MicroOrg123 is an instance
of InfectiveAgent, on the other hand, can not be reduced to
subsumption, but can be decided by checking the member-
ship of MicroOrg123 with respect to every constituent of the
intersection serving as a definition for InfectiveAgent.

3. DERIVING INFERENCE RULES FOR ON-
TOLOGIES

Description logic reasoners approach the problem of decid-
ing subsumption between two classes by reducing the prob-
lem to a consistency check: For classes c1 and c2, c1 v c2 can
be decided by checking the consistency of KB = {o : c, c ≡
c1 u ¬c2}. Consistency is often decided by trying to con-
struct a model by means of so called tableau algorithms [4].
This method is time-tested and has proven to be sound and
complete for most description logics. However, in reason-
ing about subsumption with many classes, it requires high
numbers of computation steps, and worse, large in-memory
state. In order to scale to such ontologies, we instead exe-
cute inference rules for description logics by codifying them
as relational database queries.

It is easy to intuitively derive some sound inference rules
from the set based semantics of the SHOIN class and prop-
erty constructors or axioms as shown in Table 1. For exam-
ple, from the definition of a class c to contain exactly the
instances within the intersection of classes c1 and c2 (i.e.

c = c1 u c2), we can easily infer that c is a subclass of c1

as well as of c2 (c v c1 and c v c2). Similarly, from class
definitions Parent = (≥ 1hasChild) and LuckyParent =
(≥ 2hasChild) we can infer LuckyParent v Parent.

However, in addition to deriving sound inference rules it is
crucial to describe the fragment of a description logic covered
by the inference rules, i.e., the fragment for which complete-
ness of the inferences can be guaranteed. Not surprisingly,
a great deal of theoretical work has been done in these ar-
eas. We base our OWLDB implementation on the theoreti-
cal foundations of [28] and the KIT report 111 [29] (both by
Royer and Quantz). Royer and Quantz systematically de-
rive a complete set of inference rules for a description logic
that happens to subsume SHOIN (the description logic be-
hind OWL); their work is purely from a definitional per-
spective and does not consider an implementation. They
develop sound and complete Sequent Calculi axiomatiza-
tions of First-Order Logic without (FOL) or with Equality
(FOL=). A general methodology for obtaining sound and
complete inference systems for any logical language L is to
translate the formulae of L (L-formulae) into first-order for-
mulae (provided L is translatable into FOL), and then to
identify necessary and sufficient conditions of provability in
Sequent Calculi of the FOL translations from the formu-
lae encoding L-formulae. The extensive analysis of Sequent
Calculi proofs by Royer and Quantz resulted in a set of 168
inference rules. However, it is important to note that the
DL consider in the KIT report differs from SHOIN , in the
following ways:

• It supports the complex role constructors: r1tr2 (role
union), r1 u r2 (role intersection), r1 ∗ r2 (role compo-
sition), ¬r role complement. To close the constructors

with respect to union and intersection the DL also in-
cludes a top (>r) and bottom role (⊥r).

• It supports qualified cardinality restrictions (notation
(≥ nr.c) and (≤ nr.c)), stating that objects belonging
to the restriction must have a maximum or minimum
number of role values of a certain type. SHOIN , on
the other hand, supports only unqualified number re-
strictions ((≥ nr) and (≤ nr)), where the type of the
role values is not important.

• A class restriction ‘fills’ (notation r.{o1, . . . , on}) is
supported, requiring all instances of the restriction to
be related to all the values of the filler ({o1, . . . , on}).
In the special case that the filler contains just one ob-
ject (i.e. r.{o}) the restriction is equivalent to the ex-
ists restriction ∃r.{o}.

• The domain (or range) of roles is defined by restrict-
ing a general role r to a role c|r (or r|c), whose do-
main (or range) contains exactly only instances of c.
In SHOIN on the other hand a domain (or range) def-
inition for a role is ‘emulated’ by an axiom (≥ 1r) v c
(or > v ∀r.c).

Hence, the DL regarded in the KIT report clearly sub-
sumes SHOIN and to obtain a subset of inference rules for
SHOIN we can (a) omit the KIT rules dealing with com-
plex role constructors as well as domain and range restric-
tions (since they are not derivable for SHOIN), (b) derive
rules with unqualified cardinality restrictions from the ones
with qualified cardinality restrictions by replacing the qual-
ification class with the top concept (>) and (c) replace ‘fills’
restrictions in rules with exists restrictions. As a conse-
quence of the simplification in (b) and (c) some rules (such
as rule 48 in the KIT report) turn out to be redundant and
can be omitted. This reduces the 168 KIT rules to 66, as
shown in Figures 2 and 3. Rules 1-47 correspond to the rules
with the same numbers in the KIT report. As a result of
the systematic and complete derivation of inference rules in
the KIT report [29] and the rule adaptation to SHOIN we
obtain the following proposition:

Proposition 1. The inference rules 1-55 (as shown in
Figures 2 and 3) are sound and complete with respect to
class and role subsumption reasoning in SHOIN .

Proof. The KIT rules are derived by translating all pos-
sible subsumption and instance recognition formulae of the
KIT description logic into first-order formulae, and then to
identify necessary and sufficient conditions of provability in
Sequent Calculi of the FOL translations. This method is
clearly monotonic, i.e. a subsumed, less expressive descrip-
tion logic will result in a subset of possible subsumption and
instance recognition formulae and consequently a subset of
derivable inference rules. Hence, it is safe to omit KIT rules
containing language constructs which are not available in
SHOIN and reduce the more general language constructs
(qualified number restrictions and fills) to the specialized
equivalents in SHOIN :

Rules 1-28 are the same as in the KIT report. Rules 29-
47 are derived by replacing qualified cardinality restrictions
with unqualified cardinality restrictions. After doing so in
KIT rule 48, this rule turns out to be equivalent to rule 38.
KIT rules 51, 52 and 55, 56, 101, 103, 117 are the same

Conjunction and Disjunction

→ c v c (1)
→ c1 u c2 v c1 t c3 (2)

c1 v c2→ c1 u c3 v c2 (3)
c1 v c2→ c1 v c2 t c3 (4)

c1 v c2, c1 v c3↔ c1 v c2 u c3 (5)
c2 v c1, c3 v c1↔ c2 t c3 v c1 (6)

c1 v c2, c2 u c3 v c4→ c1 u c3 v c4 (7)
→⊥ v c (8)
→ c v > (9)

Quantification

> v c↔> v ∀r.c (10)
c v ⊥↔∃r.c v ⊥ (11)

c1 v c2, r2 v r1→∀r1.c1 v ∀r2.c2 (12)
c1 v c2, r1 v r2→∃r1.c1 v ∃r2.c2 (13)

c2 u c1 v ⊥, r1 v r2→∀r2.c2 u ∃r1.c1 v ⊥ (14)
> v c2 t c1, r1 v r2→> v ∃r2.c2 t ∀r1.c1 (15)

c1 u c2 v c3, r3 v r1, r3 v r2→∀r1.c1 u ∀r2.c2 v ∀r3.c3 (16)
c3 v c1 t c2, r3 v r1, r3 v r2→∃r3.c3 v ∃r1.c1 t ∃r2.c2 (17)
c1 u c2 v c3, r2 v r1, r2 v r3→∀r1.c1 u ∃r2.c2 v ∃r3.c3 (18)
c3 v c1 t c2, r2 v r1, r2 v r3→∀r3.c3 v ∃r1.c1 t ∀r2.c2 (19)

Negation

→ c u ¬c v ⊥ (20)
→> v c t ¬c (21)

c1 u c2 v c3↔ c1 v c3 t ¬c2 (22)
c1 v c2 t c3↔ c1 u ¬c2 v c3 (23)

→¬¬c ≡ c (24)
→¬(c1 u c2) ≡ ¬c1 t ¬c2 (25)
→¬(c1 t c2) ≡ ¬c1 u ¬c2 (26)
→¬∃r.c ≡ ∀r.¬c (27)
→¬∀r.c ≡ ∃r.¬c (28)

Cardinality Restrictions

c v ⊥→> v (≤ nr) (29)
c v ⊥→ (≥ nr) v ⊥ (30)

→ (≥ 1r) ≡ ∃r.> (31)
→ (≥ 1r) ≡ ¬∀r.⊥ (32)
→ (≤ 0r) ≡ ∀r.⊥ (33)
→ (≤ 0r) ≡ ¬∃r.> (34)

m = n− 1→¬(≥ nr) ≡ (≤ mr) (35)
m = n + 1→¬(≤ nr) ≡ (≥ mr) (36)

q ≤ p, r1 v r2→ (≥ pr1) v (≥ qr2) (37)
q < p, r1 v r2→ (≤ qr2) u (≥ pr1) v ⊥ (38)
q < p, r1 v r2→> v (≥ qr2) t (≤ pr1) (39)
p ≤ q, r2 v r1→ (≤ pr1) v (≤ qr2) (40)

r1 v r2→ (≥ nr1) u ∀r2.⊥ v ⊥ (41)
q < p, r1 v r2, r1 v r3→ (≤ qr2) u (≥ pr1) u ∀r3.c v ⊥ (42)
q ≤ p, r1 v r2, r1 v r3→ (≥ pr1) u ∀r3.c v (≥ qr2) (43)
q ≤ p, r1 v r2, r1 v r3→ (≤ qr2) u ∀r3.c v (≤ pr1) (44)

r1 v r2→ (≥ nr1) u (≤ nr2) v > (45)
i=k∑
i=1

(pi) < n, r v ri→ (≥ nr) u (≤ p1r1) u . . . (46)
u(≤ pkrk) v ⊥

r v r1, r v r2→ (≤ pr1) u (≤ qr2) v (≤ p+qr) (47)

OneOf

S ⊆ T → S v T (48)
→ S u T ≡ {S ∩ T} (49)

n ≥ |S|, r2 v r1→∀r1.S v (≤ nr2) (50)

Figure 2: SHOIN class subsumption inference rules.

Role Subsumption and Inversion

→ r v r (51)
r−1 v r2 → r1 v r−2 (52)

→ r−− ≡ r (53)
r1 v r−2 → r−1 v r2 (54)
r1 v r2 → r−1 v r−2 (55)

Instance recognition

a : c1, c1 v c2 → a : c2 (56)
→ a : > (57)

a : c1, a : c2 ↔ a : c1 u c2 (58)
a ∈ S → a : S (59)
a /∈ S → a : ¬S (60)

a1 : ∀r.c, a1 : r.{a2} → a2 : c (61)
a1 : ∀r.c, a2 : ¬c → a1 : ¬(r.{a2}) (62)

a1 : r.{a2}, a2 : c → a1 : ∃r.c (63)
a1 : r.{a2},> v ∀r.c → a2 : c (64)

a1 : r.{a2}, (≥ 1r) v c → a1 : c (65)
a1 : r.{a2} → a2 : (r− : a1) (66)

Figure 3: SHOIN role subsumption, inversion and
instance recognition inference rules.

as 48, 49 and 50, 51, 52, 54, 55. KIT rules 102, 104 are
equivalent to rule 53. The following KIT rules will not be
derivable for SHOIN : 49, 57-100, 131-156 (due to usage of
complex roles constructors), 50, 53, 54 (qualified cardinality
restriction which can not be replaced by top concept, since
the qualification class is required to be an oneOf class).

However, the rules are incomplete with respect to instance
recognition, and consequently also not sufficient to detect
inconsistencies with respect to objects being instances of
unsatisfiable classes. The incompleteness with respect to
instance recognition is due to missing rules for case reason-
ing. Case reasoning would be required to handle rules with
disjunctions in the consequent, such as:

o : ∀r.{o1, . . . , on}, o : ∃r.c→ o1 : c ∨ · · · ∨ on : c

Because by the notorious complexity of deriving case rea-
soning rules and standard databases being ill-suited to han-
dle such disjunctions efficiently we decided not to extend our
approach in that direction.

4. ONTOLOGY REASONING WITH A RE-
LATIONAL DATABASE

In order to exploit the indexing and query optimization
techniques available in relational databases for the execu-
tion of the inference rules we present in this section a stor-
age schema for OWL ontologies optimized for inference rule
execution, we demonstrate how the inference rules can be
translated into queries on this schema and exhibit an algo-
rithm for efficiently executing these queries.

4.1 Ontology Storage in Relational Databases
Due to the standardized representation of OWL ontologies

in RDF, which consists of subject-object-predicate tuples, it
is common to store OWL ontologies within a ternary rela-
tional DBMS table. (See Table 1 to see how SHOIN axioms
can be represented as RDF statements). A variety of dif-
ferent relational schema to store such RDF statements has

statements

modelID
subject
predicate
object
object_is

literals

PK id

value
language
datatype

resources

PK id

ns
name

models

PK id

modelURI
baseURI

namespaces

PK id

ns

lists

PK id

member
member_is

restrictions

PK subject

property
value
type

Figure 4: Database schema for RDF storage, opti-
mized for the execution of inference rules.

been proposed. The central element of most of these is a
table capturing the subject-predicate-object statements and
optionally additional tables for normalization, replication,
caching purposes. During our extensive experiments with
OWLDB, we developed a scheme that sped up queries and
insertions by de-normalizing several relations, with 30-50%
increased storage space requirements. OWLDB makes infer-
ences by executing queries and making insertions into tables;
hence insertion performance is the key bottleneck. Insertions
over better-normalized schemes are comparably slow due to
checks for existence of identifiers in the normalization tables.

Although the presented approach does not require a spe-
cific relational schema (whether normalized or unnormal-
ized), the one depicted in Figure 4 performed best on our
tests. In this database schema, each RDF triple corresponds
to a row in the table statements referencing RDF resources
and literals in the subject, predicate and object columns
from respective tables (the binary values of the column objects_is

indicates whether the object column references a resource or
literal). The modeID enables the storage of multible ontolo-
gies (models) within one relational schema. For simplicity
we omit constraints on this column in the example queries
below. The two helper tables lists and restrictions repli-
cate information with respect to RDF lists and OWL restric-
tions from the statements table to speed-up query execu-
tion. As a consequence, the restrictions table contains
one row for each restriction with either one of the types
minCardinality, maxCardinality, cardinality, hasValue,
someValuesFrom, allValuesFrom.

4.2 Translating Inference Rules into Database
Queries

After we derived inference rules for the description logic
SHOIN and we are able to store SHOIN ontologies in a
relational database, we would like to employ these rules for
computing appropriate inferences. Each one of the rules can
be translated into one or multiple corresponding SQL queries
on the ontology storage schema. The general method is to
translate all premises of a rule, as well as requirements on
the structure of the subsumed and subsuming class in the
consequent into joins and join conditions on tables of the

RDF storage schema. Query optimization techniques devel-
oped for database systems will lead to the identification of
those conditions which restrict the result set most and hence
can be evaluated fastest; data indexing makes sure matching
classes are retrieved fast. The generated SQL queries select
exactly two classes (two roles or an instance and a class) for
which a subclass-superclass (subrole-superrole or type) rela-
tionship can be inferred. The result of these queries can be
added back to the database in the form of triples or stored
in separate tables for faster querying or deletion in case of
ontology changes.

We demonstrate the method on the example of rule 37:

q ≤ p, r1 v r2 → (≥ pr1) v (≥ qr2)

An equivalent denotation is:

c1 = (≥ pr1), c2 = (≥ qr2), q ≤ p, r1 v r2 → c1 v c2

Each of the conjuncts in the premise of this rule can be
translated into either joins or join conditions on the storage
schema. The resulting SQL query looks as follows:

1 SELECT r1.subject c1,r2.subject c2

2 FROM restrictions r1 INNER JOIN restrictions r2

3 ON(r1.type=r2.type OR r1.type="cardinality")

4 INNER JOIN ‘subPropertyOf‘ p

5 ON(r1.property=p.subject AND

6 r2.property=p.object)

7 WHERE r2.type="minCardinality"

8 AND r1.value>=r2.value

To obtain the subsumption relation for c1 and c2, we se-
lect in the query first those cardinality restrictions from the
restrictions helper table (lines 2-3), where the role of the first
cardinality restriction is a subrole of the role of the second
cardinality restriction (lines 4-6) and the cardinality value of
the first restriction is greater or equal than the cardinality
value of the second restriction (line 8).

Unfortunately, due to the systematic derivation of the in-
ference rules from sequent calculus proofs, the KIT rules are
not minimal. The rules regarding only conjunctions and dis-
junctions, for example, can be significantly simplified as the
following proposition shows:

Proposition 2. The subsumption inference rules 2-5,7
are equivalent to:

→ c1 u c2 v c1 (67)
→ c1 v c1 t c2 (68)

c1 v c3, c2 v c4 → c1 u c2 v c3 u c4 (69)

Proof. We proof the equivalence by deriving rules 67-69
from rules 2-5,7 and conversely:
⇒ Rule 67 can be derived from rule 2 by setting c3 = ⊥.

Rule 68 can be derived from rule 2 by setting c2 = >. Rule
69 can be derived from applying rule 3 twice (to c1 v c3 and
c2 v c4) and on the conclusions of both rule 5.
⇐ Rule 2 is a combination of rules 67 and 68. Rule 3 can

be derived from rule 69 by setting c4 = >. Rule 4 can be
derived from rule 68, by adding a subsumption condition to
the premise. The forward direction of rule 5 can be derived
from rule 69 by setting c1 = c2, the backward direction from
rule 67. Rule 7 can be derived from rule 69 by setting c2 = c4

and adding a subsumption condition to the premise.

In addition to discovering eliminating redundancies in the
rule set (which we consider to still be an ongoing effort), we

faced the following, rather technical challenges during the
translation:

• The inference rules contain only binary intersections
and unions. For OWL ontologies, however, the union
or intersection operator is applied to an arbitrarily long
list of objects (as stored in the lists table). Hence,
the resulting SQL queries must handle unions and in-
tersections with arbitrary numbers of constituents.

• Some rules are bi-directional (i.e. support inferences
in both directions), some state the equivalence of two
objects (i.e. c1 ≡ c2 ⇔ c1 v c2, c2 v c1). We had to
split each of those into two separate rules.

• The OWL embedding in the RDF subject-predicate-
object data model, which served as a basis for the stor-
age schema, defines a number of shortcuts for express-
ing certain axioms, i.e. <c1;owl:disjointWith;c2>

for c1 u c2 v ⊥, <r;rdfs:domain;c> for (≥ 1r) v c
or <r;rdfs:range;c> for > v ∀r.c. Hence, we had to
make sure the OWL shortcuts are used when check-
ing for (or adding of) corresponding SHOIN axioms
is required.

For a complete list of the generated SQL queries we refer
to the source code of our implementation (which is presented
in Section 5). Theoretically, the rules could also be trans-
lated into an RDF query language (such as SPARQL [27]),
which would turn each RDF store into a reasoner. Practi-
cally however, we are not aware of an RDF query language,
which is sufficiently expressive (especially with regard to re-
quired counting and aggregation functionality).

4.3 A Fixpoint Algorithm for Stratified Infer-
ences

After we obtained a set of SQL queries, we wanted to find
an efficient way for their execution. Due to implications be-
tween the inference rules and consequently between queries,
we have to execute the queries until no further inferences are
possible. However, doing that in an arbitrary order might
turn out to be fairly inefficient. In order to overcome this
obstacle, we derived a stratification of the inference rules
based on observations regarding the dependencies between
inference rules:

• Rules 8, 9 and 57 can be safely ignored, since they give
no exploitable information.

• Only 13 out of the 50 inference rules for class sub-
sumption depend on the subsumption relation exclud-
ing tautology (i.e. subsumption of >) and unsatisfia-
bility (i.e. subsumption by ⊥), namely rules: 3-7, 12,
13, 16-19, 22, 23.

• The following rules depend with respect to concept
subsumption solely on unsatisfiability: 11, 14, 29, 30.

• The following rules depend with respect to concept
subsumption solely on tautologies: 10,15

• Role subsumption and inversion inferences (i.e. rules
51-55) are independent of class subsumption and only
the role subsumption rules 52, 54, 55 depend on the
role hierarchy.

• Role subsumption and inversion as well as class sub-
sumption rules are up to nominals independent of in-
stance recognition rules.

As a result of these observations, it is safe to first com-
pute role subsumption and inversion inferences (lines 2-5 in
Algorithm 1), proceed with concept subsumption inferences
(lines 6-15) and finally compute class membership (lines 16-
19).

Since the algorithm can be implemented in just a few lines
of code with a modest number of additional SQL queries
it can be easily integrated as a small middleware layer on
top of a standard relational database. Once such a layer
is available, the revealed implicit information from OWL-
DL ontologies will be fully accessible for standard database
applications. The integration of ontologies and relational
databases simply boils down to joining the statements table
in the RDF storage schema (now also containing inferred
relationships) with other database tables containing instance
data.

To illustrate the impact for the integration of ontologies
and databases, we look back at our introductory example
from Section 2. Suppose in addition to the Galen ontology,
there is a database table organisms containing experimen-
tal data about a number of organisms examined by a bio-
medical research group. A list of all microorganisms can be
simply retrieved by the following query, once the subsump-
tion inference results are added back to the RDF storage
schema:

SELECT o.* FROM statements s

INNER JOIN organisms o ON(o.type=s.subject)

WHERE s.predicate="rdfs:subClassOf"

AND s.object="MicroOrganism"

Since there is no overhead in serializing an ontology, trans-
ferring it to a separate reasoner, serializing the inference re-
sults, transferring them back and adding them to the database
the performance and scalability depends solely on the infer-
ence algorithm (and database query performance), whose
evaluation in real application scenarios is the aim of the fol-
lowing section.

5. EVALUATION
Our approach aims at supporting the most advanced ap-

plications of ontologies. These can be found in biology,
medicine, commerce and – central for all domains – so called
upper-level ontologies, which define crucial concepts for ref-
erence in multiple domains. The experimental methodology
aims at comparing the performance of our implementation
OWLDB with both a state-of-the-art OWL reasoner and a
specialized RDF instance store. Consequently, the evalua-
tion criteria are:

• soundness and completeness of the subsumption and
instance reasoning with respect to the given data set,

• scalability of subsumption and instance reasoning rea-
soning,

• query performance for queries of various complexity.

The employed ontologies and instance data sets comprise
central ontologies from the mentioned domains as well as
synthetic benchmark ontologies and instance data sets.

Input: SHOIN ontology stored in a relational
database

Output: inferred concept and role subsumption
hierarchies and classification of instances

begin1

Execute inference rules for role subsumption which2

do not depend on the role subsumption relation
(51,53);
repeat3

Execute inference rules for role subsumption4

which depend on the role subsumption relation
(52,54,55);

until no new role subsumption inferences ;5

Execute inference rules for concept subsumption6

which do not depend on the concept subsumption
relation;
repeat7

Execute inference rules for concept8

subsumption which dependent on the concept
subsumption relation excluding rules depending
solely on tautology and unsatisfiability;
if first loop or new unsatisfiability inferred then9

Execute inference rules for concept10

subsumption which dependent with respect
to concept subsumption solely on
unsatisfiability (11, 14, 29, 30);

end11

if first loop or new tautology inferred then12

Execute inference rules for concept13

subsumption which dependent with respect
to concept subsumption solely on tautologies
(10, 15);

end14

until no new concept subsumption inferences ;15

foreach instance recognition rules (58-66) do16

Execute instance recognition rule;17

end18

Execute rule 5619

end20

Algorithm 1: Fixpoint algorithm for stratified
SHOIN reasoning.

5.1 Implementation
The presented approach has been implemented on the ba-

sis of the Semantic Web application development framework
Powl [1]. Hence, OWLDBs architecture consists of the fol-
lowing components:

• Parser/Serializer for loading and exporting ontologies
from various formats. This component is provided by
Powl.

• RDBMS. The execution of the generated SQL queries
has been tested with the database systems MySQL and
DB2.

• The subsumption reasoner and instance classifier is
the core OWLDB component. It can be configured
to utilize different storage engines (e.g. on-disk or in-
memory tables) or schemata (e.g. inferred triples in

statements table, separate property tables) to store in-
ferred results.

• API and SPARQL interface. All components are ac-
cessible by an Application Programming Interface im-
plemented in PHP. To query OWLDB Powl provides
RDQL and SPARQL query interfaces.

• Frontends. OWLDB is further prototypically integrated
into Powl’s Web frontend for ontology authoring and
into the social semantic collaboration tool OntoWiki
[2].

Powl as well as OWLDB are Open-Source and available
under GNU Public License (GPL). A web-interface where
OWLDB can be tested with custom ontologies is available
at http://powl.sf.net/owldb.

5.2 Experimental Methodology
Since the OWLDB approach comprises TBox (i.e. sub-

sumption) as well as ABox (i.e. instance recognition) rea-
soning, we evaluate OWLDBs performance by comparing it
to a prominent representative from both worlds — the Pellet
DL reasoner (in Version 1.3) for subsumption reasoning and
the RDF instance store Sesame/OWLIM performing ABox
reasoning. OWLDB was running with Powl 0.94 on PHP
5.1.6. A MySQL database (version 5.1.12) was used as un-
derlying DBMS with the MyISAM on disk storage engine
and configuration defaults. All systems were run on a note-
book computer with a 2 GHz, Pentium M processor and
2 GB main memory. The Java Virtual Machine running
Pellet and Sesame/OWLIM was configured with a 1.5 GB
heap size. The benchmark results represent averages of 5
runs for each test. The following ontologies and instance
data sets were used within the evaluation:

Ontology Expres-
siveness

Class. Prop. Inst. Size
(MB)

Wine
SHOIF(D)

137 17 206 0.12
Wine5 685 85 1030 0.61
Wine10 1370 170 2060 1.23
Pathway EL 486 3 0 0.20
MolFunc ALR+ 7957 3 0 2.89
BioProc ALR+ 11K 3 0 5.42
MGED ALCOF(D) 234 162 709 0.41
Galen SHF 2749 413 0 2.33
SUMO ALH(D) 630 246 435 0.46
eClassOWL ALH(D) 76976 5529 4544 25.4
UOBDL1

SHOIN(D)
0.05M 23

UOBDL5 69 47 0.2M 100
UOBDL10 1.2M 196

Table 2: Expressiveness and sizes of benchmark on-
tologies.

Wine Ontology is the example ontology accompany-
ing the official W3C OWL standard. To exhibit the OWL
features, it exemplary demonstrates their usage in the do-
main of wine and food. Due to the comprehensive and bal-
anced usage of different OWL expressions, the Wine Ontol-
ogy qualifies as an indicator for the grade of OWL support.
Further, when used as prototype for ontologies of larger size
(by cloning resources), these can be expected to give mean-
ingful insights into the scalability properties of a reasoning
algorithm.

Open Bio-Medical Ontologies (OBO) is a collection
of well-structured controlled vocabularies for shared use across
different biological and medical domains. The original OBO
format is a representation based on directed acyclic graphs,
which can be straightforwardly translated into OWL. Cur-
rently the OBO project comprises more than 60 individual
ontologies with individual sizes ranging from thousands to
millions of triples. From those, we selected the following
ontologies for the evaluation: Biological Process (BioProc),
Pathway, Molecular Function (MolFunc), Microarray exper-
imental conditions (MGED).

EClassOWL [15] is an OWL-Lite representation of eClass
– a products and services categorization standard. EClass
includes products and services concepts, product properties,
values for enumerated data types, a hierarchy of the product
concepts reflecting the perspective of a buying organization,
recommendations which properties should be used for which
type of products, and recommendations which values are al-
lowed for which property. The eClassOWL ontology was
built to capture as much of the original semantics as possi-
ble while being well within the limits of OWL-DL.

In addition to these, we evaluated OWLDB with the OWL
version of Galen [31] and the OWL representation of the
SUMO - Suggested Upper Merged Ontology [34]. The
ABox reasoning and querying was tested using the dataset
and queries of the UOB - University Ontology Benchmark
[21], an extension of the well known Lehigh University Bench-
mark (LUBM) [12].

5.3 Comparison with DL-Reasoners
To evaluate OWLDB’s subsumption reasoning, we com-

pared OWLDB and Pellet [32] with regard to the execu-
tion time for the calculation of the overall subsumption re-
lation in various ontologies. For all tested ontologies for
which Pellet was able to compute the subsumption relation,
OWLDB’s subsumption results were the same as Pellet’s
and hence sound and complete.

To evaluate the scalability of OWLDB’s subsumption al-
gorithm, we processed the wine ontology in different sizes.
These were derived by simply copying all axioms and de-
scriptions and renaming all classes, properties and instances
therein. The results are visualized in Figure 5.

Pellet OWLDB
Wine 32.47 4.22
Wine2 96.98 9.6
Wine3 263.07 15.24
Wine4 649.01 22.72
Wine5 31.31
Wine6 41.97
Wine7 53.17
Wine8 65.15
Wine9 78.35
Wine10 88.79

0

100

200

300

400

500

600

700

Ti
m

e
(s

)

Pellet 32.47 96.98 263.07 649.01

OWLDB 4.22 9.6 15.24 22.72 31.31 41.97 53.17 65.15 78.35 88.79

Wine Wine2 Wine3 Wine4 Wine5 Wine6 Wine7 Wine8 Wine9 Wine10

Figure 5: Scalability of subsumption for Pellet and
OWLDB for the Wine ontology in different sizes.

The measured results show that OWLDB’s execution time
grows significantly slower than Pellet’s for increasing on-
tology sizes. Furthermore, Pellet’s desire for main mem-
ory exceeds the available resources starting from Wine5.
This need for main memory limits the amount of poten-
tially processable OWL ontologies for Pellet (and, we conjec-
ture, most tableau algorithm based reasoners) dramatically.
However, the MySQL process executing OWLDB’s queries

uses a small (less than 50MB) and constant amount of main
memory independent of the ontology size. Consequently,
OWLDB is able to process potentially all OWL ontologies
as long as execution time is not limited.

In Figure 6, the subsumption calculation time of OWLDB
and Pellet is presented for various ontologies of different
sizes, using different OWL features.

Pellet OWLDB
OBO Pathway 797 600
OBO MolFunc 185375 4119
OBO BioProc 424937 36427
MGED 280905 738
Galen 36080 4140271
SUMO 1032 1018
eClass- OWL 10000000 6239

OBO Mesh 1346 uninteressant
OBO Mouse Pathology 430 uninteressant
NCI uninteressant
Tambis 1750 988

1

10

100

1000

10000

100000

1000000

10000000

Ti
m

e
(m

s)

Pellet 797 185375 424937 280905 36080 1032 10000000

OWLDB 600 4119 36427 738 4140271 1018 6239

OBO
Pathway

OBO
MolFunc

OBO
BioProc MGED Galen SUMO eClass-

OWL

Figure 6: Calculation of the subsumption relation
for various ontologies (Note the logarithmic scale).

OWLDB computes the subsumption relation significantly
faster for 4 out of the 7 ontologies. Pellet’s and OWLDB’s
performance are comparable for the two small ontologies
OBO Pathway and SUMO. For the Galen ontology OWLDB
is significantly slower. Profiling OWLDB for Galen showed
that 90% of the computation was spend on computing the
transitive closure of the subsumption relation (rule 1) and
on the detection of intersection classes where each member
is a super-class of a member of a second intersection class
(rule 69). The former is very probable due to the - with 10
- high average depth of the class tree, the latter due to the
large number of intersection classes (2024).

5.4 Comparison with Triple Stores
To evaluate OWLDB’s ABox reasoning and querying per-

formance, we used the University Ontology Benchmark for
OWL DL (UOB [21]) of the UOB ontology with instance
data for 1, 5, and 10 universities (later referred to as UOB-
DLx). Sesame [10] (version 1.2.6) together with its OWLIM
storage and inference layer [18] (version 2.8.4) served as a
reference system for performance comparison.

Storing ontologies in relational databases gives developers
more flexibility to fine-tune table layouts and index struc-
tures in order to facilitate reasoning, inferencing, and query-
ing in specific scenarios. For this evaluation, OWLDB was
configured to store inferred facts together with explicit in-
formation from the UOB ontologies in the statements ta-
ble additionally in separate property tables (cf. [35] for
a discussion about property tables). This facilitates high-
performance querying, but it may, however, result in slightly
longer load and update times.

5.4.1 Loading
We first compared the load times (see Figure 7). OWLDB

is roughly 3 times slower than OWLIM when parsing the
RDF files, load them into the data structures and perform
ABox inferences. We identified the following reasons:

• Parsing of RDF and loading into the data structures

is better integrated in OWLIM. Furthermore, OWLIM
works solely in main memory which at this point sig-
nificantly contributes to better performance.

• OWLDB evaluates more OWL expressions (such as
arbitrary cardinality restrictions) than OWLIM and
hence needs more time to perform the required infer-
ences.

• The currently used DBMS MySQL does not provide
optimizations for computing transitive closures. In
UOB the calculation of the property extent for the
transitive property uob:hasSameHomeTownWith alone ac-
counts for 30-60% of OWLDB’s overall ABox infer-
ence time (cf. also Section 5.5). Hence, OWLDB will
profit significantly when the SQL99 features for recur-
sive queries are available and data access is optimized
accordingly.

In general, load times have much less importance for the
usage of OWLDB than for OWLIM, since (due to the persis-
tent on-disk storage in database tables) loading of ontologies
occurs just once. In OWLIM, on the contrary, ontologies are
loaded into main memory each time the system is started.

0
I

Loadtime Sesame DL1 OWLDB DL1 Sesame DL5 OWLDB DL5 Sesame DL1 OWLDB DL10
Pars.+Load.+ 24.00 119.00 276
Parsing 7.16 28.60 55.22
Loading 3.78 16.93 37.78
Inferencing 84.00 220.00 678.00

Literals 0,44 1,8 3,5
Namespaces 0,13 0,8 0,2
Resources 0,88 3,73 9,16
Statements 2,33 10,6 24,92

0.00

200.00

400.00

600.00

800.00

Inferencing 84.00 220.00 678.00

Loading 3.78 16.93 37.78

Parsing 7.16 28.60 55.22

Pars.+Load.+Inf. 24.00 119.00 276

Sesame
DL1

OWLDB
DL1

Sesame
DL5

OWLDB
DL5

Sesame
DL10

OWLDB
DL10

Figure 7: Loading of UOB ontologies into OWLIM
and OWLDB. For OWLDB numbers are broken down into
inferencing, loading and parsing.

5.4.2 Querying
OWLDB is capable to answer all UOB queries sound and

complete. OWLIM has problems answering the following
UOB queries :

• No results are returned for:
Version Query Reference
UOB-DL5 5 200
UOB-DL5 9 1041
UOB-DL5 14 6913

• An incomplete result set is returned for:
Version Query OWLIMs Reference
UOB-DL1 14 6643 6893
UOB-DL5 11 6210 6230
UOB-DL5 14 6696 6913
UOB-DL10 14 6712 7088

• The answers for query 15 are not sound:
OWLIM returns 379 (416, 408) results instead of 62
(76, 79) for DL1 (DL5, DL10).

eLUMB DL1

1

10

100

1000

10000
Ti

m
e

(m
s)

Sesame 82 9 75 1553 11 107 98 42 18 1 2883 267 43 118 46

ODB 34 100 35 17 5 5 1 10 86 3 270 5 10 244 9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

eLUMB DL5

1

10

100

1000

10000

Ti
m

e
(m

s)

Sesame 155 18 160 3089 3 159 188 82 34 1 23582 614 121 257 120

ODB 2 333 33 17 6 28 7 10 98 3 971 12 12 414 13

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

eLUMB DL10

1

10

100

1000

10000

Ti
m

e
(m

s)

Sesame 303 35 362 7153 4 351 407 170 86 1 1E+0 1084 220 456 223

ODB 1 656 54 18 6 61 2 10 115 3 1185 7 14 438 13

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 8: OWLDB and OWLIM querying perfor-
mance results for the University Ontology Bench-
mark with instance data for 1, 5 and 10 universities.

Table 8 summarizes OWLDB’s and OWLIM’s query per-
formance. Please note the logarithmic scale. OWLDB is
able to answer 10 out of 15 UOB queries significantly (2 to
over 100 times) faster than OWLIM. OWLIM outperforms
OWLDB in 4 queries (i.e. 2, 5, 9, 10) by approximately 2 to
15 times. In addition, OWLDB is capable to support OWL
features not included in the University Ontology Benchmark
(e.g. more complex subsumption reasoning).

5.5 Profiling OWLDB reasoning
In order to gain insights which OWL expressions are the

most expensive ones with respect to reasoning in OWLDB,
we profiled the timings of SQL query execution for each of
the evaluation ontologies. Surprisingly, more than 50% of
the overall query execution time was caused by only two
query types:

• reasoning and inferences involving transitive proper-
ties with large property extents (including the RDF-S
and OWL vocabulary properties, owl:sameAs, rdfs:

subClassOf)

• subsumption inferences on the basis of the inference
rule 69 (i.e. the detection of intersection classes where
each member is a super-class of a member of a second
intersection class).

Hence, further significant performance improvements can be
expected from optimizing these queries either at the database
or application level.

6. RELATED WORK
Traditionally, approaches for reasoning and inferencing for

Description Logics are either optimized for TBox reasoning
in form of tableau based description logic reasoners or im-
plemented as proprietary or database backed instance stores
with ABox reasoning capabilities. In addition there exist ef-
forts to integrate both strategies as-is into larger systems.
The problem of scalability is furthermore tackled by ap-
proaches to modularize ontologies. Other approaches and
developments in addition to the ones presented in this sec-
tion can be found in the slightly outdated SWAD deliver-
able [7].

6.1 Description Logic Reasoners
One of the few native OWL reasoners is Pellet [32] —

an open-source OWL-DL reasoner written in Java. Pellet
is based on tableau algorithms developed for expressive de-
scription logics. It supports full OWL-DL including reason-
ing about nominals. Pellet is becoming increasingly popular
due to its easy deployment and the ability to directly load
any OWL ontology. RACER [13] is a very well optimized
and maybe the fastest tableau-based reasoner. However,
both Pellet and RACER perform in-memory reasoning and
are due to the memory requirements of tableau reasoning
limited with regard to scalability and do not offer to selec-
tively disable computationally expensive reasoning steps in
order to trade completeness for speed as OWLDB does. A
system which apparently has many similarities to the pre-
sented approach is KAON2 [23]. It realizes on-disk reason-
ing for a subset of OWL with disjunctive datalog, which is
close to other database query languages such as SQL. Due
to KAON2’s missing support for nominals we were not able
to compare both systems directly.

6.2 Instance Stores
Instance stores such as Jena [36], Sesame [10], OWLIM [18],

Mulgara1 and AllegroGraph2 mainly focus on the efficient
processing of ABox queries and support rule-based TBox in-
ferences often only in a very limited way. The Jena toolkit
for example implements a Java API including support for
different database backends and light-weight forward- and
backward-chaining RDF-Schema reasoning together with sup-
port for the declarative RDF query languages RDQL and
SPARQL. A system primarily focused on efficient parsing,
storing and querying is Sesame. In addition to accessing re-
lational databases for storing RDF data, Sesame provides a
highly optimized in-memory RDF storage layer, known to
be very fast in computing and materializing entailed state-
ments. Its modular structure allows the implementation
of customized Storage and Inference Layers (SAIL). The
reference system of our evaluation OWLIM for example is
such a Sesame SAIL. OWLIM though aims at balancing be-
tween a scalable repository and light-weight reasoner and
in-memory, forward chaining rule inferences based on De-
scription Logic Programs.

6.3 Combined Approaches
One of the earliest approaches to coupling a DL reasoner

with a database is described in [8]. It uses SQL to clas-
sify instances stored in a database and loading them into

91http://www.mulgara.org
92http://www.franz.com/products/allegrograph

the CLASSIC system. In the context of the Semantic Web,
the DLDB [26] system was an early approach to use an
RDBMS for RDF and limited RDF-S entailment and con-
necting it with a reasoner for DAML+OIL subsumption.
More recently, InstanceStore [6] and Minerva [38] combined
a tableau based DL reasoner for the TBox inference with
rules for the ABox inference. In Minerva rules are trans-
lated into SQL queries on a relational triple store schema.
However, the selected rule language in Minerva is relatively
weak and focuses mainly on instance retrieval.

6.4 Modularization of Ontologies
Another way to cope with the growing size of ontolo-

gies in addition to more efficient indexing and better op-
timized algorithms is to segment ontologies into reasonably
self-contained parts for separate processing. Work with re-
gard to the modularization of ontologies can be categorized
along three main categories:

• Query-based methods aiming at generating views of on-
tologies by means of database inspired query languages
such as SPARQL [27],

• Network partitioning, which views ontologies as net-
works, which can be clustered into different segments
with regard to characteristics of its nodes,

• Extraction by traversal sees the ontology as an network
of nodes, which is partitioned by starting at a certain
node and following links to other nodes, a prominent
representative is the PROMPT algorithm [24].

The dependency analysis as part of the OWLDB approach
is closely related to extraction by traversal. An overview
about further approaches from each of these categories can
be found in [31]. A method to drastically reduce the rea-
soning relevant ABox part of an ontology by eliminating
redundant data is described in [11] and yields good results
especially with the homogeneous bio-medical ontologies.

7. CONCLUSIONS AND FUTURE WORK
Using today’s tools, reasoning about large ontologies (ei-

ther in terms of many classes or many instances) is not
feasible: full-blown description logic reasoners do not scale
adequately. Strategies to push as many inference tasks as
possible into standard relational database systems are a way
to overcome these difficulties, as DBMS query processing is
designed to handle large data volumes.

In this paper, we have developed such an approach, pre-
senting a set of techniques for mapping subsumption infer-
ences into SQL queries, which are then recomputed until
a fixpoint is reached. We evaluated our resulting OWLDB
system across a variety of ABox and TBox reasoning tasks
from real-world and synthetic ontologies. Our implementa-
tion typically ran faster than both the Pellet OWL reasoner
and the highly specialized Sesame/OWLIM instance store;
meanwhile, OWLDB provides greater scalability than Pellet
and better expressiveness than OWLIM.

We see this work as the initial stage in a longer-term
agenda. Our initial OWLDB engine represents the first step
towards scalable reasoning for OWL ontologies; we would
like to improve its support for incremental ontology updates
and for distributed computation across multiple database
systems. Taking our lessons to a related but higher-level

problem, we would also like to explore how data integration
techniques [20, 14], which provide view-based data trans-
lation capabilities, might be extended to incorporate OWL
reasoning capabilities in a similar way to OWLDB. Such an
architecture would provide an excellent basis for semantic
data sharing across ontologies when the classes do not pre-
cisely align: for instance, database schema mappings can
convert between prices in different currencies, or from one
type of local ID to another.

8. ACKNOWLEDGMENTS
We would like to thank Joe Kopena, Frank Loebe, Jens

Lehmann and Robert Hoehndorf for fruitful discussions and
valuable suggestions.

9. REFERENCES
[1] S. Auer. Powl: A web based platform for collaborative

semantic web development. In S. Auer, C. Bizer, and
L. Miller, editors, Proceedings of the Workshop
Scripting for the Semantic Web, number 135 in CEUR
Workshop Proceedings, Heraklion, Greece, 05 2005.

[2] S. Auer, S. Dietzold, and T. Riechert. Ontowiki - a
tool for social, semantic collaboration. In I. C. et al.,
editor, Proc. of 5th International Semantic Web
Conference, Athens, GA, USA, Nov 5th-9th, number
4273 in LNCS, pages 736–749. Springer-Verlag Berlin
Heidelberg, 2006.

[3] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi,
and P. Patel-Schneider, editors. The Description Logic
Handbook: Theory, Implementation and Applications.
Cambridge University Press, Cambridge, England,
2003.

[4] F. Baader and U. Sattler. An overview of tableau
algorithms for description logics. Studia Logica,
69:5–40, 2001.

[5] S. Bechhofer. Web Ontology Language (OWL)
reference version 1.0. W3C. Technical report, W3C,
2004.

[6] S. Bechhofer, I. Horrocks, and D. Turi. The OWL
instance store: System description. In R. Nieuwenhuis,
editor, CADE, volume 3632 of Lecture Notes in
Computer Science, pages 177–181. Springer, 2005.

[7] D. Beckett and J. Grant. Swad-europe deliverable
10.2: Mapping semantic web data with rdbmses.
Technical report, W3C Semantic Web Advanced
Development for Europe (SWAD-Europe), 2003.

[8] A. Borgida and R. J. Brachman. Loading data into
description reasoners. In P. Buneman and S. Jajodia,
editors, Proceedings of the 1993 ACM SIGMOD
International Conference on Management of Data,
pages 217–226, Washington, D.C., 26–28 May 1993.

[9] D. Brickley and L. Miller. FOAF vocabulary
specification. http://xmlns.com/foaf/0.1/, 2005.

[10] J. Broekstra, A. Kampman, and F. van Harmelen.
Sesame: An architecture for storing and querying
RDF data and schema information, 2003.

[11] A. Fokoue, A. Kershenbaum, L. Ma, E. Schonberg,
and K. Srinivas. The summary abox: Cutting
ontologies down to size. In I. F. Cruz, S. Decker,
D. Allemang, C. Preist, D. Schwabe, P. Mika,
M. Uschold, and L. Aroyo, editors, International

Semantic Web Conference, volume 4273 of Lecture
Notes in Computer Science, pages 343–356. Springer,
2006.

[12] Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark
for OWL knowledge base systems. Journal of Web
Semantics, 3(2-3):158–182, 2005.

[13] V. Haarslev and R. Möller. High performance
reasoning with very large knowledge bases: A
practical case study. In B. Nebel, editor, Proceedings
of the seventeenth International Conference on
Artificial Intelligence (IJCAI-01), pages 161–168, San
Francisco, CA, Aug. 4–10 2001. Morgan Kaufmann
Publishers, Inc.

[14] A. Y. Halevy, Z. G. Ives, D. Suciu, and I. Tatarinov.
Schema mediation in peer data management systems.
In ICDE, March 2003.

[15] M. Hepp. Products and services ontologies: A
methodology for deriving owl ontologies from
industrial categorization standards. International
Journal on Semantic Web & Information Systems
(IJSWIS), 2:77–99, 2006.

[16] R. Hoehndorf, K. Prüfer, M. Backhaus, H. Herre,
J. Kelso, F. Loebe, and J. Visagie. A proposal for a
gene functions wiki. In R. Meersman, Z. Tari, and
P. Herrero, editors, OTM Workshops (1), volume 4277
of Lecture Notes in Computer Science, pages 669–678.
Springer, 2006.

[17] U. Hustadt, B. Motik, and U. Sattler. Reducing shiq
description logic to disjunctive datalog programs. In
D. Dubois, C. A. Welty, and M.-A. Williams, editors,
KR2004: Principles of Knowledge Representation and
Reasoning, pages 152–162, Menlo Park, California,
2004. AAAI Press.

[18] A. Kiryakov, D. Ognyanov, and D. Manov. OWLIM -
A pragmatic semantic repository for OWL. In
M. Dean, Y. Guo, W. Jun, R. Kaschek,
S. Krishnaswamy, Z. Pan, and Q. Z. Sheng, editors,
WISE Workshops, volume 3807 of Lecture Notes in
Computer Science, pages 182–192. Springer, 2005.

[19] G. Klyne, J. J. Caroll, and B. McBride. Resource
description framework (rdf): Concepts and abstract
syntax. Technical report, W3C, 2002.

[20] M. Lenzerini. Tutorial - data integration: A
theoretical perspective. In PODS, 2002.

[21] L. Ma, Y. Yang, Z. Qiu, G. Xie, Y. Pan, and S. Liu.
Towards a complete OWL ontology benchmark. In
Y. Sure and J. Domingue, editors, ESWC, volume
4011 of Lecture Notes in Computer Science, pages
125–139. Springer, 2006.

[22] J. L. V. Mejino, N. F. Noy, M. A. Musen, J. F.
Brinkley, and C. Rosse. Representation of structural
relationships in the foundational model of anatomy. In
Proceedings, American Medical Informatics
Association Fall Symposium, 2001.

[23] B. Motik and U. Sattler. Practical DL reasoning over
large a-boxes with KAON2.

[24] Noy, N. F., Musen, and M. A. The PROMPT suite:
interactive tools for ontology merging and mapping.
International Journal of Human-Computer Studies,
59(6):983–1024, 2003.

[25] Open biomedical ontologies. Available from
http://obo.sourceforge.net/, 2004.

[26] Z. Pan and J. Heflin. Dldb: Extending relational
databases to support semantic web queries. Technical
report, Dept. of Computer Science and Engineering,
Lehigh University, 2004.

[27] E. Prud’hommeaux and A. Seaborne. SPARQL query
language for RDF. W3C Working Draft
(http://www.w3.org/TR/rdf-sparql-query/), 2005.

[28] V. Royer and J. Quantz. Deriving inference rules for
terminological logics. In D. Pearce and G. Wagner,
editors, JELIA, volume 633 of Lecture Notes in
Computer Science, pages 84–105. Springer, 1992.

[29] V. Royer and J. J. Quantz. Deriving inference rules for
description logics: a rewriting approach into sequent
calculi. Technical Report TUB-FB13-KIT-111, KIT
Project Group Publications, Dec. 1 1993. Tue, 07 Nov
1995 19:31:17 GMT.

[30] S. Schulz, E. Beisswanger, U. Hahn, J. Wermter,
H. Stenzhorn, and A. Kumar. From GENIA to
BioTop – Towards a top-level ontology for biology. In
International Conference on Formal Ontology in
Information Systems (FOIS 2006), Baltimore,
Maryland (USA), November 9-11, 2006, 2006.

[31] J. Seidenberg and A. L. Rector. Web ontology
segmentation: analysis, classification and use. In
L. Carr, D. D. Roure, A. Iyengar, C. A. Goble, and
M. Dahlin, editors, WWW, pages 13–22. ACM, 2006.

[32] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and
Y. Katz. Pellet: A practical OWL-DL reasoner.
Submitted for Publication to Journal of Web
Semantics.

[33] C. Stoeckert, H. Parkinson, T. Whetzel, P. Spellman,
C. A. Ball, J. White, J. Matese, L. Fan, G. Fragoso,
M. Heiskanen, S. Sansone, H. Causton, L. Game, and
C. Taylor. An ontology for microarray experiments in
support of MAGE v.1. Available from http://mged.

sourceforge.net/ontologies/MGEDontology.php,
March 2005.

[34] SUMO. The suggested upper merged ontology.
Teknowledge, 2003. Version 1.60.

[35] K. Wilkinson. Jena property table implementation. In
Proceedings of Second International Workshop on
Scalable Semantic Web Knowledge Base Systems
(SSWS 2006) 5th International Semantic Web
Conference, Athens, Georgia, USA 2006.

[36] K. Wilkinson, C. Sayers, H. A. Kuno, and
D. Reynolds. Efficient RDF storage and retrieval in
Jena2. In I. F. Cruz, V. Kashyap, S. Decker, and
R. Eckstein, editors, SWDB, pages 131–150, 2003.

[37] S. Zhang, O. Bodenreider, and C. Golbreich.
Experience in reasoning with the foundational model
of anatomy in OWL DL. In R. B. Altman, T. Murray,
T. E. Klein, A. K. Dunker, and L. Hunter, editors,
Pacific Symposium on Biocomputing, pages 200–211.
World Scientific, 2006.

[38] J. Zhou, L. Ma, Q. Liu, L. Zhang, Y. Yu, and Y. Pan.
Minerva: A scalable OWL ontology storage and
inference system. In R. Mizoguchi, Z. Shi, and
F. Giunchiglia, editors, Asian Semantic Web
Conference, volume 4185 of Lecture Notes in
Computer Science, pages 429–443. Springer, 2006.

	Integrating Ontologies and Relational Data
	Recommended Citation

	Integrating Ontologies and Relational Data
	Abstract
	Comments

	tmp.1194889314.pdf.4OicA

